src/share/vm/utilities/taskqueue.hpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7535
7ae4e26cb1e0
child 8856
ac27a9c85bea
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "runtime/orderAccess.inline.hpp"
    32 #include "utilities/stack.hpp"
    34 // Simple TaskQueue stats that are collected by default in debug builds.
    36 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    37 #define TASKQUEUE_STATS 1
    38 #elif !defined(TASKQUEUE_STATS)
    39 #define TASKQUEUE_STATS 0
    40 #endif
    42 #if TASKQUEUE_STATS
    43 #define TASKQUEUE_STATS_ONLY(code) code
    44 #else
    45 #define TASKQUEUE_STATS_ONLY(code)
    46 #endif // TASKQUEUE_STATS
    48 #if TASKQUEUE_STATS
    49 class TaskQueueStats {
    50 public:
    51   enum StatId {
    52     push,             // number of taskqueue pushes
    53     pop,              // number of taskqueue pops
    54     pop_slow,         // subset of taskqueue pops that were done slow-path
    55     steal_attempt,    // number of taskqueue steal attempts
    56     steal,            // number of taskqueue steals
    57     overflow,         // number of overflow pushes
    58     overflow_max_len, // max length of overflow stack
    59     last_stat_id
    60   };
    62 public:
    63   inline TaskQueueStats()       { reset(); }
    65   inline void record_push()     { ++_stats[push]; }
    66   inline void record_pop()      { ++_stats[pop]; }
    67   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    68   inline void record_steal(bool success);
    69   inline void record_overflow(size_t new_length);
    71   TaskQueueStats & operator +=(const TaskQueueStats & addend);
    73   inline size_t get(StatId id) const { return _stats[id]; }
    74   inline const size_t* get() const   { return _stats; }
    76   inline void reset();
    78   // Print the specified line of the header (does not include a line separator).
    79   static void print_header(unsigned int line, outputStream* const stream = tty,
    80                            unsigned int width = 10);
    81   // Print the statistics (does not include a line separator).
    82   void print(outputStream* const stream = tty, unsigned int width = 10) const;
    84   DEBUG_ONLY(void verify() const;)
    86 private:
    87   size_t                    _stats[last_stat_id];
    88   static const char * const _names[last_stat_id];
    89 };
    91 void TaskQueueStats::record_steal(bool success) {
    92   ++_stats[steal_attempt];
    93   if (success) ++_stats[steal];
    94 }
    96 void TaskQueueStats::record_overflow(size_t new_len) {
    97   ++_stats[overflow];
    98   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
    99 }
   101 void TaskQueueStats::reset() {
   102   memset(_stats, 0, sizeof(_stats));
   103 }
   104 #endif // TASKQUEUE_STATS
   106 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   108 template <unsigned int N, MEMFLAGS F>
   109 class TaskQueueSuper: public CHeapObj<F> {
   110 protected:
   111   // Internal type for indexing the queue; also used for the tag.
   112   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   114 #ifdef MIPS64
   115 private:
   116 #endif
   117   // The first free element after the last one pushed (mod N).
   118   volatile uint _bottom;
   120 #ifdef MIPS64
   121 protected:
   122   inline uint get_bottom() const {
   123     return OrderAccess::load_acquire((volatile juint*)&_bottom);
   124   }
   126   inline void set_bottom(uint new_bottom) {
   127     OrderAccess::release_store(&_bottom, new_bottom);
   128   }
   129 #endif
   131   enum { MOD_N_MASK = N - 1 };
   133   class Age {
   134   public:
   135     Age(size_t data = 0)         { _data = data; }
   136     Age(const Age& age)          { _data = age._data; }
   137     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   139 #ifndef MIPS64
   140     Age   get()        const volatile { return _data; }
   141     void  set(Age age) volatile       { _data = age._data; }
   142     idx_t top()        const volatile { return _fields._top; }
   143     idx_t tag()        const volatile { return _fields._tag; }
   144 #else
   145     Age   get()        const volatile { 
   146       size_t res = OrderAccess::load_ptr_acquire((volatile intptr_t*) &_data);
   147       return *(Age*)(&res);
   148     }
   150     void  set(Age age) volatile       { OrderAccess::release_store_ptr((volatile intptr_t*) &_data, *(size_t*)(&age._data)); }
   151     idx_t top()        const volatile { return OrderAccess::load_acquire((volatile idx_t*) &(_fields._top)); }
   152     idx_t tag()        const volatile { return OrderAccess::load_acquire((volatile idx_t*) &(_fields._tag)); }
   153 #endif
   155     // Increment top; if it wraps, increment tag also.
