src/share/vm/opto/graphKit.cpp

Wed, 07 Dec 2011 11:35:03 +0100

author
stefank
date
Wed, 07 Dec 2011 11:35:03 +0100
changeset 3391
069ab3f976d3
parent 3047
f1c12354c3f7
child 3392
1dc233a8c7fe
permissions
-rw-r--r--

7118863: Move sizeof(klassOopDesc) into the *Klass::*_offset_in_bytes() functions
Summary: Moved sizeof(klassOopDesc), changed the return type to ByteSize and removed the _in_bytes suffix.
Reviewed-by: never, bdelsart, coleenp, jrose

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    28 #include "gc_implementation/g1/heapRegion.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/graphKit.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/locknode.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/rootnode.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 //----------------------------GraphKit-----------------------------------------
    44 // Main utility constructor.
    45 GraphKit::GraphKit(JVMState* jvms)
    46   : Phase(Phase::Parser),
    47     _env(C->env()),
    48     _gvn(*C->initial_gvn())
    49 {
    50   _exceptions = jvms->map()->next_exception();
    51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    52   set_jvms(jvms);
    53 }
    55 // Private constructor for parser.
    56 GraphKit::GraphKit()
    57   : Phase(Phase::Parser),
    58     _env(C->env()),
    59     _gvn(*C->initial_gvn())
    60 {
    61   _exceptions = NULL;
    62   set_map(NULL);
    63   debug_only(_sp = -99);
    64   debug_only(set_bci(-99));
    65 }
    69 //---------------------------clean_stack---------------------------------------
    70 // Clear away rubbish from the stack area of the JVM state.
    71 // This destroys any arguments that may be waiting on the stack.
    72 void GraphKit::clean_stack(int from_sp) {
    73   SafePointNode* map      = this->map();
    74   JVMState*      jvms     = this->jvms();
    75   int            stk_size = jvms->stk_size();
    76   int            stkoff   = jvms->stkoff();
    77   Node*          top      = this->top();
    78   for (int i = from_sp; i < stk_size; i++) {
    79     if (map->in(stkoff + i) != top) {
    80       map->set_req(stkoff + i, top);
    81     }
    82   }
    83 }
    86 //--------------------------------sync_jvms-----------------------------------
    87 // Make sure our current jvms agrees with our parse state.
    88 JVMState* GraphKit::sync_jvms() const {
    89   JVMState* jvms = this->jvms();
    90   jvms->set_bci(bci());       // Record the new bci in the JVMState
    91   jvms->set_sp(sp());         // Record the new sp in the JVMState
    92   assert(jvms_in_sync(), "jvms is now in sync");
    93   return jvms;
    94 }
    96 #ifdef ASSERT
    97 bool GraphKit::jvms_in_sync() const {
    98   Parse* parse = is_Parse();
    99   if (parse == NULL) {
   100     if (bci() !=      jvms()->bci())          return false;
   101     if (sp()  != (int)jvms()->sp())           return false;
   102     return true;
   103   }
   104   if (jvms()->method() != parse->method())    return false;
   105   if (jvms()->bci()    != parse->bci())       return false;
   106   int jvms_sp = jvms()->sp();
   107   if (jvms_sp          != parse->sp())        return false;
   108   int jvms_depth = jvms()->depth();
   109   if (jvms_depth       != parse->depth())     return false;
   110   return true;
   111 }
   113 // Local helper checks for special internal merge points
   114 // used to accumulate and merge exception states.
   115 // They are marked by the region's in(0) edge being the map itself.
   116 // Such merge points must never "escape" into the parser at large,
   117 // until they have been handed to gvn.transform.
   118 static bool is_hidden_merge(Node* reg) {
   119   if (reg == NULL)  return false;
   120   if (reg->is_Phi()) {
   121     reg = reg->in(0);
   122     if (reg == NULL)  return false;
   123   }
   124   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   125 }
   127 void GraphKit::verify_map() const {
   128   if (map() == NULL)  return;  // null map is OK
   129   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   130   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   131   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   132 }
   134 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   135   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   136   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   137 }
   138 #endif
   140 //---------------------------stop_and_kill_map---------------------------------
   141 // Set _map to NULL, signalling a stop to further bytecode execution.
   142 // First smash the current map's control to a constant, to mark it dead.
   143 void GraphKit::stop_and_kill_map() {
   144   SafePointNode* dead_map = stop();
   145   if (dead_map != NULL) {
   146     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
   147     assert(dead_map->is_killed(), "must be so marked");
   148   }
   149 }
   152 //--------------------------------stopped--------------------------------------
   153 // Tell if _map is NULL, or control is top.
   154 bool GraphKit::stopped() {
   155   if (map() == NULL)           return true;
   156   else if (control() == top()) return true;
   157   else                         return false;
   158 }
   161 //-----------------------------has_ex_handler----------------------------------
   162 // Tell if this method or any caller method has exception handlers.
   163 bool GraphKit::has_ex_handler() {
   164   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   165     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   166       return true;
   167     }
   168   }
   169   return false;
   170 }
   172 //------------------------------save_ex_oop------------------------------------
   173 // Save an exception without blowing stack contents or other JVM state.
   174 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   175   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   176   ex_map->add_req(ex_oop);
   177   debug_only(verify_exception_state(ex_map));
   178 }
   180 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   181   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   182   Node* ex_oop = ex_map->in(ex_map->req()-1);
   183   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   184   return ex_oop;
   185 }
   187 //-----------------------------saved_ex_oop------------------------------------
   188 // Recover a saved exception from its map.
   189 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   190   return common_saved_ex_oop(ex_map, false);
   191 }
   193 //--------------------------clear_saved_ex_oop---------------------------------
   194 // Erase a previously saved exception from its map.
   195 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   196   return common_saved_ex_oop(ex_map, true);
   197 }
   199 #ifdef ASSERT
   200 //---------------------------has_saved_ex_oop----------------------------------
   201 // Erase a previously saved exception from its map.
   202 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   203   return ex_map->req() == ex_map->jvms()->endoff()+1;
   204 }
   205 #endif
   207 //-------------------------make_exception_state--------------------------------
   208 // Turn the current JVM state into an exception state, appending the ex_oop.
   209 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   210   sync_jvms();
   211   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   212   set_saved_ex_oop(ex_map, ex_oop);
   213   return ex_map;
   214 }
   217 //--------------------------add_exception_state--------------------------------
   218 // Add an exception to my list of exceptions.
   219 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   220   if (ex_map == NULL || ex_map->control() == top()) {
   221     return;
   222   }
   223 #ifdef ASSERT
   224   verify_exception_state(ex_map);
   225   if (has_exceptions()) {
   226     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   227   }
   228 #endif
   230   // If there is already an exception of exactly this type, merge with it.
   231   // In particular, null-checks and other low-level exceptions common up here.
   232   Node*       ex_oop  = saved_ex_oop(ex_map);
   233   const Type* ex_type = _gvn.type(ex_oop);
   234   if (ex_oop == top()) {
   235     // No action needed.
   236     return;
   237   }
   238   assert(ex_type->isa_instptr(), "exception must be an instance");
   239   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   240     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   241     // We check sp also because call bytecodes can generate exceptions
   242     // both before and after arguments are popped!
   243     if (ex_type2 == ex_type
   244         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   245       combine_exception_states(ex_map, e2);
   246       return;
   247     }
   248   }
   250   // No pre-existing exception of the same type.  Chain it on the list.
   251   push_exception_state(ex_map);
   252 }
   254 //-----------------------add_exception_states_from-----------------------------
   255 void GraphKit::add_exception_states_from(JVMState* jvms) {
   256   SafePointNode* ex_map = jvms->map()->next_exception();
   257   if (ex_map != NULL) {
   258     jvms->map()->set_next_exception(NULL);
   259     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   260       next_map = ex_map->next_exception();
   261       ex_map->set_next_exception(NULL);
   262       add_exception_state(ex_map);
   263     }
   264   }
   265 }
   267 //-----------------------transfer_exceptions_into_jvms-------------------------
   268 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   269   if (map() == NULL) {
   270     // We need a JVMS to carry the exceptions, but the map has gone away.
   271     // Create a scratch JVMS, cloned from any of the exception states...
   272     if (has_exceptions()) {
   273       _map = _exceptions;
   274       _map = clone_map();
   275       _map->set_next_exception(NULL);
   276       clear_saved_ex_oop(_map);
   277       debug_only(verify_map());
   278     } else {
   279       // ...or created from scratch
   280       JVMState* jvms = new (C) JVMState(_method, NULL);
   281       jvms->set_bci(_bci);
   282       jvms->set_sp(_sp);
   283       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
   284       set_jvms(jvms);
   285       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   286       set_all_memory(top());
   287       while (map()->req() < jvms->endoff())  map()->add_req(top());
   288     }
   289     // (This is a kludge, in case you didn't notice.)
   290     set_control(top());
   291   }
   292   JVMState* jvms = sync_jvms();
   293   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   294   jvms->map()->set_next_exception(_exceptions);
   295   _exceptions = NULL;   // done with this set of exceptions
   296   return jvms;
   297 }
   299 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   300   assert(is_hidden_merge(dstphi), "must be a special merge node");
   301   assert(is_hidden_merge(srcphi), "must be a special merge node");
   302   uint limit = srcphi->req();
   303   for (uint i = PhiNode::Input; i < limit; i++) {
   304     dstphi->add_req(srcphi->in(i));
   305   }
   306 }
   307 static inline void add_one_req(Node* dstphi, Node* src) {
   308   assert(is_hidden_merge(dstphi), "must be a special merge node");
   309   assert(!is_hidden_merge(src), "must not be a special merge node");
   310   dstphi->add_req(src);
   311 }
   313 //-----------------------combine_exception_states------------------------------
   314 // This helper function combines exception states by building phis on a
   315 // specially marked state-merging region.  These regions and phis are
   316 // untransformed, and can build up gradually.  The region is marked by
   317 // having a control input of its exception map, rather than NULL.  Such
   318 // regions do not appear except in this function, and in use_exception_state.
   319 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   320   if (failing())  return;  // dying anyway...
   321   JVMState* ex_jvms = ex_map->_jvms;
   322   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   323   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   324   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   325   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   326   assert(ex_map->req() == phi_map->req(), "matching maps");
   327   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   328   Node*         hidden_merge_mark = root();
   329   Node*         region  = phi_map->control();
   330   MergeMemNode* phi_mem = phi_map->merged_memory();
   331   MergeMemNode* ex_mem  = ex_map->merged_memory();
   332   if (region->in(0) != hidden_merge_mark) {
   333     // The control input is not (yet) a specially-marked region in phi_map.
   334     // Make it so, and build some phis.
   335     region = new (C, 2) RegionNode(2);
   336     _gvn.set_type(region, Type::CONTROL);
   337     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   338     region->init_req(1, phi_map->control());
   339     phi_map->set_control(region);
   340     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   341     record_for_igvn(io_phi);
   342     _gvn.set_type(io_phi, Type::ABIO);
   343     phi_map->set_i_o(io_phi);
   344     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   345       Node* m = mms.memory();
   346       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   347       record_for_igvn(m_phi);
   348       _gvn.set_type(m_phi, Type::MEMORY);
   349       mms.set_memory(m_phi);
   350     }
   351   }
   353   // Either or both of phi_map and ex_map might already be converted into phis.
   354   Node* ex_control = ex_map->control();
   355   // if there is special marking on ex_map also, we add multiple edges from src
   356   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   357   // how wide was the destination phi_map, originally?
   358   uint orig_width = region->req();
   360   if (add_multiple) {
   361     add_n_reqs(region, ex_control);
   362     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   363   } else {
   364     // ex_map has no merges, so we just add single edges everywhere
   365     add_one_req(region, ex_control);
   366     add_one_req(phi_map->i_o(), ex_map->i_o());
   367   }
   368   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   369     if (mms.is_empty()) {
   370       // get a copy of the base memory, and patch some inputs into it
   371       const TypePtr* adr_type = mms.adr_type(C);
   372       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   373       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   374       mms.set_memory(phi);
   375       // Prepare to append interesting stuff onto the newly sliced phi:
   376       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   377     }
   378     // Append stuff from ex_map:
   379     if (add_multiple) {
   380       add_n_reqs(mms.memory(), mms.memory2());
   381     } else {
   382       add_one_req(mms.memory(), mms.memory2());
   383     }
   384   }
   385   uint limit = ex_map->req();
   386   for (uint i = TypeFunc::Parms; i < limit; i++) {
   387     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   388     if (i == tos)  i = ex_jvms->monoff();
   389     Node* src = ex_map->in(i);
   390     Node* dst = phi_map->in(i);
   391     if (src != dst) {
   392       PhiNode* phi;
   393       if (dst->in(0) != region) {
   394         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   395         record_for_igvn(phi);
   396         _gvn.set_type(phi, phi->type());
   397         phi_map->set_req(i, dst);
   398         // Prepare to append interesting stuff onto the new phi:
   399         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   400       } else {
   401         assert(dst->is_Phi(), "nobody else uses a hidden region");
   402         phi = (PhiNode*)dst;
   403       }
   404       if (add_multiple && src->in(0) == ex_control) {
   405         // Both are phis.
   406         add_n_reqs(dst, src);
   407       } else {
   408         while (dst->req() < region->req())  add_one_req(dst, src);
   409       }
   410       const Type* srctype = _gvn.type(src);
   411       if (phi->type() != srctype) {
   412         const Type* dsttype = phi->type()->meet(srctype);
   413         if (phi->type() != dsttype) {
   414           phi->set_type(dsttype);
   415           _gvn.set_type(phi, dsttype);
   416         }
   417       }
   418     }
   419   }
   420 }
   422 //--------------------------use_exception_state--------------------------------
   423 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   424   if (failing()) { stop(); return top(); }
   425   Node* region = phi_map->control();
   426   Node* hidden_merge_mark = root();
   427   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   428   Node* ex_oop = clear_saved_ex_oop(phi_map);
   429   if (region->in(0) == hidden_merge_mark) {
   430     // Special marking for internal ex-states.  Process the phis now.
   431     region->set_req(0, region);  // now it's an ordinary region
   432     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   433     // Note: Setting the jvms also sets the bci and sp.
   434     set_control(_gvn.transform(region));
   435     uint tos = jvms()->stkoff() + sp();
   436     for (uint i = 1; i < tos; i++) {
   437       Node* x = phi_map->in(i);
   438       if (x->in(0) == region) {
   439         assert(x->is_Phi(), "expected a special phi");
   440         phi_map->set_req(i, _gvn.transform(x));
   441       }
   442     }
   443     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   444       Node* x = mms.memory();
   445       if (x->in(0) == region) {
   446         assert(x->is_Phi(), "nobody else uses a hidden region");
   447         mms.set_memory(_gvn.transform(x));
   448       }
   449     }
   450     if (ex_oop->in(0) == region) {
   451       assert(ex_oop->is_Phi(), "expected a special phi");
   452       ex_oop = _gvn.transform(ex_oop);
   453     }
   454   } else {
   455     set_jvms(phi_map->jvms());
   456   }
   458   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   459   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   460   return ex_oop;
   461 }
   463 //---------------------------------java_bc-------------------------------------
   464 Bytecodes::Code GraphKit::java_bc() const {
   465   ciMethod* method = this->method();
   466   int       bci    = this->bci();
   467   if (method != NULL && bci != InvocationEntryBci)
   468     return method->java_code_at_bci(bci);
   469   else
   470     return Bytecodes::_illegal;
   471 }
   473 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
   474                                                           bool must_throw) {
   475     // if the exception capability is set, then we will generate code
   476     // to check the JavaThread.should_post_on_exceptions flag to see
   477     // if we actually need to report exception events (for this
   478     // thread).  If we don't need to report exception events, we will
   479     // take the normal fast path provided by add_exception_events.  If
   480     // exception event reporting is enabled for this thread, we will
   481     // take the uncommon_trap in the BuildCutout below.
