src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Thu, 09 Oct 2014 15:42:23 +0200

author
mgerdin
date
Thu, 09 Oct 2014 15:42:23 +0200
changeset 7470
060cdf93040c
parent 5461
ca9dedeebdec
child 7476
c2844108a708
permissions
-rw-r--r--

8055479: TLAB stability
Reviewed-by: brutisso, stefank, ahgross

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gSpaceCounters.hpp"
    30 #include "gc_implementation/shared/gcStats.hpp"
    31 #include "gc_implementation/shared/gcWhen.hpp"
    32 #include "gc_implementation/shared/generationCounters.hpp"
    33 #include "memory/freeBlockDictionary.hpp"
    34 #include "memory/generation.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "runtime/virtualspace.hpp"
    37 #include "services/memoryService.hpp"
    38 #include "utilities/bitMap.inline.hpp"
    39 #include "utilities/stack.inline.hpp"
    40 #include "utilities/taskqueue.hpp"
    41 #include "utilities/yieldingWorkgroup.hpp"
    43 // ConcurrentMarkSweepGeneration is in support of a concurrent
    44 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    45 // style. We assume, for now, that this generation is always the
    46 // seniormost generation and for simplicity
    47 // in the first implementation, that this generation is a single compactible
    48 // space. Neither of these restrictions appears essential, and will be
    49 // relaxed in the future when more time is available to implement the
    50 // greater generality (and there's a need for it).
    51 //
    52 // Concurrent mode failures are currently handled by
    53 // means of a sliding mark-compact.
    55 class CMSAdaptiveSizePolicy;
    56 class CMSConcMarkingTask;
    57 class CMSGCAdaptivePolicyCounters;
    58 class CMSTracer;
    59 class ConcurrentGCTimer;
    60 class ConcurrentMarkSweepGeneration;
    61 class ConcurrentMarkSweepPolicy;
    62 class ConcurrentMarkSweepThread;
    63 class CompactibleFreeListSpace;
    64 class FreeChunk;
    65 class PromotionInfo;
    66 class ScanMarkedObjectsAgainCarefullyClosure;
    67 class TenuredGeneration;
    68 class SerialOldTracer;
    70 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    71 // as well as for the mod union table (in each case only a subset of the
    72 // methods are used). This is essentially a wrapper around the BitMap class,
    73 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    74 // we have _shifter == 0. and for the mod union table we have
    75 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    76 // XXX 64-bit issues in BitMap?
    77 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    78   friend class VMStructs;
    80   HeapWord* _bmStartWord;   // base address of range covered by map
    81   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    82   const int _shifter;       // shifts to convert HeapWord to bit position
    83   VirtualSpace _virtual_space; // underlying the bit map
    84   BitMap    _bm;            // the bit map itself
    85  public:
    86   Mutex* const _lock;       // mutex protecting _bm;
    88  public:
    89   // constructor
    90   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    92   // allocates the actual storage for the map
    93   bool allocate(MemRegion mr);
    94   // field getter
    95   Mutex* lock() const { return _lock; }
    96   // locking verifier convenience function
    97   void assert_locked() const PRODUCT_RETURN;
    99   // inquiries
   100   HeapWord* startWord()   const { return _bmStartWord; }
   101   size_t    sizeInWords() const { return _bmWordSize;  }
   102   size_t    sizeInBits()  const { return _bm.size();   }
   103   // the following is one past the last word in space
   104   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
   106   // reading marks
   107   bool isMarked(HeapWord* addr) const;
   108   bool par_isMarked(HeapWord* addr) const; // do not lock checks
   109   bool isUnmarked(HeapWord* addr) const;
   110   bool isAllClear() const;
   112   // writing marks
   113   void mark(HeapWord* addr);
   114   // For marking by parallel GC threads;
   115   // returns true if we did, false if another thread did
   116   bool par_mark(HeapWord* addr);
   118   void mark_range(MemRegion mr);
   119   void par_mark_range(MemRegion mr);
   120   void mark_large_range(MemRegion mr);
   121   void par_mark_large_range(MemRegion mr);
   122   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   123   void clear_range(MemRegion mr);
   124   void par_clear_range(MemRegion mr);
   125   void clear_large_range(MemRegion mr);
   126   void par_clear_large_range(MemRegion mr);
   127   void clear_all();
   128   void clear_all_incrementally();  // Not yet implemented!!
   130   NOT_PRODUCT(
   131     // checks the memory region for validity
   132     void region_invariant(MemRegion mr);
   133   )
   135   // iteration
   136   void iterate(BitMapClosure* cl) {
   137     _bm.iterate(cl);
   138   }
   139   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   140   void dirty_range_iterate_clear(MemRegionClosure* cl);
   141   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   143   // auxiliary support for iteration
   144   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   145   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   146                                             HeapWord* end_addr) const;
   147   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   148   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   149                                               HeapWord* end_addr) const;
   150   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   151   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   152                                            HeapWord* end_addr);
   154   // conversion utilities
   155   HeapWord* offsetToHeapWord(size_t offset) const;
   156   size_t    heapWordToOffset(HeapWord* addr) const;
   157   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   159   void print_on_error(outputStream* st, const char* prefix) const;
   161   // debugging
   162   // is this address range covered by the bit-map?
   163   NOT_PRODUCT(
   164     bool covers(MemRegion mr) const;
   165     bool covers(HeapWord* start, size_t size = 0) const;
   166   )
   167   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   168 };
   170 // Represents a marking stack used by the CMS collector.
   171 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   172 class CMSMarkStack: public CHeapObj<mtGC>  {
   173   //
   174   friend class CMSCollector;   // to get at expasion stats further below
   175   //
   177   VirtualSpace _virtual_space;  // space for the stack
   178   oop*   _base;      // bottom of stack
   179   size_t _index;     // one more than last occupied index
   180   size_t _capacity;  // max #elements
   181   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   182   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   184  protected:
   185   size_t _hit_limit;      // we hit max stack size limit
   186   size_t _failed_double;  // we failed expansion before hitting limit
   188  public:
   189   CMSMarkStack():
   190     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   191     _hit_limit(0),
   192     _failed_double(0) {}
   194   bool allocate(size_t size);
   196   size_t capacity() const { return _capacity; }
   198   oop pop() {
   199     if (!isEmpty()) {
   200       return _base[--_index] ;
   201     }
   202     return NULL;
   203   }
   205   bool push(oop ptr) {
   206     if (isFull()) {
   207       return false;
   208     } else {
   209       _base[_index++] = ptr;
   210       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   211       return true;
   212     }
   213   }
   215   bool isEmpty() const { return _index == 0; }
   216   bool isFull()  const {
   217     assert(_index <= _capacity, "buffer overflow");
   218     return _index == _capacity;
   219   }
   221   size_t length() { return _index; }
   223   // "Parallel versions" of some of the above
   224   oop par_pop() {
   225     // lock and pop
   226     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   227     return pop();
   228   }
   230   bool par_push(oop ptr) {
   231     // lock and push
   232     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   233     return push(ptr);
   234   }
   236   // Forcibly reset the stack, losing all of its contents.
   237   void reset() {
   238     _index = 0;
   239   }
   241   // Expand the stack, typically in response to an overflow condition
   242   void expand();
   244   // Compute the least valued stack element.
   245   oop least_value(HeapWord* low) {
   246      oop least = (oop)low;
   247      for (size_t i = 0; i < _index; i++) {
   248        least = MIN2(least, _base[i]);
   249      }
   250      return least;
   251   }
   253   // Exposed here to allow stack expansion in || case
   254   Mutex* par_lock() { return &_par_lock; }
   255 };
   257 class CardTableRS;
   258 class CMSParGCThreadState;
   260 class ModUnionClosure: public MemRegionClosure {
   261  protected:
   262   CMSBitMap* _t;
   263  public:
   264   ModUnionClosure(CMSBitMap* t): _t(t) { }
   265   void do_MemRegion(MemRegion mr);
   266 };
   268 class ModUnionClosurePar: public ModUnionClosure {
   269  public:
   270   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   271   void do_MemRegion(MemRegion mr);
   272 };
   274 // Survivor Chunk Array in support of parallelization of
   275 // Survivor Space rescan.