   156     void increment() {
   157       _fields._top = increment_index(_fields._top);
   158       if (_fields._top == 0) ++_fields._tag;
   159     }
   161     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   162       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   163                                           (volatile intptr_t *)&_data,
   164                                           (intptr_t)old_age._data);
   165     }
   167     bool operator ==(const Age& other) const { return _data == other._data; }
   169   private:
   170     struct fields {
   171       idx_t _top;
   172       idx_t _tag;
   173     };
   174     union {
   175       size_t _data;
   176       fields _fields;
   177     };
   178   };
   180   volatile Age _age;
   182   // These both operate mod N.
   183   static uint increment_index(uint ind) {
   184     return (ind + 1) & MOD_N_MASK;
   185   }
   186   static uint decrement_index(uint ind) {
   187     return (ind - 1) & MOD_N_MASK;
   188   }
   190   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   191   // interpreted as 0.
   192   uint dirty_size(uint bot, uint top) const {
   193     return (bot - top) & MOD_N_MASK;
   194   }
   196   // Returns the size corresponding to the given "bot" and "top".
   197   uint size(uint bot, uint top) const {
   198     uint sz = dirty_size(bot, top);
   199     // Has the queue "wrapped", so that bottom is less than top?  There's a
   200     // complicated special case here.  A pair of threads could perform pop_local
   201     // and pop_global operations concurrently, starting from a state in which
   202     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   203     // and the pop_global in incrementing _top (in which case the pop_global
   204     // will be awarded the contested queue element.)  The resulting state must
   205     // be interpreted as an empty queue.  (We only need to worry about one such
   206     // event: only the queue owner performs pop_local's, and several concurrent
   207     // threads attempting to perform the pop_global will all perform the same
   208     // CAS, and only one can succeed.)  Any stealing thread that reads after
   209     // either the increment or decrement will see an empty queue, and will not
   210     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   211     // modified by concurrent queues, so the owner thread can reset the state to
   212     // _bottom == top so subsequent pushes will be performed normally.
   213     return (sz == N - 1) ? 0 : sz;
   214   }
   216 public:
   217   TaskQueueSuper() : _bottom(0), _age() {}
   219   // Return true if the TaskQueue contains/does not contain any tasks.
   220   bool peek()     const { 
   221 #ifdef MIPS64
   222     return get_bottom() != _age.top(); 
   223 #else
   224     return _bottom != _age.top(); 
   225 #endif
   226   }
   228   bool is_empty() const { return size() == 0; }
   230   // Return an estimate of the number of elements in the queue.
   231   // The "careful" version admits the possibility of pop_local/pop_global
   232   // races.
   233   uint size() const {
   234 #ifdef MIPS64
   235     return size(get_bottom(), _age.top());
   236 #else
   237     return size(_bottom, _age.top());
   238 #endif
   239   }
   241   uint dirty_size() const {
   242 #ifdef MIPS64
   243     return dirty_size(get_bottom(), _age.top());
   244 #else
   245     return dirty_size(_bottom, _age.top());
   246 #endif
   247   }
   249   void set_empty() {
   250 #ifdef MIPS64
   251     set_bottom(0);
   252 #else
   253     _bottom = 0;
   254 #endif
   255     _age.set(0);
   256   }
   258   // Maximum number of elements allowed in the queue.  This is two less
   259   // than the actual queue size, for somewhat complicated reasons.