   483     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
   484     Node* jthread = _gvn.transform(new (C, 1) ThreadLocalNode());
   485     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
   486     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
   488     // Test the should_post_on_exceptions_flag vs. 0
   489     Node* chk = _gvn.transform( new (C, 3) CmpINode(should_post_flag, intcon(0)) );
   490     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
   492     // Branch to slow_path if should_post_on_exceptions_flag was true
   493     { BuildCutout unless(this, tst, PROB_MAX);
   494       // Do not try anything fancy if we're notifying the VM on every throw.
   495       // Cf. case Bytecodes::_athrow in parse2.cpp.
   496       uncommon_trap(reason, Deoptimization::Action_none,
   497                     (ciKlass*)NULL, (char*)NULL, must_throw);
   498     }
   500 }
   502 //------------------------------builtin_throw----------------------------------
   503 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   504   bool must_throw = true;
   506   if (env()->jvmti_can_post_on_exceptions()) {
   507     // check if we must post exception events, take uncommon trap if so
   508     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
   509     // here if should_post_on_exceptions is false
   510     // continue on with the normal codegen
   511   }
   513   // If this particular condition has not yet happened at this
   514   // bytecode, then use the uncommon trap mechanism, and allow for
   515   // a future recompilation if several traps occur here.
   516   // If the throw is hot, try to use a more complicated inline mechanism
   517   // which keeps execution inside the compiled code.
   518   bool treat_throw_as_hot = false;
   519   ciMethodData* md = method()->method_data();
   521   if (ProfileTraps) {
   522     if (too_many_traps(reason)) {
   523       treat_throw_as_hot = true;
   524     }
   525     // (If there is no MDO at all, assume it is early in
   526     // execution, and that any deopts are part of the
   527     // startup transient, and don't need to be remembered.)
   529     // Also, if there is a local exception handler, treat all throws
   530     // as hot if there has been at least one in this method.
   531     if (C->trap_count(reason) != 0
   532         && method()->method_data()->trap_count(reason) != 0
   533         && has_ex_handler()) {
   534         treat_throw_as_hot = true;
   535     }
   536   }
   538   // If this throw happens frequently, an uncommon trap might cause
   539   // a performance pothole.  If there is a local exception handler,
   540   // and if this particular bytecode appears to be deoptimizing often,
   541   // let us handle the throw inline, with a preconstructed instance.
   542   // Note:   If the deopt count has blown up, the uncommon trap
   543   // runtime is going to flush this nmethod, not matter what.
   544   if (treat_throw_as_hot
   545       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   546     // If the throw is local, we use a pre-existing instance and
   547     // punt on the backtrace.  This would lead to a missing backtrace
   548     // (a repeat of 4292742) if the backtrace object is ever asked
   549     // for its backtrace.
   550     // Fixing this remaining case of 4292742 requires some flavor of
   551     // escape analysis.  Leave that for the future.
   552     ciInstance* ex_obj = NULL;
   553     switch (reason) {
   554     case Deoptimization::Reason_null_check:
   555       ex_obj = env()->NullPointerException_instance();
   556       break;
   557     case Deoptimization::Reason_div0_check:
   558       ex_obj = env()->ArithmeticException_instance();
   559       break;
   560     case Deoptimization::Reason_range_check:
   561       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   562       break;
   563     case Deoptimization::Reason_class_check:
   564       if (java_bc() == Bytecodes::_aastore) {
   565         ex_obj = env()->ArrayStoreException_instance();
   566       } else {
   567         ex_obj = env()->ClassCastException_instance();
   568       }
   569       break;
   570     }
   571     if (failing()) { stop(); return; }  // exception allocation might fail
   572     if (ex_obj != NULL) {
   573       // Cheat with a preallocated exception object.
   574       if (C->log() != NULL)
   575         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   576                        Deoptimization::trap_reason_name(reason));
   577       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   578       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   580       // Clear the detail message of the preallocated exception object.
   581       // Weblogic sometimes mutates the detail message of exceptions
   582       // using reflection.
   583       int offset = java_lang_Throwable::get_detailMessage_offset();
   584       const TypePtr* adr_typ = ex_con->add_offset(offset);
   586       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   587       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
   588       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT);
   590       add_exception_state(make_exception_state(ex_node));
   591       return;
   592     }
   593   }
   595   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   596   // It won't be much cheaper than bailing to the interp., since we'll
   597   // have to pass up all the debug-info, and the runtime will have to
   598   // create the stack trace.
   600   // Usual case:  Bail to interpreter.
   601   // Reserve the right to recompile if we haven't seen anything yet.
   603   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   604   if (treat_throw_as_hot
   605       && (method()->method_data()->trap_recompiled_at(bci())
   606           || C->too_many_traps(reason))) {
   607     // We cannot afford to take more traps here.  Suffer in the interpreter.
   608     if (C->log() != NULL)
   609       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   610                      Deoptimization::trap_reason_name(reason),
   611                      C->trap_count(reason));
   612     action = Deoptimization::Action_none;
   613   }
   615   // "must_throw" prunes the JVM state to include only the stack, if there
   616   // are no local exception handlers.  This should cut down on register
   617   // allocation time and code size, by drastically reducing the number
   618   // of in-edges on the call to the uncommon trap.
   620   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   621 }
   624 //----------------------------PreserveJVMState---------------------------------
   625 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   626   debug_only(kit->verify_map());
   627   _kit    = kit;
   628   _map    = kit->map();   // preserve the map
   629   _sp     = kit->sp();
   630   kit->set_map(clone_map ? kit->clone_map() : NULL);
   631 #ifdef ASSERT
   632   _bci    = kit->bci();
   633   Parse* parser = kit->is_Parse();
   634   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   635   _block  = block;
   636 #endif
   637 }
   638 PreserveJVMState::~PreserveJVMState() {
   639   GraphKit* kit = _kit;
   640 #ifdef ASSERT
   641   assert(kit->bci() == _bci, "bci must not shift");
   642   Parse* parser = kit->is_Parse();
   643   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   644   assert(block == _block,    "block must not shift");
   645 #endif
   646   kit->set_map(_map);
   647   kit->set_sp(_sp);
   648 }
   651 //-----------------------------BuildCutout-------------------------------------
   652 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   653   : PreserveJVMState(kit)
   654 {
   655   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   656   SafePointNode* outer_map = _map;   // preserved map is caller's
   657   SafePointNode* inner_map = kit->map();
   658   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   659   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
   660   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
   661 }
   662 BuildCutout::~BuildCutout() {
   663   GraphKit* kit = _kit;
   664   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   665 }
   667 //---------------------------PreserveReexecuteState----------------------------
   668 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   669   assert(!kit->stopped(), "must call stopped() before");
   670   _kit    =    kit;
   671   _sp     =    kit->sp();
   672   _reexecute = kit->jvms()->_reexecute;
   673 }
   674 PreserveReexecuteState::~PreserveReexecuteState() {
   675   if (_kit->stopped()) return;
   676   _kit->jvms()->_reexecute = _reexecute;
   677   _kit->set_sp(_sp);
   678 }
   680 //------------------------------clone_map--------------------------------------
   681 // Implementation of PreserveJVMState
   682 //
   683 // Only clone_map(...) here. If this function is only used in the
   684 // PreserveJVMState class we may want to get rid of this extra
   685 // function eventually and do it all there.
   687 SafePointNode* GraphKit::clone_map() {
   688   if (map() == NULL)  return NULL;
   690   // Clone the memory edge first
   691   Node* mem = MergeMemNode::make(C, map()->memory());
   692   gvn().set_type_bottom(mem);
   694   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   695   JVMState* jvms = this->jvms();
   696   JVMState* clonejvms = jvms->clone_shallow(C);
   697   clonemap->set_memory(mem);
   698   clonemap->set_jvms(clonejvms);
   699   clonejvms->set_map(clonemap);
   700   record_for_igvn(clonemap);
   701   gvn().set_type_bottom(clonemap);
   702   return clonemap;
   703 }
   706 //-----------------------------set_map_clone-----------------------------------
   707 void GraphKit::set_map_clone(SafePointNode* m) {
   708   _map = m;
   709   _map = clone_map();
   710   _map->set_next_exception(NULL);
   711   debug_only(verify_map());
   712 }
   715 //----------------------------kill_dead_locals---------------------------------
   716 // Detect any locals which are known to be dead, and force them to top.
   717 void GraphKit::kill_dead_locals() {
   718   // Consult the liveness information for the locals.  If any
   719   // of them are unused, then they can be replaced by top().  This
   720   // should help register allocation time and cut down on the size
   721   // of the deoptimization information.
   723   // This call is made from many of the bytecode handling
   724   // subroutines called from the Big Switch in do_one_bytecode.
   725   // Every bytecode which might include a slow path is responsible
   726   // for killing its dead locals.  The more consistent we
   727   // are about killing deads, the fewer useless phis will be
   728   // constructed for them at various merge points.
   730   // bci can be -1 (InvocationEntryBci).  We return the entry
   731   // liveness for the method.
   733   if (method() == NULL || method()->code_size() == 0) {
   734     // We are building a graph for a call to a native method.
   735     // All locals are live.
   736     return;
   737   }
   739   ResourceMark rm;
   741   // Consult the liveness information for the locals.  If any
   742   // of them are unused, then they can be replaced by top().  This
   743   // should help register allocation time and cut down on the size
   744   // of the deoptimization information.
   745   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   747   int len = (int)live_locals.size();
   748   assert(len <= jvms()->loc_size(), "too many live locals");
   749   for (int local = 0; local < len; local++) {
   750     if (!live_locals.at(local)) {
   751       set_local(local, top());
   752     }
   753   }
   754 }
   756 #ifdef ASSERT
   757 //-------------------------dead_locals_are_killed------------------------------
   758 // Return true if all dead locals are set to top in the map.
   759 // Used to assert "clean" debug info at various points.
   760 bool GraphKit::dead_locals_are_killed() {
   761   if (method() == NULL || method()->code_size() == 0) {
   762     // No locals need to be dead, so all is as it should be.
   763     return true;
   764   }
   766   // Make sure somebody called kill_dead_locals upstream.
   767   ResourceMark rm;
   768   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   769     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   770     SafePointNode* map = jvms->map();
   771     ciMethod* method = jvms->method();
   772     int       bci    = jvms->bci();
   773     if (jvms == this->jvms()) {
   774       bci = this->bci();  // it might not yet be synched
   775     }
   776     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   777     int len = (int)live_locals.size();
   778     if (!live_locals.is_valid() || len == 0)
   779       // This method is trivial, or is poisoned by a breakpoint.
   780       return true;
   781     assert(len == jvms->loc_size(), "live map consistent with locals map");
   782     for (int local = 0; local < len; local++) {
   783       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   784         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   785           tty->print_cr("Zombie local %d: ", local);
   786           jvms->dump();
   787         }
   788         return false;
   789       }
   790     }
   791   }
   792   return true;
   793 }
   795 #endif //ASSERT
   797 // Helper function for enforcing certain bytecodes to reexecute if
   798 // deoptimization happens
   799 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
   800   ciMethod* cur_method = jvms->method();
   801   int       cur_bci   = jvms->bci();
   802   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   803     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   804     return Interpreter::bytecode_should_reexecute(code) ||
   805            is_anewarray && code == Bytecodes::_multianewarray;
   806     // Reexecute _multianewarray bytecode which was replaced with
   807     // sequence of [a]newarray. See Parse::do_multianewarray().
   808     //
   809     // Note: interpreter should not have it set since this optimization
   810     // is limited by dimensions and guarded by flag so in some cases
   811     // multianewarray() runtime calls will be generated and
   812     // the bytecode should not be reexecutes (stack will not be reset).
   813   } else
   814     return false;
   815 }
   817 // Helper function for adding JVMState and debug information to node
   818 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   819   // Add the safepoint edges to the call (or other safepoint).
   821   // Make sure dead locals are set to top.  This
   822   // should help register allocation time and cut down on the size
   823   // of the deoptimization information.
   824   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   826   // Walk the inline list to fill in the correct set of JVMState's
   827   // Also fill in the associated edges for each JVMState.
   829   JVMState* youngest_jvms = sync_jvms();
   831   // If we are guaranteed to throw, we can prune everything but the
   832   // input to the current bytecode.
   833   bool can_prune_locals = false;
   834   uint stack_slots_not_pruned = 0;
   835   int inputs = 0, depth = 0;
   836   if (must_throw) {
   837     assert(method() == youngest_jvms->method(), "sanity");
   838     if (compute_stack_effects(inputs, depth)) {
   839       can_prune_locals = true;
   840       stack_slots_not_pruned = inputs;
   841     }
   842   }
   844   if (env()->jvmti_can_access_local_variables()) {
   845     // At any safepoint, this method can get breakpointed, which would
   846     // then require an immediate deoptimization.
   847     can_prune_locals = false;  // do not prune locals
   848     stack_slots_not_pruned = 0;
   849   }
   851   // do not scribble on the input jvms
   852   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   853   call->set_jvms(out_jvms); // Start jvms list for call node
   855   // For a known set of bytecodes, the interpreter should reexecute them if
   856   // deoptimization happens. We set the reexecute state for them here
   857   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   858       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
   859     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   860   }
   862   // Presize the call:
   863   debug_only(uint non_debug_edges = call->req());
   864   call->add_req_batch(top(), youngest_jvms->debug_depth());
   865   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   867   // Set up edges so that the call looks like this:
   868   //  Call [state:] ctl io mem fptr retadr
   869   //       [parms:] parm0 ... parmN
   870   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   871   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   872   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   873   // Note that caller debug info precedes callee debug info.
   875   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   876   uint debug_ptr = call->req();
   878   // Loop over the map input edges associated with jvms, add them
   879   // to the call node, & reset all offsets to match call node array.
   880   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   881     uint debug_end   = debug_ptr;
   882     uint debug_start = debug_ptr - in_jvms->debug_size();
   883     debug_ptr = debug_start;  // back up the ptr
   885     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   886     uint j, k, l;
   887     SafePointNode* in_map = in_jvms->map();
   888     out_jvms->set_map(call);
   890     if (can_prune_locals) {
   891       assert(in_jvms->method() == out_jvms->method(), "sanity");
   892       // If the current throw can reach an exception handler in this JVMS,
   893       // then we must keep everything live that can reach that handler.
   894       // As a quick and dirty approximation, we look for any handlers at all.