   276 class ChunkArray: public CHeapObj<mtGC> {
   277   size_t _index;
   278   size_t _capacity;
   279   size_t _overflows;
   280   HeapWord** _array;   // storage for array
   282  public:
   283   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
   284   ChunkArray(HeapWord** a, size_t c):
   285     _index(0), _capacity(c), _overflows(0), _array(a) {}
   287   HeapWord** array() { return _array; }
   288   void set_array(HeapWord** a) { _array = a; }
   290   size_t capacity() { return _capacity; }
   291   void set_capacity(size_t c) { _capacity = c; }
   293   size_t end() {
   294     assert(_index <= capacity(),
   295            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
   296                    _index, _capacity));
   297     return _index;
   298   }  // exclusive
   300   HeapWord* nth(size_t n) {
   301     assert(n < end(), "Out of bounds access");
   302     return _array[n];
   303   }
   305   void reset() {
   306     _index = 0;
   307     if (_overflows > 0 && PrintCMSStatistics > 1) {
   308       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
   309               _capacity, _overflows);
   310     }
   311     _overflows = 0;
   312   }
   314   void record_sample(HeapWord* p, size_t sz) {
   315     // For now we do not do anything with the size
   316     if (_index < _capacity) {
   317       _array[_index++] = p;
   318     } else {
   319       ++_overflows;
   320       assert(_index == _capacity,
   321              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
   322                      "): out of bounds at overflow#" SIZE_FORMAT,
   323                      _index, _capacity, _overflows));
   324     }
   325   }
   326 };
   328 //
   329 // Timing, allocation and promotion statistics for gc scheduling and incremental
   330 // mode pacing.  Most statistics are exponential averages.
   331 //
   332 class CMSStats VALUE_OBJ_CLASS_SPEC {
   333  private:
   334   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   336   // The following are exponential averages with factor alpha:
   337   //   avg = (100 - alpha) * avg + alpha * cur_sample
   338   //
   339   //   The durations measure:  end_time[n] - start_time[n]
   340   //   The periods measure:    start_time[n] - start_time[n-1]
   341   //
   342   // The cms period and duration include only concurrent collections; time spent
   343   // in foreground cms collections due to System.gc() or because of a failure to
   344   // keep up are not included.
   345   //
   346   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   347   // real value, but is used only after the first period.  A value of 100 is
   348   // used for the first sample so it gets the entire weight.
   349   unsigned int _saved_alpha; // 0-100
   350   unsigned int _gc0_alpha;
   351   unsigned int _cms_alpha;
   353   double _gc0_duration;
   354   double _gc0_period;
   355   size_t _gc0_promoted;         // bytes promoted per gc0
   356   double _cms_duration;
   357   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   358   double _cms_duration_per_mb;
   359   double _cms_period;
   360   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   362   // Timers.
   363   elapsedTimer _cms_timer;
   364   TimeStamp    _gc0_begin_time;
   365   TimeStamp    _cms_begin_time;
   366   TimeStamp    _cms_end_time;
   368   // Snapshots of the amount used in the CMS generation.
   369   size_t _cms_used_at_gc0_begin;
   370   size_t _cms_used_at_gc0_end;
   371   size_t _cms_used_at_cms_begin;
   373   // Used to prevent the duty cycle from being reduced in the middle of a cms
   374   // cycle.
   375   bool _allow_duty_cycle_reduction;
   377   enum {
   378     _GC0_VALID = 0x1,
   379     _CMS_VALID = 0x2,
   380     _ALL_VALID = _GC0_VALID | _CMS_VALID
   381   };
   383   unsigned int _valid_bits;
   385   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   387  protected:
   389   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   390   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   391   // as a recommended value).
   392   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   393                                              unsigned int new_duty_cycle);
   394   unsigned int icms_update_duty_cycle_impl();
   396   // In support of adjusting of cms trigger ratios based on history
   397   // of concurrent mode failure.
   398   double cms_free_adjustment_factor(size_t free) const;
   399   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
   401  public:
   402   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   403            unsigned int alpha = CMSExpAvgFactor);
   405   // Whether or not the statistics contain valid data; higher level statistics
   406   // cannot be called until this returns true (they require at least one young
   407   // gen and one cms cycle to have completed).
   408   bool valid() const;
   410   // Record statistics.
   411   void record_gc0_begin();
   412   void record_gc0_end(size_t cms_gen_bytes_used);
   413   void record_cms_begin();
   414   void record_cms_end();
   416   // Allow management of the cms timer, which must be stopped/started around
   417   // yield points.
   418   elapsedTimer& cms_timer()     { return _cms_timer; }
   419   void start_cms_timer()        { _cms_timer.start(); }
   420   void stop_cms_timer()         { _cms_timer.stop(); }
   422   // Basic statistics; units are seconds or bytes.
   423   double gc0_period() const     { return _gc0_period; }
   424   double gc0_duration() const   { return _gc0_duration; }
   425   size_t gc0_promoted() const   { return _gc0_promoted; }
   426   double cms_period() const          { return _cms_period; }
   427   double cms_duration() const        { return _cms_duration; }
   428   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   429   size_t cms_allocated() const       { return _cms_allocated; }
   431   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   433   // Seconds since the last background cms cycle began or ended.
   434   double cms_time_since_begin() const;
   435   double cms_time_since_end() const;
   437   // Higher level statistics--caller must check that valid() returns true before
   438   // calling.
   440   // Returns bytes promoted per second of wall clock time.
   441   double promotion_rate() const;
   443   // Returns bytes directly allocated per second of wall clock time.
   444   double cms_allocation_rate() const;
   446   // Rate at which space in the cms generation is being consumed (sum of the
   447   // above two).
   448   double cms_consumption_rate() const;
   450   // Returns an estimate of the number of seconds until the cms generation will
   451   // fill up, assuming no collection work is done.
   452   double time_until_cms_gen_full() const;
   454   // Returns an estimate of the number of seconds remaining until
   455   // the cms generation collection should start.
   456   double time_until_cms_start() const;
   458   // End of higher level statistics.
   460   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   461   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   463   // Update the duty cycle and return the new value.
   464   unsigned int icms_update_duty_cycle();
   466   // Debugging.
   467   void print_on(outputStream* st) const PRODUCT_RETURN;
   468   void print() const { print_on(gclog_or_tty); }
   469 };
   471 // A closure related to weak references processing which
   472 // we embed in the CMSCollector, since we need to pass
   473 // it to the reference processor for secondary filtering
   474 // of references based on reachability of referent;
   475 // see role of _is_alive_non_header closure in the
   476 // ReferenceProcessor class.
   477 // For objects in the CMS generation, this closure checks
   478 // if the object is "live" (reachable). Used in weak
   479 // reference processing.
   480 class CMSIsAliveClosure: public BoolObjectClosure {
   481   const MemRegion  _span;
   482   const CMSBitMap* _bit_map;
   484   friend class CMSCollector;
   485  public:
   486   CMSIsAliveClosure(MemRegion span,
   487                     CMSBitMap* bit_map):
   488     _span(span),
   489     _bit_map(bit_map) {
   490     assert(!span.is_empty(), "Empty span could spell trouble");
   491   }
   493   bool do_object_b(oop obj);
   494 };
   497 // Implements AbstractRefProcTaskExecutor for CMS.
   498 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   499 public:
   501   CMSRefProcTaskExecutor(CMSCollector& collector)
   502     : _collector(collector)
   503   { }
   505   // Executes a task using worker threads.