   260   uint max_elems() const { return N - 2; }
   262   // Total size of queue.
   263   static const uint total_size() { return N; }
   265   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   266 };
   268 //
   269 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   270 // ended-queue (deque), intended for use in work stealing. Queue operations
   271 // are non-blocking.
   272 //
   273 // A queue owner thread performs push() and pop_local() operations on one end
   274 // of the queue, while other threads may steal work using the pop_global()
   275 // method.
   276 //
   277 // The main difference to the original algorithm is that this
   278 // implementation allows wrap-around at the end of its allocated
   279 // storage, which is an array.
   280 //
   281 // The original paper is:
   282 //
   283 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   284 // Thread scheduling for multiprogrammed multiprocessors.
   285 // Theory of Computing Systems 34, 2 (2001), 115-144.
   286 //
   287 // The following paper provides an correctness proof and an
   288 // implementation for weakly ordered memory models including (pseudo-)
   289 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   290 // similar to ABP, with the main difference that it allows resizing of the
   291 // underlying storage:
   292 //
   293 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   294 // Correct and efficient work-stealing for weak memory models
   295 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   296 // practice of parallel programming (PPoPP 2013), 69-80
   297 //
   299 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   300 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   301   ArrayAllocator<E, F> _array_allocator;
   302 protected:
   303   typedef typename TaskQueueSuper<N, F>::Age Age;
   304   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   306 #ifndef MIPS64
   307   using TaskQueueSuper<N, F>::_bottom;
   308 #endif
   309   using TaskQueueSuper<N, F>::_age;
   310   using TaskQueueSuper<N, F>::increment_index;
   311   using TaskQueueSuper<N, F>::decrement_index;
   312   using TaskQueueSuper<N, F>::dirty_size;
   314 public:
   315   using TaskQueueSuper<N, F>::max_elems;
   316   using TaskQueueSuper<N, F>::size;
   318 #if  TASKQUEUE_STATS
   319   using TaskQueueSuper<N, F>::stats;
   320 #endif
   322 private:
   323   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   324   bool push_slow(E t, uint dirty_n_elems);
   325   bool pop_local_slow(uint localBot, Age oldAge);
   327 public:
   328   typedef E element_type;
   330   // Initializes the queue to empty.
   331   GenericTaskQueue();
   333   void initialize();
   335   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   336   inline bool push(E t);
   338   // Attempts to claim a task from the "local" end of the queue (the most
   339   // recently pushed).  If successful, returns true and sets t to the task;
   340   // otherwise, returns false (the queue is empty).
   341   inline bool pop_local(volatile E& t);
   343   // Like pop_local(), but uses the "global" end of the queue (the least
   344   // recently pushed).
   345   bool pop_global(volatile E& t);
   347   // Delete any resource associated with the queue.
   348   ~GenericTaskQueue();
   350   // apply the closure to all elements in the task queue
   351   void oops_do(OopClosure* f);
   353 private:
   354   // Element array.
   355   volatile E* _elems;
   356 };
   358 template<class E, MEMFLAGS F, unsigned int N>
   359 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   360   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   361 }
   363 template<class E, MEMFLAGS F, unsigned int N>
   364 void GenericTaskQueue<E, F, N>::initialize() {
   365   _elems = _array_allocator.allocate(N);
   366 }
   368 template<class E, MEMFLAGS F, unsigned int N>
   369 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   370   // tty->print_cr("START OopTaskQueue::oops_do");
   371   uint iters = size();
   372 #ifdef MIPS64
   373   uint index = this->get_bottom();
   374 #else
   375   uint index = _bottom;
   376 #endif
   377   for (uint i = 0; i < iters; ++i) {
   378     index = decrement_index(index);
   379     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   380     //            index, &_elems[index], _elems[index]);
   381     E* t = (E*)&_elems[index];      // cast away volatility
   382     oop* p = (oop*)t;
   383     assert((*t)->is_oop_or_null(), "Not an oop or null");
   384     f->do_oop(p);
   385   }
   386   // tty->print_cr("END OopTaskQueue::oops_do");
   387 }
   389 template<class E, MEMFLAGS F, unsigned int N>
   390 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   391   if (dirty_n_elems == N - 1) {
   392     // Actually means 0, so do the push.