   895       if (in_jvms->method()->has_exception_handlers()) {
   896         can_prune_locals = false;
   897       }
   898     }
   900     // Add the Locals
   901     k = in_jvms->locoff();
   902     l = in_jvms->loc_size();
   903     out_jvms->set_locoff(p);
   904     if (!can_prune_locals) {
   905       for (j = 0; j < l; j++)
   906         call->set_req(p++, in_map->in(k+j));
   907     } else {
   908       p += l;  // already set to top above by add_req_batch
   909     }
   911     // Add the Expression Stack
   912     k = in_jvms->stkoff();
   913     l = in_jvms->sp();
   914     out_jvms->set_stkoff(p);
   915     if (!can_prune_locals) {
   916       for (j = 0; j < l; j++)
   917         call->set_req(p++, in_map->in(k+j));
   918     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   919       // Divide stack into {S0,...,S1}, where S0 is set to top.
   920       uint s1 = stack_slots_not_pruned;
   921       stack_slots_not_pruned = 0;  // for next iteration
   922       if (s1 > l)  s1 = l;
   923       uint s0 = l - s1;
   924       p += s0;  // skip the tops preinstalled by add_req_batch
   925       for (j = s0; j < l; j++)
   926         call->set_req(p++, in_map->in(k+j));
   927     } else {
   928       p += l;  // already set to top above by add_req_batch
   929     }
   931     // Add the Monitors
   932     k = in_jvms->monoff();
   933     l = in_jvms->mon_size();
   934     out_jvms->set_monoff(p);
   935     for (j = 0; j < l; j++)
   936       call->set_req(p++, in_map->in(k+j));
   938     // Copy any scalar object fields.
   939     k = in_jvms->scloff();
   940     l = in_jvms->scl_size();
   941     out_jvms->set_scloff(p);
   942     for (j = 0; j < l; j++)
   943       call->set_req(p++, in_map->in(k+j));
   945     // Finish the new jvms.
   946     out_jvms->set_endoff(p);
   948     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   949     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   950     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   951     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   952     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   953     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   955     // Update the two tail pointers in parallel.
   956     out_jvms = out_jvms->caller();
   957     in_jvms  = in_jvms->caller();
   958   }
   960   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   962   // Test the correctness of JVMState::debug_xxx accessors:
   963   assert(call->jvms()->debug_start() == non_debug_edges, "");
   964   assert(call->jvms()->debug_end()   == call->req(), "");
   965   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   966 }
   968 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   969   Bytecodes::Code code = java_bc();
   970   if (code == Bytecodes::_wide) {
   971     code = method()->java_code_at_bci(bci() + 1);
   972   }
   974   BasicType rtype = T_ILLEGAL;
   975   int       rsize = 0;
   977   if (code != Bytecodes::_illegal) {
   978     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
   979     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
   980     if (rtype < T_CONFLICT)
   981       rsize = type2size[rtype];
   982   }
   984   switch (code) {
   985   case Bytecodes::_illegal:
   986     return false;
   988   case Bytecodes::_ldc:
   989   case Bytecodes::_ldc_w:
   990   case Bytecodes::_ldc2_w:
   991     inputs = 0;
   992     break;
   994   case Bytecodes::_dup:         inputs = 1;  break;
   995   case Bytecodes::_dup_x1:      inputs = 2;  break;
   996   case Bytecodes::_dup_x2:      inputs = 3;  break;
   997   case Bytecodes::_dup2:        inputs = 2;  break;
   998   case Bytecodes::_dup2_x1:     inputs = 3;  break;
   999   case Bytecodes::_dup2_x2:     inputs = 4;  break;
  1000   case Bytecodes::_swap:        inputs = 2;  break;
  1001   case Bytecodes::_arraylength: inputs = 1;  break;
  1003   case Bytecodes::_getstatic:
  1004   case Bytecodes::_putstatic:
  1005   case Bytecodes::_getfield:
  1006   case Bytecodes::_putfield:
  1008       bool is_get = (depth >= 0), is_static = (depth & 1);
  1009       bool ignore;
  1010       ciBytecodeStream iter(method());
  1011       iter.reset_to_bci(bci());
  1012       iter.next();
  1013       ciField* field = iter.get_field(ignore);
  1014       int      size  = field->type()->size();
  1015       inputs  = (is_static ? 0 : 1);
  1016       if (is_get) {
  1017         depth = size - inputs;
  1018       } else {
  1019         inputs += size;        // putxxx pops the value from the stack
  1020         depth = - inputs;
  1023     break;
  1025   case Bytecodes::_invokevirtual:
  1026   case Bytecodes::_invokespecial:
  1027   case Bytecodes::_invokestatic:
  1028   case Bytecodes::_invokedynamic:
  1029   case Bytecodes::_invokeinterface:
  1031       bool ignore;
  1032       ciBytecodeStream iter(method());
  1033       iter.reset_to_bci(bci());
  1034       iter.next();
  1035       ciMethod* method = iter.get_method(ignore);
  1036       // (Do not use ciMethod::arg_size(), because
  1037       // it might be an unloaded method, which doesn't
  1038       // know whether it is static or not.)
  1039       inputs = method->invoke_arg_size(code);
  1040       int size = method->return_type()->size();
  1041       depth = size - inputs;
  1043     break;
  1045   case Bytecodes::_multianewarray:
  1047       ciBytecodeStream iter(method());
  1048       iter.reset_to_bci(bci());
  1049       iter.next();
  1050       inputs = iter.get_dimensions();
  1051       assert(rsize == 1, "");
  1052       depth = rsize - inputs;
  1054     break;
  1056   case Bytecodes::_ireturn:
  1057   case Bytecodes::_lreturn:
  1058   case Bytecodes::_freturn:
  1059   case Bytecodes::_dreturn:
  1060   case Bytecodes::_areturn:
  1061     assert(rsize = -depth, "");
  1062     inputs = rsize;
  1063     break;
  1065   case Bytecodes::_jsr:
  1066   case Bytecodes::_jsr_w:
  1067     inputs = 0;
  1068     depth  = 1;                  // S.B. depth=1, not zero
  1069     break;
  1071   default:
  1072     // bytecode produces a typed result
  1073     inputs = rsize - depth;
  1074     assert(inputs >= 0, "");
  1075     break;
  1078 #ifdef ASSERT
  1079   // spot check
  1080   int outputs = depth + inputs;
  1081   assert(outputs >= 0, "sanity");
  1082   switch (code) {
  1083   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1084   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1085   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1086   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1087   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1089 #endif //ASSERT
  1091   return true;
  1096 //------------------------------basic_plus_adr---------------------------------
  1097 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1098   // short-circuit a common case
  1099   if (offset == intcon(0))  return ptr;
  1100   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
  1103 Node* GraphKit::ConvI2L(Node* offset) {
  1104   // short-circuit a common case
  1105   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1106   if (offset_con != Type::OffsetBot) {
  1107     return longcon((long) offset_con);
  1109   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
  1111 Node* GraphKit::ConvL2I(Node* offset) {
  1112   // short-circuit a common case
  1113   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1114   if (offset_con != (jlong)Type::OffsetBot) {
  1115     return intcon((int) offset_con);
  1117   return _gvn.transform( new (C, 2) ConvL2INode(offset));
  1120 //-------------------------load_object_klass-----------------------------------
  1121 Node* GraphKit::load_object_klass(Node* obj) {
  1122   // Special-case a fresh allocation to avoid building nodes:
  1123   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1124   if (akls != NULL)  return akls;
  1125   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1126   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
  1129 //-------------------------load_array_length-----------------------------------
  1130 Node* GraphKit::load_array_length(Node* array) {
  1131   // Special-case a fresh allocation to avoid building nodes:
  1132   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1133   Node *alen;
  1134   if (alloc == NULL) {
  1135     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1136     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1137   } else {
  1138     alen = alloc->Ideal_length();
  1139     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1140     if (ccast != alen) {
  1141       alen = _gvn.transform(ccast);
  1144   return alen;
  1147 //------------------------------do_null_check----------------------------------
  1148 // Helper function to do a NULL pointer check.  Returned value is
  1149 // the incoming address with NULL casted away.  You are allowed to use the
  1150 // not-null value only if you are control dependent on the test.
  1151 extern int explicit_null_checks_inserted,
  1152            explicit_null_checks_elided;
  1153 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1154                                   // optional arguments for variations:
  1155                                   bool assert_null,
  1156                                   Node* *null_control) {
  1157   assert(!assert_null || null_control == NULL, "not both at once");
  1158   if (stopped())  return top();
  1159   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1160     // For some performance testing, we may wish to suppress null checking.
  1161     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1162     return value;
  1164   explicit_null_checks_inserted++;
  1166   // Construct NULL check
  1167   Node *chk = NULL;
  1168   switch(type) {
  1169     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1170     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
  1171     case T_ARRAY  : // fall through
  1172       type = T_OBJECT;  // simplify further tests
  1173     case T_OBJECT : {
  1174       const Type *t = _gvn.type( value );
  1176       const TypeOopPtr* tp = t->isa_oopptr();
  1177       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1178           // Only for do_null_check, not any of its siblings:
  1179           && !assert_null && null_control == NULL) {
  1180         // Usually, any field access or invocation on an unloaded oop type
  1181         // will simply fail to link, since the statically linked class is
  1182         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1183         // the static class is loaded but the sharper oop type is not.
  1184         // Rather than checking for this obscure case in lots of places,
  1185         // we simply observe that a null check on an unloaded class
  1186         // will always be followed by a nonsense operation, so we
  1187         // can just issue the uncommon trap here.
  1188         // Our access to the unloaded class will only be correct
  1189         // after it has been loaded and initialized, which requires
  1190         // a trip through the interpreter.
  1191 #ifndef PRODUCT
  1192         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1193 #endif
  1194         uncommon_trap(Deoptimization::Reason_unloaded,
  1195                       Deoptimization::Action_reinterpret,
  1196                       tp->klass(), "!loaded");
  1197         return top();
  1200       if (assert_null) {
  1201         // See if the type is contained in NULL_PTR.
  1202         // If so, then the value is already null.
  1203         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1204           explicit_null_checks_elided++;
  1205           return value;           // Elided null assert quickly!
  1207       } else {
  1208         // See if mixing in the NULL pointer changes type.
  1209         // If so, then the NULL pointer was not allowed in the original
  1210         // type.  In other words, "value" was not-null.
  1211         if (t->meet(TypePtr::NULL_PTR) != t) {
  1212           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1213           explicit_null_checks_elided++;
  1214           return value;           // Elided null check quickly!
  1217       chk = new (C, 3) CmpPNode( value, null() );
  1218       break;
  1221     default      : ShouldNotReachHere();
  1223   assert(chk != NULL, "sanity check");
  1224   chk = _gvn.transform(chk);
  1226   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1227   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
  1228   Node   *tst = _gvn.transform( btst );
  1230   //-----------
  1231   // if peephole optimizations occurred, a prior test existed.
  1232   // If a prior test existed, maybe it dominates as we can avoid this test.
  1233   if (tst != btst && type == T_OBJECT) {
  1234     // At this point we want to scan up the CFG to see if we can
  1235     // find an identical test (and so avoid this test altogether).
  1236     Node *cfg = control();
  1237     int depth = 0;
  1238     while( depth < 16 ) {       // Limit search depth for speed
  1239       if( cfg->Opcode() == Op_IfTrue &&
  1240           cfg->in(0)->in(1) == tst ) {
  1241         // Found prior test.  Use "cast_not_null" to construct an identical
  1242         // CastPP (and hence hash to) as already exists for the prior test.
  1243         // Return that casted value.
  1244         if (assert_null) {
  1245           replace_in_map(value, null());
  1246           return null();  // do not issue the redundant test
  1248         Node *oldcontrol = control();
  1249         set_control(cfg);
  1250         Node *res = cast_not_null(value);
  1251         set_control(oldcontrol);
  1252         explicit_null_checks_elided++;
  1253         return res;
  1255       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1256       if (cfg == NULL)  break;  // Quit at region nodes
  1257       depth++;
  1261   //-----------
  1262   // Branch to failure if null
  1263   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1264   Deoptimization::DeoptReason reason;
  1265   if (assert_null)
  1266     reason = Deoptimization::Reason_null_assert;
  1267   else if (type == T_OBJECT)
  1268     reason = Deoptimization::Reason_null_check;
  1269   else
  1270     reason = Deoptimization::Reason_div0_check;
  1272   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1273   // ciMethodData::has_trap_at will return a conservative -1 if any
  1274   // must-be-null assertion has failed.  This could cause performance
  1275   // problems for a method after its first do_null_assert failure.
  1276   // Consider using 'Reason_class_check' instead?
  1278   // To cause an implicit null check, we set the not-null probability
  1279   // to the maximum (PROB_MAX).  For an explicit check the probability
  1280   // is set to a smaller value.
  1281   if (null_control != NULL || too_many_traps(reason)) {
  1282     // probability is less likely
  1283     ok_prob =  PROB_LIKELY_MAG(3);
  1284   } else if (!assert_null &&
  1285              (ImplicitNullCheckThreshold > 0) &&
  1286              method() != NULL &&
  1287              (method()->method_data()->trap_count(reason)
  1288               >= (uint)ImplicitNullCheckThreshold)) {
  1289     ok_prob =  PROB_LIKELY_MAG(3);
  1292   if (null_control != NULL) {
  1293     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1294     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
  1295     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
  1296     if (null_true == top())
  1297       explicit_null_checks_elided++;
  1298     (*null_control) = null_true;
  1299   } else {
  1300     BuildCutout unless(this, tst, ok_prob);
  1301     // Check for optimizer eliding test at parse time
  1302     if (stopped()) {
  1303       // Failure not possible; do not bother making uncommon trap.
  1304       explicit_null_checks_elided++;
  1305     } else if (assert_null) {
  1306       uncommon_trap(reason,
  1307                     Deoptimization::Action_make_not_entrant,
  1308                     NULL, "assert_null");
  1309     } else {
  1310       replace_in_map(value, zerocon(type));
  1311       builtin_throw(reason);
  1315   // Must throw exception, fall-thru not possible?
  1316   if (stopped()) {
  1317     return top();               // No result
  1320   if (assert_null) {
  1321     // Cast obj to null on this path.
  1322     replace_in_map(value, zerocon(type));
  1323     return zerocon(type);
  1326   // Cast obj to not-null on this path, if there is no null_control.
  1327   // (If there is a null_control, a non-null value may come back to haunt us.)
  1328   if (type == T_OBJECT) {
  1329     Node* cast = cast_not_null(value, false);
  1330     if (null_control == NULL || (*null_control) == top())
  1331       replace_in_map(value, cast);
  1332     value = cast;
  1335   return value;
  1339 //------------------------------cast_not_null----------------------------------
  1340 // Cast obj to not-null on this path
  1341 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1342   const Type *t = _gvn.type(obj);
  1343   const Type *t_not_null = t->join(TypePtr::NOTNULL);
  1344   // Object is already not-null?
  1345   if( t == t_not_null ) return obj;
  1347   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
  1348   cast->init_req(0, control());
  1349   cast = _gvn.transform( cast );
  1351   // Scan for instances of 'obj' in the current JVM mapping.
  1352   // These instances are known to be not-null after the test.
  1353   if (do_replace_in_map)
  1354     replace_in_map(obj, cast);
  1356   return cast;                  // Return casted value
  1360 //--------------------------replace_in_map-------------------------------------
  1361 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1362   this->map()->replace_edge(old, neww);
  1364   // Note: This operation potentially replaces any edge
  1365   // on the map.  This includes locals, stack, and monitors
  1366   // of the current (innermost) JVM state.
  1368   // We can consider replacing in caller maps.