   506   virtual void execute(ProcessTask& task);
   507   virtual void execute(EnqueueTask& task);
   508 private:
   509   CMSCollector& _collector;
   510 };
   513 class CMSCollector: public CHeapObj<mtGC> {
   514   friend class VMStructs;
   515   friend class ConcurrentMarkSweepThread;
   516   friend class ConcurrentMarkSweepGeneration;
   517   friend class CompactibleFreeListSpace;
   518   friend class CMSParMarkTask;
   519   friend class CMSParInitialMarkTask;
   520   friend class CMSParRemarkTask;
   521   friend class CMSConcMarkingTask;
   522   friend class CMSRefProcTaskProxy;
   523   friend class CMSRefProcTaskExecutor;
   524   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   525   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   526   friend class PushOrMarkClosure;             // to access _restart_addr
   527   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   528   friend class MarkFromRootsClosure;          //  -- ditto --
   529                                               // ... and for clearing cards
   530   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   531                                               // ... and for clearing cards
   532   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   533   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   534   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   535   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   536   friend class PushAndMarkClosure;            //  -- ditto --
   537   friend class Par_PushAndMarkClosure;        //  -- ditto --
   538   friend class CMSKeepAliveClosure;           //  -- ditto --
   539   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   540   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   541   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   542   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   543   friend class VM_CMS_Operation;
   544   friend class VM_CMS_Initial_Mark;
   545   friend class VM_CMS_Final_Remark;
   546   friend class TraceCMSMemoryManagerStats;
   548  private:
   549   jlong _time_of_last_gc;
   550   void update_time_of_last_gc(jlong now) {
   551     _time_of_last_gc = now;
   552   }
   554   OopTaskQueueSet* _task_queues;
   556   // Overflow list of grey objects, threaded through mark-word
   557   // Manipulated with CAS in the parallel/multi-threaded case.
   558   oop _overflow_list;
   559   // The following array-pair keeps track of mark words
   560   // displaced for accomodating overflow list above.
   561   // This code will likely be revisited under RFE#4922830.
   562   Stack<oop, mtGC>     _preserved_oop_stack;
   563   Stack<markOop, mtGC> _preserved_mark_stack;
   565   int*             _hash_seed;
   567   // In support of multi-threaded concurrent phases
   568   YieldingFlexibleWorkGang* _conc_workers;
   570   // Performance Counters
   571   CollectorCounters* _gc_counters;
   573   // Initialization Errors
   574   bool _completed_initialization;
   576   // In support of ExplicitGCInvokesConcurrent
   577   static bool _full_gc_requested;
   578   static GCCause::Cause _full_gc_cause;
   579   unsigned int _collection_count_start;
   581   // Should we unload classes this concurrent cycle?
   582   bool _should_unload_classes;
   583   unsigned int  _concurrent_cycles_since_last_unload;
   584   unsigned int concurrent_cycles_since_last_unload() const {
   585     return _concurrent_cycles_since_last_unload;
   586   }
   587   // Did we (allow) unload classes in the previous concurrent cycle?
   588   bool unloaded_classes_last_cycle() const {
   589     return concurrent_cycles_since_last_unload() == 0;
   590   }
   591   // Root scanning options for perm gen
   592   int _roots_scanning_options;
   593   int roots_scanning_options() const      { return _roots_scanning_options; }
   594   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   595   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   597   // Verification support
   598   CMSBitMap     _verification_mark_bm;
   599   void verify_after_remark_work_1();
   600   void verify_after_remark_work_2();
   602   // true if any verification flag is on.
   603   bool _verifying;
   604   bool verifying() const { return _verifying; }
   605   void set_verifying(bool v) { _verifying = v; }
   607   // Collector policy
   608   ConcurrentMarkSweepPolicy* _collector_policy;
   609   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   611   void set_did_compact(bool v);
   613   // XXX Move these to CMSStats ??? FIX ME !!!
   614   elapsedTimer _inter_sweep_timer;   // time between sweeps
   615   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
   616   // padded decaying average estimates of the above
   617   AdaptivePaddedAverage _inter_sweep_estimate;
   618   AdaptivePaddedAverage _intra_sweep_estimate;
   620   CMSTracer* _gc_tracer_cm;
   621   ConcurrentGCTimer* _gc_timer_cm;
   623   bool _cms_start_registered;
   625   GCHeapSummary _last_heap_summary;
   626   MetaspaceSummary _last_metaspace_summary;
   628   void register_foreground_gc_start(GCCause::Cause cause);
   629   void register_gc_start(GCCause::Cause cause);
   630   void register_gc_end();
   631   void save_heap_summary();
   632   void report_heap_summary(GCWhen::Type when);
   634  protected:
   635   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   636   MemRegion                      _span;    // span covering above two
   637   CardTableRS*                   _ct;      // card table
   639   // CMS marking support structures
   640   CMSBitMap     _markBitMap;
   641   CMSBitMap     _modUnionTable;
   642   CMSMarkStack  _markStack;
   644   HeapWord*     _restart_addr; // in support of marking stack overflow
   645   void          lower_restart_addr(HeapWord* low);
   647   // Counters in support of marking stack / work queue overflow handling:
   648   // a non-zero value indicates certain types of overflow events during
   649   // the current CMS cycle and could lead to stack resizing efforts at
   650   // an opportune future time.
   651   size_t        _ser_pmc_preclean_ovflw;
   652   size_t        _ser_pmc_remark_ovflw;
   653   size_t        _par_pmc_remark_ovflw;
   654   size_t        _ser_kac_preclean_ovflw;
   655   size_t        _ser_kac_ovflw;
   656   size_t        _par_kac_ovflw;
   657   NOT_PRODUCT(ssize_t _num_par_pushes;)
   659   // ("Weak") Reference processing support
   660   ReferenceProcessor*            _ref_processor;
   661   CMSIsAliveClosure              _is_alive_closure;
   662       // keep this textually after _markBitMap and _span; c'tor dependency
   664   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   665   ModUnionClosure    _modUnionClosure;
   666   ModUnionClosurePar _modUnionClosurePar;
   668   // CMS abstract state machine
   669   // initial_state: Idling
   670   // next_state(Idling)            = {Marking}
   671   // next_state(Marking)           = {Precleaning, Sweeping}
   672   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   673   // next_state(AbortablePreclean) = {FinalMarking}
   674   // next_state(FinalMarking)      = {Sweeping}
   675   // next_state(Sweeping)          = {Resizing}
   676   // next_state(Resizing)          = {Resetting}
   677   // next_state(Resetting)         = {Idling}
   678   // The numeric values below are chosen so that:
   679   // . _collectorState <= Idling ==  post-sweep && pre-mark
   680   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   681   //                                            precleaning || abortablePrecleanb
   682  public:
   683   enum CollectorState {
   684     Resizing            = 0,
   685     Resetting           = 1,
   686     Idling              = 2,
   687     InitialMarking      = 3,
   688     Marking             = 4,
   689     Precleaning         = 5,
   690     AbortablePreclean   = 6,
   691     FinalMarking        = 7,
   692     Sweeping            = 8
   693   };
   694  protected:
   695   static CollectorState _collectorState;
   697   // State related to prologue/epilogue invocation for my generations
   698   bool _between_prologue_and_epilogue;
   700   // Signalling/State related to coordination between fore- and backgroud GC
   701   // Note: When the baton has been passed from background GC to foreground GC,
   702   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   703   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   704                                  // wants to go active
   705   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   706                                  // yet passed the baton to the foreground GC
   708   // Support for CMSScheduleRemark (abortable preclean)
   709   bool _abort_preclean;
   710   bool _start_sampling;
   712   int    _numYields;
   713   size_t _numDirtyCards;
   714   size_t _sweep_count;
   715   // number of full gc's since the last concurrent gc.
   716   uint   _full_gcs_since_conc_gc;
   718   // occupancy used for bootstrapping stats
   719   double _bootstrap_occupancy;
   721   // timer
   722   elapsedTimer _timer;
   724   // Timing, allocation and promotion statistics, used for scheduling.
   725   CMSStats      _stats;
   727   // Allocation limits installed in the young gen, used only in
   728   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   729   // these limits, the cms generation is notified and the cms thread is started
   730   // or stopped, respectively.