   393 #ifdef MIPS64
   394     uint localBot = this->get_bottom();
   395 #else
   396     uint localBot = _bottom;
   397 #endif
   398     // g++ complains if the volatile result of the assignment is
   399     // unused, so we cast the volatile away.  We cannot cast directly
   400     // to void, because gcc treats that as not using the result of the
   401     // assignment.  However, casting to E& means that we trigger an
   402     // unused-value warning.  So, we cast the E& to void.
   403     (void)const_cast<E&>(_elems[localBot] = t);
   404 #ifdef MIPS64
   405     this->set_bottom(increment_index(localBot));
   406 #else
   407     OrderAccess::release_store(&_bottom, increment_index(localBot));
   408 #endif
   409     TASKQUEUE_STATS_ONLY(stats.record_push());
   410     return true;
   411   }
   412   return false;
   413 }
   415 // pop_local_slow() is done by the owning thread and is trying to
   416 // get the last task in the queue.  It will compete with pop_global()
   417 // that will be used by other threads.  The tag age is incremented
   418 // whenever the queue goes empty which it will do here if this thread
   419 // gets the last task or in pop_global() if the queue wraps (top == 0
   420 // and pop_global() succeeds, see pop_global()).
   421 template<class E, MEMFLAGS F, unsigned int N>
   422 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   423   // This queue was observed to contain exactly one element; either this
   424   // thread will claim it, or a competing "pop_global".  In either case,
   425   // the queue will be logically empty afterwards.  Create a new Age value
   426   // that represents the empty queue for the given value of "_bottom".  (We
   427   // must also increment "tag" because of the case where "bottom == 1",
   428   // "top == 0".  A pop_global could read the queue element in that case,
   429   // then have the owner thread do a pop followed by another push.  Without
   430   // the incrementing of "tag", the pop_global's CAS could succeed,
   431   // allowing it to believe it has claimed the stale element.)
   432   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   433   // Perhaps a competing pop_global has already incremented "top", in which
   434   // case it wins the element.
   435   if (localBot == oldAge.top()) {
   436     // No competing pop_global has yet incremented "top"; we'll try to
   437     // install new_age, thus claiming the element.
   438     Age tempAge = _age.cmpxchg(newAge, oldAge);
   439     if (tempAge == oldAge) {
   440       // We win.
   441       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   442       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   443       return true;
   444     }
   445   }
   446   // We lose; a completing pop_global gets the element.  But the queue is empty
   447   // and top is greater than bottom.  Fix this representation of the empty queue
   448   // to become the canonical one.
   449   _age.set(newAge);
   450   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   451   return false;
   452 }
   454 template<class E, MEMFLAGS F, unsigned int N>
   455 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   456   Age oldAge = _age.get();
   457   // Architectures with weak memory model require a barrier here
   458   // to guarantee that bottom is not older than age,
   459   // which is crucial for the correctness of the algorithm.
   460 #if !(defined SPARC || defined IA32 || defined AMD64)
   461   OrderAccess::fence();
   462 #endif
   463 #ifdef MIPS64
   464   uint localBot = this->get_bottom();
   465 #else
   466   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   467 #endif
   468   uint n_elems = size(localBot, oldAge.top());
   469   if (n_elems == 0) {
   470     return false;
   471   }
   473   // g++ complains if the volatile result of the assignment is
   474   // unused, so we cast the volatile away.  We cannot cast directly
   475   // to void, because gcc treats that as not using the result of the
   476   // assignment.  However, casting to E& means that we trigger an
   477   // unused-value warning.  So, we cast the E& to void.