  1369   // The idea would be that an inlined function's null checks
  1370   // can be shared with the entire inlining tree.
  1371   // The expense of doing this is that the PreserveJVMState class
  1372   // would have to preserve caller states too, with a deep copy.
  1377 //=============================================================================
  1378 //--------------------------------memory---------------------------------------
  1379 Node* GraphKit::memory(uint alias_idx) {
  1380   MergeMemNode* mem = merged_memory();
  1381   Node* p = mem->memory_at(alias_idx);
  1382   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1383   return p;
  1386 //-----------------------------reset_memory------------------------------------
  1387 Node* GraphKit::reset_memory() {
  1388   Node* mem = map()->memory();
  1389   // do not use this node for any more parsing!
  1390   debug_only( map()->set_memory((Node*)NULL) );
  1391   return _gvn.transform( mem );
  1394 //------------------------------set_all_memory---------------------------------
  1395 void GraphKit::set_all_memory(Node* newmem) {
  1396   Node* mergemem = MergeMemNode::make(C, newmem);
  1397   gvn().set_type_bottom(mergemem);
  1398   map()->set_memory(mergemem);
  1401 //------------------------------set_all_memory_call----------------------------
  1402 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  1403   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  1404   set_all_memory(newmem);
  1407 //=============================================================================
  1408 //
  1409 // parser factory methods for MemNodes
  1410 //
  1411 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1412 // and integrate with the parser's memory state and _gvn engine.
  1413 //
  1415 // factory methods in "int adr_idx"
  1416 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1417                           int adr_idx,
  1418                           bool require_atomic_access) {
  1419   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1420   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1421   debug_only(adr_type = C->get_adr_type(adr_idx));
  1422   Node* mem = memory(adr_idx);
  1423   Node* ld;
  1424   if (require_atomic_access && bt == T_LONG) {
  1425     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
  1426   } else {
  1427     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
  1429   return _gvn.transform(ld);
  1432 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1433                                 int adr_idx,
  1434                                 bool require_atomic_access) {
  1435   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1436   const TypePtr* adr_type = NULL;
  1437   debug_only(adr_type = C->get_adr_type(adr_idx));
  1438   Node *mem = memory(adr_idx);
  1439   Node* st;
  1440   if (require_atomic_access && bt == T_LONG) {
  1441     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
  1442   } else {
  1443     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
  1445   st = _gvn.transform(st);
  1446   set_memory(st, adr_idx);
  1447   // Back-to-back stores can only remove intermediate store with DU info
  1448   // so push on worklist for optimizer.
  1449   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1450     record_for_igvn(st);
  1452   return st;
  1456 void GraphKit::pre_barrier(bool do_load,
  1457                            Node* ctl,
  1458                            Node* obj,
  1459                            Node* adr,
  1460                            uint  adr_idx,
  1461                            Node* val,
  1462                            const TypeOopPtr* val_type,
  1463                            Node* pre_val,
  1464                            BasicType bt) {
  1466   BarrierSet* bs = Universe::heap()->barrier_set();
  1467   set_control(ctl);
  1468   switch (bs->kind()) {
  1469     case BarrierSet::G1SATBCT:
  1470     case BarrierSet::G1SATBCTLogging:
  1471       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
  1472       break;
  1474     case BarrierSet::CardTableModRef:
  1475     case BarrierSet::CardTableExtension:
  1476     case BarrierSet::ModRef:
  1477       break;
  1479     case BarrierSet::Other:
  1480     default      :
  1481       ShouldNotReachHere();
  1486 void GraphKit::post_barrier(Node* ctl,
  1487                             Node* store,
  1488                             Node* obj,
  1489                             Node* adr,
  1490                             uint  adr_idx,
  1491                             Node* val,
  1492                             BasicType bt,
  1493                             bool use_precise) {
  1494   BarrierSet* bs = Universe::heap()->barrier_set();
  1495   set_control(ctl);
  1496   switch (bs->kind()) {
  1497     case BarrierSet::G1SATBCT:
  1498     case BarrierSet::G1SATBCTLogging:
  1499       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1500       break;
  1502     case BarrierSet::CardTableModRef:
  1503     case BarrierSet::CardTableExtension:
  1504       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1505       break;
  1507     case BarrierSet::ModRef:
  1508       break;
  1510     case BarrierSet::Other:
  1511     default      :
  1512       ShouldNotReachHere();
  1517 Node* GraphKit::store_oop(Node* ctl,
  1518                           Node* obj,
  1519                           Node* adr,
  1520                           const TypePtr* adr_type,
  1521                           Node* val,
  1522                           const TypeOopPtr* val_type,
  1523                           BasicType bt,
  1524                           bool use_precise) {
  1526   set_control(ctl);
  1527   if (stopped()) return top(); // Dead path ?
  1529   assert(bt == T_OBJECT, "sanity");
  1530   assert(val != NULL, "not dead path");
  1531   uint adr_idx = C->get_alias_index(adr_type);
  1532   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1534   pre_barrier(true /* do_load */,
  1535               control(), obj, adr, adr_idx, val, val_type,
  1536               NULL /* pre_val */,
  1537               bt);
  1539   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
  1540   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1541   return store;
  1544 // Could be an array or object we don't know at compile time (unsafe ref.)
  1545 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1546                              Node* obj,   // containing obj
  1547                              Node* adr,  // actual adress to store val at
  1548                              const TypePtr* adr_type,
  1549                              Node* val,
  1550                              BasicType bt) {
  1551   Compile::AliasType* at = C->alias_type(adr_type);
  1552   const TypeOopPtr* val_type = NULL;
  1553   if (adr_type->isa_instptr()) {
  1554     if (at->field() != NULL) {
  1555       // known field.  This code is a copy of the do_put_xxx logic.
  1556       ciField* field = at->field();
  1557       if (!field->type()->is_loaded()) {
  1558         val_type = TypeInstPtr::BOTTOM;
  1559       } else {
  1560         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1563   } else if (adr_type->isa_aryptr()) {
  1564     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1566   if (val_type == NULL) {
  1567     val_type = TypeInstPtr::BOTTOM;
  1569   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
  1573 //-------------------------array_element_address-------------------------
  1574 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1575                                       const TypeInt* sizetype) {
  1576   uint shift  = exact_log2(type2aelembytes(elembt));
  1577   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1579   // short-circuit a common case (saves lots of confusing waste motion)
  1580   jint idx_con = find_int_con(idx, -1);
  1581   if (idx_con >= 0) {
  1582     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1583     return basic_plus_adr(ary, offset);
  1586   // must be correct type for alignment purposes
  1587   Node* base  = basic_plus_adr(ary, header);
  1588 #ifdef _LP64
  1589   // The scaled index operand to AddP must be a clean 64-bit value.
  1590   // Java allows a 32-bit int to be incremented to a negative
  1591   // value, which appears in a 64-bit register as a large
  1592   // positive number.  Using that large positive number as an
  1593   // operand in pointer arithmetic has bad consequences.
  1594   // On the other hand, 32-bit overflow is rare, and the possibility
  1595   // can often be excluded, if we annotate the ConvI2L node with
  1596   // a type assertion that its value is known to be a small positive
  1597   // number.  (The prior range check has ensured this.)
  1598   // This assertion is used by ConvI2LNode::Ideal.
  1599   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1600   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
  1601   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  1602   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
  1603 #endif
  1604   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
  1605   return basic_plus_adr(ary, base, scale);
  1608 //-------------------------load_array_element-------------------------
  1609 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1610   const Type* elemtype = arytype->elem();
  1611   BasicType elembt = elemtype->array_element_basic_type();
  1612   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1613   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
  1614   return ld;
  1617 //-------------------------set_arguments_for_java_call-------------------------
  1618 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1619 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1620   // Add the call arguments:
  1621   uint nargs = call->method()->arg_size();
  1622   for (uint i = 0; i < nargs; i++) {
  1623     Node* arg = argument(i);
  1624     call->init_req(i + TypeFunc::Parms, arg);
  1628 //---------------------------set_edges_for_java_call---------------------------
  1629 // Connect a newly created call into the current JVMS.
  1630 // A return value node (if any) is returned from set_edges_for_java_call.
  1631 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
  1633   // Add the predefined inputs:
  1634   call->init_req( TypeFunc::Control, control() );
  1635   call->init_req( TypeFunc::I_O    , i_o() );
  1636   call->init_req( TypeFunc::Memory , reset_memory() );
  1637   call->init_req( TypeFunc::FramePtr, frameptr() );
  1638   call->init_req( TypeFunc::ReturnAdr, top() );
  1640   add_safepoint_edges(call, must_throw);
  1642   Node* xcall = _gvn.transform(call);
  1644   if (xcall == top()) {
  1645     set_control(top());
  1646     return;
  1648   assert(xcall == call, "call identity is stable");
  1650   // Re-use the current map to produce the result.
  1652   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
  1653   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  1654   set_all_memory_call(xcall, separate_io_proj);
  1656   //return xcall;   // no need, caller already has it
  1659 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  1660   if (stopped())  return top();  // maybe the call folded up?
  1662   // Capture the return value, if any.
  1663   Node* ret;
  1664   if (call->method() == NULL ||
  1665       call->method()->return_type()->basic_type() == T_VOID)
  1666         ret = top();
  1667   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1669   // Note:  Since any out-of-line call can produce an exception,
  1670   // we always insert an I_O projection from the call into the result.
  1672   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
  1674   if (separate_io_proj) {
  1675     // The caller requested separate projections be used by the fall
  1676     // through and exceptional paths, so replace the projections for
  1677     // the fall through path.
  1678     set_i_o(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O) ));
  1679     set_all_memory(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) ));
  1681   return ret;
  1684 //--------------------set_predefined_input_for_runtime_call--------------------
  1685 // Reading and setting the memory state is way conservative here.
  1686 // The real problem is that I am not doing real Type analysis on memory,
  1687 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1688 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1689 // have a card mark store and its barrier split across the GC point from
  1690 // either above or below.  Here I get that to happen by reading ALL of memory.
  1691 // A better answer would be to separate out card marks from other memory.
  1692 // For now, return the input memory state, so that it can be reused
  1693 // after the call, if this call has restricted memory effects.
  1694 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1695   // Set fixed predefined input arguments
  1696   Node* memory = reset_memory();
  1697   call->init_req( TypeFunc::Control,   control()  );
  1698   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1699   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1700   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1701   call->init_req( TypeFunc::ReturnAdr, top()      );
  1702   return memory;
  1705 //-------------------set_predefined_output_for_runtime_call--------------------
  1706 // Set control and memory (not i_o) from the call.
  1707 // If keep_mem is not NULL, use it for the output state,
  1708 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1709 // If hook_mem is NULL, this call produces no memory effects at all.
  1710 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1711 // then only that memory slice is taken from the call.
  1712 // In the last case, we must put an appropriate memory barrier before
  1713 // the call, so as to create the correct anti-dependencies on loads
  1714 // preceding the call.
  1715 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1716                                                       Node* keep_mem,
  1717                                                       const TypePtr* hook_mem) {
  1718   // no i/o
  1719   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
  1720   if (keep_mem) {
  1721     // First clone the existing memory state
  1722     set_all_memory(keep_mem);
  1723     if (hook_mem != NULL) {
  1724       // Make memory for the call
  1725       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  1726       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1727       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1728       set_memory(mem, hook_mem);
  1730     // ...else the call has NO memory effects.
  1732     // Make sure the call advertises its memory effects precisely.
  1733     // This lets us build accurate anti-dependences in gcm.cpp.
  1734     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1735            "call node must be constructed correctly");
  1736   } else {
  1737     assert(hook_mem == NULL, "");
  1738     // This is not a "slow path" call; all memory comes from the call.
  1739     set_all_memory_call(call);
  1744 // Replace the call with the current state of the kit.
  1745 void GraphKit::replace_call(CallNode* call, Node* result) {
  1746   JVMState* ejvms = NULL;
  1747   if (has_exceptions()) {
  1748     ejvms = transfer_exceptions_into_jvms();
  1751   SafePointNode* final_state = stop();
  1753   // Find all the needed outputs of this call
  1754   CallProjections callprojs;
  1755   call->extract_projections(&callprojs, true);
  1757   // Replace all the old call edges with the edges from the inlining result
  1758   C->gvn_replace_by(callprojs.fallthrough_catchproj, final_state->in(TypeFunc::Control));
  1759   C->gvn_replace_by(callprojs.fallthrough_memproj,   final_state->in(TypeFunc::Memory));
  1760   C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_state->in(TypeFunc::I_O));
  1761   Node* final_mem = final_state->in(TypeFunc::Memory);
  1763   // Replace the result with the new result if it exists and is used
  1764   if (callprojs.resproj != NULL && result != NULL) {
  1765     C->gvn_replace_by(callprojs.resproj, result);
  1768   if (ejvms == NULL) {
  1769     // No exception edges to simply kill off those paths
  1770     C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
  1771     C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
  1772     C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
  1774     // Replace the old exception object with top
  1775     if (callprojs.exobj != NULL) {
  1776       C->gvn_replace_by(callprojs.exobj, C->top());
  1778   } else {
  1779     GraphKit ekit(ejvms);
  1781     // Load my combined exception state into the kit, with all phis transformed:
  1782     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
  1784     Node* ex_oop = ekit.use_exception_state(ex_map);
  1786     C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
  1787     C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
  1788     C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
  1790     // Replace the old exception object with the newly created one
  1791     if (callprojs.exobj != NULL) {
  1792       C->gvn_replace_by(callprojs.exobj, ex_oop);
  1796   // Disconnect the call from the graph
  1797   call->disconnect_inputs(NULL);
  1798   C->gvn_replace_by(call, C->top());
  1800   // Clean up any MergeMems that feed other MergeMems since the
  1801   // optimizer doesn't like that.
  1802   if (final_mem->is_MergeMem()) {
  1803     Node_List wl;
  1804     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
  1805       Node* m = i.get();
  1806       if (m->is_MergeMem() && !wl.contains(m)) {
  1807         wl.push(m);
  1810     while (wl.size()  > 0) {
  1811       _gvn.transform(wl.pop());
  1817 //------------------------------increment_counter------------------------------
  1818 // for statistics: increment a VM counter by 1
  1820 void GraphKit::increment_counter(address counter_addr) {
  1821   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1822   increment_counter(adr1);
  1825 void GraphKit::increment_counter(Node* counter_addr) {
  1826   int adr_type = Compile::AliasIdxRaw;
  1827   Node* ctrl = control();
  1828   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
  1829   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  1830   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
  1834 //------------------------------uncommon_trap----------------------------------
  1835 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1836 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1837 // right debug info.
  1838 void GraphKit::uncommon_trap(int trap_request,
  1839                              ciKlass* klass, const char* comment,
  1840                              bool must_throw,
  1841                              bool keep_exact_action) {
  1842   if (failing())  stop();
  1843   if (stopped())  return; // trap reachable?
  1845   // Note:  If ProfileTraps is true, and if a deopt. actually
  1846   // occurs here, the runtime will make sure an MDO exists.  There is
  1847   // no need to call method()->ensure_method_data() at this point.
  1849 #ifdef ASSERT
  1850   if (!must_throw) {
  1851     // Make sure the stack has at least enough depth to execute
  1852     // the current bytecode.