   731   HeapWord*     _icms_start_limit;
   732   HeapWord*     _icms_stop_limit;
   734   enum CMS_op_type {
   735     CMS_op_checkpointRootsInitial,
   736     CMS_op_checkpointRootsFinal
   737   };
   739   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
   740   bool stop_world_and_do(CMS_op_type op);
   742   OopTaskQueueSet* task_queues() { return _task_queues; }
   743   int*             hash_seed(int i) { return &_hash_seed[i]; }
   744   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   746   // Support for parallelizing Eden rescan in CMS remark phase
   747   void sample_eden(); // ... sample Eden space top
   749  private:
   750   // Support for parallelizing young gen rescan in CMS remark phase
   751   Generation* _young_gen;  // the younger gen
   752   HeapWord** _top_addr;    // ... Top of Eden
   753   HeapWord** _end_addr;    // ... End of Eden
   754   Mutex*     _eden_chunk_lock;
   755   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   756   size_t     _eden_chunk_index; // ... top (exclusive) of array
   757   size_t     _eden_chunk_capacity;  // ... max entries in array
   759   // Support for parallelizing survivor space rescan
   760   HeapWord** _survivor_chunk_array;
   761   size_t     _survivor_chunk_index;
   762   size_t     _survivor_chunk_capacity;
   763   size_t*    _cursor;
   764   ChunkArray* _survivor_plab_array;
   766   // A bounded minimum size of PLABs, should not return too small values since
   767   // this will affect the size of the data structures used for parallel young gen rescan
   768   size_t plab_sample_minimum_size();
   770   // Support for marking stack overflow handling
   771   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   772   bool par_take_from_overflow_list(size_t num,
   773                                    OopTaskQueue* to_work_q,
   774                                    int no_of_gc_threads);
   775   void push_on_overflow_list(oop p);
   776   void par_push_on_overflow_list(oop p);
   777   // the following is, obviously, not, in general, "MT-stable"
   778   bool overflow_list_is_empty() const;
   780   void preserve_mark_if_necessary(oop p);
   781   void par_preserve_mark_if_necessary(oop p);
   782   void preserve_mark_work(oop p, markOop m);
   783   void restore_preserved_marks_if_any();
   784   NOT_PRODUCT(bool no_preserved_marks() const;)
   785   // in support of testing overflow code
   786   NOT_PRODUCT(int _overflow_counter;)
   787   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   788   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   790   // CMS work methods
   791   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   793   // a return value of false indicates failure due to stack overflow
   794   bool markFromRootsWork(bool asynch);  // concurrent marking work
   796  public:   // FIX ME!!! only for testing
   797   bool do_marking_st(bool asynch);      // single-threaded marking
   798   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   800  private:
   802   // concurrent precleaning work
   803   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   804                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   805   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   806                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   807   // Does precleaning work, returning a quantity indicative of
   808   // the amount of "useful work" done.
   809   size_t preclean_work(bool clean_refs, bool clean_survivors);
   810   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
   811   void abortable_preclean(); // Preclean while looking for possible abort
   812   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   813   // Helper function for above; merge-sorts the per-thread plab samples
   814   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
   815   // Resets (i.e. clears) the per-thread plab sample vectors
   816   void reset_survivor_plab_arrays();
   818   // final (second) checkpoint work
   819   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   820                                 bool init_mark_was_synchronous);
   821   // work routine for parallel version of remark
   822   void do_remark_parallel();
   823   // work routine for non-parallel version of remark
   824   void do_remark_non_parallel();
   825   // reference processing work routine (during second checkpoint)
   826   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   828   // concurrent sweeping work
   829   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   831   // (concurrent) resetting of support data structures
   832   void reset(bool asynch);
   834   // Clear _expansion_cause fields of constituent generations
   835   void clear_expansion_cause();
   837   // An auxilliary method used to record the ends of
   838   // used regions of each generation to limit the extent of sweep
   839   void save_sweep_limits();
   841   // A work method used by foreground collection to determine
   842   // what type of collection (compacting or not, continuing or fresh)
   843   // it should do.
   844   void decide_foreground_collection_type(bool clear_all_soft_refs,
   845     bool* should_compact, bool* should_start_over);
   847   // A work method used by the foreground collector to do
   848   // a mark-sweep-compact.
   849   void do_compaction_work(bool clear_all_soft_refs);
   851   // A work method used by the foreground collector to do
   852   // a mark-sweep, after taking over from a possibly on-going
   853   // concurrent mark-sweep collection.
   854   void do_mark_sweep_work(bool clear_all_soft_refs,
   855     CollectorState first_state, bool should_start_over);
   857   // Work methods for reporting concurrent mode interruption or failure
   858   bool is_external_interruption();
   859   void report_concurrent_mode_interruption();
   861   // If the backgrould GC is active, acquire control from the background
   862   // GC and do the collection.
   863   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   865   // For synchronizing passing of control from background to foreground
   866   // GC.  waitForForegroundGC() is called by the background
   867   // collector.  It if had to wait for a foreground collection,
   868   // it returns true and the background collection should assume
   869   // that the collection was finished by the foreground
   870   // collector.
   871   bool waitForForegroundGC();
   873   // Incremental mode triggering:  recompute the icms duty cycle and set the
   874   // allocation limits in the young gen.
   875   void icms_update_allocation_limits();
   877   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   878   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   879   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   881   void setup_cms_unloading_and_verification_state();
   882  public:
   883   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   884                CardTableRS*                   ct,
   885                ConcurrentMarkSweepPolicy*     cp);
   886   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   888   ReferenceProcessor* ref_processor() { return _ref_processor; }
   889   void ref_processor_init();
   891   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   892   static CollectorState abstract_state() { return _collectorState;  }
   894   bool should_abort_preclean() const; // Whether preclean should be aborted.
   895   size_t get_eden_used() const;
   896   size_t get_eden_capacity() const;
   898   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   900   // locking checks
   901   NOT_PRODUCT(static bool have_cms_token();)
   903   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   904   bool shouldConcurrentCollect();
   906   void collect(bool   full,
   907                bool   clear_all_soft_refs,
   908                size_t size,
   909                bool   tlab);
   910   void collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause);
   911   void collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause);
   913   // In support of ExplicitGCInvokesConcurrent
   914   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
   915   // Should we unload classes in a particular concurrent cycle?
   916   bool should_unload_classes() const {
   917     return _should_unload_classes;
   918   }
   919   void update_should_unload_classes();
   921   void direct_allocated(HeapWord* start, size_t size);
   923   // Object is dead if not marked and current phase is sweeping.
   924   bool is_dead_obj(oop obj) const;
   926   // After a promotion (of "start"), do any necessary marking.
   927   // If "par", then it's being done by a parallel GC thread.
   928   // The last two args indicate if we need precise marking
   929   // and if so the size of the object so it can be dirtied
   930   // in its entirety.
   931   void promoted(bool par, HeapWord* start,
   932                 bool is_obj_array, size_t obj_size);
   934   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   935                                      size_t word_size);
   937   void getFreelistLocks() const;
   938   void releaseFreelistLocks() const;
   939   bool haveFreelistLocks() const;
   941   // Adjust size of underlying generation
   942   void compute_new_size();
   944   // GC prologue and epilogue
   945   void gc_prologue(bool full);
   946   void gc_epilogue(bool full);
   948   jlong time_of_last_gc(jlong now) {
   949     if (_collectorState <= Idling) {
   950       // gc not in progress
   951       return _time_of_last_gc;
   952     } else {
   953       // collection in progress
   954       return now;
   955     }
   956   }
   958   // Support for parallel remark of survivor space
   959   void* get_data_recorder(int thr_num);
   960   void sample_eden_chunk();
   962   CMSBitMap* markBitMap()  { return &_markBitMap; }
   963   void directAllocated(HeapWord* start, size_t size);
   965   // main CMS steps and related support
   966   void checkpointRootsInitial(bool asynch);
   967   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   968                                     // due to stack overflow
   969   void preclean();
   970   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   971                             bool init_mark_was_synchronous);
   972   void sweep(bool asynch);
   974   // Check that the currently executing thread is the expected
   975   // one (foreground collector or background collector).