   478   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   479   Age newAge(oldAge);
   480   newAge.increment();
   481   Age resAge = _age.cmpxchg(newAge, oldAge);
   483   // Note that using "_bottom" here might fail, since a pop_local might
   484   // have decremented it.
   485   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   486   return resAge == oldAge;
   487 }
   489 template<class E, MEMFLAGS F, unsigned int N>
   490 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   491   FREE_C_HEAP_ARRAY(E, _elems, F);
   492 }
   494 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   495 // elements that do not fit in the TaskQueue.
   496 //
   497 // This class hides two methods from super classes:
   498 //
   499 // push() - push onto the task queue or, if that fails, onto the overflow stack
   500 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   501 //
   502 // Note that size() is not hidden--it returns the number of elements in the
   503 // TaskQueue, and does not include the size of the overflow stack.  This
   504 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   505 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   506 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   507 {
   508 public:
   509   typedef Stack<E, F>               overflow_t;
   510   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   512   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   514   // Push task t onto the queue or onto the overflow stack.  Return true.
   515   inline bool push(E t);
   517   // Attempt to pop from the overflow stack; return true if anything was popped.
   518   inline bool pop_overflow(E& t);
   520   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   522   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   523   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   524   inline bool is_empty()        const {
   525     return taskqueue_empty() && overflow_empty();
   526   }
   528 private:
   529   overflow_t _overflow_stack;
   530 };
   532 template <class E, MEMFLAGS F, unsigned int N>
   533 bool OverflowTaskQueue<E, F, N>::push(E t)
   534 {
   535   if (!taskqueue_t::push(t)) {
   536     overflow_stack()->push(t);
   537     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   538   }
   539   return true;
   540 }
   542 template <class E, MEMFLAGS F, unsigned int N>
   543 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   544 {
   545   if (overflow_empty()) return false;
   546   t = overflow_stack()->pop();
   547   return true;
   548 }
   550 class TaskQueueSetSuper {
   551 protected:
   552   static int randomParkAndMiller(int* seed0);
   553 public:
   554   // Returns "true" if some TaskQueue in the set contains a task.
   555   virtual bool peek() = 0;
   556 };
   558 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   559 };
   561 template<class T, MEMFLAGS F>
   562 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   563 private:
   564   uint _n;
   565   T** _queues;
   567 public:
   568   typedef typename T::element_type E;
   570   GenericTaskQueueSet(int n) : _n(n) {
   571     typedef T* GenericTaskQueuePtr;
   572     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   573     for (int i = 0; i < n; i++) {
   574       _queues[i] = NULL;
   575     }
   576   }
   578   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   580   void register_queue(uint i, T* q);
   582   T* queue(uint n);
   584   // The thread with queue number "queue_num" (and whose random number seed is
   585   // at "seed") is trying to steal a task from some other queue.  (It may try
   586   // several queues, according to some configuration parameter.)  If some steal
   587   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   588   // false.
   589   bool steal(uint queue_num, int* seed, E& t);
   591   bool peek();
   592 };
   594 template<class T, MEMFLAGS F> void
   595 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   596   assert(i < _n, "index out of range.");
   597   _queues[i] = q;
   598 }
   600 template<class T, MEMFLAGS F> T*
   601 GenericTaskQueueSet<T, F>::queue(uint i) {
   602   return _queues[i];
   603 }
   605 template<class T, MEMFLAGS F> bool
   606 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   607   for (uint i = 0; i < 2 * _n; i++) {
   608     if (steal_best_of_2(queue_num, seed, t)) {
   609       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   610       return true;
   611     }
   612   }
   613   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   614   return false;
   615 }
   617 template<class T, MEMFLAGS F> bool
   618 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   619   if (_n > 2) {
   620     uint k1 = queue_num;
   621     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   622     uint k2 = queue_num;
   623     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   624     // Sample both and try the larger.
   625     uint sz1 = _queues[k1]->size();
   626     uint sz2 = _queues[k2]->size();
   627     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   628     else return _queues[k1]->pop_global(t);
   629   } else if (_n == 2) {
   630     // Just try the other one.