  1853     int inputs, ignore;
  1854     if (compute_stack_effects(inputs, ignore)) {
  1855       assert(sp() >= inputs, "must have enough JVMS stack to execute");
  1856       // It is a frequent error in library_call.cpp to issue an
  1857       // uncommon trap with the _sp value already popped.
  1860 #endif
  1862   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1863   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  1865   switch (action) {
  1866   case Deoptimization::Action_maybe_recompile:
  1867   case Deoptimization::Action_reinterpret:
  1868     // Temporary fix for 6529811 to allow virtual calls to be sure they
  1869     // get the chance to go from mono->bi->mega
  1870     if (!keep_exact_action &&
  1871         Deoptimization::trap_request_index(trap_request) < 0 &&
  1872         too_many_recompiles(reason)) {
  1873       // This BCI is causing too many recompilations.
  1874       action = Deoptimization::Action_none;
  1875       trap_request = Deoptimization::make_trap_request(reason, action);
  1876     } else {
  1877       C->set_trap_can_recompile(true);
  1879     break;
  1880   case Deoptimization::Action_make_not_entrant:
  1881     C->set_trap_can_recompile(true);
  1882     break;
  1883 #ifdef ASSERT
  1884   case Deoptimization::Action_none:
  1885   case Deoptimization::Action_make_not_compilable:
  1886     break;
  1887   default:
  1888     assert(false, "bad action");
  1889 #endif
  1892   if (TraceOptoParse) {
  1893     char buf[100];
  1894     tty->print_cr("Uncommon trap %s at bci:%d",
  1895                   Deoptimization::format_trap_request(buf, sizeof(buf),
  1896                                                       trap_request), bci());
  1899   CompileLog* log = C->log();
  1900   if (log != NULL) {
  1901     int kid = (klass == NULL)? -1: log->identify(klass);
  1902     log->begin_elem("uncommon_trap bci='%d'", bci());
  1903     char buf[100];
  1904     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  1905                                                           trap_request));
  1906     if (kid >= 0)         log->print(" klass='%d'", kid);
  1907     if (comment != NULL)  log->print(" comment='%s'", comment);
  1908     log->end_elem();
  1911   // Make sure any guarding test views this path as very unlikely
  1912   Node *i0 = control()->in(0);
  1913   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  1914     IfNode *iff = i0->as_If();
  1915     float f = iff->_prob;   // Get prob
  1916     if (control()->Opcode() == Op_IfTrue) {
  1917       if (f > PROB_UNLIKELY_MAG(4))
  1918         iff->_prob = PROB_MIN;
  1919     } else {
  1920       if (f < PROB_LIKELY_MAG(4))
  1921         iff->_prob = PROB_MAX;
  1925   // Clear out dead values from the debug info.
  1926   kill_dead_locals();
  1928   // Now insert the uncommon trap subroutine call
  1929   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
  1930   const TypePtr* no_memory_effects = NULL;
  1931   // Pass the index of the class to be loaded
  1932   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  1933                                  (must_throw ? RC_MUST_THROW : 0),
  1934                                  OptoRuntime::uncommon_trap_Type(),
  1935                                  call_addr, "uncommon_trap", no_memory_effects,
  1936                                  intcon(trap_request));
  1937   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  1938          "must extract request correctly from the graph");
  1939   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  1941   call->set_req(TypeFunc::ReturnAdr, returnadr());
  1942   // The debug info is the only real input to this call.
  1944   // Halt-and-catch fire here.  The above call should never return!
  1945   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
  1946   _gvn.set_type_bottom(halt);
  1947   root()->add_req(halt);
  1949   stop_and_kill_map();
  1953 //--------------------------just_allocated_object------------------------------
  1954 // Report the object that was just allocated.
  1955 // It must be the case that there are no intervening safepoints.
  1956 // We use this to determine if an object is so "fresh" that
  1957 // it does not require card marks.
  1958 Node* GraphKit::just_allocated_object(Node* current_control) {
  1959   if (C->recent_alloc_ctl() == current_control)
  1960     return C->recent_alloc_obj();
  1961   return NULL;
  1965 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  1966   // (Note:  TypeFunc::make has a cache that makes this fast.)
  1967   const TypeFunc* tf    = TypeFunc::make(dest_method);
  1968   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  1969   for (int j = 0; j < nargs; j++) {
  1970     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  1971     if( targ->basic_type() == T_DOUBLE ) {
  1972       // If any parameters are doubles, they must be rounded before
  1973       // the call, dstore_rounding does gvn.transform
  1974       Node *arg = argument(j);
  1975       arg = dstore_rounding(arg);
  1976       set_argument(j, arg);
  1981 void GraphKit::round_double_result(ciMethod* dest_method) {
  1982   // A non-strict method may return a double value which has an extended
  1983   // exponent, but this must not be visible in a caller which is 'strict'
  1984   // If a strict caller invokes a non-strict callee, round a double result
  1986   BasicType result_type = dest_method->return_type()->basic_type();
  1987   assert( method() != NULL, "must have caller context");
  1988   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  1989     // Destination method's return value is on top of stack
  1990     // dstore_rounding() does gvn.transform
  1991     Node *result = pop_pair();
  1992     result = dstore_rounding(result);
  1993     push_pair(result);
  1997 // rounding for strict float precision conformance
  1998 Node* GraphKit::precision_rounding(Node* n) {
  1999   return UseStrictFP && _method->flags().is_strict()
  2000     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  2001     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
  2002     : n;
  2005 // rounding for strict double precision conformance
  2006 Node* GraphKit::dprecision_rounding(Node *n) {
  2007   return UseStrictFP && _method->flags().is_strict()
  2008     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  2009     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  2010     : n;
  2013 // rounding for non-strict double stores
  2014 Node* GraphKit::dstore_rounding(Node* n) {
  2015   return Matcher::strict_fp_requires_explicit_rounding
  2016     && UseSSE <= 1
  2017     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  2018     : n;
  2021 //=============================================================================
  2022 // Generate a fast path/slow path idiom.  Graph looks like:
  2023 // [foo] indicates that 'foo' is a parameter
  2024 //
  2025 //              [in]     NULL
  2026 //                 \    /
  2027 //                  CmpP
  2028 //                  Bool ne
  2029 //                   If
  2030 //                  /  \
  2031 //              True    False-<2>
  2032 //              / |
  2033 //             /  cast_not_null
  2034 //           Load  |    |   ^
  2035 //        [fast_test]   |   |
  2036 // gvn to   opt_test    |   |
  2037 //          /    \      |  <1>
  2038 //      True     False  |
  2039 //        |         \\  |
  2040 //   [slow_call]     \[fast_result]
  2041 //    Ctl   Val       \      \
  2042 //     |               \      \
  2043 //    Catch       <1>   \      \
  2044 //   /    \        ^     \      \
  2045 //  Ex    No_Ex    |      \      \
  2046 //  |       \   \  |       \ <2>  \
  2047 //  ...      \  [slow_res] |  |    \   [null_result]
  2048 //            \         \--+--+---  |  |
  2049 //             \           | /    \ | /
  2050 //              --------Region     Phi
  2051 //
  2052 //=============================================================================
  2053 // Code is structured as a series of driver functions all called 'do_XXX' that
  2054 // call a set of helper functions.  Helper functions first, then drivers.
  2056 //------------------------------null_check_oop---------------------------------
  2057 // Null check oop.  Set null-path control into Region in slot 3.
  2058 // Make a cast-not-nullness use the other not-null control.  Return cast.
  2059 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  2060                                bool never_see_null) {
  2061   // Initial NULL check taken path
  2062   (*null_control) = top();
  2063   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  2065   // Generate uncommon_trap:
  2066   if (never_see_null && (*null_control) != top()) {
  2067     // If we see an unexpected null at a check-cast we record it and force a
  2068     // recompile; the offending check-cast will be compiled to handle NULLs.
  2069     // If we see more than one offending BCI, then all checkcasts in the
  2070     // method will be compiled to handle NULLs.
  2071     PreserveJVMState pjvms(this);
  2072     set_control(*null_control);
  2073     replace_in_map(value, null());
  2074     uncommon_trap(Deoptimization::Reason_null_check,
  2075                   Deoptimization::Action_make_not_entrant);
  2076     (*null_control) = top();    // NULL path is dead
  2079   // Cast away null-ness on the result
  2080   return cast;
  2083 //------------------------------opt_iff----------------------------------------
  2084 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  2085 // Return slow-path control.
  2086 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  2087   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  2089   // Fast path taken; set region slot 2
  2090   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
  2091   region->init_req(2,fast_taken); // Capture fast-control
  2093   // Fast path not-taken, i.e. slow path
  2094   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
  2095   return slow_taken;
  2098 //-----------------------------make_runtime_call-------------------------------
  2099 Node* GraphKit::make_runtime_call(int flags,
  2100                                   const TypeFunc* call_type, address call_addr,
  2101                                   const char* call_name,
  2102                                   const TypePtr* adr_type,
  2103                                   // The following parms are all optional.
  2104                                   // The first NULL ends the list.
  2105                                   Node* parm0, Node* parm1,
  2106                                   Node* parm2, Node* parm3,
  2107                                   Node* parm4, Node* parm5,
  2108                                   Node* parm6, Node* parm7) {
  2109   // Slow-path call
  2110   int size = call_type->domain()->cnt();
  2111   bool is_leaf = !(flags & RC_NO_LEAF);
  2112   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  2113   if (call_name == NULL) {
  2114     assert(!is_leaf, "must supply name for leaf");
  2115     call_name = OptoRuntime::stub_name(call_addr);
  2117   CallNode* call;
  2118   if (!is_leaf) {
  2119     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
  2120                                            bci(), adr_type);
  2121   } else if (flags & RC_NO_FP) {
  2122     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  2123   } else {
  2124     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
  2127   // The following is similar to set_edges_for_java_call,
  2128   // except that the memory effects of the call are restricted to AliasIdxRaw.
  2130   // Slow path call has no side-effects, uses few values
  2131   bool wide_in  = !(flags & RC_NARROW_MEM);
  2132   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  2134   Node* prev_mem = NULL;
  2135   if (wide_in) {
  2136     prev_mem = set_predefined_input_for_runtime_call(call);
  2137   } else {
  2138     assert(!wide_out, "narrow in => narrow out");
  2139     Node* narrow_mem = memory(adr_type);
  2140     prev_mem = reset_memory();
  2141     map()->set_memory(narrow_mem);
  2142     set_predefined_input_for_runtime_call(call);
  2145   // Hook each parm in order.  Stop looking at the first NULL.
  2146   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2147   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2148   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2149   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2150   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2151   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2152   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2153   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2154     /* close each nested if ===> */  } } } } } } } }
  2155   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2157   if (!is_leaf) {
  2158     // Non-leaves can block and take safepoints:
  2159     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2161   // Non-leaves can throw exceptions:
  2162   if (has_io) {
  2163     call->set_req(TypeFunc::I_O, i_o());
  2166   if (flags & RC_UNCOMMON) {
  2167     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2168     // (An "if" probability corresponds roughly to an unconditional count.
  2169     // Sort of.)
  2170     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2173   Node* c = _gvn.transform(call);
  2174   assert(c == call, "cannot disappear");
  2176   if (wide_out) {
  2177     // Slow path call has full side-effects.
  2178     set_predefined_output_for_runtime_call(call);
  2179   } else {
  2180     // Slow path call has few side-effects, and/or sets few values.
  2181     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2184   if (has_io) {
  2185     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
  2187   return call;
  2191 //------------------------------merge_memory-----------------------------------
  2192 // Merge memory from one path into the current memory state.
  2193 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2194   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2195     Node* old_slice = mms.force_memory();
  2196     Node* new_slice = mms.memory2();
  2197     if (old_slice != new_slice) {
  2198       PhiNode* phi;
  2199       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
  2200         phi = new_slice->as_Phi();
  2201         #ifdef ASSERT
  2202         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
  2203           old_slice = old_slice->in(new_path);
  2204         // Caller is responsible for ensuring that any pre-existing
  2205         // phis are already aware of old memory.
  2206         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
  2207         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
  2208         #endif
  2209         mms.set_memory(phi);
  2210       } else {
  2211         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2212         _gvn.set_type(phi, Type::MEMORY);
  2213         phi->set_req(new_path, new_slice);
  2214         mms.set_memory(_gvn.transform(phi));  // assume it is complete
  2220 //------------------------------make_slow_call_ex------------------------------
  2221 // Make the exception handler hookups for the slow call
  2222 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
  2223   if (stopped())  return;
  2225   // Make a catch node with just two handlers:  fall-through and catch-all
  2226   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2227   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
  2228   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2229   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2231   { PreserveJVMState pjvms(this);
  2232     set_control(excp);
  2233     set_i_o(i_o);
  2235     if (excp != top()) {
  2236       // Create an exception state also.
  2237       // Use an exact type if the caller has specified a specific exception.
  2238       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2239       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
  2240       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2244   // Get the no-exception control from the CatchNode.
  2245   set_control(norm);
  2249 //-------------------------------gen_subtype_check-----------------------------
  2250 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2251 // Returns 2 values: sets the default control() to the true path and returns
  2252 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2253 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2254 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2255 // Object; if you wish to check an Object you need to load the Object's class
  2256 // prior to coming here.
  2257 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2258   // Fast check for identical types, perhaps identical constants.
  2259   // The types can even be identical non-constants, in cases
  2260   // involving Array.newInstance, Object.clone, etc.
  2261   if (subklass == superklass)
  2262     return top();             // false path is dead; no test needed.
  2264   if (_gvn.type(superklass)->singleton()) {
  2265     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2266     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2268     // In the common case of an exact superklass, try to fold up the
  2269     // test before generating code.  You may ask, why not just generate
  2270     // the code and then let it fold up?  The answer is that the generated
  2271     // code will necessarily include null checks, which do not always
  2272     // completely fold away.  If they are also needless, then they turn
  2273     // into a performance loss.  Example:
  2274     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2275     // Here, the type of 'fa' is often exact, so the store check
  2276     // of fa[1]=x will fold up, without testing the nullness of x.
  2277     switch (static_subtype_check(superk, subk)) {
  2278     case SSC_always_false:
  2280         Node* always_fail = control();
  2281         set_control(top());
  2282         return always_fail;
  2284     case SSC_always_true:
  2285       return top();
  2286     case SSC_easy_test:
  2288         // Just do a direct pointer compare and be done.
  2289         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
  2290         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2291         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2292         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
  2293         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2295     case SSC_full_test:
  2296       break;
  2297     default:
  2298       ShouldNotReachHere();
  2302   // %%% Possible further optimization:  Even if the superklass is not exact,
  2303   // if the subklass is the unique subtype of the superklass, the check
  2304   // will always succeed.  We could leave a dependency behind to ensure this.
  2306   // First load the super-klass's check-offset
  2307   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
  2308   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
  2309   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
  2310   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2312   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2313   // the secondary superclass list, or a failing value with a sentinel offset
  2314   // if the super-klass is an interface or exceptionally deep in the Java
  2315   // hierarchy and we have to scan the secondary superclass list the hard way.
  2316   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2317   // klass loads can never produce a NULL).
  2318   Node *chk_off_X = ConvI2X(chk_off);
  2319   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
  2320   // For some types like interfaces the following loadKlass is from a 1-word
  2321   // cache which is mutable so can't use immutable memory.  Other
  2322   // types load from the super-class display table which is immutable.