   976   static void check_correct_thread_executing() PRODUCT_RETURN;
   977   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   979   bool is_cms_reachable(HeapWord* addr);
   981   // Performance Counter Support
   982   CollectorCounters* counters()    { return _gc_counters; }
   984   // timer stuff
   985   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   986   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   987   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   988   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   990   int  yields()          { return _numYields; }
   991   void resetYields()     { _numYields = 0;    }
   992   void incrementYields() { _numYields++;      }
   993   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   994   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   995   size_t  numDirtyCards()                 { return _numDirtyCards; }
   997   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   998   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   999   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
  1000   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
  1001   size_t sweep_count() const             { return _sweep_count; }
  1002   void   increment_sweep_count()         { _sweep_count++; }
  1004   // Timers/stats for gc scheduling and incremental mode pacing.
  1005   CMSStats& stats() { return _stats; }
  1007   // Convenience methods that check whether CMSIncrementalMode is enabled and
  1008   // forward to the corresponding methods in ConcurrentMarkSweepThread.
  1009   static void start_icms();
  1010   static void stop_icms();    // Called at the end of the cms cycle.
  1011   static void disable_icms(); // Called before a foreground collection.
  1012   static void enable_icms();  // Called after a foreground collection.
  1013   void icms_wait();          // Called at yield points.
  1015   // Adaptive size policy
  1016   CMSAdaptiveSizePolicy* size_policy();
  1017   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1019   static void print_on_error(outputStream* st);
  1021   // debugging
  1022   void verify();
  1023   bool verify_after_remark(bool silent = VerifySilently);
  1024   void verify_ok_to_terminate() const PRODUCT_RETURN;
  1025   void verify_work_stacks_empty() const PRODUCT_RETURN;
  1026   void verify_overflow_empty() const PRODUCT_RETURN;
  1028   // convenience methods in support of debugging
  1029   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
  1030   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
  1032   // accessors
  1033   CMSMarkStack* verification_mark_stack() { return &_markStack; }
  1034   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
  1036   // Initialization errors
  1037   bool completed_initialization() { return _completed_initialization; }
  1039   void print_eden_and_survivor_chunk_arrays();
  1040 };
  1042 class CMSExpansionCause : public AllStatic  {
  1043  public:
  1044   enum Cause {
  1045     _no_expansion,
  1046     _satisfy_free_ratio,
  1047     _satisfy_promotion,
  1048     _satisfy_allocation,
  1049     _allocate_par_lab,
  1050     _allocate_par_spooling_space,
  1051     _adaptive_size_policy
  1052   };
  1053   // Return a string describing the cause of the expansion.
  1054   static const char* to_string(CMSExpansionCause::Cause cause);
  1055 };
  1057 class ConcurrentMarkSweepGeneration: public CardGeneration {
  1058   friend class VMStructs;
  1059   friend class ConcurrentMarkSweepThread;
  1060   friend class ConcurrentMarkSweep;
  1061   friend class CMSCollector;
  1062  protected:
  1063   static CMSCollector*       _collector; // the collector that collects us
  1064   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
  1066   // Performance Counters
  1067   GenerationCounters*      _gen_counters;
  1068   GSpaceCounters*          _space_counters;
  1070   // Words directly allocated, used by CMSStats.
  1071   size_t _direct_allocated_words;
  1073   // Non-product stat counters
  1074   NOT_PRODUCT(
  1075     size_t _numObjectsPromoted;
  1076     size_t _numWordsPromoted;
  1077     size_t _numObjectsAllocated;
  1078     size_t _numWordsAllocated;
  1081   // Used for sizing decisions
  1082   bool _incremental_collection_failed;
  1083   bool incremental_collection_failed() {
  1084     return _incremental_collection_failed;
  1086   void set_incremental_collection_failed() {
  1087     _incremental_collection_failed = true;
  1089   void clear_incremental_collection_failed() {
  1090     _incremental_collection_failed = false;
  1093   // accessors
  1094   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1095   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
  1097  private:
  1098   // For parallel young-gen GC support.
  1099   CMSParGCThreadState** _par_gc_thread_states;
  1101   // Reason generation was expanded
  1102   CMSExpansionCause::Cause _expansion_cause;
  1104   // In support of MinChunkSize being larger than min object size
  1105   const double _dilatation_factor;
  1107   enum CollectionTypes {
  1108     Concurrent_collection_type          = 0,
  1109     MS_foreground_collection_type       = 1,
  1110     MSC_foreground_collection_type      = 2,
  1111     Unknown_collection_type             = 3
  1112   };
  1114   CollectionTypes _debug_collection_type;
  1116   // True if a compactiing collection was done.
  1117   bool _did_compact;
  1118   bool did_compact() { return _did_compact; }
  1120   // Fraction of current occupancy at which to start a CMS collection which
  1121   // will collect this generation (at least).
  1122   double _initiating_occupancy;
  1124  protected:
  1125   // Shrink generation by specified size (returns false if unable to shrink)
  1126   void shrink_free_list_by(size_t bytes);
  1128   // Update statistics for GC
  1129   virtual void update_gc_stats(int level, bool full);
  1131   // Maximum available space in the generation (including uncommitted)
  1132   // space.
  1133   size_t max_available() const;
  1135   // getter and initializer for _initiating_occupancy field.
  1136   double initiating_occupancy() const { return _initiating_occupancy; }
  1137   void   init_initiating_occupancy(intx io, uintx tr);
  1139  public:
  1140   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1141                                 int level, CardTableRS* ct,
  1142                                 bool use_adaptive_freelists,
  1143                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
  1145   // Accessors
  1146   CMSCollector* collector() const { return _collector; }
  1147   static void set_collector(CMSCollector* collector) {
  1148     assert(_collector == NULL, "already set");
  1149     _collector = collector;
  1151   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1153   Mutex* freelistLock() const;
  1155   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1157   // Adaptive size policy
  1158   CMSAdaptiveSizePolicy* size_policy();
  1160   void set_did_compact(bool v) { _did_compact = v; }
  1162   bool refs_discovery_is_atomic() const { return false; }
  1163   bool refs_discovery_is_mt()     const {
  1164     // Note: CMS does MT-discovery during the parallel-remark
  1165     // phases. Use ReferenceProcessorMTMutator to make refs
  1166     // discovery MT-safe during such phases or other parallel
  1167     // discovery phases in the future. This may all go away
  1168     // if/when we decide that refs discovery is sufficiently
  1169     // rare that the cost of the CAS's involved is in the
  1170     // noise. That's a measurement that should be done, and
  1171     // the code simplified if that turns out to be the case.
  1172     return ConcGCThreads > 1;
  1175   // Override
  1176   virtual void ref_processor_init();
  1178   // Grow generation by specified size (returns false if unable to grow)
  1179   bool grow_by(size_t bytes);
  1180   // Grow generation to reserved size.
  1181   bool grow_to_reserved();
  1183   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1185   // Space enquiries
  1186   size_t capacity() const;
  1187   size_t used() const;
  1188   size_t free() const;
  1189   double occupancy() const { return ((double)used())/((double)capacity()); }
  1190   size_t contiguous_available() const;
  1191   size_t unsafe_max_alloc_nogc() const;
  1193   // over-rides
  1194   MemRegion used_region() const;
  1195   MemRegion used_region_at_save_marks() const;
  1197   // Does a "full" (forced) collection invoked on this generation collect
  1198   // all younger generations as well? Note that the second conjunct is a
  1199   // hack to allow the collection of the younger gen first if the flag is
  1200   // set. This is better than using th policy's should_collect_gen0_first()
  1201   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1202   virtual bool full_collects_younger_generations() const {
  1203     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1206   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1208   // Support for compaction
  1209   CompactibleSpace* first_compaction_space() const;
  1210   // Adjust quantites in the generation affected by
  1211   // the compaction.
  1212   void reset_after_compaction();
  1214   // Allocation support
  1215   HeapWord* allocate(size_t size, bool tlab);
  1216   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1217   oop       promote(oop obj, size_t obj_size);
  1218   HeapWord* par_allocate(size_t size, bool tlab) {
  1219     return allocate(size, tlab);
  1222   // Incremental mode triggering.
  1223   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1224                                      size_t word_size);
  1226   // Used by CMSStats to track direct allocation.  The value is sampled and
  1227   // reset after each young gen collection.
  1228   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1229   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1231   // Overrides for parallel promotion.
  1232   virtual oop par_promote(int thread_num,
  1233                           oop obj, markOop m, size_t word_sz);
  1234   // This one should not be called for CMS.
