src/share/vm/gc_implementation/g1/g1ParScanThreadState.cpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7651
c132be0fb74d
child 8611
a753c8401458
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    27 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    28 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "oops/oop.pcgc.inline.hpp"
    31 #include "runtime/prefetch.inline.hpp"
    33 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
    34   : _g1h(g1h),
    35     _refs(g1h->task_queue(queue_num)),
    36     _dcq(&g1h->dirty_card_queue_set()),
    37     _ct_bs(g1h->g1_barrier_set()),
    38     _g1_rem(g1h->g1_rem_set()),
    39     _hash_seed(17), _queue_num(queue_num),
    40     _term_attempts(0),
    41     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
    42     _age_table(false), _scanner(g1h, rp),
    43     _strong_roots_time(0), _term_time(0) {
    44   _scanner.set_par_scan_thread_state(this);
    45   // we allocate G1YoungSurvRateNumRegions plus one entries, since
    46   // we "sacrifice" entry 0 to keep track of surviving bytes for
    47   // non-young regions (where the age is -1)
    48   // We also add a few elements at the beginning and at the end in
    49   // an attempt to eliminate cache contention
    50   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
    51   uint array_length = PADDING_ELEM_NUM +
    52                       real_length +
    53                       PADDING_ELEM_NUM;
    54   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
    55   if (_surviving_young_words_base == NULL)
    56     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
    57                           "Not enough space for young surv histo.");
    58   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
    59   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
    61   _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
    63   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
    64   // The dest for Young is used when the objects are aged enough to
    65   // need to be moved to the next space.
    66   _dest[InCSetState::Young]        = InCSetState::Old;
    67   _dest[InCSetState::Old]          = InCSetState::Old;
    69   _start = os::elapsedTime();
    70 }
    72 G1ParScanThreadState::~G1ParScanThreadState() {
    73   _g1_par_allocator->retire_alloc_buffers();
    74   delete _g1_par_allocator;
    75   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
    76 }
    78 void
    79 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
    80 {
    81   st->print_raw_cr("GC Termination Stats");
    82   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
    83                    " ------waste (KiB)------");
    84   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
    85                    "  total   alloc    undo");
    86   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
    87                    " ------- ------- -------");
    88 }
    90 void
    91 G1ParScanThreadState::print_termination_stats(int i,
    92                                               outputStream* const st) const
    93 {
    94   const double elapsed_ms = elapsed_time() * 1000.0;
    95   const double s_roots_ms = strong_roots_time() * 1000.0;
    96   const double term_ms    = term_time() * 1000.0;
    97   const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
    98   const size_t undo_waste         = _g1_par_allocator->undo_waste();
    99   st->print_cr("%3d %9.2f %9.2f %6.2f "
   100                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
   101                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
   102                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
   103                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
   104                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
   105                alloc_buffer_waste * HeapWordSize / K,
   106                undo_waste * HeapWordSize / K);
   107 }
   109 #ifdef ASSERT
   110 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
   111   assert(ref != NULL, "invariant");
   112   assert(UseCompressedOops, "sanity");
   113   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
   114   oop p = oopDesc::load_decode_heap_oop(ref);
   115   assert(_g1h->is_in_g1_reserved(p),
   116          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
   117   return true;
   118 }
   120 bool G1ParScanThreadState::verify_ref(oop* ref) const {
   121   assert(ref != NULL, "invariant");
   122   if (has_partial_array_mask(ref)) {
   123     // Must be in the collection set--it's already been copied.
   124     oop p = clear_partial_array_mask(ref);
   125     assert(_g1h->obj_in_cs(p),
   126            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
   127   } else {
   128     oop p = oopDesc::load_decode_heap_oop(ref);
   129     assert(_g1h->is_in_g1_reserved(p),
   130            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
   131   }
   132   return true;
   133 }
   135 bool G1ParScanThreadState::verify_task(StarTask ref) const {
   136   if (ref.is_narrow()) {
   137     return verify_ref((narrowOop*) ref);
   138   } else {
   139     return verify_ref((oop*) ref);
   140   }
   141 }
   142 #endif // ASSERT
   144 void G1ParScanThreadState::trim_queue() {
   145   assert(_evac_failure_cl != NULL, "not set");
   147   StarTask ref;
   148   do {
   149     // Drain the overflow stack first, so other threads can steal.