  2323   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2324   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
  2326   // Compile speed common case: ARE a subtype and we canNOT fail
  2327   if( superklass == nkls )
  2328     return top();             // false path is dead; no test needed.
  2330   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2331   // time.  Test to see if the value loaded just previously from the subklass
  2332   // is exactly the superklass.
  2333   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
  2334   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
  2335   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2336   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
  2337   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
  2339   // Compile speed common case: Check for being deterministic right now.  If
  2340   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2341   // subklass.  In this case we need exactly the 1 test above and we can
  2342   // return those results immediately.
  2343   if (!might_be_cache) {
  2344     Node* not_subtype_ctrl = control();
  2345     set_control(iftrue1); // We need exactly the 1 test above
  2346     return not_subtype_ctrl;
  2349   // Gather the various success & failures here
  2350   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
  2351   record_for_igvn(r_ok_subtype);
  2352   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
  2353   record_for_igvn(r_not_subtype);
  2355   r_ok_subtype->init_req(1, iftrue1);
  2357   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2358   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2359   // check-offset points into the subklass display list or the 1-element
  2360   // cache.  If it points to the display (and NOT the cache) and the display
  2361   // missed then it's not a subtype.
  2362   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2363   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
  2364   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
  2365   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2366   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
  2367   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
  2369   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2370   // No performance impact (too rare) but allows sharing of secondary arrays
  2371   // which has some footprint reduction.
  2372   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
  2373   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
  2374   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2375   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
  2376   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
  2378   // -- Roads not taken here: --
  2379   // We could also have chosen to perform the self-check at the beginning
  2380   // of this code sequence, as the assembler does.  This would not pay off
  2381   // the same way, since the optimizer, unlike the assembler, can perform
  2382   // static type analysis to fold away many successful self-checks.
  2383   // Non-foldable self checks work better here in second position, because
  2384   // the initial primary superclass check subsumes a self-check for most
  2385   // types.  An exception would be a secondary type like array-of-interface,
  2386   // which does not appear in its own primary supertype display.
  2387   // Finally, we could have chosen to move the self-check into the
  2388   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2389   // dependent manner.  But it is worthwhile to have the check here,
  2390   // where it can be perhaps be optimized.  The cost in code space is
  2391   // small (register compare, branch).
  2393   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2394   // performance impact (too rare) but it's gotta be done.
  2395   // Since the code is rarely used, there is no penalty for moving it
  2396   // out of line, and it can only improve I-cache density.
  2397   // The decision to inline or out-of-line this final check is platform
  2398   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2399   Node* psc = _gvn.transform(
  2400     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2402   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
  2403   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
  2404   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2405   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
  2406   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
  2408   // Return false path; set default control to true path.
  2409   set_control( _gvn.transform(r_ok_subtype) );
  2410   return _gvn.transform(r_not_subtype);
  2413 //----------------------------static_subtype_check-----------------------------
  2414 // Shortcut important common cases when superklass is exact:
  2415 // (0) superklass is java.lang.Object (can occur in reflective code)
  2416 // (1) subklass is already limited to a subtype of superklass => always ok
  2417 // (2) subklass does not overlap with superklass => always fail
  2418 // (3) superklass has NO subtypes and we can check with a simple compare.
  2419 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2420   if (StressReflectiveCode) {
  2421     return SSC_full_test;       // Let caller generate the general case.
  2424   if (superk == env()->Object_klass()) {
  2425     return SSC_always_true;     // (0) this test cannot fail
  2428   ciType* superelem = superk;
  2429   if (superelem->is_array_klass())
  2430     superelem = superelem->as_array_klass()->base_element_type();
  2432   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2433     if (subk->is_subtype_of(superk)) {
  2434       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2436     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2437         !superk->is_subtype_of(subk)) {
  2438       return SSC_always_false;
  2442   // If casting to an instance klass, it must have no subtypes
  2443   if (superk->is_interface()) {
  2444     // Cannot trust interfaces yet.
  2445     // %%% S.B. superk->nof_implementors() == 1
  2446   } else if (superelem->is_instance_klass()) {
  2447     ciInstanceKlass* ik = superelem->as_instance_klass();
  2448     if (!ik->has_subklass() && !ik->is_interface()) {
  2449       if (!ik->is_final()) {
  2450         // Add a dependency if there is a chance of a later subclass.
  2451         C->dependencies()->assert_leaf_type(ik);
  2453       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2455   } else {
  2456     // A primitive array type has no subtypes.
  2457     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2460   return SSC_full_test;
  2463 // Profile-driven exact type check:
  2464 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2465                                     float prob,
  2466                                     Node* *casted_receiver) {
  2467   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2468   Node* recv_klass = load_object_klass(receiver);
  2469   Node* want_klass = makecon(tklass);
  2470   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
  2471   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2472   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2473   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
  2474   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2476   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2477   assert(recv_xtype->klass_is_exact(), "");
  2479   // Subsume downstream occurrences of receiver with a cast to
  2480   // recv_xtype, since now we know what the type will be.
  2481   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
  2482   (*casted_receiver) = _gvn.transform(cast);
  2483   // (User must make the replace_in_map call.)
  2485   return fail;
  2489 //------------------------------seems_never_null-------------------------------
  2490 // Use null_seen information if it is available from the profile.
  2491 // If we see an unexpected null at a type check we record it and force a
  2492 // recompile; the offending check will be recompiled to handle NULLs.
  2493 // If we see several offending BCIs, then all checks in the
  2494 // method will be recompiled.
  2495 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
  2496   if (UncommonNullCast               // Cutout for this technique
  2497       && obj != null()               // And not the -Xcomp stupid case?
  2498       && !too_many_traps(Deoptimization::Reason_null_check)
  2499       ) {
  2500     if (data == NULL)
  2501       // Edge case:  no mature data.  Be optimistic here.
  2502       return true;
  2503     // If the profile has not seen a null, assume it won't happen.
  2504     assert(java_bc() == Bytecodes::_checkcast ||
  2505            java_bc() == Bytecodes::_instanceof ||
  2506            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
  2507     return !data->as_BitData()->null_seen();
  2509   return false;
  2512 //------------------------maybe_cast_profiled_receiver-------------------------
  2513 // If the profile has seen exactly one type, narrow to exactly that type.
  2514 // Subsequent type checks will always fold up.
  2515 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
  2516                                              ciProfileData* data,
  2517                                              ciKlass* require_klass) {
  2518   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
  2519   if (data == NULL)  return NULL;
  2521   // Make sure we haven't already deoptimized from this tactic.
  2522   if (too_many_traps(Deoptimization::Reason_class_check))
  2523     return NULL;
  2525   // (No, this isn't a call, but it's enough like a virtual call
  2526   // to use the same ciMethod accessor to get the profile info...)
  2527   ciCallProfile profile = method()->call_profile_at_bci(bci());
  2528   if (profile.count() >= 0 &&         // no cast failures here
  2529       profile.has_receiver(0) &&
  2530       profile.morphism() == 1) {
  2531     ciKlass* exact_kls = profile.receiver(0);
  2532     if (require_klass == NULL ||
  2533         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
  2534       // If we narrow the type to match what the type profile sees,
  2535       // we can then remove the rest of the cast.
  2536       // This is a win, even if the exact_kls is very specific,
  2537       // because downstream operations, such as method calls,
  2538       // will often benefit from the sharper type.
  2539       Node* exact_obj = not_null_obj; // will get updated in place...
  2540       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2541                                             &exact_obj);
  2542       { PreserveJVMState pjvms(this);
  2543         set_control(slow_ctl);
  2544         uncommon_trap(Deoptimization::Reason_class_check,
  2545                       Deoptimization::Action_maybe_recompile);
  2547       replace_in_map(not_null_obj, exact_obj);
  2548       return exact_obj;
  2550     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
  2553   return NULL;
  2557 //-------------------------------gen_instanceof--------------------------------
  2558 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2559 // and the reflective instance-of call.
  2560 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass) {
  2561   kill_dead_locals();           // Benefit all the uncommon traps
  2562   assert( !stopped(), "dead parse path should be checked in callers" );
  2563   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2564          "must check for not-null not-dead klass in callers");
  2566   // Make the merge point
  2567   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2568   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2569   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2570   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2572   ciProfileData* data = NULL;
  2573   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
  2574     data = method()->method_data()->bci_to_data(bci());
  2576   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
  2577                          && seems_never_null(obj, data));
  2579   // Null check; get casted pointer; set region slot 3
  2580   Node* null_ctl = top();
  2581   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2583   // If not_null_obj is dead, only null-path is taken
  2584   if (stopped()) {              // Doing instance-of on a NULL?
  2585     set_control(null_ctl);
  2586     return intcon(0);
  2588   region->init_req(_null_path, null_ctl);
  2589   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2590   if (null_ctl == top()) {
  2591     // Do this eagerly, so that pattern matches like is_diamond_phi
  2592     // will work even during parsing.
  2593     assert(_null_path == PATH_LIMIT-1, "delete last");
  2594     region->del_req(_null_path);
  2595     phi   ->del_req(_null_path);
  2598   if (ProfileDynamicTypes && data != NULL) {
  2599     Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, NULL);
  2600     if (stopped()) {            // Profile disagrees with this path.
  2601       set_control(null_ctl);    // Null is the only remaining possibility.
  2602       return intcon(0);
  2604     if (cast_obj != NULL)
  2605       not_null_obj = cast_obj;
  2608   // Load the object's klass
  2609   Node* obj_klass = load_object_klass(not_null_obj);
  2611   // Generate the subtype check
  2612   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2614   // Plug in the success path to the general merge in slot 1.
  2615   region->init_req(_obj_path, control());
  2616   phi   ->init_req(_obj_path, intcon(1));
  2618   // Plug in the failing path to the general merge in slot 2.
  2619   region->init_req(_fail_path, not_subtype_ctrl);
  2620   phi   ->init_req(_fail_path, intcon(0));
  2622   // Return final merged results
  2623   set_control( _gvn.transform(region) );
  2624   record_for_igvn(region);
  2625   return _gvn.transform(phi);
  2628 //-------------------------------gen_checkcast---------------------------------
  2629 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2630 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2631 // uncommon-trap paths work.  Adjust stack after this call.
  2632 // If failure_control is supplied and not null, it is filled in with
  2633 // the control edge for the cast failure.  Otherwise, an appropriate
  2634 // uncommon trap or exception is thrown.
  2635 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2636                               Node* *failure_control) {
  2637   kill_dead_locals();           // Benefit all the uncommon traps
  2638   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2639   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2641   // Fast cutout:  Check the case that the cast is vacuously true.
  2642   // This detects the common cases where the test will short-circuit
  2643   // away completely.  We do this before we perform the null check,
  2644   // because if the test is going to turn into zero code, we don't
  2645   // want a residual null check left around.  (Causes a slowdown,
  2646   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2647   if (tk->singleton()) {
  2648     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2649     if (objtp != NULL && objtp->klass() != NULL) {
  2650       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2651       case SSC_always_true:
  2652         return obj;
  2653       case SSC_always_false:
  2654         // It needs a null check because a null will *pass* the cast check.
  2655         // A non-null value will always produce an exception.
  2656         return do_null_assert(obj, T_OBJECT);
  2661   ciProfileData* data = NULL;
  2662   if (failure_control == NULL) {        // use MDO in regular case only
  2663     assert(java_bc() == Bytecodes::_aastore ||
  2664            java_bc() == Bytecodes::_checkcast,
  2665            "interpreter profiles type checks only for these BCs");
  2666     data = method()->method_data()->bci_to_data(bci());
  2669   // Make the merge point
  2670   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  2671   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2672   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
  2673   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2675   // Use null-cast information if it is available
  2676   bool never_see_null = ((failure_control == NULL)  // regular case only
  2677                          && seems_never_null(obj, data));
  2679   // Null check; get casted pointer; set region slot 3
  2680   Node* null_ctl = top();
  2681   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2683   // If not_null_obj is dead, only null-path is taken
  2684   if (stopped()) {              // Doing instance-of on a NULL?
  2685     set_control(null_ctl);
  2686     return null();
  2688   region->init_req(_null_path, null_ctl);
  2689   phi   ->init_req(_null_path, null());  // Set null path value
  2690   if (null_ctl == top()) {
  2691     // Do this eagerly, so that pattern matches like is_diamond_phi
  2692     // will work even during parsing.
  2693     assert(_null_path == PATH_LIMIT-1, "delete last");
  2694     region->del_req(_null_path);
  2695     phi   ->del_req(_null_path);
  2698   Node* cast_obj = NULL;
  2699   if (data != NULL &&
  2700       // Counter has never been decremented (due to cast failure).
  2701       // ...This is a reasonable thing to expect.  It is true of
  2702       // all casts inserted by javac to implement generic types.
  2703       data->as_CounterData()->count() >= 0) {
  2704     cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, tk->klass());
  2705     if (cast_obj != NULL) {
  2706       if (failure_control != NULL) // failure is now impossible
  2707         (*failure_control) = top();
  2708       // adjust the type of the phi to the exact klass:
  2709       phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
  2713   if (cast_obj == NULL) {
  2714     // Load the object's klass
  2715     Node* obj_klass = load_object_klass(not_null_obj);
  2717     // Generate the subtype check
  2718     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  2720     // Plug in success path into the merge
  2721     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
  2722                                                          not_null_obj, toop));
  2723     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  2724     if (failure_control == NULL) {
  2725       if (not_subtype_ctrl != top()) { // If failure is possible
  2726         PreserveJVMState pjvms(this);
  2727         set_control(not_subtype_ctrl);
  2728         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  2730     } else {
  2731       (*failure_control) = not_subtype_ctrl;
  2735   region->init_req(_obj_path, control());
  2736   phi   ->init_req(_obj_path, cast_obj);
  2738   // A merge of NULL or Casted-NotNull obj
  2739   Node* res = _gvn.transform(phi);
  2741   // Note I do NOT always 'replace_in_map(obj,result)' here.
  2742   //  if( tk->klass()->can_be_primary_super()  )
  2743     // This means that if I successfully store an Object into an array-of-String
  2744     // I 'forget' that the Object is really now known to be a String.  I have to
  2745     // do this because we don't have true union types for interfaces - if I store
  2746     // a Baz into an array-of-Interface and then tell the optimizer it's an
  2747     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  2748     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  2749   //  replace_in_map( obj, res );
  2751   // Return final merged results
  2752   set_control( _gvn.transform(region) );
  2753   record_for_igvn(region);
  2754   return res;
  2757 //------------------------------next_monitor-----------------------------------
  2758 // What number should be given to the next monitor?
  2759 int GraphKit::next_monitor() {
  2760   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  2761   int next = current + C->sync_stack_slots();
  2762   // Keep the toplevel high water mark current:
  2763   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  2764   return current;
  2767 //------------------------------insert_mem_bar---------------------------------
  2768 // Memory barrier to avoid floating things around
  2769 // The membar serves as a pinch point between both control and all memory slices.
  2770 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  2771   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  2772   mb->init_req(TypeFunc::Control, control());
  2773   mb->init_req(TypeFunc::Memory,  reset_memory());
  2774   Node* membar = _gvn.transform(mb);
  2775   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
  2776   set_all_memory_call(membar);
  2777   return membar;
  2780 //-------------------------insert_mem_bar_volatile----------------------------
  2781 // Memory barrier to avoid floating things around
  2782 // The membar serves as a pinch point between both control and memory(alias_idx).