  1235   virtual void par_promote_alloc_undo(int thread_num,
  1236                                       HeapWord* obj, size_t word_sz);
  1237   virtual void par_promote_alloc_done(int thread_num);
  1238   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1240   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
  1242   // Inform this (non-young) generation that a promotion failure was
  1243   // encountered during a collection of a younger generation that
  1244   // promotes into this generation.
  1245   virtual void promotion_failure_occurred();
  1247   bool should_collect(bool full, size_t size, bool tlab);
  1248   virtual bool should_concurrent_collect() const;
  1249   virtual bool is_too_full() const;
  1250   void collect(bool   full,
  1251                bool   clear_all_soft_refs,
  1252                size_t size,
  1253                bool   tlab);
  1255   HeapWord* expand_and_allocate(size_t word_size,
  1256                                 bool tlab,
  1257                                 bool parallel = false);
  1259   // GC prologue and epilogue
  1260   void gc_prologue(bool full);
  1261   void gc_prologue_work(bool full, bool registerClosure,
  1262                         ModUnionClosure* modUnionClosure);
  1263   void gc_epilogue(bool full);
  1264   void gc_epilogue_work(bool full);
  1266   // Time since last GC of this generation
  1267   jlong time_of_last_gc(jlong now) {
  1268     return collector()->time_of_last_gc(now);
  1270   void update_time_of_last_gc(jlong now) {
  1271     collector()-> update_time_of_last_gc(now);
  1274   // Allocation failure
  1275   void expand(size_t bytes, size_t expand_bytes,
  1276     CMSExpansionCause::Cause cause);
  1277   virtual bool expand(size_t bytes, size_t expand_bytes);
  1278   void shrink(size_t bytes);
  1279   void shrink_by(size_t bytes);
  1280   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1281   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1283   // Iteration support and related enquiries
  1284   void save_marks();
  1285   bool no_allocs_since_save_marks();
  1286   void younger_refs_iterate(OopsInGenClosure* cl);
  1288   // Iteration support specific to CMS generations
  1289   void save_sweep_limit();
  1291   // More iteration support
  1292   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1293   virtual void oop_iterate(ExtendedOopClosure* cl);
  1294   virtual void safe_object_iterate(ObjectClosure* cl);
  1295   virtual void object_iterate(ObjectClosure* cl);
  1297   // Need to declare the full complement of closures, whether we'll
  1298   // override them or not, or get message from the compiler:
  1299   //   oop_since_save_marks_iterate_nv hides virtual function...
  1300   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1301     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1302   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1304   // Smart allocation  XXX -- move to CFLSpace?
  1305   void setNearLargestChunk();
  1306   bool isNearLargestChunk(HeapWord* addr);
  1308   // Get the chunk at the end of the space.  Delagates to
  1309   // the space.
  1310   FreeChunk* find_chunk_at_end();
  1312   void post_compact();
  1314   // Debugging
  1315   void prepare_for_verify();
  1316   void verify();
  1317   void print_statistics()               PRODUCT_RETURN;
  1319   // Performance Counters support
  1320   virtual void update_counters();
  1321   virtual void update_counters(size_t used);
  1322   void initialize_performance_counters();
  1323   CollectorCounters* counters()  { return collector()->counters(); }
  1325   // Support for parallel remark of survivor space
  1326   void* get_data_recorder(int thr_num) {
  1327     //Delegate to collector
  1328     return collector()->get_data_recorder(thr_num);
  1330   void sample_eden_chunk() {
  1331     //Delegate to collector
  1332     return collector()->sample_eden_chunk();
  1335   // Printing
  1336   const char* name() const;
  1337   virtual const char* short_name() const { return "CMS"; }
  1338   void        print() const;
  1339   void printOccupancy(const char* s);
  1340   bool must_be_youngest() const { return false; }
  1341   bool must_be_oldest()   const { return true; }
  1343   // Resize the generation after a compacting GC.  The
  1344   // generation can be treated as a contiguous space
  1345   // after the compaction.
  1346   virtual void compute_new_size();
  1347   // Resize the generation after a non-compacting
  1348   // collection.
  1349   void compute_new_size_free_list();
  1351   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1352   void rotate_debug_collection_type();
  1353 };
  1355 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1357   // Return the size policy from the heap's collector
  1358   // policy casted to CMSAdaptiveSizePolicy*.
  1359   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1361   // Resize the generation based on the adaptive size
  1362   // policy.
  1363   void resize(size_t cur_promo, size_t desired_promo);
  1365   // Return the GC counters from the collector policy
  1366   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1368   virtual void shrink_by(size_t bytes);
  1370  public:
  1371   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1372                                   int level, CardTableRS* ct,
  1373                                   bool use_adaptive_freelists,
  1374                                   FreeBlockDictionary<FreeChunk>::DictionaryChoice
  1375                                     dictionaryChoice) :
  1376     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1377       use_adaptive_freelists, dictionaryChoice) {}
  1379   virtual const char* short_name() const { return "ASCMS"; }
  1380   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1382   virtual void update_counters();
  1383   virtual void update_counters(size_t used);
  1384 };
  1386 //
  1387 // Closures of various sorts used by CMS to accomplish its work
  1388 //
  1390 // This closure is used to check that a certain set of oops is empty.
  1391 class FalseClosure: public OopClosure {
  1392  public:
  1393   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
  1394   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
  1395 };
  1397 // This closure is used to do concurrent marking from the roots
  1398 // following the first checkpoint.
  1399 class MarkFromRootsClosure: public BitMapClosure {
  1400   CMSCollector*  _collector;
  1401   MemRegion      _span;
  1402   CMSBitMap*     _bitMap;
  1403   CMSBitMap*     _mut;
  1404   CMSMarkStack*  _markStack;
  1405   bool           _yield;
  1406   int            _skipBits;
  1407   HeapWord*      _finger;
  1408   HeapWord*      _threshold;
  1409   DEBUG_ONLY(bool _verifying;)
  1411  public:
  1412   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1413                        CMSBitMap* bitMap,
  1414                        CMSMarkStack*  markStack,
  1415                        bool should_yield, bool verifying = false);
  1416   bool do_bit(size_t offset);
  1417   void reset(HeapWord* addr);
  1418   inline void do_yield_check();
  1420  private:
  1421   void scanOopsInOop(HeapWord* ptr);
  1422   void do_yield_work();
  1423 };
  1425 // This closure is used to do concurrent multi-threaded
  1426 // marking from the roots following the first checkpoint.
  1427 // XXX This should really be a subclass of The serial version
  1428 // above, but i have not had the time to refactor things cleanly.
  1429 // That willbe done for Dolphin.
  1430 class Par_MarkFromRootsClosure: public BitMapClosure {
  1431   CMSCollector*  _collector;
  1432   MemRegion      _whole_span;
  1433   MemRegion      _span;
  1434   CMSBitMap*     _bit_map;
  1435   CMSBitMap*     _mut;
  1436   OopTaskQueue*  _work_queue;
  1437   CMSMarkStack*  _overflow_stack;
  1438   bool           _yield;
  1439   int            _skip_bits;
  1440   HeapWord*      _finger;
  1441   HeapWord*      _threshold;
  1442   CMSConcMarkingTask* _task;
  1443  public:
  1444   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1445                        MemRegion span,
  1446                        CMSBitMap* bit_map,
  1447                        OopTaskQueue* work_queue,
  1448                        CMSMarkStack*  overflow_stack,
  1449                        bool should_yield);
  1450   bool do_bit(size_t offset);
  1451   inline void do_yield_check();
  1453  private:
  1454   void scan_oops_in_oop(HeapWord* ptr);
  1455   void do_yield_work();
  1456   bool get_work_from_overflow_stack();
  1457 };
  1459 // The following closures are used to do certain kinds of verification of
  1460 // CMS marking.
  1461 class PushAndMarkVerifyClosure: public CMSOopClosure {
  1462   CMSCollector*    _collector;
  1463   MemRegion        _span;
  1464   CMSBitMap*       _verification_bm;
  1465   CMSBitMap*       _cms_bm;
  1466   CMSMarkStack*    _mark_stack;
  1467  protected:
  1468   void do_oop(oop p);
  1469   template <class T> inline void do_oop_work(T *p) {
  1470     oop obj = oopDesc::load_decode_heap_oop(p);
  1471     do_oop(obj);
  1473  public:
  1474   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1475                            MemRegion span,
  1476                            CMSBitMap* verification_bm,
  1477                            CMSBitMap* cms_bm,
  1478                            CMSMarkStack*  mark_stack);
  1479   void do_oop(oop* p);
  1480   void do_oop(narrowOop* p);
  1482   // Deal with a stack overflow condition
  1483   void handle_stack_overflow(HeapWord* lost);
  1484 };
  1486 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1487   CMSCollector*  _collector;
  1488   MemRegion      _span;
  1489   CMSBitMap*     _verification_bm;
  1490   CMSBitMap*     _cms_bm;
  1491   CMSMarkStack*  _mark_stack;
  1492   HeapWord*      _finger;
  1493   PushAndMarkVerifyClosure _pam_verify_closure;
  1494  public:
  1495   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1496                              CMSBitMap* verification_bm,
  1497                              CMSBitMap* cms_bm,
  1498                              CMSMarkStack*  mark_stack);
  1499   bool do_bit(size_t offset);
  1500   void reset(HeapWord* addr);
  1501 };
  1504 // This closure is used to check that a certain set of bits is
  1505 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1506 class FalseBitMapClosure: public BitMapClosure {
  1507  public:
  1508   bool do_bit(size_t offset) {
  1509     guarantee(false, "Should not have a 1 bit");
  1510     return true;
  1512 };
  1514 // This closure is used during the second checkpointing phase
  1515 // to rescan the marked objects on the dirty cards in the mod
  1516 // union table and the card table proper. It's invoked via
  1517 // MarkFromDirtyCardsClosure below. It uses either
  1518 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1519 // declared in genOopClosures.hpp to accomplish some of its work.
  1520 // In the parallel case the bitMap is shared, so access to
  1521 // it needs to be suitably synchronized for updates by embedded
  1522 // closures that update it; however, this closure itself only
  1523 // reads the bit_map and because it is idempotent, is immune to
  1524 // reading stale values.
  1525 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1526   #ifdef ASSERT
  1527     CMSCollector*          _collector;
  1528     MemRegion              _span;
  1529     union {
  1530       CMSMarkStack*        _mark_stack;
  1531       OopTaskQueue*        _work_queue;
  1532     };
  1533   #endif // ASSERT
  1534   bool                       _parallel;
  1535   CMSBitMap*                 _bit_map;
  1536   union {
  1537     MarkRefsIntoAndScanClosure*     _scan_closure;
  1538     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1539   };
  1541  public:
  1542   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1543                                 MemRegion span,
  1544                                 ReferenceProcessor* rp,
  1545                                 CMSBitMap* bit_map,
  1546                                 CMSMarkStack*  mark_stack,
  1547                                 MarkRefsIntoAndScanClosure* cl):
  1548     #ifdef ASSERT
  1549       _collector(collector),
  1550       _span(span),
  1551       _mark_stack(mark_stack),
  1552     #endif // ASSERT
  1553     _parallel(false),
  1554     _bit_map(bit_map),
  1555     _scan_closure(cl) { }
  1557   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1558                                 MemRegion span,
  1559                                 ReferenceProcessor* rp,
  1560                                 CMSBitMap* bit_map,
  1561                                 OopTaskQueue* work_queue,
  1562                                 Par_MarkRefsIntoAndScanClosure* cl):
  1563     #ifdef ASSERT
  1564       _collector(collector),
  1565       _span(span),
  1566       _work_queue(work_queue),
  1567     #endif // ASSERT
  1568     _parallel(true),
  1569     _bit_map(bit_map),
  1570     _par_scan_closure(cl) { }
  1572   bool do_object_b(oop obj) {
  1573     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1574     return false;
  1576   bool do_object_bm(oop p, MemRegion mr);
  1577 };
  1579 // This closure is used during the second checkpointing phase
  1580 // to rescan the marked objects on the dirty cards in the mod
  1581 // union table and the card table proper. It invokes
  1582 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1583 // In the parallel case, the bit map is shared and requires
  1584 // synchronized access.
  1585 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1586   CompactibleFreeListSpace*      _space;
  1587   ScanMarkedObjectsAgainClosure  _scan_cl;
  1588   size_t                         _num_dirty_cards;
  1590  public:
  1591   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1592                             MemRegion span,
  1593                             CompactibleFreeListSpace* space,
  1594                             CMSBitMap* bit_map,
  1595                             CMSMarkStack* mark_stack,
  1596                             MarkRefsIntoAndScanClosure* cl):
  1597     _space(space),
  1598     _num_dirty_cards(0),
  1599     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1600                  mark_stack, cl) { }
  1602   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1603                             MemRegion span,
  1604                             CompactibleFreeListSpace* space,
  1605                             CMSBitMap* bit_map,
  1606                             OopTaskQueue* work_queue,
  1607                             Par_MarkRefsIntoAndScanClosure* cl):
  1608     _space(space),
  1609     _num_dirty_cards(0),
  1610     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1611              work_queue, cl) { }
  1613   void do_MemRegion(MemRegion mr);
  1614   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1615   size_t num_dirty_cards() { return _num_dirty_cards; }
  1616 };
  1618 // This closure is used in the non-product build to check
  1619 // that there are no MemRegions with a certain property.
  1620 class FalseMemRegionClosure: public MemRegionClosure {
  1621   void do_MemRegion(MemRegion mr) {
  1622     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1623     guarantee(false, "Should never be here");
  1625 };
  1627 // This closure is used during the precleaning phase
  1628 // to "carefully" rescan marked objects on dirty cards.
  1629 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1630 // to accomplish some of its work.
  1631 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1632   CMSCollector*                  _collector;
  1633   MemRegion                      _span;
  1634   bool                           _yield;
  1635   Mutex*                         _freelistLock;
  1636   CMSBitMap*                     _bitMap;
  1637   CMSMarkStack*                  _markStack;
  1638   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1640  public:
  1641   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1642                                          MemRegion     span,
  1643                                          CMSBitMap* bitMap,
  1644                                          CMSMarkStack*  markStack,
  1645                                          MarkRefsIntoAndScanClosure* cl,
  1646                                          bool should_yield):
  1647     _collector(collector),
  1648     _span(span),
  1649     _yield(should_yield),
  1650     _bitMap(bitMap),
  1651     _markStack(markStack),
  1652     _scanningClosure(cl) {
  1655   void do_object(oop p) {
  1656     guarantee(false, "call do_object_careful instead");
  1659   size_t      do_object_careful(oop p) {
  1660     guarantee(false, "Unexpected caller");
  1661     return 0;
  1664   size_t      do_object_careful_m(oop p, MemRegion mr);
  1666   void setFreelistLock(Mutex* m) {
  1667     _freelistLock = m;
  1668     _scanningClosure->set_freelistLock(m);
  1671  private:
  1672   inline bool do_yield_check();
  1674   void do_yield_work();
  1675 };
  1677 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1678   CMSCollector*                  _collector;
  1679   MemRegion                      _span;
  1680   bool                           _yield;
  1681   CMSBitMap*                     _bit_map;
  1682   CMSMarkStack*                  _mark_stack;
  1683   PushAndMarkClosure*            _scanning_closure;
  1684   unsigned int                   _before_count;
  1686  public:
  1687   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1688                                MemRegion     span,
  1689                                CMSBitMap*    bit_map,
  1690                                CMSMarkStack* mark_stack,
  1691                                PushAndMarkClosure* cl,
  1692                                unsigned int  before_count,
  1693                                bool          should_yield):
  1694     _collector(collector),
  1695     _span(span),
  1696     _yield(should_yield),
  1697     _bit_map(bit_map),
  1698     _mark_stack(mark_stack),
  1699     _scanning_closure(cl),
  1700     _before_count(before_count)
  1701   { }
  1703   void do_object(oop p) {
  1704     guarantee(false, "call do_object_careful instead");
  1707   size_t      do_object_careful(oop p);
  1709   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1710     guarantee(false, "Unexpected caller");
  1711     return 0;
  1714  private:
  1715   inline void do_yield_check();
  1716   void do_yield_work();
  1717 };
  1719 // This closure is used to accomplish the sweeping work
  1720 // after the second checkpoint but before the concurrent reset
  1721 // phase.
  1722 //
  1723 // Terminology
  1724 //   left hand chunk (LHC) - block of one or more chunks currently being
  1725 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1726 //   right hand chunk (RHC) - block that is currently being swept that is
  1727 //     free or garbage that can be coalesced with the LHC.
  1728 // _inFreeRange is true if there is currently a LHC
  1729 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1730 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1731 // _freeFinger is the address of the current LHC
  1732 class SweepClosure: public BlkClosureCareful {
  1733   CMSCollector*                  _collector;  // collector doing the work
  1734   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1735   CompactibleFreeListSpace*      _sp;   // Space being swept
  1736   HeapWord*                      _limit;// the address at or above which the sweep should stop
  1737                                         // because we do not expect newly garbage blocks
  1738                                         // eligible for sweeping past that address.
  1739   Mutex*                         _freelistLock; // Free list lock (in space)
  1740   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1741                                                 // generation)
  1742   bool                           _inFreeRange;  // Indicates if we are in the
  1743                                                 // midst of a free run
  1744   bool                           _freeRangeInFreeLists;
  1745                                         // Often, we have just found
  1746                                         // a free chunk and started
  1747                                         // a new free range; we do not
  1748                                         // eagerly remove this chunk from
  1749                                         // the free lists unless there is
  1750                                         // a possibility of coalescing.
  1751                                         // When true, this flag indicates
  1752                                         // that the _freeFinger below
  1753                                         // points to a potentially free chunk
  1754                                         // that may still be in the free lists
  1755   bool                           _lastFreeRangeCoalesced;
  1756                                         // free range contains chunks
  1757                                         // coalesced
  1758   bool                           _yield;
  1759                                         // Whether sweeping should be
  1760                                         // done with yields. For instance
  1761                                         // when done by the foreground
  1762                                         // collector we shouldn't yield.
  1763   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1764                                                 // pointer to the "left hand
  1765                                                 // chunk"
  1766   size_t                         _freeRangeSize;
  1767                                         // When _inFreeRange is set, this
  1768                                         // indicates the accumulated size
  1769                                         // of the "left hand chunk"
  1770   NOT_PRODUCT(
  1771     size_t                       _numObjectsFreed;
  1772     size_t                       _numWordsFreed;
  1773     size_t                       _numObjectsLive;
  1774     size_t                       _numWordsLive;
  1775     size_t                       _numObjectsAlreadyFree;
  1776     size_t                       _numWordsAlreadyFree;
  1777     FreeChunk*                   _last_fc;
  1779  private:
  1780   // Code that is common to a free chunk or garbage when
  1781   // encountered during sweeping.
  1782   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
  1783   // Process a free chunk during sweeping.
  1784   void do_already_free_chunk(FreeChunk *fc);
  1785   // Work method called when processing an already free or a
  1786   // freshly garbage chunk to do a lookahead and possibly a
  1787   // premptive flush if crossing over _limit.
  1788   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
  1789   // Process a garbage chunk during sweeping.
  1790   size_t do_garbage_chunk(FreeChunk *fc);
  1791   // Process a live chunk during sweeping.
  1792   size_t do_live_chunk(FreeChunk* fc);
  1794   // Accessors.
  1795   HeapWord* freeFinger() const          { return _freeFinger; }
  1796   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1797   bool inFreeRange()    const           { return _inFreeRange; }
  1798   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1799   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1800   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1801   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1802   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1804   // Initialize a free range.
  1805   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1806   // Return this chunk to the free lists.
  1807   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
  1809   // Check if we should yield and do so when necessary.
  1810   inline void do_yield_check(HeapWord* addr);
  1812   // Yield
  1813   void do_yield_work(HeapWord* addr);
  1815   // Debugging/Printing
  1816   void print_free_block_coalesced(FreeChunk* fc) const;
  1818  public:
  1819   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1820                CMSBitMap* bitMap, bool should_yield);
  1821   ~SweepClosure() PRODUCT_RETURN;
  1823   size_t       do_blk_careful(HeapWord* addr);
  1824   void         print() const { print_on(tty); }
  1825   void         print_on(outputStream *st) const;
  1826 };
  1828 // Closures related to weak references processing
  1830 // During CMS' weak reference processing, this is a
  1831 // work-routine/closure used to complete transitive
  1832 // marking of objects as live after a certain point
  1833 // in which an initial set has been completely accumulated.
  1834 // This closure is currently used both during the final
  1835 // remark stop-world phase, as well as during the concurrent
  1836 // precleaning of the discovered reference lists.
  1837 class CMSDrainMarkingStackClosure: public VoidClosure {
  1838   CMSCollector*        _collector;
  1839   MemRegion            _span;
  1840   CMSMarkStack*        _mark_stack;
  1841   CMSBitMap*           _bit_map;
  1842   CMSKeepAliveClosure* _keep_alive;
  1843   bool                 _concurrent_precleaning;
  1844  public:
  1845   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1846                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1847                       CMSKeepAliveClosure* keep_alive,
  1848                       bool cpc):
  1849     _collector(collector),
  1850     _span(span),
  1851     _bit_map(bit_map),
  1852     _mark_stack(mark_stack),
  1853     _keep_alive(keep_alive),
  1854     _concurrent_precleaning(cpc) {
  1855     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
  1856            "Mismatch");
  1859   void do_void();
  1860 };
  1862 // A parallel version of CMSDrainMarkingStackClosure above.
  1863 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1864   CMSCollector*           _collector;
  1865   MemRegion               _span;
  1866   OopTaskQueue*           _work_queue;
  1867   CMSBitMap*              _bit_map;
  1868   CMSInnerParMarkAndPushClosure _mark_and_push;
  1870  public:
  1871   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1872                                  MemRegion span, CMSBitMap* bit_map,
  1873                                  OopTaskQueue* work_queue):
  1874     _collector(collector),
  1875     _span(span),
  1876     _bit_map(bit_map),
  1877     _work_queue(work_queue),
  1878     _mark_and_push(collector, span, bit_map, work_queue) { }
  1880  public:
  1881   void trim_queue(uint max);
  1882   void do_void();
  1883 };
  1885 // Allow yielding or short-circuiting of reference list
  1886 // prelceaning work.
  1887 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1888   CMSCollector* _collector;
  1889   void do_yield_work();
  1890  public:
  1891   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1892     _collector(collector) {}
  1893   virtual bool should_return();
  1894 };
  1897 // Convenience class that locks free list locks for given CMS collector
  1898 class FreelistLocker: public StackObj {
  1899  private:
  1900   CMSCollector* _collector;
  1901  public:
  1902   FreelistLocker(CMSCollector* collector):
  1903     _collector(collector) {
  1904     _collector->getFreelistLocks();
  1907   ~FreelistLocker() {
  1908     _collector->releaseFreelistLocks();
  1910 };
  1912 // Mark all dead objects in a given space.
  1913 class MarkDeadObjectsClosure: public BlkClosure {
  1914   const CMSCollector*             _collector;
  1915   const CompactibleFreeListSpace* _sp;
  1916   CMSBitMap*                      _live_bit_map;
  1917   CMSBitMap*                      _dead_bit_map;
  1918 public:
  1919   MarkDeadObjectsClosure(const CMSCollector* collector,
  1920                          const CompactibleFreeListSpace* sp,
  1921                          CMSBitMap *live_bit_map,
  1922                          CMSBitMap *dead_bit_map) :
  1923     _collector(collector),
  1924     _sp(sp),
  1925     _live_bit_map(live_bit_map),
  1926     _dead_bit_map(dead_bit_map) {}
  1927   size_t do_blk(HeapWord* addr);
  1928 };
  1930 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
  1932  public:
  1933   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
  1934 };
  1937 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP

mercurial