   150     while (_refs->pop_overflow(ref)) {
   151       dispatch_reference(ref);
   152     }
   154     while (_refs->pop_local(ref)) {
   155       dispatch_reference(ref);
   156     }
   157   } while (!_refs->is_empty());
   158 }
   160 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
   161                                                       InCSetState* dest,
   162                                                       size_t word_sz,
   163                                                       AllocationContext_t const context) {
   164   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
   165   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
   167   // Right now we only have two types of regions (young / old) so
   168   // let's keep the logic here simple. We can generalize it when necessary.
   169   if (dest->is_young()) {
   170     HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
   171                                                           word_sz, context);
   172     if (obj_ptr == NULL) {
   173       return NULL;
   174     }
   175     // Make sure that we won't attempt to copy any other objects out
   176     // of a survivor region (given that apparently we cannot allocate
   177     // any new ones) to avoid coming into this slow path.
   178     _tenuring_threshold = 0;
   179     dest->set_old();
   180     return obj_ptr;
   181   } else {
   182     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
   183     // no other space to try.
   184     return NULL;
   185   }
   186 }
   188 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
   189   if (state.is_young()) {
   190     age = !m->has_displaced_mark_helper() ? m->age()
   191                                           : m->displaced_mark_helper()->age();
   192     if (age < _tenuring_threshold) {
   193       return state;
   194     }
   195   }
   196   return dest(state);
   197 }
   199 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
   200                                                  oop const old,
   201                                                  markOop const old_mark) {
   202   const size_t word_sz = old->size();
   203   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
   204   // +1 to make the -1 indexes valid...
   205   const int young_index = from_region->young_index_in_cset()+1;
   206   assert( (from_region->is_young() && young_index >  0) ||
   207          (!from_region->is_young() && young_index == 0), "invariant" );
   208   const AllocationContext_t context = from_region->allocation_context();
   210   uint age = 0;
   211   InCSetState dest_state = next_state(state, old_mark, age);
   212   HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
   214   // PLAB allocations should succeed most of the time, so we'll
   215   // normally check against NULL once and that's it.
   216   if (obj_ptr == NULL) {
   217     obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
   218     if (obj_ptr == NULL) {
   219       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
   220       if (obj_ptr == NULL) {
   221         // This will either forward-to-self, or detect that someone else has
   222         // installed a forwarding pointer.
   223         return _g1h->handle_evacuation_failure_par(this, old);
   224       }
   225     }
   226   }
   228   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
   229 #ifndef PRODUCT
   230   // Should this evacuation fail?
   231   if (_g1h->evacuation_should_fail()) {
   232     // Doing this after all the allocation attempts also tests the
   233     // undo_allocation() method too.
   234     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
   235     return _g1h->handle_evacuation_failure_par(this, old);
   236   }
   237 #endif // !PRODUCT
   239   // We're going to allocate linearly, so might as well prefetch ahead.
   240   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
   242   const oop obj = oop(obj_ptr);
   243   const oop forward_ptr = old->forward_to_atomic(obj);
   244   if (forward_ptr == NULL) {
   245     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
   247     if (dest_state.is_young()) {
   248       if (age < markOopDesc::max_age) {
   249         age++;
   250       }
   251       if (old_mark->has_displaced_mark_helper()) {
   252         // In this case, we have to install the mark word first,
   253         // otherwise obj looks to be forwarded (the old mark word,
   254         // which contains the forward pointer, was copied)
   255         obj->set_mark(old_mark);
   256         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
   257         old_mark->set_displaced_mark_helper(new_mark);
   258       } else {
   259         obj->set_mark(old_mark->set_age(age));
   260       }
   261       age_table()->add(age, word_sz);
   262     } else {
   263       obj->set_mark(old_mark);
   264     }
   266     if (G1StringDedup::is_enabled()) {
   267       const bool is_from_young = state.is_young();
   268       const bool is_to_young = dest_state.is_young();
   269       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
   270              "sanity");
   271       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
   272              "sanity");
   273       G1StringDedup::enqueue_from_evacuation(is_from_young,
   274                                              is_to_young,
   275                                              queue_num(),
   276                                              obj);
   277     }
   279     size_t* const surv_young_words = surviving_young_words();
   280     surv_young_words[young_index] += word_sz;
   282     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
   283       // We keep track of the next start index in the length field of
   284       // the to-space object. The actual length can be found in the
   285       // length field of the from-space object.
   286       arrayOop(obj)->set_length(0);
   287       oop* old_p = set_partial_array_mask(old);
   288       push_on_queue(old_p);
   289     } else {
   290       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
   291       _scanner.set_region(to_region);
   292       obj->oop_iterate_backwards(&_scanner);
   293     }
   294     return obj;
   295   } else {
   296     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
   297     return forward_ptr;
   298   }
   299 }

mercurial