src/share/vm/runtime/safepoint.cpp

Fri, 08 Oct 2010 09:29:09 -0700

author
jcoomes
date
Fri, 08 Oct 2010 09:29:09 -0700
changeset 2198
0715f0cf171d
parent 2138
d5d065957597
child 2260
ce6848d0666d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_safepoint.cpp.incl"
    28 // --------------------------------------------------------------------------------------------------
    29 // Implementation of Safepoint begin/end
    31 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    32 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    33 volatile int SafepointSynchronize::_safepoint_counter = 0;
    34 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    35 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    36 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    37 static bool timeout_error_printed = false;
    39 // Roll all threads forward to a safepoint and suspend them all
    40 void SafepointSynchronize::begin() {
    42   Thread* myThread = Thread::current();
    43   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
    45   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    46     _safepoint_begin_time = os::javaTimeNanos();
    47     _ts_of_current_safepoint = tty->time_stamp().seconds();
    48   }
    50 #ifndef SERIALGC
    51   if (UseConcMarkSweepGC) {
    52     // In the future we should investigate whether CMS can use the
    53     // more-general mechanism below.  DLD (01/05).
    54     ConcurrentMarkSweepThread::synchronize(false);
    55   } else if (UseG1GC) {
    56     ConcurrentGCThread::safepoint_synchronize();
    57   }
    58 #endif // SERIALGC
    60   // By getting the Threads_lock, we assure that no threads are about to start or
    61   // exit. It is released again in SafepointSynchronize::end().
    62   Threads_lock->lock();
    64   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
    66   int nof_threads = Threads::number_of_threads();
    68   if (TraceSafepoint) {
    69     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
    70   }
    72   RuntimeService::record_safepoint_begin();
    74   {
    75   MutexLocker mu(Safepoint_lock);
    77   // Set number of threads to wait for, before we initiate the callbacks
    78   _waiting_to_block = nof_threads;
    79   TryingToBlock     = 0 ;
    80   int still_running = nof_threads;
    82   // Save the starting time, so that it can be compared to see if this has taken
    83   // too long to complete.
    84   jlong safepoint_limit_time;
    85   timeout_error_printed = false;
    87   // PrintSafepointStatisticsTimeout can be specified separately. When
    88   // specified, PrintSafepointStatistics will be set to true in
    89   // deferred_initialize_stat method. The initialization has to be done
    90   // early enough to avoid any races. See bug 6880029 for details.
    91   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    92     deferred_initialize_stat();
    93   }
    95   // Begin the process of bringing the system to a safepoint.
    96   // Java threads can be in several different states and are
    97   // stopped by different mechanisms:
    98   //
    99   //  1. Running interpreted
   100   //     The interpeter dispatch table is changed to force it to
   101   //     check for a safepoint condition between bytecodes.
   102   //  2. Running in native code
   103   //     When returning from the native code, a Java thread must check
   104   //     the safepoint _state to see if we must block.  If the
   105   //     VM thread sees a Java thread in native, it does
   106   //     not wait for this thread to block.  The order of the memory
   107   //     writes and reads of both the safepoint state and the Java
   108   //     threads state is critical.  In order to guarantee that the
   109   //     memory writes are serialized with respect to each other,
   110   //     the VM thread issues a memory barrier instruction
   111   //     (on MP systems).  In order to avoid the overhead of issuing
   112   //     a memory barrier for each Java thread making native calls, each Java
   113   //     thread performs a write to a single memory page after changing
   114   //     the thread state.  The VM thread performs a sequence of
   115   //     mprotect OS calls which forces all previous writes from all
   116   //     Java threads to be serialized.  This is done in the
   117   //     os::serialize_thread_states() call.  This has proven to be
   118   //     much more efficient than executing a membar instruction
   119   //     on every call to native code.
   120   //  3. Running compiled Code
   121   //     Compiled code reads a global (Safepoint Polling) page that
   122   //     is set to fault if we are trying to get to a safepoint.
   123   //  4. Blocked
   124   //     A thread which is blocked will not be allowed to return from the
   125   //     block condition until the safepoint operation is complete.
   126   //  5. In VM or Transitioning between states
   127   //     If a Java thread is currently running in the VM or transitioning
   128   //     between states, the safepointing code will wait for the thread to
   129   //     block itself when it attempts transitions to a new state.
   130   //
   131   _state            = _synchronizing;
   132   OrderAccess::fence();
   134   // Flush all thread states to memory
   135   if (!UseMembar) {
   136     os::serialize_thread_states();
   137   }
   139   // Make interpreter safepoint aware
   140   Interpreter::notice_safepoints();
   142   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   143     // Make polling safepoint aware
   144     guarantee (PageArmed == 0, "invariant") ;
   145     PageArmed = 1 ;
   146     os::make_polling_page_unreadable();
   147   }
   149   // Consider using active_processor_count() ... but that call is expensive.
   150   int ncpus = os::processor_count() ;
   152 #ifdef ASSERT
   153   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   154     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   155   }
   156 #endif // ASSERT
   158   if (SafepointTimeout)
   159     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   161   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   162   unsigned int iterations = 0;
   163   int steps = 0 ;
   164   while(still_running > 0) {
   165     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   166       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   167       ThreadSafepointState *cur_state = cur->safepoint_state();
   168       if (cur_state->is_running()) {
   169         cur_state->examine_state_of_thread();
   170         if (!cur_state->is_running()) {
   171            still_running--;
   172            // consider adjusting steps downward:
   173            //   steps = 0
   174            //   steps -= NNN
   175            //   steps >>= 1
   176            //   steps = MIN(steps, 2000-100)
   177            //   if (iterations != 0) steps -= NNN
   178         }
   179         if (TraceSafepoint && Verbose) cur_state->print();
   180       }
   181     }
   183     if (PrintSafepointStatistics && iterations == 0) {
   184       begin_statistics(nof_threads, still_running);
   185     }
   187     if (still_running > 0) {
   188       // Check for if it takes to long
   189       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   190         print_safepoint_timeout(_spinning_timeout);
   191       }
   193       // Spin to avoid context switching.
   194       // There's a tension between allowing the mutators to run (and rendezvous)
   195       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   196       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   197       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   198       // Blocking or yielding incur their own penalties in the form of context switching
   199       // and the resultant loss of $ residency.
   200       //
   201       // Further complicating matters is that yield() does not work as naively expected
   202       // on many platforms -- yield() does not guarantee that any other ready threads
   203       // will run.   As such we revert yield_all() after some number of iterations.
   204       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   205       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   206       // can actually increase the time it takes the VM thread to detect that a system-wide
   207       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   208       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   209       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   210       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   211       // will eventually wake up and detect that all mutators are safe, at which point
   212       // we'll again make progress.
   213       //
   214       // Beware too that that the VMThread typically runs at elevated priority.
   215       // Its default priority is higher than the default mutator priority.
   216       // Obviously, this complicates spinning.
   217       //
   218       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   219       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   220       //
   221       // See the comments in synchronizer.cpp for additional remarks on spinning.
   222       //
   223       // In the future we might:
   224       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   225       //    This is tricky as the path used by a thread exiting the JVM (say on
   226       //    on JNI call-out) simply stores into its state field.  The burden
   227       //    is placed on the VM thread, which must poll (spin).
   228       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   229       //    we might aggressively scan the stacks of threads that are already safe.
   230       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   231       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   232       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   233       // 5. Check system saturation.  If the system is not fully saturated then
   234       //    simply spin and avoid sleep/yield.
   235       // 6. As still-running mutators rendezvous they could unpark the sleeping
   236       //    VMthread.  This works well for still-running mutators that become
   237       //    safe.  The VMthread must still poll for mutators that call-out.
   238       // 7. Drive the policy on time-since-begin instead of iterations.
   239       // 8. Consider making the spin duration a function of the # of CPUs:
   240       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   241       //    Alternately, instead of counting iterations of the outer loop
   242       //    we could count the # of threads visited in the inner loop, above.
   243       // 9. On windows consider using the return value from SwitchThreadTo()
   244       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   246       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   247          guarantee (PageArmed == 0, "invariant") ;
   248          PageArmed = 1 ;
   249          os::make_polling_page_unreadable();
   250       }
   252       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   253       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   254       ++steps ;
   255       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   256         SpinPause() ;     // MP-Polite spin
   257       } else
   258       if (steps < DeferThrSuspendLoopCount) {
   259         os::NakedYield() ;
   260       } else {
   261         os::yield_all(steps) ;
   262         // Alternately, the VM thread could transiently depress its scheduling priority or
   263         // transiently increase the priority of the tardy mutator(s).
   264       }
   266       iterations ++ ;
   267     }
   268     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   269   }
   270   assert(still_running == 0, "sanity check");
   272   if (PrintSafepointStatistics) {
   273     update_statistics_on_spin_end();
   274   }
   276   // wait until all threads are stopped
   277   while (_waiting_to_block > 0) {
   278     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   279     if (!SafepointTimeout || timeout_error_printed) {
   280       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   281     } else {
   282       // Compute remaining time
   283       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   285       // If there is no remaining time, then there is an error
   286       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   287         print_safepoint_timeout(_blocking_timeout);
   288       }
   289     }
   290   }
   291   assert(_waiting_to_block == 0, "sanity check");
   293 #ifndef PRODUCT
   294   if (SafepointTimeout) {
   295     jlong current_time = os::javaTimeNanos();
   296     if (safepoint_limit_time < current_time) {
   297       tty->print_cr("# SafepointSynchronize: Finished after "
   298                     INT64_FORMAT_W(6) " ms",
   299                     ((current_time - safepoint_limit_time) / MICROUNITS +
   300                      SafepointTimeoutDelay));
   301     }
   302   }
   303 #endif
   305   assert((_safepoint_counter & 0x1) == 0, "must be even");
   306   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   307   _safepoint_counter ++;
   309   // Record state
   310   _state = _synchronized;
   312   OrderAccess::fence();
   314   if (TraceSafepoint) {
   315     VM_Operation *op = VMThread::vm_operation();
   316     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   317   }
   319   RuntimeService::record_safepoint_synchronized();
   320   if (PrintSafepointStatistics) {
   321     update_statistics_on_sync_end(os::javaTimeNanos());
   322   }
   324   // Call stuff that needs to be run when a safepoint is just about to be completed
   325   do_cleanup_tasks();
   327   if (PrintSafepointStatistics) {
   328     // Record how much time spend on the above cleanup tasks
   329     update_statistics_on_cleanup_end(os::javaTimeNanos());
   330   }
   331   }
   332 }
   334 // Wake up all threads, so they are ready to resume execution after the safepoint
   335 // operation has been carried out
   336 void SafepointSynchronize::end() {
   338   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   339   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   340   _safepoint_counter ++;
   341   // memory fence isn't required here since an odd _safepoint_counter
   342   // value can do no harm and a fence is issued below anyway.
   344   DEBUG_ONLY(Thread* myThread = Thread::current();)
   345   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   347   if (PrintSafepointStatistics) {
   348     end_statistics(os::javaTimeNanos());
   349   }
   351 #ifdef ASSERT
   352   // A pending_exception cannot be installed during a safepoint.  The threads
   353   // may install an async exception after they come back from a safepoint into
   354   // pending_exception after they unblock.  But that should happen later.
   355   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   356     assert (!(cur->has_pending_exception() &&
   357               cur->safepoint_state()->is_at_poll_safepoint()),
   358             "safepoint installed a pending exception");
   359   }
   360 #endif // ASSERT
   362   if (PageArmed) {
   363     // Make polling safepoint aware
   364     os::make_polling_page_readable();
   365     PageArmed = 0 ;
   366   }
   368   // Remove safepoint check from interpreter
   369   Interpreter::ignore_safepoints();
   371   {
   372     MutexLocker mu(Safepoint_lock);
   374     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   376     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   377     // when they get restarted.
   378     _state = _not_synchronized;
   379     OrderAccess::fence();
   381     if (TraceSafepoint) {
   382        tty->print_cr("Leaving safepoint region");
   383     }
   385     // Start suspended threads
   386     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   387       // A problem occurring on Solaris is when attempting to restart threads
   388       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   389       // to the next one (since it has been running the longest).  We then have
   390       // to wait for a cpu to become available before we can continue restarting
   391       // threads.
   392       // FIXME: This causes the performance of the VM to degrade when active and with
   393       // large numbers of threads.  Apparently this is due to the synchronous nature
   394       // of suspending threads.
   395       //
   396       // TODO-FIXME: the comments above are vestigial and no longer apply.
   397       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   398       if (VMThreadHintNoPreempt) {
   399         os::hint_no_preempt();
   400       }
   401       ThreadSafepointState* cur_state = current->safepoint_state();
   402       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   403       cur_state->restart();
   404       assert(cur_state->is_running(), "safepoint state has not been reset");
   405     }
   407     RuntimeService::record_safepoint_end();
   409     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   410     // blocked in signal_thread_blocked
   411     Threads_lock->unlock();
   413   }
   414 #ifndef SERIALGC
   415   // If there are any concurrent GC threads resume them.
   416   if (UseConcMarkSweepGC) {
   417     ConcurrentMarkSweepThread::desynchronize(false);
   418   } else if (UseG1GC) {
   419     ConcurrentGCThread::safepoint_desynchronize();
   420   }
   421 #endif // SERIALGC
   422   // record this time so VMThread can keep track how much time has elasped
   423   // since last safepoint.
   424   _end_of_last_safepoint = os::javaTimeMillis();
   425 }
   427 bool SafepointSynchronize::is_cleanup_needed() {
   428   // Need a safepoint if some inline cache buffers is non-empty
   429   if (!InlineCacheBuffer::is_empty()) return true;
   430   return false;
   431 }
   435 // Various cleaning tasks that should be done periodically at safepoints
   436 void SafepointSynchronize::do_cleanup_tasks() {
   437   {
   438     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   439     ObjectSynchronizer::deflate_idle_monitors();
   440   }
   442   {
   443     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   444     InlineCacheBuffer::update_inline_caches();
   445   }
   446   {
   447     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   448     CompilationPolicy::policy()->do_safepoint_work();
   449   }
   451   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   452   NMethodSweeper::scan_stacks();
   453 }
   456 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   457   switch(state) {
   458   case _thread_in_native:
   459     // native threads are safe if they have no java stack or have walkable stack
   460     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   462    // blocked threads should have already have walkable stack
   463   case _thread_blocked:
   464     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   465     return true;
   467   default:
   468     return false;
   469   }
   470 }
   473 // -------------------------------------------------------------------------------------------------------
   474 // Implementation of Safepoint callback point
   476 void SafepointSynchronize::block(JavaThread *thread) {
   477   assert(thread != NULL, "thread must be set");
   478   assert(thread->is_Java_thread(), "not a Java thread");
   480   // Threads shouldn't block if they are in the middle of printing, but...
   481   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   483   // Only bail from the block() call if the thread is gone from the
   484   // thread list; starting to exit should still block.
   485   if (thread->is_terminated()) {
   486      // block current thread if we come here from native code when VM is gone
   487      thread->block_if_vm_exited();
   489      // otherwise do nothing
   490      return;
   491   }
   493   JavaThreadState state = thread->thread_state();
   494   thread->frame_anchor()->make_walkable(thread);
   496   // Check that we have a valid thread_state at this point
   497   switch(state) {
   498     case _thread_in_vm_trans:
   499     case _thread_in_Java:        // From compiled code
   501       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   502       // we pretend we are still in the VM.
   503       thread->set_thread_state(_thread_in_vm);
   505       if (is_synchronizing()) {
   506          Atomic::inc (&TryingToBlock) ;
   507       }
   509       // We will always be holding the Safepoint_lock when we are examine the state
   510       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   511       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   512       Safepoint_lock->lock_without_safepoint_check();
   513       if (is_synchronizing()) {
   514         // Decrement the number of threads to wait for and signal vm thread
   515         assert(_waiting_to_block > 0, "sanity check");
   516         _waiting_to_block--;
   517         thread->safepoint_state()->set_has_called_back(true);
   519         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   520         if (_waiting_to_block == 0) {
   521           Safepoint_lock->notify_all();
   522         }
   523       }
   525       // We transition the thread to state _thread_blocked here, but
   526       // we can't do our usual check for external suspension and then
   527       // self-suspend after the lock_without_safepoint_check() call
   528       // below because we are often called during transitions while
   529       // we hold different locks. That would leave us suspended while
   530       // holding a resource which results in deadlocks.
   531       thread->set_thread_state(_thread_blocked);
   532       Safepoint_lock->unlock();
   534       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   535       // the entire safepoint, the threads will all line up here during the safepoint.
   536       Threads_lock->lock_without_safepoint_check();
   537       // restore original state. This is important if the thread comes from compiled code, so it
   538       // will continue to execute with the _thread_in_Java state.
   539       thread->set_thread_state(state);
   540       Threads_lock->unlock();
   541       break;
   543     case _thread_in_native_trans:
   544     case _thread_blocked_trans:
   545     case _thread_new_trans:
   546       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   547         thread->print_thread_state();
   548         fatal("Deadlock in safepoint code.  "
   549               "Should have called back to the VM before blocking.");
   550       }
   552       // We transition the thread to state _thread_blocked here, but
   553       // we can't do our usual check for external suspension and then
   554       // self-suspend after the lock_without_safepoint_check() call
   555       // below because we are often called during transitions while
   556       // we hold different locks. That would leave us suspended while
   557       // holding a resource which results in deadlocks.
   558       thread->set_thread_state(_thread_blocked);
   560       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   561       // the safepoint code might still be waiting for it to block. We need to change the state here,
   562       // so it can see that it is at a safepoint.
   564       // Block until the safepoint operation is completed.
   565       Threads_lock->lock_without_safepoint_check();
   567       // Restore state
   568       thread->set_thread_state(state);
   570       Threads_lock->unlock();
   571       break;
   573     default:
   574      fatal(err_msg("Illegal threadstate encountered: %d", state));
   575   }
   577   // Check for pending. async. exceptions or suspends - except if the
   578   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   579   // is called last since it grabs a lock and we only want to do that when
   580   // we must.
   581   //
   582   // Note: we never deliver an async exception at a polling point as the
   583   // compiler may not have an exception handler for it. The polling
   584   // code will notice the async and deoptimize and the exception will
   585   // be delivered. (Polling at a return point is ok though). Sure is
   586   // a lot of bother for a deprecated feature...
   587   //
   588   // We don't deliver an async exception if the thread state is
   589   // _thread_in_native_trans so JNI functions won't be called with
   590   // a surprising pending exception. If the thread state is going back to java,
   591   // async exception is checked in check_special_condition_for_native_trans().
   593   if (state != _thread_blocked_trans &&
   594       state != _thread_in_vm_trans &&
   595       thread->has_special_runtime_exit_condition()) {
   596     thread->handle_special_runtime_exit_condition(
   597       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   598   }
   599 }
   601 // ------------------------------------------------------------------------------------------------------
   602 // Exception handlers
   604 #ifndef PRODUCT
   605 #ifdef _LP64
   606 #define PTR_PAD ""
   607 #else
   608 #define PTR_PAD "        "
   609 #endif
   611 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   612   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   613   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   614                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   615                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   616 }
   618 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   619   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   620   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   621                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   622                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   623 }
   625 #ifdef SPARC
   626 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   627 #ifdef _LP64
   628   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   629   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   630 #else
   631   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   632   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   633 #endif
   634   tty->print_cr("---SP---|");
   635   for( int i=0; i<16; i++ ) {
   636     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   637   tty->print_cr("--------|");
   638   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   639     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   640   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   641   tty->print_cr("--------|");
   642   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   643   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   644   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   645   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   646   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   647   old_sp += incr; new_sp += incr; was_oops += incr;
   648   // Skip the floats
   649   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   650   tty->print_cr("---FP---|");
   651   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   652   for( int i2=0; i2<16; i2++ ) {
   653     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   654   tty->print_cr("");
   655 }
   656 #endif  // SPARC
   657 #endif  // PRODUCT
   660 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   661   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   662   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   663   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   665   // Uncomment this to get some serious before/after printing of the
   666   // Sparc safepoint-blob frame structure.
   667   /*
   668   intptr_t* sp = thread->last_Java_sp();
   669   intptr_t stack_copy[150];
   670   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   671   bool was_oops[150];
   672   for( int i=0; i<150; i++ )
   673     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   674   */
   676   if (ShowSafepointMsgs) {
   677     tty->print("handle_polling_page_exception: ");
   678   }
   680   if (PrintSafepointStatistics) {
   681     inc_page_trap_count();
   682   }
   684   ThreadSafepointState* state = thread->safepoint_state();
   686   state->handle_polling_page_exception();
   687   // print_me(sp,stack_copy,was_oops);
   688 }
   691 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   692   if (!timeout_error_printed) {
   693     timeout_error_printed = true;
   694     // Print out the thread infor which didn't reach the safepoint for debugging
   695     // purposes (useful when there are lots of threads in the debugger).
   696     tty->print_cr("");
   697     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   698     if (reason ==  _spinning_timeout) {
   699       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   700     } else if (reason == _blocking_timeout) {
   701       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   702     }
   704     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   705     ThreadSafepointState *cur_state;
   706     ResourceMark rm;
   707     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   708         cur_thread = cur_thread->next()) {
   709       cur_state = cur_thread->safepoint_state();
   711       if (cur_thread->thread_state() != _thread_blocked &&
   712           ((reason == _spinning_timeout && cur_state->is_running()) ||
   713            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   714         tty->print("# ");
   715         cur_thread->print();
   716         tty->print_cr("");
   717       }
   718     }
   719     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   720   }
   722   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   723   // ShowMessageBoxOnError.
   724   if (DieOnSafepointTimeout) {
   725     char msg[1024];
   726     VM_Operation *op = VMThread::vm_operation();
   727     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   728             SafepointTimeoutDelay,
   729             op != NULL ? op->name() : "no vm operation");
   730     fatal(msg);
   731   }
   732 }
   735 // -------------------------------------------------------------------------------------------------------
   736 // Implementation of ThreadSafepointState
   738 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   739   _thread = thread;
   740   _type   = _running;
   741   _has_called_back = false;
   742   _at_poll_safepoint = false;
   743 }
   745 void ThreadSafepointState::create(JavaThread *thread) {
   746   ThreadSafepointState *state = new ThreadSafepointState(thread);
   747   thread->set_safepoint_state(state);
   748 }
   750 void ThreadSafepointState::destroy(JavaThread *thread) {
   751   if (thread->safepoint_state()) {
   752     delete(thread->safepoint_state());
   753     thread->set_safepoint_state(NULL);
   754   }
   755 }
   757 void ThreadSafepointState::examine_state_of_thread() {
   758   assert(is_running(), "better be running or just have hit safepoint poll");
   760   JavaThreadState state = _thread->thread_state();
   762   // Save the state at the start of safepoint processing.
   763   _orig_thread_state = state;
   765   // Check for a thread that is suspended. Note that thread resume tries
   766   // to grab the Threads_lock which we own here, so a thread cannot be
   767   // resumed during safepoint synchronization.
   769   // We check to see if this thread is suspended without locking to
   770   // avoid deadlocking with a third thread that is waiting for this
   771   // thread to be suspended. The third thread can notice the safepoint
   772   // that we're trying to start at the beginning of its SR_lock->wait()
   773   // call. If that happens, then the third thread will block on the
   774   // safepoint while still holding the underlying SR_lock. We won't be
   775   // able to get the SR_lock and we'll deadlock.