   631     uint k = (queue_num + 1) % 2;
   632     return _queues[k]->pop_global(t);
   633   } else {
   634     assert(_n == 1, "can't be zero.");
   635     return false;
   636   }
   637 }
   639 template<class T, MEMFLAGS F>
   640 bool GenericTaskQueueSet<T, F>::peek() {
   641   // Try all the queues.
   642   for (uint j = 0; j < _n; j++) {
   643     if (_queues[j]->peek())
   644       return true;
   645   }
   646   return false;
   647 }
   649 // When to terminate from the termination protocol.
   650 class TerminatorTerminator: public CHeapObj<mtInternal> {
   651 public:
   652   virtual bool should_exit_termination() = 0;
   653 };
   655 // A class to aid in the termination of a set of parallel tasks using
   656 // TaskQueueSet's for work stealing.
   658 #undef TRACESPINNING
   660 class ParallelTaskTerminator: public StackObj {
   661 private:
   662   int _n_threads;
   663   TaskQueueSetSuper* _queue_set;
   664   int _offered_termination;
   666 #ifdef TRACESPINNING
   667   static uint _total_yields;
   668   static uint _total_spins;
   669   static uint _total_peeks;
   670 #endif
   672   bool peek_in_queue_set();
   673 protected:
   674   virtual void yield();
   675   void sleep(uint millis);
   677 public:
   679   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   680   // queue sets of work queues of other threads.
   681   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   683   // The current thread has no work, and is ready to terminate if everyone
   684   // else is.  If returns "true", all threads are terminated.  If returns
   685   // "false", available work has been observed in one of the task queues,
   686   // so the global task is not complete.
   687   bool offer_termination() {
   688     return offer_termination(NULL);
   689   }
   691   // As above, but it also terminates if the should_exit_termination()
   692   // method of the terminator parameter returns true. If terminator is
   693   // NULL, then it is ignored.
   694   bool offer_termination(TerminatorTerminator* terminator);
   696   // Reset the terminator, so that it may be reused again.
   697   // The caller is responsible for ensuring that this is done
   698   // in an MT-safe manner, once the previous round of use of
   699   // the terminator is finished.
   700   void reset_for_reuse();
   701   // Same as above but the number of parallel threads is set to the
   702   // given number.
   703   void reset_for_reuse(int n_threads);
   705 #ifdef TRACESPINNING
   706   static uint total_yields() { return _total_yields; }
   707   static uint total_spins() { return _total_spins; }
   708   static uint total_peeks() { return _total_peeks; }
   709   static void print_termination_counts();
   710 #endif
   711 };
   713 template<class E, MEMFLAGS F, unsigned int N> inline bool
   714 GenericTaskQueue<E, F, N>::push(E t) {
   715 #ifdef MIPS64
   716   uint localBot = this->get_bottom();
   717 #else
   718   uint localBot = _bottom;
   719 #endif
   720   assert(localBot < N, "_bottom out of range.");
   721   idx_t top = _age.top();
   722   uint dirty_n_elems = dirty_size(localBot, top);
   723   assert(dirty_n_elems < N, "n_elems out of range.");
   724   if (dirty_n_elems < max_elems()) {
   725     // g++ complains if the volatile result of the assignment is
   726     // unused, so we cast the volatile away.  We cannot cast directly
   727     // to void, because gcc treats that as not using the result of the
   728     // assignment.  However, casting to E& means that we trigger an
   729     // unused-value warning.  So, we cast the E& to void.