  2783 // If you want to make a pinch point on all memory slices, do not use this
  2784 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  2785 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  2786   // When Parse::do_put_xxx updates a volatile field, it appends a series
  2787   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  2788   // The first membar is on the same memory slice as the field store opcode.
  2789   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  2790   // All the other membars (for other volatile slices, including AliasIdxBot,
  2791   // which stands for all unknown volatile slices) are control-dependent
  2792   // on the first membar.  This prevents later volatile loads or stores
  2793   // from sliding up past the just-emitted store.
  2795   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  2796   mb->set_req(TypeFunc::Control,control());
  2797   if (alias_idx == Compile::AliasIdxBot) {
  2798     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  2799   } else {
  2800     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  2801     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  2803   Node* membar = _gvn.transform(mb);
  2804   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
  2805   if (alias_idx == Compile::AliasIdxBot) {
  2806     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
  2807   } else {
  2808     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  2810   return membar;
  2813 //------------------------------shared_lock------------------------------------
  2814 // Emit locking code.
  2815 FastLockNode* GraphKit::shared_lock(Node* obj) {
  2816   // bci is either a monitorenter bc or InvocationEntryBci
  2817   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2818   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2820   if( !GenerateSynchronizationCode )
  2821     return NULL;                // Not locking things?
  2822   if (stopped())                // Dead monitor?
  2823     return NULL;
  2825   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  2827   // Box the stack location
  2828   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
  2829   Node* mem = reset_memory();
  2831   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
  2832   if (PrintPreciseBiasedLockingStatistics) {
  2833     // Create the counters for this fast lock.
  2834     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  2836   // Add monitor to debug info for the slow path.  If we block inside the
  2837   // slow path and de-opt, we need the monitor hanging around
  2838   map()->push_monitor( flock );
  2840   const TypeFunc *tf = LockNode::lock_type();
  2841   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
  2843   lock->init_req( TypeFunc::Control, control() );
  2844   lock->init_req( TypeFunc::Memory , mem );
  2845   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2846   lock->init_req( TypeFunc::FramePtr, frameptr() );
  2847   lock->init_req( TypeFunc::ReturnAdr, top() );
  2849   lock->init_req(TypeFunc::Parms + 0, obj);
  2850   lock->init_req(TypeFunc::Parms + 1, box);
  2851   lock->init_req(TypeFunc::Parms + 2, flock);
  2852   add_safepoint_edges(lock);
  2854   lock = _gvn.transform( lock )->as_Lock();
  2856   // lock has no side-effects, sets few values
  2857   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  2859   insert_mem_bar(Op_MemBarAcquireLock);
  2861   // Add this to the worklist so that the lock can be eliminated
  2862   record_for_igvn(lock);
  2864 #ifndef PRODUCT
  2865   if (PrintLockStatistics) {
  2866     // Update the counter for this lock.  Don't bother using an atomic
  2867     // operation since we don't require absolute accuracy.
  2868     lock->create_lock_counter(map()->jvms());
  2869     increment_counter(lock->counter()->addr());
  2871 #endif
  2873   return flock;
  2877 //------------------------------shared_unlock----------------------------------
  2878 // Emit unlocking code.
  2879 void GraphKit::shared_unlock(Node* box, Node* obj) {
  2880   // bci is either a monitorenter bc or InvocationEntryBci
  2881   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2882   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2884   if( !GenerateSynchronizationCode )
  2885     return;
  2886   if (stopped()) {               // Dead monitor?
  2887     map()->pop_monitor();        // Kill monitor from debug info
  2888     return;
  2891   // Memory barrier to avoid floating things down past the locked region
  2892   insert_mem_bar(Op_MemBarReleaseLock);
  2894   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  2895   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
  2896   uint raw_idx = Compile::AliasIdxRaw;
  2897   unlock->init_req( TypeFunc::Control, control() );
  2898   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  2899   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2900   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  2901   unlock->init_req( TypeFunc::ReturnAdr, top() );
  2903   unlock->init_req(TypeFunc::Parms + 0, obj);
  2904   unlock->init_req(TypeFunc::Parms + 1, box);
  2905   unlock = _gvn.transform(unlock)->as_Unlock();
  2907   Node* mem = reset_memory();
  2909   // unlock has no side-effects, sets few values
  2910   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  2912   // Kill monitor from debug info
  2913   map()->pop_monitor( );
  2916 //-------------------------------get_layout_helper-----------------------------
  2917 // If the given klass is a constant or known to be an array,
  2918 // fetch the constant layout helper value into constant_value
  2919 // and return (Node*)NULL.  Otherwise, load the non-constant
  2920 // layout helper value, and return the node which represents it.
  2921 // This two-faced routine is useful because allocation sites
  2922 // almost always feature constant types.
  2923 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  2924   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  2925   if (!StressReflectiveCode && inst_klass != NULL) {
  2926     ciKlass* klass = inst_klass->klass();
  2927     bool    xklass = inst_klass->klass_is_exact();
  2928     if (xklass || klass->is_array_klass()) {
  2929       jint lhelper = klass->layout_helper();
  2930       if (lhelper != Klass::_lh_neutral_value) {
  2931         constant_value = lhelper;
  2932         return (Node*) NULL;
  2936   constant_value = Klass::_lh_neutral_value;  // put in a known value
  2937   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
  2938   return make_load(NULL, lhp, TypeInt::INT, T_INT);
  2941 // We just put in an allocate/initialize with a big raw-memory effect.
  2942 // Hook selected additional alias categories on the initialization.
  2943 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  2944                                 MergeMemNode* init_in_merge,
  2945                                 Node* init_out_raw) {
  2946   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  2947   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  2949   Node* prevmem = kit.memory(alias_idx);
  2950   init_in_merge->set_memory_at(alias_idx, prevmem);
  2951   kit.set_memory(init_out_raw, alias_idx);
  2954 //---------------------------set_output_for_allocation-------------------------
  2955 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  2956                                           const TypeOopPtr* oop_type) {
  2957   int rawidx = Compile::AliasIdxRaw;
  2958   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  2959   add_safepoint_edges(alloc);
  2960   Node* allocx = _gvn.transform(alloc);
  2961   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
  2962   // create memory projection for i_o
  2963   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  2964   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
  2966   // create a memory projection as for the normal control path
  2967   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
  2968   set_memory(malloc, rawidx);
  2970   // a normal slow-call doesn't change i_o, but an allocation does
  2971   // we create a separate i_o projection for the normal control path
  2972   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
  2973   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
  2975   // put in an initialization barrier
  2976   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  2977                                                  rawoop)->as_Initialize();
  2978   assert(alloc->initialization() == init,  "2-way macro link must work");
  2979   assert(init ->allocation()     == alloc, "2-way macro link must work");
  2981     // Extract memory strands which may participate in the new object's
  2982     // initialization, and source them from the new InitializeNode.
  2983     // This will allow us to observe initializations when they occur,
  2984     // and link them properly (as a group) to the InitializeNode.
  2985     assert(init->in(InitializeNode::Memory) == malloc, "");
  2986     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  2987     init->set_req(InitializeNode::Memory, minit_in);
  2988     record_for_igvn(minit_in); // fold it up later, if possible
  2989     Node* minit_out = memory(rawidx);
  2990     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  2991     if (oop_type->isa_aryptr()) {
  2992       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  2993       int            elemidx  = C->get_alias_index(telemref);
  2994       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  2995     } else if (oop_type->isa_instptr()) {
  2996       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  2997       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  2998         ciField* field = ik->nonstatic_field_at(i);
  2999         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  3000           continue;  // do not bother to track really large numbers of fields
  3001         // Find (or create) the alias category for this field:
  3002         int fieldidx = C->alias_type(field)->index();
  3003         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  3008   // Cast raw oop to the real thing...
  3009   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
  3010   javaoop = _gvn.transform(javaoop);
  3011   C->set_recent_alloc(control(), javaoop);
  3012   assert(just_allocated_object(control()) == javaoop, "just allocated");
  3014 #ifdef ASSERT
  3015   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  3016     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  3017            "Ideal_allocation works");
  3018     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  3019            "Ideal_allocation works");
  3020     if (alloc->is_AllocateArray()) {
  3021       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  3022              "Ideal_allocation works");
  3023       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  3024              "Ideal_allocation works");
  3025     } else {
  3026       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  3029 #endif //ASSERT
  3031   return javaoop;
  3034 //---------------------------new_instance--------------------------------------
  3035 // This routine takes a klass_node which may be constant (for a static type)
  3036 // or may be non-constant (for reflective code).  It will work equally well
  3037 // for either, and the graph will fold nicely if the optimizer later reduces
  3038 // the type to a constant.
  3039 // The optional arguments are for specialized use by intrinsics:
  3040 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  3041 //  - If 'return_size_val', report the the total object size to the caller.
  3042 Node* GraphKit::new_instance(Node* klass_node,
  3043                              Node* extra_slow_test,
  3044                              Node* *return_size_val) {
  3045   // Compute size in doublewords
  3046   // The size is always an integral number of doublewords, represented
  3047   // as a positive bytewise size stored in the klass's layout_helper.
  3048   // The layout_helper also encodes (in a low bit) the need for a slow path.
  3049   jint  layout_con = Klass::_lh_neutral_value;
  3050   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3051   int   layout_is_con = (layout_val == NULL);
  3053   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  3054   // Generate the initial go-slow test.  It's either ALWAYS (return a
  3055   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  3056   // case) a computed value derived from the layout_helper.
  3057   Node* initial_slow_test = NULL;
  3058   if (layout_is_con) {
  3059     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3060     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  3061     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  3063   } else {   // reflective case
  3064     // This reflective path is used by Unsafe.allocateInstance.
  3065     // (It may be stress-tested by specifying StressReflectiveCode.)
  3066     // Basically, we want to get into the VM is there's an illegal argument.
  3067     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  3068     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
  3069     if (extra_slow_test != intcon(0)) {
  3070       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
  3072     // (Macro-expander will further convert this to a Bool, if necessary.)
  3075   // Find the size in bytes.  This is easy; it's the layout_helper.
  3076   // The size value must be valid even if the slow path is taken.
  3077   Node* size = NULL;
  3078   if (layout_is_con) {
  3079     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  3080   } else {   // reflective case
  3081     // This reflective path is used by clone and Unsafe.allocateInstance.
  3082     size = ConvI2X(layout_val);
  3084     // Clear the low bits to extract layout_helper_size_in_bytes:
  3085     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  3086     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  3087     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
  3089   if (return_size_val != NULL) {
  3090     (*return_size_val) = size;
  3093   // This is a precise notnull oop of the klass.
  3094   // (Actually, it need not be precise if this is a reflective allocation.)
  3095   // It's what we cast the result to.
  3096   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  3097   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  3098   const TypeOopPtr* oop_type = tklass->as_instance_type();
  3100   // Now generate allocation code
  3102   // The entire memory state is needed for slow path of the allocation
  3103   // since GC and deoptimization can happened.
  3104   Node *mem = reset_memory();
  3105   set_all_memory(mem); // Create new memory state
  3107   AllocateNode* alloc
  3108     = new (C, AllocateNode::ParmLimit)
  3109         AllocateNode(C, AllocateNode::alloc_type(),
  3110                      control(), mem, i_o(),
  3111                      size, klass_node,
  3112                      initial_slow_test);
  3114   return set_output_for_allocation(alloc, oop_type);
  3117 //-------------------------------new_array-------------------------------------
  3118 // helper for both newarray and anewarray
  3119 // The 'length' parameter is (obviously) the length of the array.
  3120 // See comments on new_instance for the meaning of the other arguments.
  3121 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  3122                           Node* length,         // number of array elements
  3123                           int   nargs,          // number of arguments to push back for uncommon trap
  3124                           Node* *return_size_val) {
  3125   jint  layout_con = Klass::_lh_neutral_value;
  3126   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3127   int   layout_is_con = (layout_val == NULL);
  3129   if (!layout_is_con && !StressReflectiveCode &&
  3130       !too_many_traps(Deoptimization::Reason_class_check)) {
  3131     // This is a reflective array creation site.
  3132     // Optimistically assume that it is a subtype of Object[],
  3133     // so that we can fold up all the address arithmetic.
  3134     layout_con = Klass::array_layout_helper(T_OBJECT);
  3135     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
  3136     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
  3137     { BuildCutout unless(this, bol_lh, PROB_MAX);
  3138       _sp += nargs;
  3139       uncommon_trap(Deoptimization::Reason_class_check,
  3140                     Deoptimization::Action_maybe_recompile);
  3142     layout_val = NULL;
  3143     layout_is_con = true;
  3146   // Generate the initial go-slow test.  Make sure we do not overflow
  3147   // if length is huge (near 2Gig) or negative!  We do not need
  3148   // exact double-words here, just a close approximation of needed
  3149   // double-words.  We can't add any offset or rounding bits, lest we
  3150   // take a size -1 of bytes and make it positive.  Use an unsigned
  3151   // compare, so negative sizes look hugely positive.
  3152   int fast_size_limit = FastAllocateSizeLimit;
  3153   if (layout_is_con) {
  3154     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3155     // Increase the size limit if we have exact knowledge of array type.
  3156     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  3157     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  3160   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
  3161   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  3162   if (initial_slow_test->is_Bool()) {
  3163     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  3164     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  3167   // --- Size Computation ---
  3168   // array_size = round_to_heap(array_header + (length << elem_shift));
  3169   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  3170   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  3171   // The rounding mask is strength-reduced, if possible.
  3172   int round_mask = MinObjAlignmentInBytes - 1;
  3173   Node* header_size = NULL;
  3174   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  3175   // (T_BYTE has the weakest alignment and size restrictions...)
  3176   if (layout_is_con) {
  3177     int       hsize  = Klass::layout_helper_header_size(layout_con);
  3178     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  3179     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  3180     if ((round_mask & ~right_n_bits(eshift)) == 0)
  3181       round_mask = 0;  // strength-reduce it if it goes away completely
  3182     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  3183     assert(header_size_min <= hsize, "generic minimum is smallest");
  3184     header_size_min = hsize;
  3185     header_size = intcon(hsize + round_mask);
  3186   } else {
  3187     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3188     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3189     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
  3190     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
  3191     Node* mask  = intcon(round_mask);
  3192     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
  3195   Node* elem_shift = NULL;
  3196   if (layout_is_con) {
  3197     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3198     if (eshift != 0)
  3199       elem_shift = intcon(eshift);
  3200   } else {
  3201     // There is no need to mask or shift this value.
  3202     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3203     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3204     elem_shift = layout_val;
  3207   // Transition to native address size for all offset calculations:
  3208   Node* lengthx = ConvI2X(length);
  3209   Node* headerx = ConvI2X(header_size);
  3210 #ifdef _LP64
  3211   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
  3212     if (tllen != NULL && tllen->_lo < 0) {
  3213       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3214       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
  3215       if (size_max > tllen->_hi)  size_max = tllen->_hi;
  3216       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
  3217       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
  3220 #endif
  3222   // Combine header size (plus rounding) and body size.  Then round down.
  3223   // This computation cannot overflow, because it is used only in two
  3224   // places, one where the length is sharply limited, and the other
  3225   // after a successful allocation.
  3226   Node* abody = lengthx;
  3227   if (elem_shift != NULL)
  3228     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
  3229   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
  3230   if (round_mask != 0) {
  3231     Node* mask = MakeConX(~round_mask);
  3232     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
  3234   // else if round_mask == 0, the size computation is self-rounding
  3236   if (return_size_val != NULL) {
  3237     // This is the size
  3238     (*return_size_val) = size;
  3241   // Now generate allocation code
  3243   // The entire memory state is needed for slow path of the allocation
  3244   // since GC and deoptimization can happened.
  3245   Node *mem = reset_memory();
  3246   set_all_memory(mem); // Create new memory state
  3248   // Create the AllocateArrayNode and its result projections
  3249   AllocateArrayNode* alloc
  3250     = new (C, AllocateArrayNode::ParmLimit)
  3251         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
  3252                           control(), mem, i_o(),
  3253                           size, klass_node,
  3254                           initial_slow_test,
  3255                           length);
  3257   // Cast to correct type.  Note that the klass_node may be constant or not,
  3258   // and in the latter case the actual array type will be inexact also.
  3259   // (This happens via a non-constant argument to inline_native_newArray.)
  3260   // In any case, the value of klass_node provides the desired array type.
  3261   const TypeInt* length_type = _gvn.find_int_type(length);
  3262   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3263   if (ary_type->isa_aryptr() && length_type != NULL) {
  3264     // Try to get a better type than POS for the size
  3265     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3268   Node* javaoop = set_output_for_allocation(alloc, ary_type);
  3270   // Cast length on remaining path to be as narrow as possible
  3271   if (map()->find_edge(length) >= 0) {
  3272     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3273     if (ccast != length) {
  3274       _gvn.set_type_bottom(ccast);
  3275       record_for_igvn(ccast);
  3276       replace_in_map(length, ccast);
  3280   return javaoop;
  3283 // The following "Ideal_foo" functions are placed here because they recognize
  3284 // the graph shapes created by the functions immediately above.
  3286 //---------------------------Ideal_allocation----------------------------------
  3287 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3288 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3289   if (ptr == NULL) {     // reduce dumb test in callers
  3290     return NULL;
  3292   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
  3293     ptr = ptr->in(1);
  3294     if (ptr == NULL)  return NULL;
  3296   if (ptr->is_Proj()) {
  3297     Node* allo = ptr->in(0);
  3298     if (allo != NULL && allo->is_Allocate()) {
  3299       return allo->as_Allocate();
  3302   // Report failure to match.
  3303   return NULL;
  3306 // Fancy version which also strips off an offset (and reports it to caller).
  3307 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3308                                              intptr_t& offset) {
  3309   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3310   if (base == NULL)  return NULL;
  3311   return Ideal_allocation(base, phase);
  3314 // Trace Initialize <- Proj[Parm] <- Allocate
  3315 AllocateNode* InitializeNode::allocation() {
  3316   Node* rawoop = in(InitializeNode::RawAddress);
  3317   if (rawoop->is_Proj()) {
  3318     Node* alloc = rawoop->in(0);
  3319     if (alloc->is_Allocate()) {
  3320       return alloc->as_Allocate();
  3323   return NULL;
  3326 // Trace Allocate -> Proj[Parm] -> Initialize
  3327 InitializeNode* AllocateNode::initialization() {
  3328   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3329   if (rawoop == NULL)  return NULL;
  3330   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3331     Node* init = rawoop->fast_out(i);
  3332     if (init->is_Initialize()) {
  3333       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3334       return init->as_Initialize();
  3337   return NULL;
  3340 //----------------------------- loop predicates ---------------------------
  3342 //------------------------------add_predicate_impl----------------------------
  3343 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
  3344   // Too many traps seen?
  3345   if (too_many_traps(reason)) {
  3346 #ifdef ASSERT
  3347     if (TraceLoopPredicate) {
  3348       int tc = C->trap_count(reason);
  3349       tty->print("too many traps=%s tcount=%d in ",
  3350                     Deoptimization::trap_reason_name(reason), tc);
  3351       method()->print(); // which method has too many predicate traps
  3352       tty->cr();
  3354 #endif
  3355     // We cannot afford to take more traps here,
  3356     // do not generate predicate.
  3357     return;
  3360   Node *cont    = _gvn.intcon(1);
  3361   Node* opq     = _gvn.transform(new (C, 2) Opaque1Node(C, cont));
  3362   Node *bol     = _gvn.transform(new (C, 2) Conv2BNode(opq));
  3363   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  3364   Node* iffalse = _gvn.transform(new (C, 1) IfFalseNode(iff));
  3365   C->add_predicate_opaq(opq);
  3367     PreserveJVMState pjvms(this);
  3368     set_control(iffalse);
  3369     _sp += nargs;
  3370     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
  3372   Node* iftrue = _gvn.transform(new (C, 1) IfTrueNode(iff));
  3373   set_control(iftrue);
  3376 //------------------------------add_predicate---------------------------------
  3377 void GraphKit::add_predicate(int nargs) {
  3378   if (UseLoopPredicate) {
  3379     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
  3381   // loop's limit check predicate should be near the loop.
  3382   if (LoopLimitCheck) {
  3383     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
  3387 //----------------------------- store barriers ----------------------------
  3388 #define __ ideal.
  3390 void GraphKit::sync_kit(IdealKit& ideal) {
  3391   set_all_memory(__ merged_memory());
  3392   set_i_o(__ i_o());
  3393   set_control(__ ctrl());
  3396 void GraphKit::final_sync(IdealKit& ideal) {
  3397   // Final sync IdealKit and graphKit.
  3398   __ drain_delay_transform();
  3399   sync_kit(ideal);
  3402 // vanilla/CMS post barrier
  3403 // Insert a write-barrier store.  This is to let generational GC work; we have
  3404 // to flag all oop-stores before the next GC point.
  3405 void GraphKit::write_barrier_post(Node* oop_store,
  3406                                   Node* obj,
  3407                                   Node* adr,
  3408                                   uint  adr_idx,
  3409                                   Node* val,
  3410                                   bool use_precise) {
  3411   // No store check needed if we're storing a NULL or an old object
  3412   // (latter case is probably a string constant). The concurrent
  3413   // mark sweep garbage collector, however, needs to have all nonNull
  3414   // oop updates flagged via card-marks.
  3415   if (val != NULL && val->is_Con()) {
  3416     // must be either an oop or NULL
  3417     const Type* t = val->bottom_type();
  3418     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3419       // stores of null never (?) need barriers
  3420       return;
  3421     ciObject* con = t->is_oopptr()->const_oop();
  3422     if (con != NULL
  3423         && con->is_perm()
  3424         && Universe::heap()->can_elide_permanent_oop_store_barriers())
  3425       // no store barrier needed, because no old-to-new ref created
  3426       return;
  3429   if (use_ReduceInitialCardMarks()
  3430       && obj == just_allocated_object(control())) {
  3431     // We can skip marks on a freshly-allocated object in Eden.
  3432     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
  3433     // That routine informs GC to take appropriate compensating steps,
  3434     // upon a slow-path allocation, so as to make this card-mark
  3435     // elision safe.
  3436     return;
  3439   if (!use_precise) {
  3440     // All card marks for a (non-array) instance are in one place:
  3441     adr = obj;
  3443   // (Else it's an array (or unknown), and we want more precise card marks.)
  3444   assert(adr != NULL, "");
  3446   IdealKit ideal(this, true);
  3448   // Convert the pointer to an int prior to doing math on it
  3449   Node* cast = __ CastPX(__ ctrl(), adr);
  3451   // Divide by card size
  3452   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3453          "Only one we handle so far.");
  3454   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3456   // Combine card table base and card offset
  3457   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3459   // Get the alias_index for raw card-mark memory
  3460   int adr_type = Compile::AliasIdxRaw;
  3461   Node*   zero = __ ConI(0); // Dirty card value
  3462   BasicType bt = T_BYTE;
  3464   if (UseCondCardMark) {
  3465     // The classic GC reference write barrier is typically implemented
  3466     // as a store into the global card mark table.  Unfortunately
  3467     // unconditional stores can result in false sharing and excessive
  3468     // coherence traffic as well as false transactional aborts.
  3469     // UseCondCardMark enables MP "polite" conditional card mark
  3470     // stores.  In theory we could relax the load from ctrl() to
  3471     // no_ctrl, but that doesn't buy much latitude.
  3472     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
  3473     __ if_then(card_val, BoolTest::ne, zero);
  3476   // Smash zero into card
  3477   if( !UseConcMarkSweepGC ) {
  3478     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
  3479   } else {
  3480     // Specialized path for CM store barrier
  3481     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3484   if (UseCondCardMark) {
  3485     __ end_if();
  3488   // Final sync IdealKit and GraphKit.
  3489   final_sync(ideal);
  3492 // G1 pre/post barriers
  3493 void GraphKit::g1_write_barrier_pre(bool do_load,
  3494                                     Node* obj,
  3495                                     Node* adr,
  3496                                     uint alias_idx,
  3497                                     Node* val,
  3498                                     const TypeOopPtr* val_type,
  3499                                     Node* pre_val,
  3500                                     BasicType bt) {
  3502   // Some sanity checks
  3503   // Note: val is unused in this routine.
  3505   if (do_load) {
  3506     // We need to generate the load of the previous value
  3507     assert(obj != NULL, "must have a base");
  3508     assert(adr != NULL, "where are loading from?");
  3509     assert(pre_val == NULL, "loaded already?");
  3510     assert(val_type != NULL, "need a type");
  3511   } else {
  3512     // In this case both val_type and alias_idx are unused.
  3513     assert(pre_val != NULL, "must be loaded already");
  3514     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
  3516   assert(bt == T_OBJECT, "or we shouldn't be here");
  3518   IdealKit ideal(this, true);
  3520   Node* tls = __ thread(); // ThreadLocalStorage
  3522   Node* no_ctrl = NULL;
  3523   Node* no_base = __ top();
  3524   Node* zero = __ ConI(0);
  3526   float likely  = PROB_LIKELY(0.999);
  3527   float unlikely  = PROB_UNLIKELY(0.999);
  3529   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3530   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3532   // Offsets into the thread
  3533   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3534                                           PtrQueue::byte_offset_of_active());
  3535   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3536                                           PtrQueue::byte_offset_of_index());
  3537   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3538                                           PtrQueue::byte_offset_of_buf());
  3540   // Now the actual pointers into the thread
  3541   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3542   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3543   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3545   // Now some of the values
  3546   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3548   // if (!marking)
  3549   __ if_then(marking, BoolTest::ne, zero); {
  3550     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3552     if (do_load) {
  3553       // load original value
  3554       // alias_idx correct??
  3555       pre_val = __ load(no_ctrl, adr, val_type, bt, alias_idx);
  3558     // if (pre_val != NULL)
  3559     __ if_then(pre_val, BoolTest::ne, null()); {
  3560       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3562       // is the queue for this thread full?
  3563       __ if_then(index, BoolTest::ne, zero, likely); {
  3565         // decrement the index
  3566         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
  3567         Node* next_indexX = next_index;
  3568 #ifdef _LP64
  3569         // We could refine the type for what it's worth
  3570         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3571         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3572 #endif
  3574         // Now get the buffer location we will log the previous value into and store it
  3575         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
  3576         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw);
  3577         // update the index
  3578         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3580       } __ else_(); {
  3582         // logging buffer is full, call the runtime
  3583         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3584         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
  3585       } __ end_if();  // (!index)
  3586     } __ end_if();  // (pre_val != NULL)
  3587   } __ end_if();  // (!marking)
  3589   // Final sync IdealKit and GraphKit.
  3590   final_sync(ideal);
  3593 //
  3594 // Update the card table and add card address to the queue
  3595 //
  3596 void GraphKit::g1_mark_card(IdealKit& ideal,
  3597                             Node* card_adr,
  3598                             Node* oop_store,
  3599                             uint oop_alias_idx,
  3600                             Node* index,
  3601                             Node* index_adr,
  3602                             Node* buffer,
  3603                             const TypeFunc* tf) {
  3605   Node* zero = __ ConI(0);
  3606   Node* no_base = __ top();
  3607   BasicType card_bt = T_BYTE;
  3608   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3609   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3611   //  Now do the queue work
  3612   __ if_then(index, BoolTest::ne, zero); {
  3614     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
  3615     Node* next_indexX = next_index;
  3616 #ifdef _LP64
  3617     // We could refine the type for what it's worth
  3618     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3619     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3620 #endif // _LP64
  3621     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
  3623     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
  3624     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3626   } __ else_(); {
  3627     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3628   } __ end_if();
  3632 void GraphKit::g1_write_barrier_post(Node* oop_store,
  3633                                      Node* obj,
  3634                                      Node* adr,
  3635                                      uint alias_idx,
  3636                                      Node* val,
  3637                                      BasicType bt,
  3638                                      bool use_precise) {
  3639   // If we are writing a NULL then we need no post barrier
  3641   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  3642     // Must be NULL
  3643     const Type* t = val->bottom_type();
  3644     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  3645     // No post barrier if writing NULLx
  3646     return;
  3649   if (!use_precise) {
  3650     // All card marks for a (non-array) instance are in one place:
  3651     adr = obj;
  3653   // (Else it's an array (or unknown), and we want more precise card marks.)
  3654   assert(adr != NULL, "");
  3656   IdealKit ideal(this, true);
  3658   Node* tls = __ thread(); // ThreadLocalStorage
  3660   Node* no_base = __ top();
  3661   float likely  = PROB_LIKELY(0.999);
  3662   float unlikely  = PROB_UNLIKELY(0.999);
  3663   Node* zero = __ ConI(0);
  3664   Node* zeroX = __ ConX(0);
  3666   // Get the alias_index for raw card-mark memory
  3667   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  3669   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  3671   // Offsets into the thread
  3672   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  3673                                      PtrQueue::byte_offset_of_index());
  3674   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  3675                                      PtrQueue::byte_offset_of_buf());
  3677   // Pointers into the thread
  3679   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3680   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  3682   // Now some values
  3683   // Use ctrl to avoid hoisting these values past a safepoint, which could
  3684   // potentially reset these fields in the JavaThread.
  3685   Node* index  = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3686   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3688   // Convert the store obj pointer to an int prior to doing math on it
  3689   // Must use ctrl to prevent "integerized oop" existing across safepoint
  3690   Node* cast =  __ CastPX(__ ctrl(), adr);
  3692   // Divide pointer by card size
  3693   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3695   // Combine card table base and card offset
  3696   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  3698   // If we know the value being stored does it cross regions?
  3700   if (val != NULL) {
  3701     // Does the store cause us to cross regions?
  3703     // Should be able to do an unsigned compare of region_size instead of
  3704     // and extra shift. Do we have an unsigned compare??
  3705     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  3706     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  3708     // if (xor_res == 0) same region so skip
  3709     __ if_then(xor_res, BoolTest::ne, zeroX); {
  3711       // No barrier if we are storing a NULL
  3712       __ if_then(val, BoolTest::ne, null(), unlikely); {
  3714         // Ok must mark the card if not already dirty
  3716         // load the original value of the card
  3717         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  3719         __ if_then(card_val, BoolTest::ne, zero); {
  3720           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3721         } __ end_if();
  3722       } __ end_if();
  3723     } __ end_if();
  3724   } else {
  3725     // Object.clone() instrinsic uses this path.
  3726     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3729   // Final sync IdealKit and GraphKit.
  3730   final_sync(ideal);
  3732 #undef __

mercurial