   776   //
   777   // We don't need to grab the SR_lock here for two reasons:
   778   // 1) The suspend flags are both volatile and are set with an
   779   //    Atomic::cmpxchg() call so we should see the suspended
   780   //    state right away.
   781   // 2) We're being called from the safepoint polling loop; if
   782   //    we don't see the suspended state on this iteration, then
   783   //    we'll come around again.
   784   //
   785   bool is_suspended = _thread->is_ext_suspended();
   786   if (is_suspended) {
   787     roll_forward(_at_safepoint);
   788     return;
   789   }
   791   // Some JavaThread states have an initial safepoint state of
   792   // running, but are actually at a safepoint. We will happily
   793   // agree and update the safepoint state here.
   794   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   795       roll_forward(_at_safepoint);
   796       return;
   797   }
   799   if (state == _thread_in_vm) {
   800     roll_forward(_call_back);
   801     return;
   802   }
   804   // All other thread states will continue to run until they
   805   // transition and self-block in state _blocked
   806   // Safepoint polling in compiled code causes the Java threads to do the same.
   807   // Note: new threads may require a malloc so they must be allowed to finish
   809   assert(is_running(), "examine_state_of_thread on non-running thread");
   810   return;
   811 }
   813 // Returns true is thread could not be rolled forward at present position.
   814 void ThreadSafepointState::roll_forward(suspend_type type) {
   815   _type = type;
   817   switch(_type) {
   818     case _at_safepoint:
   819       SafepointSynchronize::signal_thread_at_safepoint();
   820       break;
   822     case _call_back:
   823       set_has_called_back(false);
   824       break;
   826     case _running:
   827     default:
   828       ShouldNotReachHere();
   829   }
   830 }
   832 void ThreadSafepointState::restart() {
   833   switch(type()) {
   834     case _at_safepoint:
   835     case _call_back:
   836       break;
   838     case _running:
   839     default:
   840        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   841                       _thread, _type);
   842        _thread->print();
   843       ShouldNotReachHere();
   844   }
   845   _type = _running;
   846   set_has_called_back(false);
   847 }
   850 void ThreadSafepointState::print_on(outputStream *st) const {
   851   const char *s;
   853   switch(_type) {
   854     case _running                : s = "_running";              break;
   855     case _at_safepoint           : s = "_at_safepoint";         break;
   856     case _call_back              : s = "_call_back";            break;
   857     default:
   858       ShouldNotReachHere();
   859   }
   861   st->print_cr("Thread: " INTPTR_FORMAT
   862               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   863                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   864                _at_poll_safepoint);
   866   _thread->print_thread_state_on(st);
   867 }
   870 // ---------------------------------------------------------------------------------------------------------------------
   872 // Block the thread at the safepoint poll or poll return.
   873 void ThreadSafepointState::handle_polling_page_exception() {
   875   // Check state.  block() will set thread state to thread_in_vm which will
   876   // cause the safepoint state _type to become _call_back.
   877   assert(type() == ThreadSafepointState::_running,
   878          "polling page exception on thread not running state");
   880   // Step 1: Find the nmethod from the return address
   881   if (ShowSafepointMsgs && Verbose) {
   882     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
   883   }
   884   address real_return_addr = thread()->saved_exception_pc();
   886   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
   887   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
   888   nmethod* nm = (nmethod*)cb;
   890   // Find frame of caller
   891   frame stub_fr = thread()->last_frame();
   892   CodeBlob* stub_cb = stub_fr.cb();
   893   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
   894   RegisterMap map(thread(), true);
   895   frame caller_fr = stub_fr.sender(&map);
   897   // Should only be poll_return or poll
   898   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
   900   // This is a poll immediately before a return. The exception handling code
   901   // has already had the effect of causing the return to occur, so the execution
   902   // will continue immediately after the call. In addition, the oopmap at the
   903   // return point does not mark the return value as an oop (if it is), so
   904   // it needs a handle here to be updated.
   905   if( nm->is_at_poll_return(real_return_addr) ) {
   906     // See if return type is an oop.
   907     bool return_oop = nm->method()->is_returning_oop();
   908     Handle return_value;
   909     if (return_oop) {
   910       // The oop result has been saved on the stack together with all
   911       // the other registers. In order to preserve it over GCs we need
   912       // to keep it in a handle.
   913       oop result = caller_fr.saved_oop_result(&map);
   914       assert(result == NULL || result->is_oop(), "must be oop");
   915       return_value = Handle(thread(), result);
   916       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   917     }
   919     // Block the thread
   920     SafepointSynchronize::block(thread());
   922     // restore oop result, if any
   923     if (return_oop) {
   924       caller_fr.set_saved_oop_result(&map, return_value());
   925     }
   926   }
   928   // This is a safepoint poll. Verify the return address and block.
   929   else {
   930     set_at_poll_safepoint(true);
   932     // verify the blob built the "return address" correctly
   933     assert(real_return_addr == caller_fr.pc(), "must match");
   935     // Block the thread
   936     SafepointSynchronize::block(thread());
   937     set_at_poll_safepoint(false);
   939     // If we have a pending async exception deoptimize the frame
   940     // as otherwise we may never deliver it.
   941     if (thread()->has_async_condition()) {
   942       ThreadInVMfromJavaNoAsyncException __tiv(thread());
   943       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
   944       VMThread::execute(&deopt);
   945     }
   947     // If an exception has been installed we must check for a pending deoptimization
   948     // Deoptimize frame if exception has been thrown.
   950     if (thread()->has_pending_exception() ) {
   951       RegisterMap map(thread(), true);
   952       frame caller_fr = stub_fr.sender(&map);
   953       if (caller_fr.is_deoptimized_frame()) {
   954         // The exception patch will destroy registers that are still
   955         // live and will be needed during deoptimization. Defer the
   956         // Async exception should have defered the exception until the
   957         // next safepoint which will be detected when we get into
   958         // the interpreter so if we have an exception now things
   959         // are messed up.
   961         fatal("Exception installed and deoptimization is pending");
   962       }
   963     }
   964   }
   965 }
   968 //
   969 //                     Statistics & Instrumentations
   970 //
   971 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
   972 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
   973 int    SafepointSynchronize::_cur_stat_index = 0;
   974 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
   975 julong SafepointSynchronize::_coalesced_vmop_count = 0;
   976 jlong  SafepointSynchronize::_max_sync_time = 0;
   977 jlong  SafepointSynchronize::_max_vmop_time = 0;
   978 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
   980 static jlong  cleanup_end_time = 0;
   981 static bool   need_to_track_page_armed_status = false;
   982 static bool   init_done = false;
   984 // Helper method to print the header.
   985 static void print_header() {
   986   tty->print("         vmop                    "
   987              "[threads: total initially_running wait_to_block]    ");
   988   tty->print("[time: spin block sync cleanup vmop] ");
   990   // no page armed status printed out if it is always armed.
   991   if (need_to_track_page_armed_status) {
   992     tty->print("page_armed ");
   993   }
   995   tty->print_cr("page_trap_count");
   996 }
   998 void SafepointSynchronize::deferred_initialize_stat() {
   999   if (init_done) return;
  1001   if (PrintSafepointStatisticsCount <= 0) {
  1002     fatal("Wrong PrintSafepointStatisticsCount");
  1005   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1006   // be printed right away, in which case, _safepoint_stats will regress to
  1007   // a single element array. Otherwise, it is a circular ring buffer with default
  1008   // size of PrintSafepointStatisticsCount.
  1009   int stats_array_size;
  1010   if (PrintSafepointStatisticsTimeout > 0) {
  1011     stats_array_size = 1;
  1012     PrintSafepointStatistics = true;
  1013   } else {
  1014     stats_array_size = PrintSafepointStatisticsCount;
  1016   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1017                                                  * sizeof(SafepointStats));
  1018   guarantee(_safepoint_stats != NULL,
  1019             "not enough memory for safepoint instrumentation data");
  1021   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1022     need_to_track_page_armed_status = true;
  1024   init_done = true;
  1027 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1028   assert(init_done, "safepoint statistics array hasn't been initialized");
  1029   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1031   spstat->_time_stamp = _ts_of_current_safepoint;
  1033   VM_Operation *op = VMThread::vm_operation();
  1034   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1035   if (op != NULL) {
  1036     _safepoint_reasons[spstat->_vmop_type]++;
  1039   spstat->_nof_total_threads = nof_threads;
  1040   spstat->_nof_initial_running_threads = nof_running;
  1041   spstat->_nof_threads_hit_page_trap = 0;
  1043   // Records the start time of spinning. The real time spent on spinning
  1044   // will be adjusted when spin is done. Same trick is applied for time
  1045   // spent on waiting for threads to block.
  1046   if (nof_running != 0) {
  1047     spstat->_time_to_spin = os::javaTimeNanos();
  1048   }  else {
  1049     spstat->_time_to_spin = 0;
  1053 void SafepointSynchronize::update_statistics_on_spin_end() {
  1054   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1056   jlong cur_time = os::javaTimeNanos();
  1058   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1059   if (spstat->_nof_initial_running_threads != 0) {
  1060     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1063   if (need_to_track_page_armed_status) {
  1064     spstat->_page_armed = (PageArmed == 1);
  1067   // Records the start time of waiting for to block. Updated when block is done.
  1068   if (_waiting_to_block != 0) {
  1069     spstat->_time_to_wait_to_block = cur_time;
  1070   } else {
  1071     spstat->_time_to_wait_to_block = 0;
  1075 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1076   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1078   if (spstat->_nof_threads_wait_to_block != 0) {
  1079     spstat->_time_to_wait_to_block = end_time -
  1080       spstat->_time_to_wait_to_block;
  1083   // Records the end time of sync which will be used to calculate the total
  1084   // vm operation time. Again, the real time spending in syncing will be deducted
  1085   // from the start of the sync time later when end_statistics is called.
  1086   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1087   if (spstat->_time_to_sync > _max_sync_time) {
  1088     _max_sync_time = spstat->_time_to_sync;
  1091   spstat->_time_to_do_cleanups = end_time;
  1094 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1095   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1097   // Record how long spent in cleanup tasks.
  1098   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1100   cleanup_end_time = end_time;
  1103 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1104   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1106   // Update the vm operation time.
  1107   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1108   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1109     _max_vmop_time = spstat->_time_to_exec_vmop;
  1111   // Only the sync time longer than the specified
  1112   // PrintSafepointStatisticsTimeout will be printed out right away.
  1113   // By default, it is -1 meaning all samples will be put into the list.
  1114   if ( PrintSafepointStatisticsTimeout > 0) {
  1115     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1116       print_statistics();
  1118   } else {
  1119     // The safepoint statistics will be printed out when the _safepoin_stats
  1120     // array fills up.
  1121     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1122       print_statistics();
  1123       _cur_stat_index = 0;
  1124     } else {
  1125       _cur_stat_index++;
  1130 void SafepointSynchronize::print_statistics() {
  1131   SafepointStats* sstats = _safepoint_stats;
  1133   for (int index = 0; index <= _cur_stat_index; index++) {
  1134     if (index % 30 == 0) {
  1135       print_header();
  1137     sstats = &_safepoint_stats[index];
  1138     tty->print("%.3f: ", sstats->_time_stamp);
  1139     tty->print("%-26s       ["
  1140                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1141                "    ]    ",
  1142                sstats->_vmop_type == -1 ? "no vm operation" :
  1143                VM_Operation::name(sstats->_vmop_type),
  1144                sstats->_nof_total_threads,
  1145                sstats->_nof_initial_running_threads,
  1146                sstats->_nof_threads_wait_to_block);
  1147     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1148     tty->print("  ["
  1149                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1150                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1151                INT64_FORMAT_W(6)"    ]  ",
  1152                sstats->_time_to_spin / MICROUNITS,
  1153                sstats->_time_to_wait_to_block / MICROUNITS,
  1154                sstats->_time_to_sync / MICROUNITS,
  1155                sstats->_time_to_do_cleanups / MICROUNITS,
  1156                sstats->_time_to_exec_vmop / MICROUNITS);
  1158     if (need_to_track_page_armed_status) {
  1159       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1161     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1165 // This method will be called when VM exits. It will first call
  1166 // print_statistics to print out the rest of the sampling.  Then
  1167 // it tries to summarize the sampling.
  1168 void SafepointSynchronize::print_stat_on_exit() {
  1169   if (_safepoint_stats == NULL) return;
  1171   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1173   // During VM exit, end_statistics may not get called and in that
  1174   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1175   // don't print it out.
  1176   // Approximate the vm op time.
  1177   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1178     os::javaTimeNanos() - cleanup_end_time;
  1180   if ( PrintSafepointStatisticsTimeout < 0 ||
  1181        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1182     print_statistics();
  1184   tty->print_cr("");
  1186   // Print out polling page sampling status.
  1187   if (!need_to_track_page_armed_status) {
  1188     if (UseCompilerSafepoints) {
  1189       tty->print_cr("Polling page always armed");
  1191   } else {
  1192     tty->print_cr("Defer polling page loop count = %d\n",
  1193                  DeferPollingPageLoopCount);
  1196   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1197     if (_safepoint_reasons[index] != 0) {
  1198       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1199                     _safepoint_reasons[index]);
  1203   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1204                 _coalesced_vmop_count);
  1205   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1206                 _max_sync_time / MICROUNITS);
  1207   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1208                 INT64_FORMAT_W(5)" ms",
  1209                 _max_vmop_time / MICROUNITS);
  1212 // ------------------------------------------------------------------------------------------------
  1213 // Non-product code
  1215 #ifndef PRODUCT
  1217 void SafepointSynchronize::print_state() {
  1218   if (_state == _not_synchronized) {
  1219     tty->print_cr("not synchronized");
  1220   } else if (_state == _synchronizing || _state == _synchronized) {
  1221     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1222                   "synchronized");
  1224     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1225        cur->safepoint_state()->print();
  1230 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1231   if (ShowSafepointMsgs) {
  1232     va_list ap;
  1233     va_start(ap, format);
  1234     tty->vprint_cr(format, ap);
  1235     va_end(ap);
  1239 #endif // !PRODUCT

mercurial