src/share/vm/runtime/thread.cpp

Tue, 25 Sep 2012 10:41:15 -0700

author
kvn
date
Tue, 25 Sep 2012 10:41:15 -0700
changeset 4113
0702f188baeb
parent 4057
6dfc6a541338
child 4077
a7509aff1b06
child 4079
716e6ef4482a
permissions
-rw-r--r--

7200233: C2: can't use expand rules for vector instruction rules
Summary: Added missed _bottom_type set in ArchDesc::defineExpand() and missed vector nodes in MatchRule::is_vector().
Reviewed-by: twisti, roland, dlong

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/aprofiler.hpp"
    49 #include "runtime/arguments.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/deoptimization.hpp"
    52 #include "runtime/fprofiler.hpp"
    53 #include "runtime/frame.inline.hpp"
    54 #include "runtime/init.hpp"
    55 #include "runtime/interfaceSupport.hpp"
    56 #include "runtime/java.hpp"
    57 #include "runtime/javaCalls.hpp"
    58 #include "runtime/jniPeriodicChecker.hpp"
    59 #include "runtime/memprofiler.hpp"
    60 #include "runtime/mutexLocker.hpp"
    61 #include "runtime/objectMonitor.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/threadCritical.hpp"
    69 #include "runtime/threadLocalStorage.hpp"
    70 #include "runtime/vframe.hpp"
    71 #include "runtime/vframeArray.hpp"
    72 #include "runtime/vframe_hp.hpp"
    73 #include "runtime/vmThread.hpp"
    74 #include "runtime/vm_operations.hpp"
    75 #include "services/attachListener.hpp"
    76 #include "services/management.hpp"
    77 #include "services/memTracker.hpp"
    78 #include "services/threadService.hpp"
    79 #include "trace/traceEventTypes.hpp"
    80 #include "utilities/defaultStream.hpp"
    81 #include "utilities/dtrace.hpp"
    82 #include "utilities/events.hpp"
    83 #include "utilities/preserveException.hpp"
    84 #ifdef TARGET_OS_FAMILY_linux
    85 # include "os_linux.inline.hpp"
    86 # include "thread_linux.inline.hpp"
    87 #endif
    88 #ifdef TARGET_OS_FAMILY_solaris
    89 # include "os_solaris.inline.hpp"
    90 # include "thread_solaris.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_windows
    93 # include "os_windows.inline.hpp"
    94 # include "thread_windows.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_bsd
    97 # include "os_bsd.inline.hpp"
    98 # include "thread_bsd.inline.hpp"
    99 #endif
   100 #ifndef SERIALGC
   101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   104 #endif
   105 #ifdef COMPILER1
   106 #include "c1/c1_Compiler.hpp"
   107 #endif
   108 #ifdef COMPILER2
   109 #include "opto/c2compiler.hpp"
   110 #include "opto/idealGraphPrinter.hpp"
   111 #endif
   113 #ifdef DTRACE_ENABLED
   115 // Only bother with this argument setup if dtrace is available
   117 #ifndef USDT2
   118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   123   intptr_t, intptr_t, bool);
   125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   126   {                                                                        \
   127     ResourceMark rm(this);                                                 \
   128     int len = 0;                                                           \
   129     const char* name = (javathread)->get_thread_name();                    \
   130     len = strlen(name);                                                    \
   131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   132       name, len,                                                           \
   133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   134       (javathread)->osthread()->thread_id(),                               \
   135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   136   }
   138 #else /* USDT2 */
   140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   144   {                                                                        \
   145     ResourceMark rm(this);                                                 \
   146     int len = 0;                                                           \
   147     const char* name = (javathread)->get_thread_name();                    \
   148     len = strlen(name);                                                    \
   149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   150       (char *) name, len,                                                           \
   151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   154   }
   156 #endif /* USDT2 */
   158 #else //  ndef DTRACE_ENABLED
   160 #define DTRACE_THREAD_PROBE(probe, javathread)
   162 #endif // ndef DTRACE_ENABLED
   165 // Class hierarchy
   166 // - Thread
   167 //   - VMThread
   168 //   - WatcherThread
   169 //   - ConcurrentMarkSweepThread
   170 //   - JavaThread
   171 //     - CompilerThread
   173 // ======= Thread ========
   174 // Support for forcing alignment of thread objects for biased locking
   175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   176   if (UseBiasedLocking) {
   177     const int alignment = markOopDesc::biased_lock_alignment;
   178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   180                                           : os::malloc(aligned_size, flags, CURRENT_PC);
   181     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   184            "JavaThread alignment code overflowed allocated storage");
   185     if (TraceBiasedLocking) {
   186       if (aligned_addr != real_malloc_addr)
   187         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   188                       real_malloc_addr, aligned_addr);
   189     }
   190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   191     return aligned_addr;
   192   } else {
   193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   194                        : os::malloc(size, flags, CURRENT_PC);
   195   }
   196 }
   198 void Thread::operator delete(void* p) {
   199   if (UseBiasedLocking) {
   200     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   201     FreeHeap(real_malloc_addr, mtThread);
   202   } else {
   203     FreeHeap(p, mtThread);
   204   }
   205 }
   208 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   209 // JavaThread
   212 Thread::Thread() {
   213   // stack and get_thread
   214   set_stack_base(NULL);
   215   set_stack_size(0);
   216   set_self_raw_id(0);
   217   set_lgrp_id(-1);
   219   // allocated data structures
   220   set_osthread(NULL);
   221   set_resource_area(new (mtThread)ResourceArea());
   222   set_handle_area(new (mtThread) HandleArea(NULL));
   223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
   224   set_active_handles(NULL);
   225   set_free_handle_block(NULL);
   226   set_last_handle_mark(NULL);
   228   // This initial value ==> never claimed.
   229   _oops_do_parity = 0;
   231   // the handle mark links itself to last_handle_mark
   232   new HandleMark(this);
   234   // plain initialization
   235   debug_only(_owned_locks = NULL;)
   236   debug_only(_allow_allocation_count = 0;)
   237   NOT_PRODUCT(_allow_safepoint_count = 0;)
   238   NOT_PRODUCT(_skip_gcalot = false;)
   239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   240   _jvmti_env_iteration_count = 0;
   241   set_allocated_bytes(0);
   242   set_trace_buffer(NULL);
   243   _vm_operation_started_count = 0;
   244   _vm_operation_completed_count = 0;
   245   _current_pending_monitor = NULL;
   246   _current_pending_monitor_is_from_java = true;
   247   _current_waiting_monitor = NULL;
   248   _num_nested_signal = 0;
   249   omFreeList = NULL ;
   250   omFreeCount = 0 ;
   251   omFreeProvision = 32 ;
   252   omInUseList = NULL ;
   253   omInUseCount = 0 ;
   255 #ifdef ASSERT
   256   _visited_for_critical_count = false;
   257 #endif
   259   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   260   _suspend_flags = 0;
   262   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   263   _hashStateX = os::random() ;
   264   _hashStateY = 842502087 ;
   265   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   266   _hashStateW = 273326509 ;
   268   _OnTrap   = 0 ;
   269   _schedctl = NULL ;
   270   _Stalled  = 0 ;
   271   _TypeTag  = 0x2BAD ;
   273   // Many of the following fields are effectively final - immutable
   274   // Note that nascent threads can't use the Native Monitor-Mutex
   275   // construct until the _MutexEvent is initialized ...
   276   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   277   // we might instead use a stack of ParkEvents that we could provision on-demand.
   278   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   279   // and ::Release()
   280   _ParkEvent   = ParkEvent::Allocate (this) ;
   281   _SleepEvent  = ParkEvent::Allocate (this) ;
   282   _MutexEvent  = ParkEvent::Allocate (this) ;
   283   _MuxEvent    = ParkEvent::Allocate (this) ;
   285 #ifdef CHECK_UNHANDLED_OOPS
   286   if (CheckUnhandledOops) {
   287     _unhandled_oops = new UnhandledOops(this);
   288   }
   289 #endif // CHECK_UNHANDLED_OOPS
   290 #ifdef ASSERT
   291   if (UseBiasedLocking) {
   292     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   293     assert(this == _real_malloc_address ||
   294            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   295            "bug in forced alignment of thread objects");
   296   }
   297 #endif /* ASSERT */
   298 }
   300 void Thread::initialize_thread_local_storage() {
   301   // Note: Make sure this method only calls
   302   // non-blocking operations. Otherwise, it might not work
   303   // with the thread-startup/safepoint interaction.
   305   // During Java thread startup, safepoint code should allow this
   306   // method to complete because it may need to allocate memory to
   307   // store information for the new thread.
   309   // initialize structure dependent on thread local storage
   310   ThreadLocalStorage::set_thread(this);
   312   // set up any platform-specific state.
   313   os::initialize_thread();
   314 }
   316 void Thread::record_stack_base_and_size() {
   317   set_stack_base(os::current_stack_base());
   318   set_stack_size(os::current_stack_size());
   320   // record thread's native stack, stack grows downward
   321   address low_stack_addr = stack_base() - stack_size();
   322   MemTracker::record_thread_stack(low_stack_addr, stack_size(), this,
   323              CURRENT_PC);
   324 }
   327 Thread::~Thread() {
   328   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   329   ObjectSynchronizer::omFlush (this) ;
   331   // stack_base can be NULL if the thread is never started or exited before
   332   // record_stack_base_and_size called. Although, we would like to ensure
   333   // that all started threads do call record_stack_base_and_size(), there is
   334   // not proper way to enforce that.
   335   if (_stack_base != NULL) {
   336     address low_stack_addr = stack_base() - stack_size();
   337     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   338   }
   340   // deallocate data structures
   341   delete resource_area();
   342   // since the handle marks are using the handle area, we have to deallocated the root
   343   // handle mark before deallocating the thread's handle area,
   344   assert(last_handle_mark() != NULL, "check we have an element");
   345   delete last_handle_mark();
   346   assert(last_handle_mark() == NULL, "check we have reached the end");
   348   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   349   // We NULL out the fields for good hygiene.
   350   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   351   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   352   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   353   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   355   delete handle_area();
   356   delete metadata_handles();
   358   // osthread() can be NULL, if creation of thread failed.
   359   if (osthread() != NULL) os::free_thread(osthread());
   361   delete _SR_lock;
   363   // clear thread local storage if the Thread is deleting itself
   364   if (this == Thread::current()) {
   365     ThreadLocalStorage::set_thread(NULL);
   366   } else {
   367     // In the case where we're not the current thread, invalidate all the
   368     // caches in case some code tries to get the current thread or the
   369     // thread that was destroyed, and gets stale information.
   370     ThreadLocalStorage::invalidate_all();
   371   }
   372   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   373 }
   375 // NOTE: dummy function for assertion purpose.
   376 void Thread::run() {
   377   ShouldNotReachHere();
   378 }
   380 #ifdef ASSERT
   381 // Private method to check for dangling thread pointer
   382 void check_for_dangling_thread_pointer(Thread *thread) {
   383  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   384          "possibility of dangling Thread pointer");
   385 }
   386 #endif
   389 #ifndef PRODUCT
   390 // Tracing method for basic thread operations
   391 void Thread::trace(const char* msg, const Thread* const thread) {
   392   if (!TraceThreadEvents) return;
   393   ResourceMark rm;
   394   ThreadCritical tc;
   395   const char *name = "non-Java thread";
   396   int prio = -1;
   397   if (thread->is_Java_thread()
   398       && !thread->is_Compiler_thread()) {
   399     // The Threads_lock must be held to get information about
   400     // this thread but may not be in some situations when
   401     // tracing  thread events.
   402     bool release_Threads_lock = false;
   403     if (!Threads_lock->owned_by_self()) {
   404       Threads_lock->lock();
   405       release_Threads_lock = true;
   406     }
   407     JavaThread* jt = (JavaThread *)thread;
   408     name = (char *)jt->get_thread_name();
   409     oop thread_oop = jt->threadObj();
   410     if (thread_oop != NULL) {
   411       prio = java_lang_Thread::priority(thread_oop);
   412     }
   413     if (release_Threads_lock) {
   414       Threads_lock->unlock();
   415     }
   416   }
   417   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   418 }
   419 #endif
   422 ThreadPriority Thread::get_priority(const Thread* const thread) {
   423   trace("get priority", thread);
   424   ThreadPriority priority;
   425   // Can return an error!
   426   (void)os::get_priority(thread, priority);
   427   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   428   return priority;
   429 }
   431 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   432   trace("set priority", thread);
   433   debug_only(check_for_dangling_thread_pointer(thread);)
   434   // Can return an error!
   435   (void)os::set_priority(thread, priority);
   436 }
   439 void Thread::start(Thread* thread) {
   440   trace("start", thread);
   441   // Start is different from resume in that its safety is guaranteed by context or
   442   // being called from a Java method synchronized on the Thread object.
   443   if (!DisableStartThread) {
   444     if (thread->is_Java_thread()) {
   445       // Initialize the thread state to RUNNABLE before starting this thread.
   446       // Can not set it after the thread started because we do not know the
   447       // exact thread state at that time. It could be in MONITOR_WAIT or
   448       // in SLEEPING or some other state.
   449       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   450                                           java_lang_Thread::RUNNABLE);
   451     }
   452     os::start_thread(thread);
   453   }
   454 }
   456 // Enqueue a VM_Operation to do the job for us - sometime later
   457 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   458   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   459   VMThread::execute(vm_stop);
   460 }
   463 //
   464 // Check if an external suspend request has completed (or has been
   465 // cancelled). Returns true if the thread is externally suspended and
   466 // false otherwise.
   467 //
   468 // The bits parameter returns information about the code path through
   469 // the routine. Useful for debugging:
   470 //
   471 // set in is_ext_suspend_completed():
   472 // 0x00000001 - routine was entered
   473 // 0x00000010 - routine return false at end
   474 // 0x00000100 - thread exited (return false)
   475 // 0x00000200 - suspend request cancelled (return false)
   476 // 0x00000400 - thread suspended (return true)
   477 // 0x00001000 - thread is in a suspend equivalent state (return true)
   478 // 0x00002000 - thread is native and walkable (return true)
   479 // 0x00004000 - thread is native_trans and walkable (needed retry)
   480 //
   481 // set in wait_for_ext_suspend_completion():
   482 // 0x00010000 - routine was entered
   483 // 0x00020000 - suspend request cancelled before loop (return false)
   484 // 0x00040000 - thread suspended before loop (return true)
   485 // 0x00080000 - suspend request cancelled in loop (return false)
   486 // 0x00100000 - thread suspended in loop (return true)
   487 // 0x00200000 - suspend not completed during retry loop (return false)
   488 //
   490 // Helper class for tracing suspend wait debug bits.
   491 //
   492 // 0x00000100 indicates that the target thread exited before it could
   493 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   494 // 0x00080000 each indicate a cancelled suspend request so they don't
   495 // count as wait failures either.
   496 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   498 class TraceSuspendDebugBits : public StackObj {
   499  private:
   500   JavaThread * jt;
   501   bool         is_wait;
   502   bool         called_by_wait;  // meaningful when !is_wait
   503   uint32_t *   bits;
   505  public:
   506   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   507                         uint32_t *_bits) {
   508     jt             = _jt;
   509     is_wait        = _is_wait;
   510     called_by_wait = _called_by_wait;
   511     bits           = _bits;
   512   }
   514   ~TraceSuspendDebugBits() {
   515     if (!is_wait) {
   516 #if 1
   517       // By default, don't trace bits for is_ext_suspend_completed() calls.
   518       // That trace is very chatty.
   519       return;
   520 #else
   521       if (!called_by_wait) {
   522         // If tracing for is_ext_suspend_completed() is enabled, then only
   523         // trace calls to it from wait_for_ext_suspend_completion()
   524         return;
   525       }
   526 #endif
   527     }
   529     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   530       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   531         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   532         ResourceMark rm;
   534         tty->print_cr(
   535             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   536             jt->get_thread_name(), *bits);
   538         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   539       }
   540     }
   541   }
   542 };
   543 #undef DEBUG_FALSE_BITS
   546 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   547   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   549   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   550   bool do_trans_retry;           // flag to force the retry
   552   *bits |= 0x00000001;
   554   do {
   555     do_trans_retry = false;
   557     if (is_exiting()) {
   558       // Thread is in the process of exiting. This is always checked
   559       // first to reduce the risk of dereferencing a freed JavaThread.
   560       *bits |= 0x00000100;
   561       return false;
   562     }
   564     if (!is_external_suspend()) {
   565       // Suspend request is cancelled. This is always checked before
   566       // is_ext_suspended() to reduce the risk of a rogue resume
   567       // confusing the thread that made the suspend request.
   568       *bits |= 0x00000200;
   569       return false;
   570     }
   572     if (is_ext_suspended()) {
   573       // thread is suspended
   574       *bits |= 0x00000400;
   575       return true;
   576     }
   578     // Now that we no longer do hard suspends of threads running
   579     // native code, the target thread can be changing thread state
   580     // while we are in this routine:
   581     //
   582     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   583     //
   584     // We save a copy of the thread state as observed at this moment
   585     // and make our decision about suspend completeness based on the
   586     // copy. This closes the race where the thread state is seen as
   587     // _thread_in_native_trans in the if-thread_blocked check, but is
   588     // seen as _thread_blocked in if-thread_in_native_trans check.
   589     JavaThreadState save_state = thread_state();
   591     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   592       // If the thread's state is _thread_blocked and this blocking
   593       // condition is known to be equivalent to a suspend, then we can
   594       // consider the thread to be externally suspended. This means that
   595       // the code that sets _thread_blocked has been modified to do
   596       // self-suspension if the blocking condition releases. We also
   597       // used to check for CONDVAR_WAIT here, but that is now covered by
   598       // the _thread_blocked with self-suspension check.
   599       //
   600       // Return true since we wouldn't be here unless there was still an
   601       // external suspend request.
   602       *bits |= 0x00001000;
   603       return true;
   604     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   605       // Threads running native code will self-suspend on native==>VM/Java
   606       // transitions. If its stack is walkable (should always be the case
   607       // unless this function is called before the actual java_suspend()
   608       // call), then the wait is done.
   609       *bits |= 0x00002000;
   610       return true;
   611     } else if (!called_by_wait && !did_trans_retry &&
   612                save_state == _thread_in_native_trans &&
   613                frame_anchor()->walkable()) {
   614       // The thread is transitioning from thread_in_native to another
   615       // thread state. check_safepoint_and_suspend_for_native_trans()
   616       // will force the thread to self-suspend. If it hasn't gotten
   617       // there yet we may have caught the thread in-between the native
   618       // code check above and the self-suspend. Lucky us. If we were
   619       // called by wait_for_ext_suspend_completion(), then it
   620       // will be doing the retries so we don't have to.
   621       //
   622       // Since we use the saved thread state in the if-statement above,
   623       // there is a chance that the thread has already transitioned to
   624       // _thread_blocked by the time we get here. In that case, we will
   625       // make a single unnecessary pass through the logic below. This
   626       // doesn't hurt anything since we still do the trans retry.
   628       *bits |= 0x00004000;
   630       // Once the thread leaves thread_in_native_trans for another
   631       // thread state, we break out of this retry loop. We shouldn't
   632       // need this flag to prevent us from getting back here, but
   633       // sometimes paranoia is good.
   634       did_trans_retry = true;
   636       // We wait for the thread to transition to a more usable state.
   637       for (int i = 1; i <= SuspendRetryCount; i++) {
   638         // We used to do an "os::yield_all(i)" call here with the intention
   639         // that yielding would increase on each retry. However, the parameter
   640         // is ignored on Linux which means the yield didn't scale up. Waiting
   641         // on the SR_lock below provides a much more predictable scale up for
   642         // the delay. It also provides a simple/direct point to check for any
   643         // safepoint requests from the VMThread
   645         // temporarily drops SR_lock while doing wait with safepoint check
   646         // (if we're a JavaThread - the WatcherThread can also call this)
   647         // and increase delay with each retry
   648         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   650         // check the actual thread state instead of what we saved above
   651         if (thread_state() != _thread_in_native_trans) {
   652           // the thread has transitioned to another thread state so
   653           // try all the checks (except this one) one more time.
   654           do_trans_retry = true;
   655           break;
   656         }
   657       } // end retry loop
   660     }
   661   } while (do_trans_retry);
   663   *bits |= 0x00000010;
   664   return false;
   665 }
   667 //
   668 // Wait for an external suspend request to complete (or be cancelled).
   669 // Returns true if the thread is externally suspended and false otherwise.
   670 //
   671 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   672        uint32_t *bits) {
   673   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   674                              false /* !called_by_wait */, bits);
   676   // local flag copies to minimize SR_lock hold time
   677   bool is_suspended;
   678   bool pending;
   679   uint32_t reset_bits;
   681   // set a marker so is_ext_suspend_completed() knows we are the caller
   682   *bits |= 0x00010000;
   684   // We use reset_bits to reinitialize the bits value at the top of
   685   // each retry loop. This allows the caller to make use of any
   686   // unused bits for their own marking purposes.
   687   reset_bits = *bits;
   689   {
   690     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   691     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   692                                             delay, bits);
   693     pending = is_external_suspend();
   694   }
   695   // must release SR_lock to allow suspension to complete
   697   if (!pending) {
   698     // A cancelled suspend request is the only false return from
   699     // is_ext_suspend_completed() that keeps us from entering the
   700     // retry loop.
   701     *bits |= 0x00020000;
   702     return false;
   703   }
   705   if (is_suspended) {
   706     *bits |= 0x00040000;
   707     return true;
   708   }
   710   for (int i = 1; i <= retries; i++) {
   711     *bits = reset_bits;  // reinit to only track last retry
   713     // We used to do an "os::yield_all(i)" call here with the intention
   714     // that yielding would increase on each retry. However, the parameter
   715     // is ignored on Linux which means the yield didn't scale up. Waiting
   716     // on the SR_lock below provides a much more predictable scale up for
   717     // the delay. It also provides a simple/direct point to check for any
   718     // safepoint requests from the VMThread
   720     {
   721       MutexLocker ml(SR_lock());
   722       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   723       // can also call this)  and increase delay with each retry
   724       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   726       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   727                                               delay, bits);
   729       // It is possible for the external suspend request to be cancelled
   730       // (by a resume) before the actual suspend operation is completed.
   731       // Refresh our local copy to see if we still need to wait.
   732       pending = is_external_suspend();
   733     }
   735     if (!pending) {
   736       // A cancelled suspend request is the only false return from
   737       // is_ext_suspend_completed() that keeps us from staying in the
   738       // retry loop.
   739       *bits |= 0x00080000;
   740       return false;
   741     }
   743     if (is_suspended) {
   744       *bits |= 0x00100000;
   745       return true;
   746     }
   747   } // end retry loop
   749   // thread did not suspend after all our retries
   750   *bits |= 0x00200000;
   751   return false;
   752 }
   754 #ifndef PRODUCT
   755 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   757   // This should not need to be atomic as the only way for simultaneous
   758   // updates is via interrupts. Even then this should be rare or non-existant
   759   // and we don't care that much anyway.
   761   int index = _jmp_ring_index;
   762   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   763   _jmp_ring[index]._target = (intptr_t) target;
   764   _jmp_ring[index]._instruction = (intptr_t) instr;
   765   _jmp_ring[index]._file = file;
   766   _jmp_ring[index]._line = line;
   767 }
   768 #endif /* PRODUCT */
   770 // Called by flat profiler
   771 // Callers have already called wait_for_ext_suspend_completion
   772 // The assertion for that is currently too complex to put here:
   773 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   774   bool gotframe = false;
   775   // self suspension saves needed state.
   776   if (has_last_Java_frame() && _anchor.walkable()) {
   777      *_fr = pd_last_frame();
   778      gotframe = true;
   779   }
   780   return gotframe;
   781 }
   783 void Thread::interrupt(Thread* thread) {
   784   trace("interrupt", thread);
   785   debug_only(check_for_dangling_thread_pointer(thread);)
   786   os::interrupt(thread);
   787 }
   789 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   790   trace("is_interrupted", thread);
   791   debug_only(check_for_dangling_thread_pointer(thread);)
   792   // Note:  If clear_interrupted==false, this simply fetches and
   793   // returns the value of the field osthread()->interrupted().
   794   return os::is_interrupted(thread, clear_interrupted);
   795 }
   798 // GC Support
   799 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   800   jint thread_parity = _oops_do_parity;
   801   if (thread_parity != strong_roots_parity) {
   802     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   803     if (res == thread_parity) {
   804       return true;
   805     } else {
   806       guarantee(res == strong_roots_parity, "Or else what?");
   807       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   808          "Should only fail when parallel.");
   809       return false;
   810     }
   811   }
   812   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   813          "Should only fail when parallel.");
   814   return false;
   815 }
   817 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   818   active_handles()->oops_do(f);
   819   // Do oop for ThreadShadow
   820   f->do_oop((oop*)&_pending_exception);
   821   handle_area()->oops_do(f);
   822 }
   824 void Thread::nmethods_do(CodeBlobClosure* cf) {
   825   // no nmethods in a generic thread...
   826 }
   828 void Thread::metadata_do(void f(Metadata*)) {
   829   if (metadata_handles() != NULL) {
   830     for (int i = 0; i< metadata_handles()->length(); i++) {
   831       f(metadata_handles()->at(i));
   832     }
   833   }
   834 }
   836 void Thread::print_on(outputStream* st) const {
   837   // get_priority assumes osthread initialized
   838   if (osthread() != NULL) {
   839     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   840     osthread()->print_on(st);
   841   }
   842   debug_only(if (WizardMode) print_owned_locks_on(st);)
   843 }
   845 // Thread::print_on_error() is called by fatal error handler. Don't use
   846 // any lock or allocate memory.
   847 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   848   if      (is_VM_thread())                  st->print("VMThread");
   849   else if (is_Compiler_thread())            st->print("CompilerThread");
   850   else if (is_Java_thread())                st->print("JavaThread");
   851   else if (is_GC_task_thread())             st->print("GCTaskThread");
   852   else if (is_Watcher_thread())             st->print("WatcherThread");
   853   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   854   else st->print("Thread");
   856   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   857             _stack_base - _stack_size, _stack_base);
   859   if (osthread()) {
   860     st->print(" [id=%d]", osthread()->thread_id());
   861   }
   862 }
   864 #ifdef ASSERT
   865 void Thread::print_owned_locks_on(outputStream* st) const {
   866   Monitor *cur = _owned_locks;
   867   if (cur == NULL) {
   868     st->print(" (no locks) ");
   869   } else {
   870     st->print_cr(" Locks owned:");
   871     while(cur) {
   872       cur->print_on(st);
   873       cur = cur->next();
   874     }
   875   }
   876 }
   878 static int ref_use_count  = 0;
   880 bool Thread::owns_locks_but_compiled_lock() const {
   881   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   882     if (cur != Compile_lock) return true;
   883   }
   884   return false;
   885 }
   888 #endif
   890 #ifndef PRODUCT
   892 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   893 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   894 // no threads which allow_vm_block's are held
   895 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   896     // Check if current thread is allowed to block at a safepoint
   897     if (!(_allow_safepoint_count == 0))
   898       fatal("Possible safepoint reached by thread that does not allow it");
   899     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   900       fatal("LEAF method calling lock?");
   901     }
   903 #ifdef ASSERT
   904     if (potential_vm_operation && is_Java_thread()
   905         && !Universe::is_bootstrapping()) {
   906       // Make sure we do not hold any locks that the VM thread also uses.
   907       // This could potentially lead to deadlocks
   908       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   909         // Threads_lock is special, since the safepoint synchronization will not start before this is
   910         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   911         // since it is used to transfer control between JavaThreads and the VMThread
   912         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   913         if ( (cur->allow_vm_block() &&
   914               cur != Threads_lock &&
   915               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   916               cur != VMOperationRequest_lock &&
   917               cur != VMOperationQueue_lock) ||
   918               cur->rank() == Mutex::special) {
   919           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   920         }
   921       }
   922     }
   924     if (GCALotAtAllSafepoints) {
   925       // We could enter a safepoint here and thus have a gc
   926       InterfaceSupport::check_gc_alot();
   927     }
   928 #endif
   929 }
   930 #endif
   932 bool Thread::is_in_stack(address adr) const {
   933   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   934   address end = os::current_stack_pointer();
   935   // Allow non Java threads to call this without stack_base
   936   if (_stack_base == NULL) return true;
   937   if (stack_base() >= adr && adr >= end) return true;
   939   return false;
   940 }
   943 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   944 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   945 // used for compilation in the future. If that change is made, the need for these methods
   946 // should be revisited, and they should be removed if possible.
   948 bool Thread::is_lock_owned(address adr) const {
   949   return on_local_stack(adr);
   950 }
   952 bool Thread::set_as_starting_thread() {
   953  // NOTE: this must be called inside the main thread.
   954   return os::create_main_thread((JavaThread*)this);
   955 }
   957 static void initialize_class(Symbol* class_name, TRAPS) {
   958   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   959   InstanceKlass::cast(klass)->initialize(CHECK);
   960 }
   963 // Creates the initial ThreadGroup
   964 static Handle create_initial_thread_group(TRAPS) {
   965   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   966   instanceKlassHandle klass (THREAD, k);
   968   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   969   {
   970     JavaValue result(T_VOID);
   971     JavaCalls::call_special(&result,
   972                             system_instance,
   973                             klass,
   974                             vmSymbols::object_initializer_name(),
   975                             vmSymbols::void_method_signature(),
   976                             CHECK_NH);
   977   }
   978   Universe::set_system_thread_group(system_instance());
   980   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   981   {
   982     JavaValue result(T_VOID);
   983     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   984     JavaCalls::call_special(&result,
   985                             main_instance,
   986                             klass,
   987                             vmSymbols::object_initializer_name(),
   988                             vmSymbols::threadgroup_string_void_signature(),
   989                             system_instance,
   990                             string,
   991                             CHECK_NH);
   992   }
   993   return main_instance;
   994 }
   996 // Creates the initial Thread
   997 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   998   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   999   instanceKlassHandle klass (THREAD, k);
  1000   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1002   java_lang_Thread::set_thread(thread_oop(), thread);
  1003   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1004   thread->set_threadObj(thread_oop());
  1006   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1008   JavaValue result(T_VOID);
  1009   JavaCalls::call_special(&result, thread_oop,
  1010                                    klass,
  1011                                    vmSymbols::object_initializer_name(),
  1012                                    vmSymbols::threadgroup_string_void_signature(),
  1013                                    thread_group,
  1014                                    string,
  1015                                    CHECK_NULL);
  1016   return thread_oop();
  1019 static void call_initializeSystemClass(TRAPS) {
  1020   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1021   instanceKlassHandle klass (THREAD, k);
  1023   JavaValue result(T_VOID);
  1024   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1025                                          vmSymbols::void_method_signature(), CHECK);
  1028 char java_runtime_name[128] = "";
  1030 // extract the JRE name from sun.misc.Version.java_runtime_name
  1031 static const char* get_java_runtime_name(TRAPS) {
  1032   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1033                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1034   fieldDescriptor fd;
  1035   bool found = k != NULL &&
  1036                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1037                                                         vmSymbols::string_signature(), &fd);
  1038   if (found) {
  1039     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1040     if (name_oop == NULL)
  1041       return NULL;
  1042     const char* name = java_lang_String::as_utf8_string(name_oop,
  1043                                                         java_runtime_name,
  1044                                                         sizeof(java_runtime_name));
  1045     return name;
  1046   } else {
  1047     return NULL;
  1051 // General purpose hook into Java code, run once when the VM is initialized.
  1052 // The Java library method itself may be changed independently from the VM.
  1053 static void call_postVMInitHook(TRAPS) {
  1054   Klass* k = SystemDictionary::PostVMInitHook_klass();
  1055   instanceKlassHandle klass (THREAD, k);
  1056   if (klass.not_null()) {
  1057     JavaValue result(T_VOID);
  1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1059                                            vmSymbols::void_method_signature(),
  1060                                            CHECK);
  1064 static void reset_vm_info_property(TRAPS) {
  1065   // the vm info string
  1066   ResourceMark rm(THREAD);
  1067   const char *vm_info = VM_Version::vm_info_string();
  1069   // java.lang.System class
  1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1071   instanceKlassHandle klass (THREAD, k);
  1073   // setProperty arguments
  1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1077   // return value
  1078   JavaValue r(T_OBJECT);
  1080   // public static String setProperty(String key, String value);
  1081   JavaCalls::call_static(&r,
  1082                          klass,
  1083                          vmSymbols::setProperty_name(),
  1084                          vmSymbols::string_string_string_signature(),
  1085                          key_str,
  1086                          value_str,
  1087                          CHECK);
  1091 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1092   assert(thread_group.not_null(), "thread group should be specified");
  1093   assert(threadObj() == NULL, "should only create Java thread object once");
  1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1096   instanceKlassHandle klass (THREAD, k);
  1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1099   java_lang_Thread::set_thread(thread_oop(), this);
  1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1101   set_threadObj(thread_oop());
  1103   JavaValue result(T_VOID);
  1104   if (thread_name != NULL) {
  1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1106     // Thread gets assigned specified name and null target
  1107     JavaCalls::call_special(&result,
  1108                             thread_oop,
  1109                             klass,
  1110                             vmSymbols::object_initializer_name(),
  1111                             vmSymbols::threadgroup_string_void_signature(),
  1112                             thread_group, // Argument 1
  1113                             name,         // Argument 2
  1114                             THREAD);
  1115   } else {
  1116     // Thread gets assigned name "Thread-nnn" and null target
  1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1118     JavaCalls::call_special(&result,
  1119                             thread_oop,
  1120                             klass,
  1121                             vmSymbols::object_initializer_name(),
  1122                             vmSymbols::threadgroup_runnable_void_signature(),
  1123                             thread_group, // Argument 1
  1124                             Handle(),     // Argument 2
  1125                             THREAD);
  1129   if (daemon) {
  1130       java_lang_Thread::set_daemon(thread_oop());
  1133   if (HAS_PENDING_EXCEPTION) {
  1134     return;
  1137   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1138   Handle threadObj(this, this->threadObj());
  1140   JavaCalls::call_special(&result,
  1141                          thread_group,
  1142                          group,
  1143                          vmSymbols::add_method_name(),
  1144                          vmSymbols::thread_void_signature(),
  1145                          threadObj,          // Arg 1
  1146                          THREAD);
  1151 // NamedThread --  non-JavaThread subclasses with multiple
  1152 // uniquely named instances should derive from this.
  1153 NamedThread::NamedThread() : Thread() {
  1154   _name = NULL;
  1155   _processed_thread = NULL;
  1158 NamedThread::~NamedThread() {
  1159   if (_name != NULL) {
  1160     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1161     _name = NULL;
  1165 void NamedThread::set_name(const char* format, ...) {
  1166   guarantee(_name == NULL, "Only get to set name once.");
  1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1168   guarantee(_name != NULL, "alloc failure");
  1169   va_list ap;
  1170   va_start(ap, format);
  1171   jio_vsnprintf(_name, max_name_len, format, ap);
  1172   va_end(ap);
  1175 // ======= WatcherThread ========
  1177 // The watcher thread exists to simulate timer interrupts.  It should
  1178 // be replaced by an abstraction over whatever native support for
  1179 // timer interrupts exists on the platform.
  1181 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1182 volatile bool  WatcherThread::_should_terminate = false;
  1184 WatcherThread::WatcherThread() : Thread() {
  1185   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1186   if (os::create_thread(this, os::watcher_thread)) {
  1187     _watcher_thread = this;
  1189     // Set the watcher thread to the highest OS priority which should not be
  1190     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1191     // is created. The only normal thread using this priority is the reference
  1192     // handler thread, which runs for very short intervals only.
  1193     // If the VMThread's priority is not lower than the WatcherThread profiling
  1194     // will be inaccurate.
  1195     os::set_priority(this, MaxPriority);
  1196     if (!DisableStartThread) {
  1197       os::start_thread(this);
  1202 void WatcherThread::run() {
  1203   assert(this == watcher_thread(), "just checking");
  1205   this->record_stack_base_and_size();
  1206   this->initialize_thread_local_storage();
  1207   this->set_active_handles(JNIHandleBlock::allocate_block());
  1208   while(!_should_terminate) {
  1209     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1210     assert(watcher_thread() == this,  "thread consistency check");
  1212     // Calculate how long it'll be until the next PeriodicTask work
  1213     // should be done, and sleep that amount of time.
  1214     size_t time_to_wait = PeriodicTask::time_to_wait();
  1216     // we expect this to timeout - we only ever get unparked when
  1217     // we should terminate
  1219       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1221       jlong prev_time = os::javaTimeNanos();
  1222       for (;;) {
  1223         int res= _SleepEvent->park(time_to_wait);
  1224         if (res == OS_TIMEOUT || _should_terminate)
  1225           break;
  1226         // spurious wakeup of some kind
  1227         jlong now = os::javaTimeNanos();
  1228         time_to_wait -= (now - prev_time) / 1000000;
  1229         if (time_to_wait <= 0)
  1230           break;
  1231         prev_time = now;
  1235     if (is_error_reported()) {
  1236       // A fatal error has happened, the error handler(VMError::report_and_die)
  1237       // should abort JVM after creating an error log file. However in some
  1238       // rare cases, the error handler itself might deadlock. Here we try to
  1239       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1240       //
  1241       // This code is in WatcherThread because WatcherThread wakes up
  1242       // periodically so the fatal error handler doesn't need to do anything;
  1243       // also because the WatcherThread is less likely to crash than other
  1244       // threads.
  1246       for (;;) {
  1247         if (!ShowMessageBoxOnError
  1248          && (OnError == NULL || OnError[0] == '\0')
  1249          && Arguments::abort_hook() == NULL) {
  1250              os::sleep(this, 2 * 60 * 1000, false);
  1251              fdStream err(defaultStream::output_fd());
  1252              err.print_raw_cr("# [ timer expired, abort... ]");
  1253              // skip atexit/vm_exit/vm_abort hooks
  1254              os::die();
  1257         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1258         // ShowMessageBoxOnError when it is ready to abort.
  1259         os::sleep(this, 5 * 1000, false);
  1263     PeriodicTask::real_time_tick(time_to_wait);
  1265     // If we have no more tasks left due to dynamic disenrollment,
  1266     // shut down the thread since we don't currently support dynamic enrollment
  1267     if (PeriodicTask::num_tasks() == 0) {
  1268       _should_terminate = true;
  1272   // Signal that it is terminated
  1274     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1275     _watcher_thread = NULL;
  1276     Terminator_lock->notify();
  1279   // Thread destructor usually does this..
  1280   ThreadLocalStorage::set_thread(NULL);
  1283 void WatcherThread::start() {
  1284   if (watcher_thread() == NULL) {
  1285     _should_terminate = false;
  1286     // Create the single instance of WatcherThread
  1287     new WatcherThread();
  1291 void WatcherThread::stop() {
  1292   // it is ok to take late safepoints here, if needed
  1293   MutexLocker mu(Terminator_lock);
  1294   _should_terminate = true;
  1295   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1297   Thread* watcher = watcher_thread();
  1298   if (watcher != NULL)
  1299     watcher->_SleepEvent->unpark();
  1301   while(watcher_thread() != NULL) {
  1302     // This wait should make safepoint checks, wait without a timeout,
  1303     // and wait as a suspend-equivalent condition.
  1304     //
  1305     // Note: If the FlatProfiler is running, then this thread is waiting
  1306     // for the WatcherThread to terminate and the WatcherThread, via the
  1307     // FlatProfiler task, is waiting for the external suspend request on
  1308     // this thread to complete. wait_for_ext_suspend_completion() will
  1309     // eventually timeout, but that takes time. Making this wait a
  1310     // suspend-equivalent condition solves that timeout problem.
  1311     //
  1312     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1313                           Mutex::_as_suspend_equivalent_flag);
  1317 void WatcherThread::print_on(outputStream* st) const {
  1318   st->print("\"%s\" ", name());
  1319   Thread::print_on(st);
  1320   st->cr();
  1323 // ======= JavaThread ========
  1325 // A JavaThread is a normal Java thread
  1327 void JavaThread::initialize() {
  1328   // Initialize fields
  1330   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1331   set_claimed_par_id(-1);
  1333   set_saved_exception_pc(NULL);
  1334   set_threadObj(NULL);
  1335   _anchor.clear();
  1336   set_entry_point(NULL);
  1337   set_jni_functions(jni_functions());
  1338   set_callee_target(NULL);
  1339   set_vm_result(NULL);
  1340   set_vm_result_2(NULL);
  1341   set_vframe_array_head(NULL);
  1342   set_vframe_array_last(NULL);
  1343   set_deferred_locals(NULL);
  1344   set_deopt_mark(NULL);
  1345   set_deopt_nmethod(NULL);
  1346   clear_must_deopt_id();
  1347   set_monitor_chunks(NULL);
  1348   set_next(NULL);
  1349   set_thread_state(_thread_new);
  1350   set_recorder(NULL);
  1351   _terminated = _not_terminated;
  1352   _privileged_stack_top = NULL;
  1353   _array_for_gc = NULL;
  1354   _suspend_equivalent = false;
  1355   _in_deopt_handler = 0;
  1356   _doing_unsafe_access = false;
  1357   _stack_guard_state = stack_guard_unused;
  1358   _exception_oop = NULL;
  1359   _exception_pc  = 0;
  1360   _exception_handler_pc = 0;
  1361   _is_method_handle_return = 0;
  1362   _jvmti_thread_state= NULL;
  1363   _should_post_on_exceptions_flag = JNI_FALSE;
  1364   _jvmti_get_loaded_classes_closure = NULL;
  1365   _interp_only_mode    = 0;
  1366   _special_runtime_exit_condition = _no_async_condition;
  1367   _pending_async_exception = NULL;
  1368   _is_compiling = false;
  1369   _thread_stat = NULL;
  1370   _thread_stat = new ThreadStatistics();
  1371   _blocked_on_compilation = false;
  1372   _jni_active_critical = 0;
  1373   _do_not_unlock_if_synchronized = false;
  1374   _cached_monitor_info = NULL;
  1375   _parker = Parker::Allocate(this) ;
  1377 #ifndef PRODUCT
  1378   _jmp_ring_index = 0;
  1379   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1380     record_jump(NULL, NULL, NULL, 0);
  1382 #endif /* PRODUCT */
  1384   set_thread_profiler(NULL);
  1385   if (FlatProfiler::is_active()) {
  1386     // This is where we would decide to either give each thread it's own profiler
  1387     // or use one global one from FlatProfiler,
  1388     // or up to some count of the number of profiled threads, etc.
  1389     ThreadProfiler* pp = new ThreadProfiler();
  1390     pp->engage();
  1391     set_thread_profiler(pp);
  1394   // Setup safepoint state info for this thread
  1395   ThreadSafepointState::create(this);
  1397   debug_only(_java_call_counter = 0);
  1399   // JVMTI PopFrame support
  1400   _popframe_condition = popframe_inactive;
  1401   _popframe_preserved_args = NULL;
  1402   _popframe_preserved_args_size = 0;
  1404   pd_initialize();
  1407 #ifndef SERIALGC
  1408 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1409 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1410 #endif // !SERIALGC
  1412 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1413   Thread()
  1414 #ifndef SERIALGC
  1415   , _satb_mark_queue(&_satb_mark_queue_set),
  1416   _dirty_card_queue(&_dirty_card_queue_set)
  1417 #endif // !SERIALGC
  1419   initialize();
  1420   if (is_attaching_via_jni) {
  1421     _jni_attach_state = _attaching_via_jni;
  1422   } else {
  1423     _jni_attach_state = _not_attaching_via_jni;
  1425   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1426   _safepoint_visible = false;
  1429 bool JavaThread::reguard_stack(address cur_sp) {
  1430   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1431     return true; // Stack already guarded or guard pages not needed.
  1434   if (register_stack_overflow()) {
  1435     // For those architectures which have separate register and
  1436     // memory stacks, we must check the register stack to see if
  1437     // it has overflowed.
  1438     return false;
  1441   // Java code never executes within the yellow zone: the latter is only
  1442   // there to provoke an exception during stack banging.  If java code
  1443   // is executing there, either StackShadowPages should be larger, or
  1444   // some exception code in c1, c2 or the interpreter isn't unwinding
  1445   // when it should.
  1446   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1448   enable_stack_yellow_zone();
  1449   return true;
  1452 bool JavaThread::reguard_stack(void) {
  1453   return reguard_stack(os::current_stack_pointer());
  1457 void JavaThread::block_if_vm_exited() {
  1458   if (_terminated == _vm_exited) {
  1459     // _vm_exited is set at safepoint, and Threads_lock is never released
  1460     // we will block here forever
  1461     Threads_lock->lock_without_safepoint_check();
  1462     ShouldNotReachHere();
  1467 // Remove this ifdef when C1 is ported to the compiler interface.
  1468 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1470 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1471   Thread()
  1472 #ifndef SERIALGC
  1473   , _satb_mark_queue(&_satb_mark_queue_set),
  1474   _dirty_card_queue(&_dirty_card_queue_set)
  1475 #endif // !SERIALGC
  1477   if (TraceThreadEvents) {
  1478     tty->print_cr("creating thread %p", this);
  1480   initialize();
  1481   _jni_attach_state = _not_attaching_via_jni;
  1482   set_entry_point(entry_point);
  1483   // Create the native thread itself.
  1484   // %note runtime_23
  1485   os::ThreadType thr_type = os::java_thread;
  1486   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1487                                                      os::java_thread;
  1488   os::create_thread(this, thr_type, stack_sz);
  1489   _safepoint_visible = false;
  1490   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1491   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1492   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1493   // the exception consists of creating the exception object & initializing it, initialization
  1494   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1495   //
  1496   // The thread is still suspended when we reach here. Thread must be explicit started
  1497   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1498   // by calling Threads:add. The reason why this is not done here, is because the thread
  1499   // object must be fully initialized (take a look at JVM_Start)
  1502 JavaThread::~JavaThread() {
  1503   if (TraceThreadEvents) {
  1504       tty->print_cr("terminate thread %p", this);
  1507   // Info NMT that this JavaThread is exiting, its memory
  1508   // recorder should be collected
  1509   assert(!is_safepoint_visible(), "wrong state");
  1510   MemTracker::thread_exiting(this);
  1512   // JSR166 -- return the parker to the free list
  1513   Parker::Release(_parker);
  1514   _parker = NULL ;
  1516   // Free any remaining  previous UnrollBlock
  1517   vframeArray* old_array = vframe_array_last();
  1519   if (old_array != NULL) {
  1520     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1521     old_array->set_unroll_block(NULL);
  1522     delete old_info;
  1523     delete old_array;
  1526   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1527   if (deferred != NULL) {
  1528     // This can only happen if thread is destroyed before deoptimization occurs.
  1529     assert(deferred->length() != 0, "empty array!");
  1530     do {
  1531       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1532       deferred->remove_at(0);
  1533       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1534       delete dlv;
  1535     } while (deferred->length() != 0);
  1536     delete deferred;
  1539   // All Java related clean up happens in exit
  1540   ThreadSafepointState::destroy(this);
  1541   if (_thread_profiler != NULL) delete _thread_profiler;
  1542   if (_thread_stat != NULL) delete _thread_stat;
  1546 // The first routine called by a new Java thread
  1547 void JavaThread::run() {
  1548   // initialize thread-local alloc buffer related fields
  1549   this->initialize_tlab();
  1551   // used to test validitity of stack trace backs
  1552   this->record_base_of_stack_pointer();
  1554   // Record real stack base and size.
  1555   this->record_stack_base_and_size();
  1557   // Initialize thread local storage; set before calling MutexLocker
  1558   this->initialize_thread_local_storage();
  1560   this->create_stack_guard_pages();
  1562   this->cache_global_variables();
  1564   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1565   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1566   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1568   assert(JavaThread::current() == this, "sanity check");
  1569   assert(!Thread::current()->owns_locks(), "sanity check");
  1571   DTRACE_THREAD_PROBE(start, this);
  1573   // This operation might block. We call that after all safepoint checks for a new thread has
  1574   // been completed.
  1575   this->set_active_handles(JNIHandleBlock::allocate_block());
  1577   if (JvmtiExport::should_post_thread_life()) {
  1578     JvmtiExport::post_thread_start(this);
  1581   EVENT_BEGIN(TraceEventThreadStart, event);
  1582   EVENT_COMMIT(event,
  1583      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1585   // We call another function to do the rest so we are sure that the stack addresses used
  1586   // from there will be lower than the stack base just computed
  1587   thread_main_inner();
  1589   // Note, thread is no longer valid at this point!
  1593 void JavaThread::thread_main_inner() {
  1594   assert(JavaThread::current() == this, "sanity check");
  1595   assert(this->threadObj() != NULL, "just checking");
  1597   // Execute thread entry point unless this thread has a pending exception
  1598   // or has been stopped before starting.
  1599   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1600   if (!this->has_pending_exception() &&
  1601       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1603       ResourceMark rm(this);
  1604       this->set_native_thread_name(this->get_thread_name());
  1606     HandleMark hm(this);
  1607     this->entry_point()(this, this);
  1610   DTRACE_THREAD_PROBE(stop, this);
  1612   this->exit(false);
  1613   delete this;
  1617 static void ensure_join(JavaThread* thread) {
  1618   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1619   Handle threadObj(thread, thread->threadObj());
  1620   assert(threadObj.not_null(), "java thread object must exist");
  1621   ObjectLocker lock(threadObj, thread);
  1622   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1623   thread->clear_pending_exception();
  1624   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1625   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1626   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1627   // to complete once we've done the notify_all below
  1628   java_lang_Thread::set_thread(threadObj(), NULL);
  1629   lock.notify_all(thread);
  1630   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1631   thread->clear_pending_exception();
  1635 // For any new cleanup additions, please check to see if they need to be applied to
  1636 // cleanup_failed_attach_current_thread as well.
  1637 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1638   assert(this == JavaThread::current(),  "thread consistency check");
  1639   if (!InitializeJavaLangSystem) return;
  1641   HandleMark hm(this);
  1642   Handle uncaught_exception(this, this->pending_exception());
  1643   this->clear_pending_exception();
  1644   Handle threadObj(this, this->threadObj());
  1645   assert(threadObj.not_null(), "Java thread object should be created");
  1647   if (get_thread_profiler() != NULL) {
  1648     get_thread_profiler()->disengage();
  1649     ResourceMark rm;
  1650     get_thread_profiler()->print(get_thread_name());
  1654   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1656     EXCEPTION_MARK;
  1658     CLEAR_PENDING_EXCEPTION;
  1660   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1661   // has to be fixed by a runtime query method
  1662   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1663     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1664     // java.lang.Thread.dispatchUncaughtException
  1665     if (uncaught_exception.not_null()) {
  1666       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1668         EXCEPTION_MARK;
  1669         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1670         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1671         // so call ThreadGroup.uncaughtException()
  1672         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1673         CallInfo callinfo;
  1674         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1675         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1676                                            vmSymbols::dispatchUncaughtException_name(),
  1677                                            vmSymbols::throwable_void_signature(),
  1678                                            KlassHandle(), false, false, THREAD);
  1679         CLEAR_PENDING_EXCEPTION;
  1680         methodHandle method = callinfo.selected_method();
  1681         if (method.not_null()) {
  1682           JavaValue result(T_VOID);
  1683           JavaCalls::call_virtual(&result,
  1684                                   threadObj, thread_klass,
  1685                                   vmSymbols::dispatchUncaughtException_name(),
  1686                                   vmSymbols::throwable_void_signature(),
  1687                                   uncaught_exception,
  1688                                   THREAD);
  1689         } else {
  1690           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1691           JavaValue result(T_VOID);
  1692           JavaCalls::call_virtual(&result,
  1693                                   group, thread_group,
  1694                                   vmSymbols::uncaughtException_name(),
  1695                                   vmSymbols::thread_throwable_void_signature(),
  1696                                   threadObj,           // Arg 1
  1697                                   uncaught_exception,  // Arg 2
  1698                                   THREAD);
  1700         if (HAS_PENDING_EXCEPTION) {
  1701           ResourceMark rm(this);
  1702           jio_fprintf(defaultStream::error_stream(),
  1703                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1704                 " in thread \"%s\"\n",
  1705                 Klass::cast(pending_exception()->klass())->external_name(),
  1706                 get_thread_name());
  1707           CLEAR_PENDING_EXCEPTION;
  1712     // Called before the java thread exit since we want to read info
  1713     // from java_lang_Thread object
  1714     EVENT_BEGIN(TraceEventThreadEnd, event);
  1715     EVENT_COMMIT(event,
  1716         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1718     // Call after last event on thread
  1719     EVENT_THREAD_EXIT(this);
  1721     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1722     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1723     // is deprecated anyhow.
  1724     { int count = 3;
  1725       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1726         EXCEPTION_MARK;
  1727         JavaValue result(T_VOID);
  1728         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1729         JavaCalls::call_virtual(&result,
  1730                               threadObj, thread_klass,
  1731                               vmSymbols::exit_method_name(),
  1732                               vmSymbols::void_method_signature(),
  1733                               THREAD);
  1734         CLEAR_PENDING_EXCEPTION;
  1738     // notify JVMTI
  1739     if (JvmtiExport::should_post_thread_life()) {
  1740       JvmtiExport::post_thread_end(this);
  1743     // We have notified the agents that we are exiting, before we go on,
  1744     // we must check for a pending external suspend request and honor it
  1745     // in order to not surprise the thread that made the suspend request.
  1746     while (true) {
  1748         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1749         if (!is_external_suspend()) {
  1750           set_terminated(_thread_exiting);
  1751           ThreadService::current_thread_exiting(this);
  1752           break;
  1754         // Implied else:
  1755         // Things get a little tricky here. We have a pending external
  1756         // suspend request, but we are holding the SR_lock so we
  1757         // can't just self-suspend. So we temporarily drop the lock
  1758         // and then self-suspend.
  1761       ThreadBlockInVM tbivm(this);
  1762       java_suspend_self();
  1764       // We're done with this suspend request, but we have to loop around
  1765       // and check again. Eventually we will get SR_lock without a pending
  1766       // external suspend request and will be able to mark ourselves as
  1767       // exiting.
  1769     // no more external suspends are allowed at this point
  1770   } else {
  1771     // before_exit() has already posted JVMTI THREAD_END events
  1774   // Notify waiters on thread object. This has to be done after exit() is called
  1775   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1776   // group should have the destroyed bit set before waiters are notified).
  1777   ensure_join(this);
  1778   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1780   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1781   // held by this thread must be released.  A detach operation must only
  1782   // get here if there are no Java frames on the stack.  Therefore, any
  1783   // owned monitors at this point MUST be JNI-acquired monitors which are
  1784   // pre-inflated and in the monitor cache.
  1785   //
  1786   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1787   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1788     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1789     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1790     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1793   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1794   // is in a consistent state, in case GC happens
  1795   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1797   if (active_handles() != NULL) {
  1798     JNIHandleBlock* block = active_handles();
  1799     set_active_handles(NULL);
  1800     JNIHandleBlock::release_block(block);
  1803   if (free_handle_block() != NULL) {
  1804     JNIHandleBlock* block = free_handle_block();
  1805     set_free_handle_block(NULL);
  1806     JNIHandleBlock::release_block(block);
  1809   // These have to be removed while this is still a valid thread.
  1810   remove_stack_guard_pages();
  1812   if (UseTLAB) {
  1813     tlab().make_parsable(true);  // retire TLAB
  1816   if (JvmtiEnv::environments_might_exist()) {
  1817     JvmtiExport::cleanup_thread(this);
  1820 #ifndef SERIALGC
  1821   // We must flush G1-related buffers before removing a thread from
  1822   // the list of active threads.
  1823   if (UseG1GC) {
  1824     flush_barrier_queues();
  1826 #endif
  1828   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1829   Threads::remove(this);
  1832 #ifndef SERIALGC
  1833 // Flush G1-related queues.
  1834 void JavaThread::flush_barrier_queues() {
  1835   satb_mark_queue().flush();
  1836   dirty_card_queue().flush();
  1839 void JavaThread::initialize_queues() {
  1840   assert(!SafepointSynchronize::is_at_safepoint(),
  1841          "we should not be at a safepoint");
  1843   ObjPtrQueue& satb_queue = satb_mark_queue();
  1844   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1845   // The SATB queue should have been constructed with its active
  1846   // field set to false.
  1847   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1848   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1849   // If we are creating the thread during a marking cycle, we should
  1850   // set the active field of the SATB queue to true.
  1851   if (satb_queue_set.is_active()) {
  1852     satb_queue.set_active(true);
  1855   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1856   // The dirty card queue should have been constructed with its
  1857   // active field set to true.
  1858   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1860 #endif // !SERIALGC
  1862 void JavaThread::cleanup_failed_attach_current_thread() {
  1863   if (get_thread_profiler() != NULL) {
  1864     get_thread_profiler()->disengage();
  1865     ResourceMark rm;
  1866     get_thread_profiler()->print(get_thread_name());
  1869   if (active_handles() != NULL) {
  1870     JNIHandleBlock* block = active_handles();
  1871     set_active_handles(NULL);
  1872     JNIHandleBlock::release_block(block);
  1875   if (free_handle_block() != NULL) {
  1876     JNIHandleBlock* block = free_handle_block();
  1877     set_free_handle_block(NULL);
  1878     JNIHandleBlock::release_block(block);
  1881   // These have to be removed while this is still a valid thread.
  1882   remove_stack_guard_pages();
  1884   if (UseTLAB) {
  1885     tlab().make_parsable(true);  // retire TLAB, if any
  1888 #ifndef SERIALGC
  1889   if (UseG1GC) {
  1890     flush_barrier_queues();
  1892 #endif
  1894   Threads::remove(this);
  1895   delete this;
  1901 JavaThread* JavaThread::active() {
  1902   Thread* thread = ThreadLocalStorage::thread();
  1903   assert(thread != NULL, "just checking");
  1904   if (thread->is_Java_thread()) {
  1905     return (JavaThread*) thread;
  1906   } else {
  1907     assert(thread->is_VM_thread(), "this must be a vm thread");
  1908     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1909     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1910     assert(ret->is_Java_thread(), "must be a Java thread");
  1911     return ret;
  1915 bool JavaThread::is_lock_owned(address adr) const {
  1916   if (Thread::is_lock_owned(adr)) return true;
  1918   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1919     if (chunk->contains(adr)) return true;
  1922   return false;
  1926 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1927   chunk->set_next(monitor_chunks());
  1928   set_monitor_chunks(chunk);
  1931 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1932   guarantee(monitor_chunks() != NULL, "must be non empty");
  1933   if (monitor_chunks() == chunk) {
  1934     set_monitor_chunks(chunk->next());
  1935   } else {
  1936     MonitorChunk* prev = monitor_chunks();
  1937     while (prev->next() != chunk) prev = prev->next();
  1938     prev->set_next(chunk->next());
  1942 // JVM support.
  1944 // Note: this function shouldn't block if it's called in
  1945 // _thread_in_native_trans state (such as from
  1946 // check_special_condition_for_native_trans()).
  1947 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1949   if (has_last_Java_frame() && has_async_condition()) {
  1950     // If we are at a polling page safepoint (not a poll return)
  1951     // then we must defer async exception because live registers
  1952     // will be clobbered by the exception path. Poll return is
  1953     // ok because the call we a returning from already collides
  1954     // with exception handling registers and so there is no issue.
  1955     // (The exception handling path kills call result registers but
  1956     //  this is ok since the exception kills the result anyway).
  1958     if (is_at_poll_safepoint()) {
  1959       // if the code we are returning to has deoptimized we must defer
  1960       // the exception otherwise live registers get clobbered on the
  1961       // exception path before deoptimization is able to retrieve them.
  1962       //
  1963       RegisterMap map(this, false);
  1964       frame caller_fr = last_frame().sender(&map);
  1965       assert(caller_fr.is_compiled_frame(), "what?");
  1966       if (caller_fr.is_deoptimized_frame()) {
  1967         if (TraceExceptions) {
  1968           ResourceMark rm;
  1969           tty->print_cr("deferred async exception at compiled safepoint");
  1971         return;
  1976   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1977   if (condition == _no_async_condition) {
  1978     // Conditions have changed since has_special_runtime_exit_condition()
  1979     // was called:
  1980     // - if we were here only because of an external suspend request,
  1981     //   then that was taken care of above (or cancelled) so we are done
  1982     // - if we were here because of another async request, then it has
  1983     //   been cleared between the has_special_runtime_exit_condition()
  1984     //   and now so again we are done
  1985     return;
  1988   // Check for pending async. exception
  1989   if (_pending_async_exception != NULL) {
  1990     // Only overwrite an already pending exception, if it is not a threadDeath.
  1991     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1993       // We cannot call Exceptions::_throw(...) here because we cannot block
  1994       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1996       if (TraceExceptions) {
  1997         ResourceMark rm;
  1998         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1999         if (has_last_Java_frame() ) {
  2000           frame f = last_frame();
  2001           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2003         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2005       _pending_async_exception = NULL;
  2006       clear_has_async_exception();
  2010   if (check_unsafe_error &&
  2011       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2012     condition = _no_async_condition;  // done
  2013     switch (thread_state()) {
  2014     case _thread_in_vm:
  2016         JavaThread* THREAD = this;
  2017         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2019     case _thread_in_native:
  2021         ThreadInVMfromNative tiv(this);
  2022         JavaThread* THREAD = this;
  2023         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2025     case _thread_in_Java:
  2027         ThreadInVMfromJava tiv(this);
  2028         JavaThread* THREAD = this;
  2029         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2031     default:
  2032       ShouldNotReachHere();
  2036   assert(condition == _no_async_condition || has_pending_exception() ||
  2037          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2038          "must have handled the async condition, if no exception");
  2041 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2042   //
  2043   // Check for pending external suspend. Internal suspend requests do
  2044   // not use handle_special_runtime_exit_condition().
  2045   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2046   // thread is not the current thread. In older versions of jdbx, jdbx
  2047   // threads could call into the VM with another thread's JNIEnv so we
  2048   // can be here operating on behalf of a suspended thread (4432884).
  2049   bool do_self_suspend = is_external_suspend_with_lock();
  2050   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2051     //
  2052     // Because thread is external suspended the safepoint code will count
  2053     // thread as at a safepoint. This can be odd because we can be here
  2054     // as _thread_in_Java which would normally transition to _thread_blocked
  2055     // at a safepoint. We would like to mark the thread as _thread_blocked
  2056     // before calling java_suspend_self like all other callers of it but
  2057     // we must then observe proper safepoint protocol. (We can't leave
  2058     // _thread_blocked with a safepoint in progress). However we can be
  2059     // here as _thread_in_native_trans so we can't use a normal transition
  2060     // constructor/destructor pair because they assert on that type of
  2061     // transition. We could do something like:
  2062     //
  2063     // JavaThreadState state = thread_state();
  2064     // set_thread_state(_thread_in_vm);
  2065     // {
  2066     //   ThreadBlockInVM tbivm(this);
  2067     //   java_suspend_self()
  2068     // }
  2069     // set_thread_state(_thread_in_vm_trans);
  2070     // if (safepoint) block;
  2071     // set_thread_state(state);
  2072     //
  2073     // but that is pretty messy. Instead we just go with the way the
  2074     // code has worked before and note that this is the only path to
  2075     // java_suspend_self that doesn't put the thread in _thread_blocked
  2076     // mode.
  2078     frame_anchor()->make_walkable(this);
  2079     java_suspend_self();
  2081     // We might be here for reasons in addition to the self-suspend request
  2082     // so check for other async requests.
  2085   if (check_asyncs) {
  2086     check_and_handle_async_exceptions();
  2090 void JavaThread::send_thread_stop(oop java_throwable)  {
  2091   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2092   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2093   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2095   // Do not throw asynchronous exceptions against the compiler thread
  2096   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2097   if (is_Compiler_thread()) return;
  2100     // Actually throw the Throwable against the target Thread - however
  2101     // only if there is no thread death exception installed already.
  2102     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2103       // If the topmost frame is a runtime stub, then we are calling into
  2104       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2105       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2106       // may not be valid
  2107       if (has_last_Java_frame()) {
  2108         frame f = last_frame();
  2109         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2110           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2111           RegisterMap reg_map(this, UseBiasedLocking);
  2112           frame compiled_frame = f.sender(&reg_map);
  2113           if (compiled_frame.can_be_deoptimized()) {
  2114             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2119       // Set async. pending exception in thread.
  2120       set_pending_async_exception(java_throwable);
  2122       if (TraceExceptions) {
  2123        ResourceMark rm;
  2124        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2126       // for AbortVMOnException flag
  2127       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2132   // Interrupt thread so it will wake up from a potential wait()
  2133   Thread::interrupt(this);
  2136 // External suspension mechanism.
  2137 //
  2138 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2139 // to any VM_locks and it is at a transition
  2140 // Self-suspension will happen on the transition out of the vm.
  2141 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2142 //
  2143 // Guarantees on return:
  2144 //   + Target thread will not execute any new bytecode (that's why we need to
  2145 //     force a safepoint)
  2146 //   + Target thread will not enter any new monitors
  2147 //
  2148 void JavaThread::java_suspend() {
  2149   { MutexLocker mu(Threads_lock);
  2150     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2151        return;
  2155   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2156     if (!is_external_suspend()) {
  2157       // a racing resume has cancelled us; bail out now
  2158       return;
  2161     // suspend is done
  2162     uint32_t debug_bits = 0;
  2163     // Warning: is_ext_suspend_completed() may temporarily drop the
  2164     // SR_lock to allow the thread to reach a stable thread state if
  2165     // it is currently in a transient thread state.
  2166     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2167                                  SuspendRetryDelay, &debug_bits) ) {
  2168       return;
  2172   VM_ForceSafepoint vm_suspend;
  2173   VMThread::execute(&vm_suspend);
  2176 // Part II of external suspension.
  2177 // A JavaThread self suspends when it detects a pending external suspend
  2178 // request. This is usually on transitions. It is also done in places
  2179 // where continuing to the next transition would surprise the caller,
  2180 // e.g., monitor entry.
  2181 //
  2182 // Returns the number of times that the thread self-suspended.
  2183 //
  2184 // Note: DO NOT call java_suspend_self() when you just want to block current
  2185 //       thread. java_suspend_self() is the second stage of cooperative
  2186 //       suspension for external suspend requests and should only be used
  2187 //       to complete an external suspend request.
  2188 //
  2189 int JavaThread::java_suspend_self() {
  2190   int ret = 0;
  2192   // we are in the process of exiting so don't suspend
  2193   if (is_exiting()) {
  2194      clear_external_suspend();
  2195      return ret;
  2198   assert(_anchor.walkable() ||
  2199     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2200     "must have walkable stack");
  2202   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2204   assert(!this->is_ext_suspended(),
  2205     "a thread trying to self-suspend should not already be suspended");
  2207   if (this->is_suspend_equivalent()) {
  2208     // If we are self-suspending as a result of the lifting of a
  2209     // suspend equivalent condition, then the suspend_equivalent
  2210     // flag is not cleared until we set the ext_suspended flag so
  2211     // that wait_for_ext_suspend_completion() returns consistent
  2212     // results.
  2213     this->clear_suspend_equivalent();
  2216   // A racing resume may have cancelled us before we grabbed SR_lock
  2217   // above. Or another external suspend request could be waiting for us
  2218   // by the time we return from SR_lock()->wait(). The thread
  2219   // that requested the suspension may already be trying to walk our
  2220   // stack and if we return now, we can change the stack out from under
  2221   // it. This would be a "bad thing (TM)" and cause the stack walker
  2222   // to crash. We stay self-suspended until there are no more pending
  2223   // external suspend requests.
  2224   while (is_external_suspend()) {
  2225     ret++;
  2226     this->set_ext_suspended();
  2228     // _ext_suspended flag is cleared by java_resume()
  2229     while (is_ext_suspended()) {
  2230       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2234   return ret;
  2237 #ifdef ASSERT
  2238 // verify the JavaThread has not yet been published in the Threads::list, and
  2239 // hence doesn't need protection from concurrent access at this stage
  2240 void JavaThread::verify_not_published() {
  2241   if (!Threads_lock->owned_by_self()) {
  2242    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2243    assert( !Threads::includes(this),
  2244            "java thread shouldn't have been published yet!");
  2246   else {
  2247    assert( !Threads::includes(this),
  2248            "java thread shouldn't have been published yet!");
  2251 #endif
  2253 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2254 // progress or when _suspend_flags is non-zero.
  2255 // Current thread needs to self-suspend if there is a suspend request and/or
  2256 // block if a safepoint is in progress.
  2257 // Async exception ISN'T checked.
  2258 // Note only the ThreadInVMfromNative transition can call this function
  2259 // directly and when thread state is _thread_in_native_trans
  2260 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2261   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2263   JavaThread *curJT = JavaThread::current();
  2264   bool do_self_suspend = thread->is_external_suspend();
  2266   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2268   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2269   // thread is not the current thread. In older versions of jdbx, jdbx
  2270   // threads could call into the VM with another thread's JNIEnv so we
  2271   // can be here operating on behalf of a suspended thread (4432884).
  2272   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2273     JavaThreadState state = thread->thread_state();
  2275     // We mark this thread_blocked state as a suspend-equivalent so
  2276     // that a caller to is_ext_suspend_completed() won't be confused.
  2277     // The suspend-equivalent state is cleared by java_suspend_self().
  2278     thread->set_suspend_equivalent();
  2280     // If the safepoint code sees the _thread_in_native_trans state, it will
  2281     // wait until the thread changes to other thread state. There is no
  2282     // guarantee on how soon we can obtain the SR_lock and complete the
  2283     // self-suspend request. It would be a bad idea to let safepoint wait for
  2284     // too long. Temporarily change the state to _thread_blocked to
  2285     // let the VM thread know that this thread is ready for GC. The problem
  2286     // of changing thread state is that safepoint could happen just after
  2287     // java_suspend_self() returns after being resumed, and VM thread will
  2288     // see the _thread_blocked state. We must check for safepoint
  2289     // after restoring the state and make sure we won't leave while a safepoint
  2290     // is in progress.
  2291     thread->set_thread_state(_thread_blocked);
  2292     thread->java_suspend_self();
  2293     thread->set_thread_state(state);
  2294     // Make sure new state is seen by VM thread
  2295     if (os::is_MP()) {
  2296       if (UseMembar) {
  2297         // Force a fence between the write above and read below
  2298         OrderAccess::fence();
  2299       } else {
  2300         // Must use this rather than serialization page in particular on Windows
  2301         InterfaceSupport::serialize_memory(thread);
  2306   if (SafepointSynchronize::do_call_back()) {
  2307     // If we are safepointing, then block the caller which may not be
  2308     // the same as the target thread (see above).
  2309     SafepointSynchronize::block(curJT);
  2312   if (thread->is_deopt_suspend()) {
  2313     thread->clear_deopt_suspend();
  2314     RegisterMap map(thread, false);
  2315     frame f = thread->last_frame();
  2316     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2317       f = f.sender(&map);
  2319     if (f.id() == thread->must_deopt_id()) {
  2320       thread->clear_must_deopt_id();
  2321       f.deoptimize(thread);
  2322     } else {
  2323       fatal("missed deoptimization!");
  2328 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2329 // progress or when _suspend_flags is non-zero.
  2330 // Current thread needs to self-suspend if there is a suspend request and/or
  2331 // block if a safepoint is in progress.
  2332 // Also check for pending async exception (not including unsafe access error).
  2333 // Note only the native==>VM/Java barriers can call this function and when
  2334 // thread state is _thread_in_native_trans.
  2335 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2336   check_safepoint_and_suspend_for_native_trans(thread);
  2338   if (thread->has_async_exception()) {
  2339     // We are in _thread_in_native_trans state, don't handle unsafe
  2340     // access error since that may block.
  2341     thread->check_and_handle_async_exceptions(false);
  2345 // This is a variant of the normal
  2346 // check_special_condition_for_native_trans with slightly different
  2347 // semantics for use by critical native wrappers.  It does all the
  2348 // normal checks but also performs the transition back into
  2349 // thread_in_Java state.  This is required so that critical natives
  2350 // can potentially block and perform a GC if they are the last thread
  2351 // exiting the GC_locker.
  2352 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2353   check_special_condition_for_native_trans(thread);
  2355   // Finish the transition
  2356   thread->set_thread_state(_thread_in_Java);
  2358   if (thread->do_critical_native_unlock()) {
  2359     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2360     GC_locker::unlock_critical(thread);
  2361     thread->clear_critical_native_unlock();
  2365 // We need to guarantee the Threads_lock here, since resumes are not
  2366 // allowed during safepoint synchronization
  2367 // Can only resume from an external suspension
  2368 void JavaThread::java_resume() {
  2369   assert_locked_or_safepoint(Threads_lock);
  2371   // Sanity check: thread is gone, has started exiting or the thread
  2372   // was not externally suspended.
  2373   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2374     return;
  2377   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2379   clear_external_suspend();
  2381   if (is_ext_suspended()) {
  2382     clear_ext_suspended();
  2383     SR_lock()->notify_all();
  2387 void JavaThread::create_stack_guard_pages() {
  2388   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2389   address low_addr = stack_base() - stack_size();
  2390   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2392   int allocate = os::allocate_stack_guard_pages();
  2393   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2395   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2396     warning("Attempt to allocate stack guard pages failed.");
  2397     return;
  2400   if (os::guard_memory((char *) low_addr, len)) {
  2401     _stack_guard_state = stack_guard_enabled;
  2402   } else {
  2403     warning("Attempt to protect stack guard pages failed.");
  2404     if (os::uncommit_memory((char *) low_addr, len)) {
  2405       warning("Attempt to deallocate stack guard pages failed.");
  2410 void JavaThread::remove_stack_guard_pages() {
  2411   if (_stack_guard_state == stack_guard_unused) return;
  2412   address low_addr = stack_base() - stack_size();
  2413   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2415   if (os::allocate_stack_guard_pages()) {
  2416     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2417       _stack_guard_state = stack_guard_unused;
  2418     } else {
  2419       warning("Attempt to deallocate stack guard pages failed.");
  2421   } else {
  2422     if (_stack_guard_state == stack_guard_unused) return;
  2423     if (os::unguard_memory((char *) low_addr, len)) {
  2424       _stack_guard_state = stack_guard_unused;
  2425     } else {
  2426         warning("Attempt to unprotect stack guard pages failed.");
  2431 void JavaThread::enable_stack_yellow_zone() {
  2432   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2433   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2435   // The base notation is from the stacks point of view, growing downward.
  2436   // We need to adjust it to work correctly with guard_memory()
  2437   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2439   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2440   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2442   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2443     _stack_guard_state = stack_guard_enabled;
  2444   } else {
  2445     warning("Attempt to guard stack yellow zone failed.");
  2447   enable_register_stack_guard();
  2450 void JavaThread::disable_stack_yellow_zone() {
  2451   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2452   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2454   // Simply return if called for a thread that does not use guard pages.
  2455   if (_stack_guard_state == stack_guard_unused) return;
  2457   // The base notation is from the stacks point of view, growing downward.
  2458   // We need to adjust it to work correctly with guard_memory()
  2459   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2461   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2462     _stack_guard_state = stack_guard_yellow_disabled;
  2463   } else {
  2464     warning("Attempt to unguard stack yellow zone failed.");
  2466   disable_register_stack_guard();
  2469 void JavaThread::enable_stack_red_zone() {
  2470   // The base notation is from the stacks point of view, growing downward.
  2471   // We need to adjust it to work correctly with guard_memory()
  2472   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2473   address base = stack_red_zone_base() - stack_red_zone_size();
  2475   guarantee(base < stack_base(),"Error calculating stack red zone");
  2476   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2478   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2479     warning("Attempt to guard stack red zone failed.");
  2483 void JavaThread::disable_stack_red_zone() {
  2484   // The base notation is from the stacks point of view, growing downward.
  2485   // We need to adjust it to work correctly with guard_memory()
  2486   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2487   address base = stack_red_zone_base() - stack_red_zone_size();
  2488   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2489     warning("Attempt to unguard stack red zone failed.");
  2493 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2494   // ignore is there is no stack
  2495   if (!has_last_Java_frame()) return;
  2496   // traverse the stack frames. Starts from top frame.
  2497   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2498     frame* fr = fst.current();
  2499     f(fr, fst.register_map());
  2504 #ifndef PRODUCT
  2505 // Deoptimization
  2506 // Function for testing deoptimization
  2507 void JavaThread::deoptimize() {
  2508   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2509   StackFrameStream fst(this, UseBiasedLocking);
  2510   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2511   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2512   // Iterate over all frames in the thread and deoptimize
  2513   for(; !fst.is_done(); fst.next()) {
  2514     if(fst.current()->can_be_deoptimized()) {
  2516       if (only_at) {
  2517         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2518         // consists of comma or carriage return separated numbers so
  2519         // search for the current bci in that string.
  2520         address pc = fst.current()->pc();
  2521         nmethod* nm =  (nmethod*) fst.current()->cb();
  2522         ScopeDesc* sd = nm->scope_desc_at( pc);
  2523         char buffer[8];
  2524         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2525         size_t len = strlen(buffer);
  2526         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2527         while (found != NULL) {
  2528           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2529               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2530             // Check that the bci found is bracketed by terminators.
  2531             break;
  2533           found = strstr(found + 1, buffer);
  2535         if (!found) {
  2536           continue;
  2540       if (DebugDeoptimization && !deopt) {
  2541         deopt = true; // One-time only print before deopt
  2542         tty->print_cr("[BEFORE Deoptimization]");
  2543         trace_frames();
  2544         trace_stack();
  2546       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2550   if (DebugDeoptimization && deopt) {
  2551     tty->print_cr("[AFTER Deoptimization]");
  2552     trace_frames();
  2557 // Make zombies
  2558 void JavaThread::make_zombies() {
  2559   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2560     if (fst.current()->can_be_deoptimized()) {
  2561       // it is a Java nmethod
  2562       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2563       nm->make_not_entrant();
  2567 #endif // PRODUCT
  2570 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2571   if (!has_last_Java_frame()) return;
  2572   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2573   StackFrameStream fst(this, UseBiasedLocking);
  2574   for(; !fst.is_done(); fst.next()) {
  2575     if (fst.current()->should_be_deoptimized()) {
  2576       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2582 // GC support
  2583 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2585 void JavaThread::gc_epilogue() {
  2586   frames_do(frame_gc_epilogue);
  2590 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2592 void JavaThread::gc_prologue() {
  2593   frames_do(frame_gc_prologue);
  2596 // If the caller is a NamedThread, then remember, in the current scope,
  2597 // the given JavaThread in its _processed_thread field.
  2598 class RememberProcessedThread: public StackObj {
  2599   NamedThread* _cur_thr;
  2600 public:
  2601   RememberProcessedThread(JavaThread* jthr) {
  2602     Thread* thread = Thread::current();
  2603     if (thread->is_Named_thread()) {
  2604       _cur_thr = (NamedThread *)thread;
  2605       _cur_thr->set_processed_thread(jthr);
  2606     } else {
  2607       _cur_thr = NULL;
  2611   ~RememberProcessedThread() {
  2612     if (_cur_thr) {
  2613       _cur_thr->set_processed_thread(NULL);
  2616 };
  2618 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2619   // Verify that the deferred card marks have been flushed.
  2620   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2622   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2623   // since there may be more than one thread using each ThreadProfiler.
  2625   // Traverse the GCHandles
  2626   Thread::oops_do(f, cf);
  2628   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2629           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2631   if (has_last_Java_frame()) {
  2632     // Record JavaThread to GC thread
  2633     RememberProcessedThread rpt(this);
  2635     // Traverse the privileged stack
  2636     if (_privileged_stack_top != NULL) {
  2637       _privileged_stack_top->oops_do(f);
  2640     // traverse the registered growable array
  2641     if (_array_for_gc != NULL) {
  2642       for (int index = 0; index < _array_for_gc->length(); index++) {
  2643         f->do_oop(_array_for_gc->adr_at(index));
  2647     // Traverse the monitor chunks
  2648     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2649       chunk->oops_do(f);
  2652     // Traverse the execution stack
  2653     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2654       fst.current()->oops_do(f, cf, fst.register_map());
  2658   // callee_target is never live across a gc point so NULL it here should
  2659   // it still contain a methdOop.
  2661   set_callee_target(NULL);
  2663   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2664   // If we have deferred set_locals there might be oops waiting to be
  2665   // written
  2666   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2667   if (list != NULL) {
  2668     for (int i = 0; i < list->length(); i++) {
  2669       list->at(i)->oops_do(f);
  2673   // Traverse instance variables at the end since the GC may be moving things
  2674   // around using this function
  2675   f->do_oop((oop*) &_threadObj);
  2676   f->do_oop((oop*) &_vm_result);
  2677   f->do_oop((oop*) &_exception_oop);
  2678   f->do_oop((oop*) &_pending_async_exception);
  2680   if (jvmti_thread_state() != NULL) {
  2681     jvmti_thread_state()->oops_do(f);
  2685 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2686   Thread::nmethods_do(cf);  // (super method is a no-op)
  2688   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2689           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2691   if (has_last_Java_frame()) {
  2692     // Traverse the execution stack
  2693     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2694       fst.current()->nmethods_do(cf);
  2699 void JavaThread::metadata_do(void f(Metadata*)) {
  2700   Thread::metadata_do(f);
  2701   if (has_last_Java_frame()) {
  2702     // Traverse the execution stack to call f() on the methods in the stack
  2703     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2704       fst.current()->metadata_do(f);
  2706   } else if (is_Compiler_thread()) {
  2707     // need to walk ciMetadata in current compile tasks to keep alive.
  2708     CompilerThread* ct = (CompilerThread*)this;
  2709     if (ct->env() != NULL) {
  2710       ct->env()->metadata_do(f);
  2715 // Printing
  2716 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2717   switch (_thread_state) {
  2718   case _thread_uninitialized:     return "_thread_uninitialized";
  2719   case _thread_new:               return "_thread_new";
  2720   case _thread_new_trans:         return "_thread_new_trans";
  2721   case _thread_in_native:         return "_thread_in_native";
  2722   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2723   case _thread_in_vm:             return "_thread_in_vm";
  2724   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2725   case _thread_in_Java:           return "_thread_in_Java";
  2726   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2727   case _thread_blocked:           return "_thread_blocked";
  2728   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2729   default:                        return "unknown thread state";
  2733 #ifndef PRODUCT
  2734 void JavaThread::print_thread_state_on(outputStream *st) const {
  2735   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2736 };
  2737 void JavaThread::print_thread_state() const {
  2738   print_thread_state_on(tty);
  2739 };
  2740 #endif // PRODUCT
  2742 // Called by Threads::print() for VM_PrintThreads operation
  2743 void JavaThread::print_on(outputStream *st) const {
  2744   st->print("\"%s\" ", get_thread_name());
  2745   oop thread_oop = threadObj();
  2746   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2747   Thread::print_on(st);
  2748   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2749   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2750   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2751     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2753 #ifndef PRODUCT
  2754   print_thread_state_on(st);
  2755   _safepoint_state->print_on(st);
  2756 #endif // PRODUCT
  2759 // Called by fatal error handler. The difference between this and
  2760 // JavaThread::print() is that we can't grab lock or allocate memory.
  2761 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2762   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2763   oop thread_obj = threadObj();
  2764   if (thread_obj != NULL) {
  2765      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2767   st->print(" [");
  2768   st->print("%s", _get_thread_state_name(_thread_state));
  2769   if (osthread()) {
  2770     st->print(", id=%d", osthread()->thread_id());
  2772   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2773             _stack_base - _stack_size, _stack_base);
  2774   st->print("]");
  2775   return;
  2778 // Verification
  2780 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2782 void JavaThread::verify() {
  2783   // Verify oops in the thread.
  2784   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2786   // Verify the stack frames.
  2787   frames_do(frame_verify);
  2790 // CR 6300358 (sub-CR 2137150)
  2791 // Most callers of this method assume that it can't return NULL but a
  2792 // thread may not have a name whilst it is in the process of attaching to
  2793 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2794 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2795 // if vm exit occurs during initialization). These cases can all be accounted
  2796 // for such that this method never returns NULL.
  2797 const char* JavaThread::get_thread_name() const {
  2798 #ifdef ASSERT
  2799   // early safepoints can hit while current thread does not yet have TLS
  2800   if (!SafepointSynchronize::is_at_safepoint()) {
  2801     Thread *cur = Thread::current();
  2802     if (!(cur->is_Java_thread() && cur == this)) {
  2803       // Current JavaThreads are allowed to get their own name without
  2804       // the Threads_lock.
  2805       assert_locked_or_safepoint(Threads_lock);
  2808 #endif // ASSERT
  2809     return get_thread_name_string();
  2812 // Returns a non-NULL representation of this thread's name, or a suitable
  2813 // descriptive string if there is no set name
  2814 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2815   const char* name_str;
  2816   oop thread_obj = threadObj();
  2817   if (thread_obj != NULL) {
  2818     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2819     if (name != NULL) {
  2820       if (buf == NULL) {
  2821         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2823       else {
  2824         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2827     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2828       name_str = "<no-name - thread is attaching>";
  2830     else {
  2831       name_str = Thread::name();
  2834   else {
  2835     name_str = Thread::name();
  2837   assert(name_str != NULL, "unexpected NULL thread name");
  2838   return name_str;
  2842 const char* JavaThread::get_threadgroup_name() const {
  2843   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2844   oop thread_obj = threadObj();
  2845   if (thread_obj != NULL) {
  2846     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2847     if (thread_group != NULL) {
  2848       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2849       // ThreadGroup.name can be null
  2850       if (name != NULL) {
  2851         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2852         return str;
  2856   return NULL;
  2859 const char* JavaThread::get_parent_name() const {
  2860   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2861   oop thread_obj = threadObj();
  2862   if (thread_obj != NULL) {
  2863     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2864     if (thread_group != NULL) {
  2865       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2866       if (parent != NULL) {
  2867         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2868         // ThreadGroup.name can be null
  2869         if (name != NULL) {
  2870           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2871           return str;
  2876   return NULL;
  2879 ThreadPriority JavaThread::java_priority() const {
  2880   oop thr_oop = threadObj();
  2881   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2882   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2883   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2884   return priority;
  2887 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2889   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2890   // Link Java Thread object <-> C++ Thread
  2892   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2893   // and put it into a new Handle.  The Handle "thread_oop" can then
  2894   // be used to pass the C++ thread object to other methods.
  2896   // Set the Java level thread object (jthread) field of the
  2897   // new thread (a JavaThread *) to C++ thread object using the
  2898   // "thread_oop" handle.
  2900   // Set the thread field (a JavaThread *) of the
  2901   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2903   Handle thread_oop(Thread::current(),
  2904                     JNIHandles::resolve_non_null(jni_thread));
  2905   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  2906     "must be initialized");
  2907   set_threadObj(thread_oop());
  2908   java_lang_Thread::set_thread(thread_oop(), this);
  2910   if (prio == NoPriority) {
  2911     prio = java_lang_Thread::priority(thread_oop());
  2912     assert(prio != NoPriority, "A valid priority should be present");
  2915   // Push the Java priority down to the native thread; needs Threads_lock
  2916   Thread::set_priority(this, prio);
  2918   // Add the new thread to the Threads list and set it in motion.
  2919   // We must have threads lock in order to call Threads::add.
  2920   // It is crucial that we do not block before the thread is
  2921   // added to the Threads list for if a GC happens, then the java_thread oop
  2922   // will not be visited by GC.
  2923   Threads::add(this);
  2926 oop JavaThread::current_park_blocker() {
  2927   // Support for JSR-166 locks
  2928   oop thread_oop = threadObj();
  2929   if (thread_oop != NULL &&
  2930       JDK_Version::current().supports_thread_park_blocker()) {
  2931     return java_lang_Thread::park_blocker(thread_oop);
  2933   return NULL;
  2937 void JavaThread::print_stack_on(outputStream* st) {
  2938   if (!has_last_Java_frame()) return;
  2939   ResourceMark rm;
  2940   HandleMark   hm;
  2942   RegisterMap reg_map(this);
  2943   vframe* start_vf = last_java_vframe(&reg_map);
  2944   int count = 0;
  2945   for (vframe* f = start_vf; f; f = f->sender() ) {
  2946     if (f->is_java_frame()) {
  2947       javaVFrame* jvf = javaVFrame::cast(f);
  2948       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2950       // Print out lock information
  2951       if (JavaMonitorsInStackTrace) {
  2952         jvf->print_lock_info_on(st, count);
  2954     } else {
  2955       // Ignore non-Java frames
  2958     // Bail-out case for too deep stacks
  2959     count++;
  2960     if (MaxJavaStackTraceDepth == count) return;
  2965 // JVMTI PopFrame support
  2966 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2967   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2968   if (in_bytes(size_in_bytes) != 0) {
  2969     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  2970     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2971     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2975 void* JavaThread::popframe_preserved_args() {
  2976   return _popframe_preserved_args;
  2979 ByteSize JavaThread::popframe_preserved_args_size() {
  2980   return in_ByteSize(_popframe_preserved_args_size);
  2983 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2984   int sz = in_bytes(popframe_preserved_args_size());
  2985   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2986   return in_WordSize(sz / wordSize);
  2989 void JavaThread::popframe_free_preserved_args() {
  2990   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2991   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  2992   _popframe_preserved_args = NULL;
  2993   _popframe_preserved_args_size = 0;
  2996 #ifndef PRODUCT
  2998 void JavaThread::trace_frames() {
  2999   tty->print_cr("[Describe stack]");
  3000   int frame_no = 1;
  3001   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3002     tty->print("  %d. ", frame_no++);
  3003     fst.current()->print_value_on(tty,this);
  3004     tty->cr();
  3008 class PrintAndVerifyOopClosure: public OopClosure {
  3009  protected:
  3010   template <class T> inline void do_oop_work(T* p) {
  3011     oop obj = oopDesc::load_decode_heap_oop(p);
  3012     if (obj == NULL) return;
  3013     tty->print(INTPTR_FORMAT ": ", p);
  3014     if (obj->is_oop_or_null()) {
  3015       if (obj->is_objArray()) {
  3016         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3017       } else {
  3018         obj->print();
  3020     } else {
  3021       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3023     tty->cr();
  3025  public:
  3026   virtual void do_oop(oop* p) { do_oop_work(p); }
  3027   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3028 };
  3031 static void oops_print(frame* f, const RegisterMap *map) {
  3032   PrintAndVerifyOopClosure print;
  3033   f->print_value();
  3034   f->oops_do(&print, NULL, (RegisterMap*)map);
  3037 // Print our all the locations that contain oops and whether they are
  3038 // valid or not.  This useful when trying to find the oldest frame
  3039 // where an oop has gone bad since the frame walk is from youngest to
  3040 // oldest.
  3041 void JavaThread::trace_oops() {
  3042   tty->print_cr("[Trace oops]");
  3043   frames_do(oops_print);
  3047 #ifdef ASSERT
  3048 // Print or validate the layout of stack frames
  3049 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3050   ResourceMark rm;
  3051   PRESERVE_EXCEPTION_MARK;
  3052   FrameValues values;
  3053   int frame_no = 0;
  3054   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3055     fst.current()->describe(values, ++frame_no);
  3056     if (depth == frame_no) break;
  3058   if (validate_only) {
  3059     values.validate();
  3060   } else {
  3061     tty->print_cr("[Describe stack layout]");
  3062     values.print(this);
  3065 #endif
  3067 void JavaThread::trace_stack_from(vframe* start_vf) {
  3068   ResourceMark rm;
  3069   int vframe_no = 1;
  3070   for (vframe* f = start_vf; f; f = f->sender() ) {
  3071     if (f->is_java_frame()) {
  3072       javaVFrame::cast(f)->print_activation(vframe_no++);
  3073     } else {
  3074       f->print();
  3076     if (vframe_no > StackPrintLimit) {
  3077       tty->print_cr("...<more frames>...");
  3078       return;
  3084 void JavaThread::trace_stack() {
  3085   if (!has_last_Java_frame()) return;
  3086   ResourceMark rm;
  3087   HandleMark   hm;
  3088   RegisterMap reg_map(this);
  3089   trace_stack_from(last_java_vframe(&reg_map));
  3093 #endif // PRODUCT
  3096 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3097   assert(reg_map != NULL, "a map must be given");
  3098   frame f = last_frame();
  3099   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3100     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3102   return NULL;
  3106 Klass* JavaThread::security_get_caller_class(int depth) {
  3107   vframeStream vfst(this);
  3108   vfst.security_get_caller_frame(depth);
  3109   if (!vfst.at_end()) {
  3110     return vfst.method()->method_holder();
  3112   return NULL;
  3115 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3116   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3117   CompileBroker::compiler_thread_loop();
  3120 // Create a CompilerThread
  3121 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3122 : JavaThread(&compiler_thread_entry) {
  3123   _env   = NULL;
  3124   _log   = NULL;
  3125   _task  = NULL;
  3126   _queue = queue;
  3127   _counters = counters;
  3128   _buffer_blob = NULL;
  3129   _scanned_nmethod = NULL;
  3131 #ifndef PRODUCT
  3132   _ideal_graph_printer = NULL;
  3133 #endif
  3136 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3137   JavaThread::oops_do(f, cf);
  3138   if (_scanned_nmethod != NULL && cf != NULL) {
  3139     // Safepoints can occur when the sweeper is scanning an nmethod so
  3140     // process it here to make sure it isn't unloaded in the middle of
  3141     // a scan.
  3142     cf->do_code_blob(_scanned_nmethod);
  3146 // ======= Threads ========
  3148 // The Threads class links together all active threads, and provides
  3149 // operations over all threads.  It is protected by its own Mutex
  3150 // lock, which is also used in other contexts to protect thread
  3151 // operations from having the thread being operated on from exiting
  3152 // and going away unexpectedly (e.g., safepoint synchronization)
  3154 JavaThread* Threads::_thread_list = NULL;
  3155 int         Threads::_number_of_threads = 0;
  3156 int         Threads::_number_of_non_daemon_threads = 0;
  3157 int         Threads::_return_code = 0;
  3158 size_t      JavaThread::_stack_size_at_create = 0;
  3159 #ifdef ASSERT
  3160 bool        Threads::_vm_complete = false;
  3161 #endif
  3163 // All JavaThreads
  3164 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3166 void os_stream();
  3168 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3169 void Threads::threads_do(ThreadClosure* tc) {
  3170   assert_locked_or_safepoint(Threads_lock);
  3171   // ALL_JAVA_THREADS iterates through all JavaThreads
  3172   ALL_JAVA_THREADS(p) {
  3173     tc->do_thread(p);
  3175   // Someday we could have a table or list of all non-JavaThreads.
  3176   // For now, just manually iterate through them.
  3177   tc->do_thread(VMThread::vm_thread());
  3178   Universe::heap()->gc_threads_do(tc);
  3179   WatcherThread *wt = WatcherThread::watcher_thread();
  3180   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3181   // the data for WatcherThread is still valid upon being examined. However,
  3182   // considering that WatchThread terminates when the VM is on the way to
  3183   // exit at safepoint, the chance of the above is extremely small. The right
  3184   // way to prevent termination of WatcherThread would be to acquire
  3185   // Terminator_lock, but we can't do that without violating the lock rank
  3186   // checking in some cases.
  3187   if (wt != NULL)
  3188     tc->do_thread(wt);
  3190   // If CompilerThreads ever become non-JavaThreads, add them here
  3193 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3195   extern void JDK_Version_init();
  3197   // Check version
  3198   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3200   // Initialize the output stream module
  3201   ostream_init();
  3203   // Process java launcher properties.
  3204   Arguments::process_sun_java_launcher_properties(args);
  3206   // Initialize the os module before using TLS
  3207   os::init();
  3209   // Initialize system properties.
  3210   Arguments::init_system_properties();
  3212   // So that JDK version can be used as a discrimintor when parsing arguments
  3213   JDK_Version_init();
  3215   // Update/Initialize System properties after JDK version number is known
  3216   Arguments::init_version_specific_system_properties();
  3218   // Parse arguments
  3219   jint parse_result = Arguments::parse(args);
  3220   if (parse_result != JNI_OK) return parse_result;
  3222   if (PauseAtStartup) {
  3223     os::pause();
  3226 #ifndef USDT2
  3227   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3228 #else /* USDT2 */
  3229   HOTSPOT_VM_INIT_BEGIN();
  3230 #endif /* USDT2 */
  3232   // Record VM creation timing statistics
  3233   TraceVmCreationTime create_vm_timer;
  3234   create_vm_timer.start();
  3236   // Timing (must come after argument parsing)
  3237   TraceTime timer("Create VM", TraceStartupTime);
  3239   // Initialize the os module after parsing the args
  3240   jint os_init_2_result = os::init_2();
  3241   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3243   // intialize TLS
  3244   ThreadLocalStorage::init();
  3246   // Bootstrap native memory tracking, so it can start recording memory
  3247   // activities before worker thread is started. This is the first phase
  3248   // of bootstrapping, VM is currently running in single-thread mode.
  3249   MemTracker::bootstrap_single_thread();
  3251   // Initialize output stream logging
  3252   ostream_init_log();
  3254   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3255   // Must be before create_vm_init_agents()
  3256   if (Arguments::init_libraries_at_startup()) {
  3257     convert_vm_init_libraries_to_agents();
  3260   // Launch -agentlib/-agentpath and converted -Xrun agents
  3261   if (Arguments::init_agents_at_startup()) {
  3262     create_vm_init_agents();
  3265   // Initialize Threads state
  3266   _thread_list = NULL;
  3267   _number_of_threads = 0;
  3268   _number_of_non_daemon_threads = 0;
  3270   // Initialize global data structures and create system classes in heap
  3271   vm_init_globals();
  3273   // Attach the main thread to this os thread
  3274   JavaThread* main_thread = new JavaThread();
  3275   main_thread->set_thread_state(_thread_in_vm);
  3276   // must do this before set_active_handles and initialize_thread_local_storage
  3277   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3278   // change the stack size recorded here to one based on the java thread
  3279   // stacksize. This adjusted size is what is used to figure the placement
  3280   // of the guard pages.
  3281   main_thread->record_stack_base_and_size();
  3282   main_thread->initialize_thread_local_storage();
  3284   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3286   if (!main_thread->set_as_starting_thread()) {
  3287     vm_shutdown_during_initialization(
  3288       "Failed necessary internal allocation. Out of swap space");
  3289     delete main_thread;
  3290     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3291     return JNI_ENOMEM;
  3294   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3295   // crash Linux VM, see notes in os_linux.cpp.
  3296   main_thread->create_stack_guard_pages();
  3298   // Initialize Java-Level synchronization subsystem
  3299   ObjectMonitor::Initialize() ;
  3301   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3302   MemTracker::bootstrap_multi_thread();
  3304   // Initialize global modules
  3305   jint status = init_globals();
  3306   if (status != JNI_OK) {
  3307     delete main_thread;
  3308     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3309     return status;
  3312   // Should be done after the heap is fully created
  3313   main_thread->cache_global_variables();
  3315   HandleMark hm;
  3317   { MutexLocker mu(Threads_lock);
  3318     Threads::add(main_thread);
  3321   // Any JVMTI raw monitors entered in onload will transition into
  3322   // real raw monitor. VM is setup enough here for raw monitor enter.
  3323   JvmtiExport::transition_pending_onload_raw_monitors();
  3325   if (VerifyBeforeGC &&
  3326       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3327     Universe::heap()->prepare_for_verify();
  3328     Universe::verify();   // make sure we're starting with a clean slate
  3331   // Fully start NMT
  3332   MemTracker::start();
  3334   // Create the VMThread
  3335   { TraceTime timer("Start VMThread", TraceStartupTime);
  3336     VMThread::create();
  3337     Thread* vmthread = VMThread::vm_thread();
  3339     if (!os::create_thread(vmthread, os::vm_thread))
  3340       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3342     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3343     // Monitors can have spurious returns, must always check another state flag
  3345       MutexLocker ml(Notify_lock);
  3346       os::start_thread(vmthread);
  3347       while (vmthread->active_handles() == NULL) {
  3348         Notify_lock->wait();
  3353   assert (Universe::is_fully_initialized(), "not initialized");
  3354   EXCEPTION_MARK;
  3356   // At this point, the Universe is initialized, but we have not executed
  3357   // any byte code.  Now is a good time (the only time) to dump out the
  3358   // internal state of the JVM for sharing.
  3359   if (DumpSharedSpaces) {
  3360     MetaspaceShared::preload_and_dump(CHECK_0);
  3361     ShouldNotReachHere();
  3364   // Always call even when there are not JVMTI environments yet, since environments
  3365   // may be attached late and JVMTI must track phases of VM execution
  3366   JvmtiExport::enter_start_phase();
  3368   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3369   JvmtiExport::post_vm_start();
  3372     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3374     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3375       create_vm_init_libraries();
  3378     if (InitializeJavaLangString) {
  3379       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3380     } else {
  3381       warning("java.lang.String not initialized");
  3384     if (AggressiveOpts) {
  3386         // Forcibly initialize java/util/HashMap and mutate the private
  3387         // static final "frontCacheEnabled" field before we start creating instances
  3388 #ifdef ASSERT
  3389         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3390         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3391 #endif
  3392         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3393         KlassHandle k = KlassHandle(THREAD, k_o);
  3394         guarantee(k.not_null(), "Must find java/util/HashMap");
  3395         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3396         ik->initialize(CHECK_0);
  3397         fieldDescriptor fd;
  3398         // Possible we might not find this field; if so, don't break
  3399         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3400           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3404       if (UseStringCache) {
  3405         // Forcibly initialize java/lang/StringValue and mutate the private
  3406         // static final "stringCacheEnabled" field before we start creating instances
  3407         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3408         // Possible that StringValue isn't present: if so, silently don't break
  3409         if (k_o != NULL) {
  3410           KlassHandle k = KlassHandle(THREAD, k_o);
  3411           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3412           ik->initialize(CHECK_0);
  3413           fieldDescriptor fd;
  3414           // Possible we might not find this field: if so, silently don't break
  3415           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3416             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3422     // Initialize java_lang.System (needed before creating the thread)
  3423     if (InitializeJavaLangSystem) {
  3424       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3425       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3426       Handle thread_group = create_initial_thread_group(CHECK_0);
  3427       Universe::set_main_thread_group(thread_group());
  3428       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3429       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3430       main_thread->set_threadObj(thread_object);
  3431       // Set thread status to running since main thread has
  3432       // been started and running.
  3433       java_lang_Thread::set_thread_status(thread_object,
  3434                                           java_lang_Thread::RUNNABLE);
  3436       // The VM preresolve methods to these classes. Make sure that get initialized
  3437       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3438       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3439       // The VM creates & returns objects of this class. Make sure it's initialized.
  3440       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3441       call_initializeSystemClass(CHECK_0);
  3443       // get the Java runtime name after java.lang.System is initialized
  3444       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3445     } else {
  3446       warning("java.lang.System not initialized");
  3449     // an instance of OutOfMemory exception has been allocated earlier
  3450     if (InitializeJavaLangExceptionsErrors) {
  3451       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3452       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3453       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3454       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3455       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3456       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3457       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3458       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3459     } else {
  3460       warning("java.lang.OutOfMemoryError has not been initialized");
  3461       warning("java.lang.NullPointerException has not been initialized");
  3462       warning("java.lang.ClassCastException has not been initialized");
  3463       warning("java.lang.ArrayStoreException has not been initialized");
  3464       warning("java.lang.ArithmeticException has not been initialized");
  3465       warning("java.lang.StackOverflowError has not been initialized");
  3466       warning("java.lang.IllegalArgumentException has not been initialized");
  3470   // See        : bugid 4211085.
  3471   // Background : the static initializer of java.lang.Compiler tries to read
  3472   //              property"java.compiler" and read & write property "java.vm.info".
  3473   //              When a security manager is installed through the command line
  3474   //              option "-Djava.security.manager", the above properties are not
  3475   //              readable and the static initializer for java.lang.Compiler fails
  3476   //              resulting in a NoClassDefFoundError.  This can happen in any
  3477   //              user code which calls methods in java.lang.Compiler.
  3478   // Hack :       the hack is to pre-load and initialize this class, so that only
  3479   //              system domains are on the stack when the properties are read.
  3480   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3481   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3482   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3483   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3484   //              Once that is done, we should remove this hack.
  3485   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3487   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3488   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3489   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3490   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3491   // This should also be taken out as soon as 4211383 gets fixed.
  3492   reset_vm_info_property(CHECK_0);
  3494   quicken_jni_functions();
  3496   // Must be run after init_ft which initializes ft_enabled
  3497   if (TRACE_INITIALIZE() != JNI_OK) {
  3498     vm_exit_during_initialization("Failed to initialize tracing backend");
  3501   // Set flag that basic initialization has completed. Used by exceptions and various
  3502   // debug stuff, that does not work until all basic classes have been initialized.
  3503   set_init_completed();
  3505 #ifndef USDT2
  3506   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3507 #else /* USDT2 */
  3508   HOTSPOT_VM_INIT_END();
  3509 #endif /* USDT2 */
  3511   // record VM initialization completion time
  3512   Management::record_vm_init_completed();
  3514   // Compute system loader. Note that this has to occur after set_init_completed, since
  3515   // valid exceptions may be thrown in the process.
  3516   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3517   // set_init_completed has just been called, causing exceptions not to be shortcut
  3518   // anymore. We call vm_exit_during_initialization directly instead.
  3519   SystemDictionary::compute_java_system_loader(THREAD);
  3520   if (HAS_PENDING_EXCEPTION) {
  3521     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3524 #ifndef SERIALGC
  3525   // Support for ConcurrentMarkSweep. This should be cleaned up
  3526   // and better encapsulated. The ugly nested if test would go away
  3527   // once things are properly refactored. XXX YSR
  3528   if (UseConcMarkSweepGC || UseG1GC) {
  3529     if (UseConcMarkSweepGC) {
  3530       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3531     } else {
  3532       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3534     if (HAS_PENDING_EXCEPTION) {
  3535       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3538 #endif // SERIALGC
  3540   // Always call even when there are not JVMTI environments yet, since environments
  3541   // may be attached late and JVMTI must track phases of VM execution
  3542   JvmtiExport::enter_live_phase();
  3544   // Signal Dispatcher needs to be started before VMInit event is posted
  3545   os::signal_init();
  3547   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3548   if (!DisableAttachMechanism) {
  3549     if (StartAttachListener || AttachListener::init_at_startup()) {
  3550       AttachListener::init();
  3554   // Launch -Xrun agents
  3555   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3556   // back-end can launch with -Xdebug -Xrunjdwp.
  3557   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3558     create_vm_init_libraries();
  3561   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3562   JvmtiExport::post_vm_initialized();
  3564   if (!TRACE_START()) {
  3565     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3568   if (CleanChunkPoolAsync) {
  3569     Chunk::start_chunk_pool_cleaner_task();
  3572   // initialize compiler(s)
  3573   CompileBroker::compilation_init();
  3575   Management::initialize(THREAD);
  3576   if (HAS_PENDING_EXCEPTION) {
  3577     // management agent fails to start possibly due to
  3578     // configuration problem and is responsible for printing
  3579     // stack trace if appropriate. Simply exit VM.
  3580     vm_exit(1);
  3583   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3584   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3585   if (MemProfiling)                   MemProfiler::engage();
  3586   StatSampler::engage();
  3587   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3589   BiasedLocking::init();
  3591   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3592     call_postVMInitHook(THREAD);
  3593     // The Java side of PostVMInitHook.run must deal with all
  3594     // exceptions and provide means of diagnosis.
  3595     if (HAS_PENDING_EXCEPTION) {
  3596       CLEAR_PENDING_EXCEPTION;
  3600   // Start up the WatcherThread if there are any periodic tasks
  3601   // NOTE:  All PeriodicTasks should be registered by now. If they
  3602   //   aren't, late joiners might appear to start slowly (we might
  3603   //   take a while to process their first tick).
  3604   if (PeriodicTask::num_tasks() > 0) {
  3605     WatcherThread::start();
  3608   // Give os specific code one last chance to start
  3609   os::init_3();
  3611   create_vm_timer.end();
  3612 #ifdef ASSERT
  3613   _vm_complete = true;
  3614 #endif
  3615   return JNI_OK;
  3618 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3619 extern "C" {
  3620   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3622 // Find a command line agent library and return its entry point for
  3623 //         -agentlib:  -agentpath:   -Xrun
  3624 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3625 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3626   OnLoadEntry_t on_load_entry = NULL;
  3627   void *library = agent->os_lib();  // check if we have looked it up before
  3629   if (library == NULL) {
  3630     char buffer[JVM_MAXPATHLEN];
  3631     char ebuf[1024];
  3632     const char *name = agent->name();
  3633     const char *msg = "Could not find agent library ";
  3635     if (agent->is_absolute_path()) {
  3636       library = os::dll_load(name, ebuf, sizeof ebuf);
  3637       if (library == NULL) {
  3638         const char *sub_msg = " in absolute path, with error: ";
  3639         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3640         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3641         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3642         // If we can't find the agent, exit.
  3643         vm_exit_during_initialization(buf, NULL);
  3644         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3646     } else {
  3647       // Try to load the agent from the standard dll directory
  3648       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3649       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3650 #ifdef KERNEL
  3651       // Download instrument dll
  3652       if (library == NULL && strcmp(name, "instrument") == 0) {
  3653         char *props = Arguments::get_kernel_properties();
  3654         char *home  = Arguments::get_java_home();
  3655         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3656                       " sun.jkernel.DownloadManager -download client_jvm";
  3657         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3658         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
  3659         jio_snprintf(cmd, length, fmt, home, props);
  3660         int status = os::fork_and_exec(cmd);
  3661         FreeHeap(props);
  3662         if (status == -1) {
  3663           warning(cmd);
  3664           vm_exit_during_initialization("fork_and_exec failed: %s",
  3665                                          strerror(errno));
  3667         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
  3668         // when this comes back the instrument.dll should be where it belongs.
  3669         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3671 #endif // KERNEL
  3672       if (library == NULL) { // Try the local directory
  3673         char ns[1] = {0};
  3674         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3675         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3676         if (library == NULL) {
  3677           const char *sub_msg = " on the library path, with error: ";
  3678           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3679           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3680           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3681           // If we can't find the agent, exit.
  3682           vm_exit_during_initialization(buf, NULL);
  3683           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3687     agent->set_os_lib(library);
  3690   // Find the OnLoad function.
  3691   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3692     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3693     if (on_load_entry != NULL) break;
  3695   return on_load_entry;
  3698 // Find the JVM_OnLoad entry point
  3699 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3700   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3701   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3704 // Find the Agent_OnLoad entry point
  3705 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3706   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3707   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3710 // For backwards compatibility with -Xrun
  3711 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3712 // treated like -agentpath:
  3713 // Must be called before agent libraries are created
  3714 void Threads::convert_vm_init_libraries_to_agents() {
  3715   AgentLibrary* agent;
  3716   AgentLibrary* next;
  3718   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3719     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3720     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3722     // If there is an JVM_OnLoad function it will get called later,
  3723     // otherwise see if there is an Agent_OnLoad
  3724     if (on_load_entry == NULL) {
  3725       on_load_entry = lookup_agent_on_load(agent);
  3726       if (on_load_entry != NULL) {
  3727         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3728         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3729         Arguments::convert_library_to_agent(agent);
  3730       } else {
  3731         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3737 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3738 // Invokes Agent_OnLoad
  3739 // Called very early -- before JavaThreads exist
  3740 void Threads::create_vm_init_agents() {
  3741   extern struct JavaVM_ main_vm;
  3742   AgentLibrary* agent;
  3744   JvmtiExport::enter_onload_phase();
  3745   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3746     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3748     if (on_load_entry != NULL) {
  3749       // Invoke the Agent_OnLoad function
  3750       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3751       if (err != JNI_OK) {
  3752         vm_exit_during_initialization("agent library failed to init", agent->name());
  3754     } else {
  3755       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3758   JvmtiExport::enter_primordial_phase();
  3761 extern "C" {
  3762   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3765 void Threads::shutdown_vm_agents() {
  3766   // Send any Agent_OnUnload notifications
  3767   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3768   extern struct JavaVM_ main_vm;
  3769   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3771     // Find the Agent_OnUnload function.
  3772     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3773       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3774                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3776       // Invoke the Agent_OnUnload function
  3777       if (unload_entry != NULL) {
  3778         JavaThread* thread = JavaThread::current();
  3779         ThreadToNativeFromVM ttn(thread);
  3780         HandleMark hm(thread);
  3781         (*unload_entry)(&main_vm);
  3782         break;
  3788 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3789 // Invokes JVM_OnLoad
  3790 void Threads::create_vm_init_libraries() {
  3791   extern struct JavaVM_ main_vm;
  3792   AgentLibrary* agent;
  3794   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3795     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3797     if (on_load_entry != NULL) {
  3798       // Invoke the JVM_OnLoad function
  3799       JavaThread* thread = JavaThread::current();
  3800       ThreadToNativeFromVM ttn(thread);
  3801       HandleMark hm(thread);
  3802       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3803       if (err != JNI_OK) {
  3804         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3806     } else {
  3807       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3812 // Last thread running calls java.lang.Shutdown.shutdown()
  3813 void JavaThread::invoke_shutdown_hooks() {
  3814   HandleMark hm(this);
  3816   // We could get here with a pending exception, if so clear it now.
  3817   if (this->has_pending_exception()) {
  3818     this->clear_pending_exception();
  3821   EXCEPTION_MARK;
  3822   Klass* k =
  3823     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3824                                       THREAD);
  3825   if (k != NULL) {
  3826     // SystemDictionary::resolve_or_null will return null if there was
  3827     // an exception.  If we cannot load the Shutdown class, just don't
  3828     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3829     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3830     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3831     // was called, the Shutdown class would have already been loaded
  3832     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3833     instanceKlassHandle shutdown_klass (THREAD, k);
  3834     JavaValue result(T_VOID);
  3835     JavaCalls::call_static(&result,
  3836                            shutdown_klass,
  3837                            vmSymbols::shutdown_method_name(),
  3838                            vmSymbols::void_method_signature(),
  3839                            THREAD);
  3841   CLEAR_PENDING_EXCEPTION;
  3844 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3845 // the program falls off the end of main(). Another VM exit path is through
  3846 // vm_exit() when the program calls System.exit() to return a value or when
  3847 // there is a serious error in VM. The two shutdown paths are not exactly
  3848 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3849 // and VM_Exit op at VM level.
  3850 //
  3851 // Shutdown sequence:
  3852 //   + Shutdown native memory tracking if it is on
  3853 //   + Wait until we are the last non-daemon thread to execute
  3854 //     <-- every thing is still working at this moment -->
  3855 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3856 //        shutdown hooks, run finalizers if finalization-on-exit
  3857 //   + Call before_exit(), prepare for VM exit
  3858 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3859 //        currently the only user of this mechanism is File.deleteOnExit())
  3860 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3861 //        post thread end and vm death events to JVMTI,
  3862 //        stop signal thread
  3863 //   + Call JavaThread::exit(), it will:
  3864 //      > release JNI handle blocks, remove stack guard pages
  3865 //      > remove this thread from Threads list
  3866 //     <-- no more Java code from this thread after this point -->
  3867 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3868 //     the compiler threads at safepoint
  3869 //     <-- do not use anything that could get blocked by Safepoint -->
  3870 //   + Disable tracing at JNI/JVM barriers
  3871 //   + Set _vm_exited flag for threads that are still running native code
  3872 //   + Delete this thread
  3873 //   + Call exit_globals()
  3874 //      > deletes tty
  3875 //      > deletes PerfMemory resources
  3876 //   + Return to caller
  3878 bool Threads::destroy_vm() {
  3879   JavaThread* thread = JavaThread::current();
  3881 #ifdef ASSERT
  3882   _vm_complete = false;
  3883 #endif
  3884   // Wait until we are the last non-daemon thread to execute
  3885   { MutexLocker nu(Threads_lock);
  3886     while (Threads::number_of_non_daemon_threads() > 1 )
  3887       // This wait should make safepoint checks, wait without a timeout,
  3888       // and wait as a suspend-equivalent condition.
  3889       //
  3890       // Note: If the FlatProfiler is running and this thread is waiting
  3891       // for another non-daemon thread to finish, then the FlatProfiler
  3892       // is waiting for the external suspend request on this thread to
  3893       // complete. wait_for_ext_suspend_completion() will eventually
  3894       // timeout, but that takes time. Making this wait a suspend-
  3895       // equivalent condition solves that timeout problem.
  3896       //
  3897       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3898                          Mutex::_as_suspend_equivalent_flag);
  3901   // Shutdown NMT before exit. Otherwise,
  3902   // it will run into trouble when system destroys static variables.
  3903   MemTracker::shutdown(MemTracker::NMT_normal);
  3905   // Hang forever on exit if we are reporting an error.
  3906   if (ShowMessageBoxOnError && is_error_reported()) {
  3907     os::infinite_sleep();
  3909   os::wait_for_keypress_at_exit();
  3911   if (JDK_Version::is_jdk12x_version()) {
  3912     // We are the last thread running, so check if finalizers should be run.
  3913     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3914     HandleMark rm(thread);
  3915     Universe::run_finalizers_on_exit();
  3916   } else {
  3917     // run Java level shutdown hooks
  3918     thread->invoke_shutdown_hooks();
  3921   before_exit(thread);
  3923   thread->exit(true);
  3925   // Stop VM thread.
  3927     // 4945125 The vm thread comes to a safepoint during exit.
  3928     // GC vm_operations can get caught at the safepoint, and the
  3929     // heap is unparseable if they are caught. Grab the Heap_lock
  3930     // to prevent this. The GC vm_operations will not be able to
  3931     // queue until after the vm thread is dead.
  3932     // After this point, we'll never emerge out of the safepoint before
  3933     // the VM exits, so concurrent GC threads do not need to be explicitly
  3934     // stopped; they remain inactive until the process exits.
  3935     // Note: some concurrent G1 threads may be running during a safepoint,
  3936     // but these will not be accessing the heap, just some G1-specific side
  3937     // data structures that are not accessed by any other threads but them
  3938     // after this point in a terminal safepoint.
  3940     MutexLocker ml(Heap_lock);
  3942     VMThread::wait_for_vm_thread_exit();
  3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3944     VMThread::destroy();
  3947   // clean up ideal graph printers
  3948 #if defined(COMPILER2) && !defined(PRODUCT)
  3949   IdealGraphPrinter::clean_up();
  3950 #endif
  3952   // Now, all Java threads are gone except daemon threads. Daemon threads
  3953   // running Java code or in VM are stopped by the Safepoint. However,
  3954   // daemon threads executing native code are still running.  But they
  3955   // will be stopped at native=>Java/VM barriers. Note that we can't
  3956   // simply kill or suspend them, as it is inherently deadlock-prone.
  3958 #ifndef PRODUCT
  3959   // disable function tracing at JNI/JVM barriers
  3960   TraceJNICalls = false;
  3961   TraceJVMCalls = false;
  3962   TraceRuntimeCalls = false;
  3963 #endif
  3965   VM_Exit::set_vm_exited();
  3967   notify_vm_shutdown();
  3969   delete thread;
  3971   // exit_globals() will delete tty
  3972   exit_globals();
  3974   return true;
  3978 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3979   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3980   return is_supported_jni_version(version);
  3984 jboolean Threads::is_supported_jni_version(jint version) {
  3985   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3986   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3987   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3988   return JNI_FALSE;
  3992 void Threads::add(JavaThread* p, bool force_daemon) {
  3993   // The threads lock must be owned at this point
  3994   assert_locked_or_safepoint(Threads_lock);
  3996   // See the comment for this method in thread.hpp for its purpose and
  3997   // why it is called here.
  3998   p->initialize_queues();
  3999   p->set_next(_thread_list);
  4000   _thread_list = p;
  4001   _number_of_threads++;
  4002   oop threadObj = p->threadObj();
  4003   bool daemon = true;
  4004   // Bootstrapping problem: threadObj can be null for initial
  4005   // JavaThread (or for threads attached via JNI)
  4006   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4007     _number_of_non_daemon_threads++;
  4008     daemon = false;
  4011   p->set_safepoint_visible(true);
  4013   ThreadService::add_thread(p, daemon);
  4015   // Possible GC point.
  4016   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4019 void Threads::remove(JavaThread* p) {
  4020   // Extra scope needed for Thread_lock, so we can check
  4021   // that we do not remove thread without safepoint code notice
  4022   { MutexLocker ml(Threads_lock);
  4024     assert(includes(p), "p must be present");
  4026     JavaThread* current = _thread_list;
  4027     JavaThread* prev    = NULL;
  4029     while (current != p) {
  4030       prev    = current;
  4031       current = current->next();
  4034     if (prev) {
  4035       prev->set_next(current->next());
  4036     } else {
  4037       _thread_list = p->next();
  4039     _number_of_threads--;
  4040     oop threadObj = p->threadObj();
  4041     bool daemon = true;
  4042     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4043       _number_of_non_daemon_threads--;
  4044       daemon = false;
  4046       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4047       // on destroy_vm will wake up.
  4048       if (number_of_non_daemon_threads() == 1)
  4049         Threads_lock->notify_all();
  4051     ThreadService::remove_thread(p, daemon);
  4053     // Make sure that safepoint code disregard this thread. This is needed since
  4054     // the thread might mess around with locks after this point. This can cause it
  4055     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4056     // of this thread since it is removed from the queue.
  4057     p->set_terminated_value();
  4059     // Now, this thread is not visible to safepoint
  4060     p->set_safepoint_visible(false);
  4062   } // unlock Threads_lock
  4064   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4065   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4068 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4069 bool Threads::includes(JavaThread* p) {
  4070   assert(Threads_lock->is_locked(), "sanity check");
  4071   ALL_JAVA_THREADS(q) {
  4072     if (q == p ) {
  4073       return true;
  4076   return false;
  4079 // Operations on the Threads list for GC.  These are not explicitly locked,
  4080 // but the garbage collector must provide a safe context for them to run.
  4081 // In particular, these things should never be called when the Threads_lock
  4082 // is held by some other thread. (Note: the Safepoint abstraction also
  4083 // uses the Threads_lock to gurantee this property. It also makes sure that
  4084 // all threads gets blocked when exiting or starting).
  4086 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4087   ALL_JAVA_THREADS(p) {
  4088     p->oops_do(f, cf);
  4090   VMThread::vm_thread()->oops_do(f, cf);
  4093 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4094   // Introduce a mechanism allowing parallel threads to claim threads as
  4095   // root groups.  Overhead should be small enough to use all the time,
  4096   // even in sequential code.
  4097   SharedHeap* sh = SharedHeap::heap();
  4098   // Cannot yet substitute active_workers for n_par_threads
  4099   // because of G1CollectedHeap::verify() use of
  4100   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4101   // turn off parallelism in process_strong_roots while active_workers
  4102   // is being used for parallelism elsewhere.
  4103   bool is_par = sh->n_par_threads() > 0;
  4104   assert(!is_par ||
  4105          (SharedHeap::heap()->n_par_threads() ==
  4106           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4107   int cp = SharedHeap::heap()->strong_roots_parity();
  4108   ALL_JAVA_THREADS(p) {
  4109     if (p->claim_oops_do(is_par, cp)) {
  4110       p->oops_do(f, cf);
  4113   VMThread* vmt = VMThread::vm_thread();
  4114   if (vmt->claim_oops_do(is_par, cp)) {
  4115     vmt->oops_do(f, cf);
  4119 #ifndef SERIALGC
  4120 // Used by ParallelScavenge
  4121 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4122   ALL_JAVA_THREADS(p) {
  4123     q->enqueue(new ThreadRootsTask(p));
  4125   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4128 // Used by Parallel Old
  4129 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4130   ALL_JAVA_THREADS(p) {
  4131     q->enqueue(new ThreadRootsMarkingTask(p));
  4133   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4135 #endif // SERIALGC
  4137 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4138   ALL_JAVA_THREADS(p) {
  4139     p->nmethods_do(cf);
  4141   VMThread::vm_thread()->nmethods_do(cf);
  4144 void Threads::metadata_do(void f(Metadata*)) {
  4145   ALL_JAVA_THREADS(p) {
  4146     p->metadata_do(f);
  4150 void Threads::gc_epilogue() {
  4151   ALL_JAVA_THREADS(p) {
  4152     p->gc_epilogue();
  4156 void Threads::gc_prologue() {
  4157   ALL_JAVA_THREADS(p) {
  4158     p->gc_prologue();
  4162 void Threads::deoptimized_wrt_marked_nmethods() {
  4163   ALL_JAVA_THREADS(p) {
  4164     p->deoptimized_wrt_marked_nmethods();
  4169 // Get count Java threads that are waiting to enter the specified monitor.
  4170 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4171   address monitor, bool doLock) {
  4172   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4173     "must grab Threads_lock or be at safepoint");
  4174   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4176   int i = 0;
  4178     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4179     ALL_JAVA_THREADS(p) {
  4180       if (p->is_Compiler_thread()) continue;
  4182       address pending = (address)p->current_pending_monitor();
  4183       if (pending == monitor) {             // found a match
  4184         if (i < count) result->append(p);   // save the first count matches
  4185         i++;
  4189   return result;
  4193 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4194   assert(doLock ||
  4195          Threads_lock->owned_by_self() ||
  4196          SafepointSynchronize::is_at_safepoint(),
  4197          "must grab Threads_lock or be at safepoint");
  4199   // NULL owner means not locked so we can skip the search
  4200   if (owner == NULL) return NULL;
  4203     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4204     ALL_JAVA_THREADS(p) {
  4205       // first, see if owner is the address of a Java thread
  4206       if (owner == (address)p) return p;
  4209   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4210   if (UseHeavyMonitors) return NULL;
  4212   //
  4213   // If we didn't find a matching Java thread and we didn't force use of
  4214   // heavyweight monitors, then the owner is the stack address of the
  4215   // Lock Word in the owning Java thread's stack.
  4216   //
  4217   JavaThread* the_owner = NULL;
  4219     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4220     ALL_JAVA_THREADS(q) {
  4221       if (q->is_lock_owned(owner)) {
  4222         the_owner = q;
  4223         break;
  4227   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4228   return the_owner;
  4231 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4232 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4233   char buf[32];
  4234   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4236   st->print_cr("Full thread dump %s (%s %s):",
  4237                 Abstract_VM_Version::vm_name(),
  4238                 Abstract_VM_Version::vm_release(),
  4239                 Abstract_VM_Version::vm_info_string()
  4240                );
  4241   st->cr();
  4243 #ifndef SERIALGC
  4244   // Dump concurrent locks
  4245   ConcurrentLocksDump concurrent_locks;
  4246   if (print_concurrent_locks) {
  4247     concurrent_locks.dump_at_safepoint();
  4249 #endif // SERIALGC
  4251   ALL_JAVA_THREADS(p) {
  4252     ResourceMark rm;
  4253     p->print_on(st);
  4254     if (print_stacks) {
  4255       if (internal_format) {
  4256         p->trace_stack();
  4257       } else {
  4258         p->print_stack_on(st);
  4261     st->cr();
  4262 #ifndef SERIALGC
  4263     if (print_concurrent_locks) {
  4264       concurrent_locks.print_locks_on(p, st);
  4266 #endif // SERIALGC
  4269   VMThread::vm_thread()->print_on(st);
  4270   st->cr();
  4271   Universe::heap()->print_gc_threads_on(st);
  4272   WatcherThread* wt = WatcherThread::watcher_thread();
  4273   if (wt != NULL) wt->print_on(st);
  4274   st->cr();
  4275   CompileBroker::print_compiler_threads_on(st);
  4276   st->flush();
  4279 // Threads::print_on_error() is called by fatal error handler. It's possible
  4280 // that VM is not at safepoint and/or current thread is inside signal handler.
  4281 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4282 // memory (even in resource area), it might deadlock the error handler.
  4283 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4284   bool found_current = false;
  4285   st->print_cr("Java Threads: ( => current thread )");
  4286   ALL_JAVA_THREADS(thread) {
  4287     bool is_current = (current == thread);
  4288     found_current = found_current || is_current;
  4290     st->print("%s", is_current ? "=>" : "  ");
  4292     st->print(PTR_FORMAT, thread);
  4293     st->print(" ");
  4294     thread->print_on_error(st, buf, buflen);
  4295     st->cr();
  4297   st->cr();
  4299   st->print_cr("Other Threads:");
  4300   if (VMThread::vm_thread()) {
  4301     bool is_current = (current == VMThread::vm_thread());
  4302     found_current = found_current || is_current;
  4303     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4305     st->print(PTR_FORMAT, VMThread::vm_thread());
  4306     st->print(" ");
  4307     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4308     st->cr();
  4310   WatcherThread* wt = WatcherThread::watcher_thread();
  4311   if (wt != NULL) {
  4312     bool is_current = (current == wt);
  4313     found_current = found_current || is_current;
  4314     st->print("%s", is_current ? "=>" : "  ");
  4316     st->print(PTR_FORMAT, wt);
  4317     st->print(" ");
  4318     wt->print_on_error(st, buf, buflen);
  4319     st->cr();
  4321   if (!found_current) {
  4322     st->cr();
  4323     st->print("=>" PTR_FORMAT " (exited) ", current);
  4324     current->print_on_error(st, buf, buflen);
  4325     st->cr();
  4329 // Internal SpinLock and Mutex
  4330 // Based on ParkEvent
  4332 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4333 //
  4334 // We employ SpinLocks _only for low-contention, fixed-length
  4335 // short-duration critical sections where we're concerned
  4336 // about native mutex_t or HotSpot Mutex:: latency.
  4337 // The mux construct provides a spin-then-block mutual exclusion
  4338 // mechanism.
  4339 //
  4340 // Testing has shown that contention on the ListLock guarding gFreeList
  4341 // is common.  If we implement ListLock as a simple SpinLock it's common
  4342 // for the JVM to devolve to yielding with little progress.  This is true
  4343 // despite the fact that the critical sections protected by ListLock are
  4344 // extremely short.
  4345 //
  4346 // TODO-FIXME: ListLock should be of type SpinLock.
  4347 // We should make this a 1st-class type, integrated into the lock
  4348 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4349 // should have sufficient padding to avoid false-sharing and excessive
  4350 // cache-coherency traffic.
  4353 typedef volatile int SpinLockT ;
  4355 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4356   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4357      return ;   // normal fast-path return
  4360   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4361   TEVENT (SpinAcquire - ctx) ;
  4362   int ctr = 0 ;
  4363   int Yields = 0 ;
  4364   for (;;) {
  4365      while (*adr != 0) {
  4366         ++ctr ;
  4367         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4368            if (Yields > 5) {
  4369              // Consider using a simple NakedSleep() instead.
  4370              // Then SpinAcquire could be called by non-JVM threads
  4371              Thread::current()->_ParkEvent->park(1) ;
  4372            } else {
  4373              os::NakedYield() ;
  4374              ++Yields ;
  4376         } else {
  4377            SpinPause() ;
  4380      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4384 void Thread::SpinRelease (volatile int * adr) {
  4385   assert (*adr != 0, "invariant") ;
  4386   OrderAccess::fence() ;      // guarantee at least release consistency.
  4387   // Roach-motel semantics.
  4388   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4389   // but prior LDs and STs within the critical section can't be allowed
  4390   // to reorder or float past the ST that releases the lock.
  4391   *adr = 0 ;
  4394 // muxAcquire and muxRelease:
  4395 //
  4396 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4397 //    The LSB of the word is set IFF the lock is held.
  4398 //    The remainder of the word points to the head of a singly-linked list
  4399 //    of threads blocked on the lock.
  4400 //
  4401 // *  The current implementation of muxAcquire-muxRelease uses its own
  4402 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4403 //    minimizing the peak number of extant ParkEvent instances then
  4404 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4405 //    as certain invariants were satisfied.  Specifically, care would need
  4406 //    to be taken with regards to consuming unpark() "permits".
  4407 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4408 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4409 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4410 //    consume an unpark() permit intended for monitorenter, for instance.
  4411 //    One way around this would be to widen the restricted-range semaphore
  4412 //    implemented in park().  Another alternative would be to provide
  4413 //    multiple instances of the PlatformEvent() for each thread.  One
  4414 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4415 //
  4416 // *  Usage:
  4417 //    -- Only as leaf locks
  4418 //    -- for short-term locking only as muxAcquire does not perform
  4419 //       thread state transitions.
  4420 //
  4421 // Alternatives:
  4422 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4423 //    but with parking or spin-then-park instead of pure spinning.
  4424 // *  Use Taura-Oyama-Yonenzawa locks.
  4425 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4426 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4427 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4428 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4429 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4430 //    boundaries by using placement-new.
  4431 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4432 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4433 //    The validity of the backlinks must be ratified before we trust the value.
  4434 //    If the backlinks are invalid the exiting thread must back-track through the
  4435 //    the forward links, which are always trustworthy.
  4436 // *  Add a successor indication.  The LockWord is currently encoded as
  4437 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4438 //    to provide the usual futile-wakeup optimization.
  4439 //    See RTStt for details.
  4440 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4441 //
  4444 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4445 enum MuxBits { LOCKBIT = 1 } ;
  4447 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4448   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4449   if (w == 0) return ;
  4450   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4451      return ;
  4454   TEVENT (muxAcquire - Contention) ;
  4455   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4456   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4457   for (;;) {
  4458      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4460      // Optional spin phase: spin-then-park strategy
  4461      while (--its >= 0) {
  4462        w = *Lock ;
  4463        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4464           return ;
  4468      Self->reset() ;
  4469      Self->OnList = intptr_t(Lock) ;
  4470      // The following fence() isn't _strictly necessary as the subsequent
  4471      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4472      OrderAccess::fence();
  4473      for (;;) {
  4474         w = *Lock ;
  4475         if ((w & LOCKBIT) == 0) {
  4476             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4477                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4478                 return ;
  4480             continue ;      // Interference -- *Lock changed -- Just retry
  4482         assert (w & LOCKBIT, "invariant") ;
  4483         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4484         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4487      while (Self->OnList != 0) {
  4488         Self->park() ;
  4493 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4494   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4495   if (w == 0) return ;
  4496   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4497     return ;
  4500   TEVENT (muxAcquire - Contention) ;
  4501   ParkEvent * ReleaseAfter = NULL ;
  4502   if (ev == NULL) {
  4503     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4505   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4506   for (;;) {
  4507     guarantee (ev->OnList == 0, "invariant") ;
  4508     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4510     // Optional spin phase: spin-then-park strategy
  4511     while (--its >= 0) {
  4512       w = *Lock ;
  4513       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4514         if (ReleaseAfter != NULL) {
  4515           ParkEvent::Release (ReleaseAfter) ;
  4517         return ;
  4521     ev->reset() ;
  4522     ev->OnList = intptr_t(Lock) ;
  4523     // The following fence() isn't _strictly necessary as the subsequent
  4524     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4525     OrderAccess::fence();
  4526     for (;;) {
  4527       w = *Lock ;
  4528       if ((w & LOCKBIT) == 0) {
  4529         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4530           ev->OnList = 0 ;
  4531           // We call ::Release while holding the outer lock, thus
  4532           // artificially lengthening the critical section.
  4533           // Consider deferring the ::Release() until the subsequent unlock(),
  4534           // after we've dropped the outer lock.
  4535           if (ReleaseAfter != NULL) {
  4536             ParkEvent::Release (ReleaseAfter) ;
  4538           return ;
  4540         continue ;      // Interference -- *Lock changed -- Just retry
  4542       assert (w & LOCKBIT, "invariant") ;
  4543       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4544       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4547     while (ev->OnList != 0) {
  4548       ev->park() ;
  4553 // Release() must extract a successor from the list and then wake that thread.
  4554 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4555 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4556 // Release() would :
  4557 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4558 // (B) Extract a successor from the private list "in-hand"
  4559 // (C) attempt to CAS() the residual back into *Lock over null.
  4560 //     If there were any newly arrived threads and the CAS() would fail.
  4561 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4562 //     with the RATs and repeat as needed.  Alternately, Release() might
  4563 //     detach and extract a successor, but then pass the residual list to the wakee.
  4564 //     The wakee would be responsible for reattaching and remerging before it
  4565 //     competed for the lock.
  4566 //
  4567 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4568 // multiple concurrent pushers, but only one popper or detacher.
  4569 // This implementation pops from the head of the list.  This is unfair,
  4570 // but tends to provide excellent throughput as hot threads remain hot.
  4571 // (We wake recently run threads first).
  4573 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4574   for (;;) {
  4575     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4576     assert (w & LOCKBIT, "invariant") ;
  4577     if (w == LOCKBIT) return ;
  4578     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4579     assert (List != NULL, "invariant") ;
  4580     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4581     ParkEvent * nxt = List->ListNext ;
  4583     // The following CAS() releases the lock and pops the head element.
  4584     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4585       continue ;
  4587     List->OnList = 0 ;
  4588     OrderAccess::fence() ;
  4589     List->unpark () ;
  4590     return ;
  4595 void Threads::verify() {
  4596   ALL_JAVA_THREADS(p) {
  4597     p->verify();
  4599   VMThread* thread = VMThread::vm_thread();
  4600   if (thread != NULL) thread->verify();

mercurial