   730     (void) const_cast<E&>(_elems[localBot] = t);
   731 #ifdef MIPS64
   732     this->set_bottom(increment_index(localBot));
   733 #else
   734     OrderAccess::release_store(&_bottom, increment_index(localBot));
   735 #endif
   736     TASKQUEUE_STATS_ONLY(stats.record_push());
   737     return true;
   738   } else {
   739     return push_slow(t, dirty_n_elems);
   740   }
   741 }
   743 template<class E, MEMFLAGS F, unsigned int N> inline bool
   744 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   745 #ifdef MIPS64
   746   uint localBot = this->get_bottom();
   747 #else
   748   uint localBot = _bottom;
   749 #endif
   750   // This value cannot be N-1.  That can only occur as a result of
   751   // the assignment to bottom in this method.  If it does, this method
   752   // resets the size to 0 before the next call (which is sequential,
   753   // since this is pop_local.)
   754   uint dirty_n_elems = dirty_size(localBot, _age.top());
   755   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   756   if (dirty_n_elems == 0) return false;
   757   localBot = decrement_index(localBot);
   758 #ifdef MIPS64
   759   this->set_bottom(localBot);
   760 #else
   761   _bottom = localBot;
   762 #endif
   763   // This is necessary to prevent any read below from being reordered
   764   // before the store just above.
   765   OrderAccess::fence();
   766   // g++ complains if the volatile result of the assignment is
   767   // unused, so we cast the volatile away.  We cannot cast directly
   768   // to void, because gcc treats that as not using the result of the
   769   // assignment.  However, casting to E& means that we trigger an
   770   // unused-value warning.  So, we cast the E& to void.
   771   (void) const_cast<E&>(t = _elems[localBot]);
   772   // This is a second read of "age"; the "size()" above is the first.
   773   // If there's still at least one element in the queue, based on the
   774   // "_bottom" and "age" we've read, then there can be no interference with
   775   // a "pop_global" operation, and we're done.
   776   idx_t tp = _age.top();    // XXX
   777   if (size(localBot, tp) > 0) {
   778     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   779     TASKQUEUE_STATS_ONLY(stats.record_pop());
   780     return true;
   781   } else {
   782     // Otherwise, the queue contained exactly one element; we take the slow
   783     // path.
   784     return pop_local_slow(localBot, _age.get());
   785   }
   786 }
   788 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   789 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   791 #ifdef _MSC_VER
   792 #pragma warning(push)
   793 // warning C4522: multiple assignment operators specified
   794 #pragma warning(disable:4522)
   795 #endif
   797 // This is a container class for either an oop* or a narrowOop*.
   798 // Both are pushed onto a task queue and the consumer will test is_narrow()
   799 // to determine which should be processed.
   800 class StarTask {
   801   void*  _holder;        // either union oop* or narrowOop*
   803   enum { COMPRESSED_OOP_MASK = 1 };
   805  public:
   806   StarTask(narrowOop* p) {
   807     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   808     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   809   }
   810   StarTask(oop* p)       {
   811     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   812     _holder = (void*)p;
   813   }
   814   StarTask()             { _holder = NULL; }
   815   operator oop*()        { return (oop*)_holder; }
   816   operator narrowOop*()  {
   817     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   818   }
   820   StarTask& operator=(const StarTask& t) {
   821     _holder = t._holder;
   822     return *this;
   823   }
   824   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   825     _holder = t._holder;
   826     return *this;
   827   }
   829   bool is_narrow() const {
   830     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   831   }
   832 };
   834 class ObjArrayTask
   835 {
   836 public:
   837   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   838   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   839     assert(idx <= size_t(max_jint), "too big");
   840   }
   841   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   843   ObjArrayTask& operator =(const ObjArrayTask& t) {
   844     _obj = t._obj;
   845     _index = t._index;
   846     return *this;
   847   }
   848   volatile ObjArrayTask&
   849   operator =(const volatile ObjArrayTask& t) volatile {
   850     (void)const_cast<oop&>(_obj = t._obj);
   851     _index = t._index;
   852     return *this;
   853   }
   855   inline oop obj()   const { return _obj; }
   856   inline int index() const { return _index; }
   858   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   860 private:
   861   oop _obj;
   862   int _index;
   863 };
   865 #ifdef _MSC_VER
   866 #pragma warning(pop)
   867 #endif
   869 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   870 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   872 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   873 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   876 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial