src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7990
1f646daf0d67
parent 7535
7ae4e26cb1e0
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

merge

     1   /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/g1AllocationContext.hpp"
    29 #include "gc_implementation/g1/g1Allocator.hpp"
    30 #include "gc_implementation/g1/concurrentMark.hpp"
    31 #include "gc_implementation/g1/evacuationInfo.hpp"
    32 #include "gc_implementation/g1/g1AllocRegion.hpp"
    33 #include "gc_implementation/g1/g1BiasedArray.hpp"
    34 #include "gc_implementation/g1/g1HRPrinter.hpp"
    35 #include "gc_implementation/g1/g1InCSetState.hpp"
    36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/g1YCTypes.hpp"
    39 #include "gc_implementation/g1/heapRegionManager.hpp"
    40 #include "gc_implementation/g1/heapRegionSet.hpp"
    41 #include "gc_implementation/shared/hSpaceCounters.hpp"
    42 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/memRegion.hpp"
    45 #include "memory/sharedHeap.hpp"
    46 #include "utilities/stack.hpp"
    48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    49 // It uses the "Garbage First" heap organization and algorithm, which
    50 // may combine concurrent marking with parallel, incremental compaction of
    51 // heap subsets that will yield large amounts of garbage.
    53 // Forward declarations
    54 class HeapRegion;
    55 class HRRSCleanupTask;
    56 class GenerationSpec;
    57 class OopsInHeapRegionClosure;
    58 class G1KlassScanClosure;
    59 class G1ScanHeapEvacClosure;
    60 class ObjectClosure;
    61 class SpaceClosure;
    62 class CompactibleSpaceClosure;
    63 class Space;
    64 class G1CollectorPolicy;
    65 class GenRemSet;
    66 class G1RemSet;
    67 class HeapRegionRemSetIterator;
    68 class ConcurrentMark;
    69 class ConcurrentMarkThread;
    70 class ConcurrentG1Refine;
    71 class ConcurrentGCTimer;
    72 class GenerationCounters;
    73 class STWGCTimer;
    74 class G1NewTracer;
    75 class G1OldTracer;
    76 class EvacuationFailedInfo;
    77 class nmethod;
    78 class Ticks;
    80 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    83 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    84 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    86 class YoungList : public CHeapObj<mtGC> {
    87 private:
    88   G1CollectedHeap* _g1h;
    90   HeapRegion* _head;
    92   HeapRegion* _survivor_head;
    93   HeapRegion* _survivor_tail;
    95   HeapRegion* _curr;
    97   uint        _length;
    98   uint        _survivor_length;
   100   size_t      _last_sampled_rs_lengths;
   101   size_t      _sampled_rs_lengths;
   103   void         empty_list(HeapRegion* list);
   105 public:
   106   YoungList(G1CollectedHeap* g1h);
   108   void         push_region(HeapRegion* hr);
   109   void         add_survivor_region(HeapRegion* hr);
   111   void         empty_list();
   112   bool         is_empty() { return _length == 0; }
   113   uint         length() { return _length; }
   114   uint         survivor_length() { return _survivor_length; }
   116   // Currently we do not keep track of the used byte sum for the
   117   // young list and the survivors and it'd be quite a lot of work to
   118   // do so. When we'll eventually replace the young list with
   119   // instances of HeapRegionLinkedList we'll get that for free. So,
   120   // we'll report the more accurate information then.
   121   size_t       eden_used_bytes() {
   122     assert(length() >= survivor_length(), "invariant");
   123     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   124   }
   125   size_t       survivor_used_bytes() {
   126     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   127   }
   129   void rs_length_sampling_init();
   130   bool rs_length_sampling_more();
   131   void rs_length_sampling_next();
   133   void reset_sampled_info() {
   134     _last_sampled_rs_lengths =   0;
   135   }
   136   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   138   // for development purposes
   139   void reset_auxilary_lists();
   140   void clear() { _head = NULL; _length = 0; }
   142   void clear_survivors() {
   143     _survivor_head    = NULL;
   144     _survivor_tail    = NULL;
   145     _survivor_length  = 0;
   146   }
   148   HeapRegion* first_region() { return _head; }
   149   HeapRegion* first_survivor_region() { return _survivor_head; }
   150   HeapRegion* last_survivor_region() { return _survivor_tail; }
   152   // debugging
   153   bool          check_list_well_formed();
   154   bool          check_list_empty(bool check_sample = true);
   155   void          print();
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // reference processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   bool do_object_b(oop p);
   168 };
   170 class RefineCardTableEntryClosure;
   172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
   173  private:
   174   void reset_from_card_cache(uint start_idx, size_t num_regions);
   175  public:
   176   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
   177 };
   179 class G1CollectedHeap : public SharedHeap {
   180   friend class VM_CollectForMetadataAllocation;
   181   friend class VM_G1CollectForAllocation;
   182   friend class VM_G1CollectFull;
   183   friend class VM_G1IncCollectionPause;
   184   friend class VMStructs;
   185   friend class MutatorAllocRegion;
   186   friend class SurvivorGCAllocRegion;
   187   friend class OldGCAllocRegion;
   188   friend class G1Allocator;
   189   friend class G1DefaultAllocator;
   190   friend class G1ResManAllocator;
   192   // Closures used in implementation.
   193   template <G1Barrier barrier, G1Mark do_mark_object>
   194   friend class G1ParCopyClosure;
   195   friend class G1IsAliveClosure;
   196   friend class G1EvacuateFollowersClosure;
   197   friend class G1ParScanThreadState;
   198   friend class G1ParScanClosureSuper;
   199   friend class G1ParEvacuateFollowersClosure;
   200   friend class G1ParTask;
   201   friend class G1ParGCAllocator;
   202   friend class G1DefaultParGCAllocator;
   203   friend class G1FreeGarbageRegionClosure;
   204   friend class RefineCardTableEntryClosure;
   205   friend class G1PrepareCompactClosure;
   206   friend class RegionSorter;
   207   friend class RegionResetter;
   208   friend class CountRCClosure;
   209   friend class EvacPopObjClosure;
   210   friend class G1ParCleanupCTTask;
   212   friend class G1FreeHumongousRegionClosure;
   213   // Other related classes.
   214   friend class G1MarkSweep;
   216   // Testing classes.
   217   friend class G1CheckCSetFastTableClosure;
   219 private:
   220   // The one and only G1CollectedHeap, so static functions can find it.
   221   static G1CollectedHeap* _g1h;
   223   static size_t _humongous_object_threshold_in_words;
   225   // The secondary free list which contains regions that have been
   226   // freed up during the cleanup process. This will be appended to
   227   // the master free list when appropriate.
   228   FreeRegionList _secondary_free_list;
   230   // It keeps track of the old regions.
   231   HeapRegionSet _old_set;
   233   // It keeps track of the humongous regions.
   234   HeapRegionSet _humongous_set;
   236   void eagerly_reclaim_humongous_regions();
   238   // The number of regions we could create by expansion.
   239   uint _expansion_regions;
   241   // The block offset table for the G1 heap.
   242   G1BlockOffsetSharedArray* _bot_shared;
   244   // Tears down the region sets / lists so that they are empty and the
   245   // regions on the heap do not belong to a region set / list. The
   246   // only exception is the humongous set which we leave unaltered. If
   247   // free_list_only is true, it will only tear down the master free
   248   // list. It is called before a Full GC (free_list_only == false) or
   249   // before heap shrinking (free_list_only == true).
   250   void tear_down_region_sets(bool free_list_only);
   252   // Rebuilds the region sets / lists so that they are repopulated to
   253   // reflect the contents of the heap. The only exception is the
   254   // humongous set which was not torn down in the first place. If
   255   // free_list_only is true, it will only rebuild the master free
   256   // list. It is called after a Full GC (free_list_only == false) or
   257   // after heap shrinking (free_list_only == true).
   258   void rebuild_region_sets(bool free_list_only);
   260   // Callback for region mapping changed events.
   261   G1RegionMappingChangedListener _listener;
   263   // The sequence of all heap regions in the heap.
   264   HeapRegionManager _hrm;
   266   // Class that handles the different kinds of allocations.
   267   G1Allocator* _allocator;
   269   // Statistics for each allocation context
   270   AllocationContextStats _allocation_context_stats;
   272   // PLAB sizing policy for survivors.
   273   PLABStats _survivor_plab_stats;
   275   // PLAB sizing policy for tenured objects.
   276   PLABStats _old_plab_stats;
   278   // It specifies whether we should attempt to expand the heap after a
   279   // region allocation failure. If heap expansion fails we set this to
   280   // false so that we don't re-attempt the heap expansion (it's likely
   281   // that subsequent expansion attempts will also fail if one fails).
   282   // Currently, it is only consulted during GC and it's reset at the
   283   // start of each GC.
   284   bool _expand_heap_after_alloc_failure;
   286   // It resets the mutator alloc region before new allocations can take place.
   287   void init_mutator_alloc_region();
   289   // It releases the mutator alloc region.
   290   void release_mutator_alloc_region();
   292   // It initializes the GC alloc regions at the start of a GC.
   293   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   295   // It releases the GC alloc regions at the end of a GC.
   296   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   298   // It does any cleanup that needs to be done on the GC alloc regions
   299   // before a Full GC.
   300   void abandon_gc_alloc_regions();
   302   // Helper for monitoring and management support.
   303   G1MonitoringSupport* _g1mm;
   305   // Records whether the region at the given index is (still) a
   306   // candidate for eager reclaim.  Only valid for humongous start
   307   // regions; other regions have unspecified values.  Humongous start
   308   // regions are initialized at start of collection pause, with
   309   // candidates removed from the set as they are found reachable from
   310   // roots or the young generation.
   311   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
   312    protected:
   313     bool default_value() const { return false; }
   314    public:
   315     void clear() { G1BiasedMappedArray<bool>::clear(); }
   316     void set_candidate(uint region, bool value) {
   317       set_by_index(region, value);
   318     }
   319     bool is_candidate(uint region) {
   320       return get_by_index(region);
   321     }
   322   };
   324   HumongousReclaimCandidates _humongous_reclaim_candidates;
   325   // Stores whether during humongous object registration we found candidate regions.
   326   // If not, we can skip a few steps.
   327   bool _has_humongous_reclaim_candidates;
   329   volatile unsigned _gc_time_stamp;
   331   size_t* _surviving_young_words;
   333   G1HRPrinter _hr_printer;
   335   void setup_surviving_young_words();
   336   void update_surviving_young_words(size_t* surv_young_words);
   337   void cleanup_surviving_young_words();
   339   // It decides whether an explicit GC should start a concurrent cycle
   340   // instead of doing a STW GC. Currently, a concurrent cycle is
   341   // explicitly started if:
   342   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   343   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   344   // (c) cause == _g1_humongous_allocation
   345   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   347   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   348   // concurrent cycles) we have started.
   349   volatile uint _old_marking_cycles_started;
   351   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   352   // concurrent cycles) we have completed.
   353   volatile uint _old_marking_cycles_completed;
   355   bool _concurrent_cycle_started;
   356   bool _heap_summary_sent;
   358   // This is a non-product method that is helpful for testing. It is
   359   // called at the end of a GC and artificially expands the heap by
   360   // allocating a number of dead regions. This way we can induce very
   361   // frequent marking cycles and stress the cleanup / concurrent
   362   // cleanup code more (as all the regions that will be allocated by
   363   // this method will be found dead by the marking cycle).
   364   void allocate_dummy_regions() PRODUCT_RETURN;
   366   // Clear RSets after a compaction. It also resets the GC time stamps.
   367   void clear_rsets_post_compaction();
   369   // If the HR printer is active, dump the state of the regions in the
   370   // heap after a compaction.
   371   void print_hrm_post_compaction();
   373   // Create a memory mapper for auxiliary data structures of the given size and
   374   // translation factor.
   375   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
   376                                                          size_t size,
   377                                                          size_t translation_factor);
   379   double verify(bool guard, const char* msg);
   380   void verify_before_gc();
   381   void verify_after_gc();
   383   void log_gc_header();
   384   void log_gc_footer(double pause_time_sec);
   386   // These are macros so that, if the assert fires, we get the correct
   387   // line number, file, etc.
   389 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   390   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   391           (_extra_message_),                                                  \
   392           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   393           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   394           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   396 #define assert_heap_locked()                                                  \
   397   do {                                                                        \
   398     assert(Heap_lock->owned_by_self(),                                        \
   399            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   400   } while (0)
   402 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   403   do {                                                                        \
   404     assert(Heap_lock->owned_by_self() ||                                      \
   405            (SafepointSynchronize::is_at_safepoint() &&                        \
   406              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   407            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   408                                         "should be at a safepoint"));         \
   409   } while (0)
   411 #define assert_heap_locked_and_not_at_safepoint()                             \
   412   do {                                                                        \
   413     assert(Heap_lock->owned_by_self() &&                                      \
   414                                     !SafepointSynchronize::is_at_safepoint(), \
   415           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   416                                        "should not be at a safepoint"));      \
   417   } while (0)
   419 #define assert_heap_not_locked()                                              \
   420   do {                                                                        \
   421     assert(!Heap_lock->owned_by_self(),                                       \
   422         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   423   } while (0)
   425 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   426   do {                                                                        \
   427     assert(!Heap_lock->owned_by_self() &&                                     \
   428                                     !SafepointSynchronize::is_at_safepoint(), \
   429       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   430                                    "should not be at a safepoint"));          \
   431   } while (0)
   433 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   434   do {                                                                        \
   435     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   436               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   437            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   438   } while (0)
   440 #define assert_not_at_safepoint()                                             \
   441   do {                                                                        \
   442     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   443            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   444   } while (0)
   446 protected:
   448   // The young region list.
   449   YoungList*  _young_list;
   451   // The current policy object for the collector.
   452   G1CollectorPolicy* _g1_policy;
   454   // This is the second level of trying to allocate a new region. If
   455   // new_region() didn't find a region on the free_list, this call will
   456   // check whether there's anything available on the
   457   // secondary_free_list and/or wait for more regions to appear on
   458   // that list, if _free_regions_coming is set.
   459   HeapRegion* new_region_try_secondary_free_list(bool is_old);
   461   // Try to allocate a single non-humongous HeapRegion sufficient for
   462   // an allocation of the given word_size. If do_expand is true,
   463   // attempt to expand the heap if necessary to satisfy the allocation
   464   // request. If the region is to be used as an old region or for a
   465   // humongous object, set is_old to true. If not, to false.
   466   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   468   // Initialize a contiguous set of free regions of length num_regions
   469   // and starting at index first so that they appear as a single
   470   // humongous region.
   471   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   472                                                       uint num_regions,
   473                                                       size_t word_size,
   474                                                       AllocationContext_t context);
   476   // Attempt to allocate a humongous object of the given size. Return
   477   // NULL if unsuccessful.
   478   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
   480   // The following two methods, allocate_new_tlab() and
   481   // mem_allocate(), are the two main entry points from the runtime
   482   // into the G1's allocation routines. They have the following
   483   // assumptions:
   484   //
   485   // * They should both be called outside safepoints.
   486   //
   487   // * They should both be called without holding the Heap_lock.
   488   //
   489   // * All allocation requests for new TLABs should go to
   490   //   allocate_new_tlab().
   491   //
   492   // * All non-TLAB allocation requests should go to mem_allocate().
   493   //
   494   // * If either call cannot satisfy the allocation request using the
   495   //   current allocating region, they will try to get a new one. If
   496   //   this fails, they will attempt to do an evacuation pause and
   497   //   retry the allocation.
   498   //
   499   // * If all allocation attempts fail, even after trying to schedule
   500   //   an evacuation pause, allocate_new_tlab() will return NULL,
   501   //   whereas mem_allocate() will attempt a heap expansion and/or
   502   //   schedule a Full GC.
   503   //
   504   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   505   //   should never be called with word_size being humongous. All
   506   //   humongous allocation requests should go to mem_allocate() which
   507   //   will satisfy them with a special path.
   509   virtual HeapWord* allocate_new_tlab(size_t word_size);
   511   virtual HeapWord* mem_allocate(size_t word_size,
   512                                  bool*  gc_overhead_limit_was_exceeded);
   514   // The following three methods take a gc_count_before_ret
   515   // parameter which is used to return the GC count if the method
   516   // returns NULL. Given that we are required to read the GC count
   517   // while holding the Heap_lock, and these paths will take the
   518   // Heap_lock at some point, it's easier to get them to read the GC
   519   // count while holding the Heap_lock before they return NULL instead
   520   // of the caller (namely: mem_allocate()) having to also take the
   521   // Heap_lock just to read the GC count.
   523   // First-level mutator allocation attempt: try to allocate out of
   524   // the mutator alloc region without taking the Heap_lock. This
   525   // should only be used for non-humongous allocations.
   526   inline HeapWord* attempt_allocation(size_t word_size,
   527                                       uint* gc_count_before_ret,
   528                                       uint* gclocker_retry_count_ret);
   530   // Second-level mutator allocation attempt: take the Heap_lock and
   531   // retry the allocation attempt, potentially scheduling a GC
   532   // pause. This should only be used for non-humongous allocations.
   533   HeapWord* attempt_allocation_slow(size_t word_size,
   534                                     AllocationContext_t context,
   535                                     uint* gc_count_before_ret,
   536                                     uint* gclocker_retry_count_ret);
   538   // Takes the Heap_lock and attempts a humongous allocation. It can
   539   // potentially schedule a GC pause.
   540   HeapWord* attempt_allocation_humongous(size_t word_size,
   541                                          uint* gc_count_before_ret,
   542                                          uint* gclocker_retry_count_ret);
   544   // Allocation attempt that should be called during safepoints (e.g.,
   545   // at the end of a successful GC). expect_null_mutator_alloc_region
   546   // specifies whether the mutator alloc region is expected to be NULL
   547   // or not.
   548   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   549                                             AllocationContext_t context,
   550                                             bool expect_null_mutator_alloc_region);
   552   // It dirties the cards that cover the block so that so that the post
   553   // write barrier never queues anything when updating objects on this
   554   // block. It is assumed (and in fact we assert) that the block
   555   // belongs to a young region.
   556   inline void dirty_young_block(HeapWord* start, size_t word_size);
   558   // Allocate blocks during garbage collection. Will ensure an
   559   // allocation region, either by picking one or expanding the
   560   // heap, and then allocate a block of the given size. The block
   561   // may not be a humongous - it must fit into a single heap region.
   562   inline HeapWord* par_allocate_during_gc(InCSetState dest,
   563                                           size_t word_size,
   564                                           AllocationContext_t context);
   565   // Ensure that no further allocations can happen in "r", bearing in mind
   566   // that parallel threads might be attempting allocations.
   567   void par_allocate_remaining_space(HeapRegion* r);
   569   // Allocation attempt during GC for a survivor object / PLAB.
   570   inline HeapWord* survivor_attempt_allocation(size_t word_size,
   571                                                AllocationContext_t context);
   573   // Allocation attempt during GC for an old object / PLAB.
   574   inline HeapWord* old_attempt_allocation(size_t word_size,
   575                                           AllocationContext_t context);
   577   // These methods are the "callbacks" from the G1AllocRegion class.
   579   // For mutator alloc regions.
   580   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   581   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   582                                    size_t allocated_bytes);
   584   // For GC alloc regions.
   585   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   586                                   InCSetState dest);
   587   void retire_gc_alloc_region(HeapRegion* alloc_region,
   588                               size_t allocated_bytes, InCSetState dest);
   590   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   591   //   inspection request and should collect the entire heap
   592   // - if clear_all_soft_refs is true, all soft references should be
   593   //   cleared during the GC
   594   // - if explicit_gc is false, word_size describes the allocation that
   595   //   the GC should attempt (at least) to satisfy
   596   // - it returns false if it is unable to do the collection due to the
   597   //   GC locker being active, true otherwise
   598   bool do_collection(bool explicit_gc,
   599                      bool clear_all_soft_refs,
   600                      size_t word_size);
   602   // Callback from VM_G1CollectFull operation.
   603   // Perform a full collection.
   604   virtual void do_full_collection(bool clear_all_soft_refs);
   606   // Resize the heap if necessary after a full collection.  If this is
   607   // after a collect-for allocation, "word_size" is the allocation size,
   608   // and will be considered part of the used portion of the heap.
   609   void resize_if_necessary_after_full_collection(size_t word_size);
   611   // Callback from VM_G1CollectForAllocation operation.
   612   // This function does everything necessary/possible to satisfy a
   613   // failed allocation request (including collection, expansion, etc.)
   614   HeapWord* satisfy_failed_allocation(size_t word_size,
   615                                       AllocationContext_t context,
   616                                       bool* succeeded);
   618   // Attempting to expand the heap sufficiently
   619   // to support an allocation of the given "word_size".  If
   620   // successful, perform the allocation and return the address of the
   621   // allocated block, or else "NULL".
   622   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
   624   // Process any reference objects discovered during
   625   // an incremental evacuation pause.
   626   void process_discovered_references(uint no_of_gc_workers);
   628   // Enqueue any remaining discovered references
   629   // after processing.
   630   void enqueue_discovered_references(uint no_of_gc_workers);
   632 public:
   634   G1Allocator* allocator() {
   635     return _allocator;
   636   }
   638   G1MonitoringSupport* g1mm() {
   639     assert(_g1mm != NULL, "should have been initialized");
   640     return _g1mm;
   641   }
   643   // Expand the garbage-first heap by at least the given size (in bytes!).
   644   // Returns true if the heap was expanded by the requested amount;
   645   // false otherwise.
   646   // (Rounds up to a HeapRegion boundary.)
   647   bool expand(size_t expand_bytes);
   649   // Returns the PLAB statistics for a given destination.
   650   inline PLABStats* alloc_buffer_stats(InCSetState dest);
   652   // Determines PLAB size for a given destination.
   653   inline size_t desired_plab_sz(InCSetState dest);
   655   inline AllocationContextStats& allocation_context_stats();
   657   // Do anything common to GC's.
   658   virtual void gc_prologue(bool full);
   659   virtual void gc_epilogue(bool full);
   661   // Modify the reclaim candidate set and test for presence.
   662   // These are only valid for starts_humongous regions.
   663   inline void set_humongous_reclaim_candidate(uint region, bool value);
   664   inline bool is_humongous_reclaim_candidate(uint region);
   666   // Remove from the reclaim candidate set.  Also remove from the
   667   // collection set so that later encounters avoid the slow path.
   668   inline void set_humongous_is_live(oop obj);
   670   // Register the given region to be part of the collection set.
   671   inline void register_humongous_region_with_in_cset_fast_test(uint index);
   672   // Register regions with humongous objects (actually on the start region) in
   673   // the in_cset_fast_test table.
   674   void register_humongous_regions_with_in_cset_fast_test();
   675   // We register a region with the fast "in collection set" test. We
   676   // simply set to true the array slot corresponding to this region.
   677   void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
   678     _in_cset_fast_test.set_in_young(r->hrm_index());
   679   }
   680   void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
   681     _in_cset_fast_test.set_in_old(r->hrm_index());
   682   }
   684   // This is a fast test on whether a reference points into the
   685   // collection set or not. Assume that the reference
   686   // points into the heap.
   687   inline bool in_cset_fast_test(oop obj);
   689   void clear_cset_fast_test() {
   690     _in_cset_fast_test.clear();
   691   }
   693   // This is called at the start of either a concurrent cycle or a Full
   694   // GC to update the number of old marking cycles started.
   695   void increment_old_marking_cycles_started();
   697   // This is called at the end of either a concurrent cycle or a Full
   698   // GC to update the number of old marking cycles completed. Those two
   699   // can happen in a nested fashion, i.e., we start a concurrent
   700   // cycle, a Full GC happens half-way through it which ends first,
   701   // and then the cycle notices that a Full GC happened and ends
   702   // too. The concurrent parameter is a boolean to help us do a bit
   703   // tighter consistency checking in the method. If concurrent is
   704   // false, the caller is the inner caller in the nesting (i.e., the
   705   // Full GC). If concurrent is true, the caller is the outer caller
   706   // in this nesting (i.e., the concurrent cycle). Further nesting is
   707   // not currently supported. The end of this call also notifies
   708   // the FullGCCount_lock in case a Java thread is waiting for a full
   709   // GC to happen (e.g., it called System.gc() with
   710   // +ExplicitGCInvokesConcurrent).
   711   void increment_old_marking_cycles_completed(bool concurrent);
   713   uint old_marking_cycles_completed() {
   714     return _old_marking_cycles_completed;
   715   }
   717   void register_concurrent_cycle_start(const Ticks& start_time);
   718   void register_concurrent_cycle_end();
   719   void trace_heap_after_concurrent_cycle();
   721   G1YCType yc_type();
   723   G1HRPrinter* hr_printer() { return &_hr_printer; }
   725   // Frees a non-humongous region by initializing its contents and
   726   // adding it to the free list that's passed as a parameter (this is
   727   // usually a local list which will be appended to the master free
   728   // list later). The used bytes of freed regions are accumulated in
   729   // pre_used. If par is true, the region's RSet will not be freed
   730   // up. The assumption is that this will be done later.
   731   // The locked parameter indicates if the caller has already taken
   732   // care of proper synchronization. This may allow some optimizations.
   733   void free_region(HeapRegion* hr,
   734                    FreeRegionList* free_list,
   735                    bool par,
   736                    bool locked = false);
   738   // Frees a humongous region by collapsing it into individual regions
   739   // and calling free_region() for each of them. The freed regions
   740   // will be added to the free list that's passed as a parameter (this
   741   // is usually a local list which will be appended to the master free
   742   // list later). The used bytes of freed regions are accumulated in
   743   // pre_used. If par is true, the region's RSet will not be freed
   744   // up. The assumption is that this will be done later.
   745   void free_humongous_region(HeapRegion* hr,
   746                              FreeRegionList* free_list,
   747                              bool par);
   748 protected:
   750   // Shrink the garbage-first heap by at most the given size (in bytes!).
   751   // (Rounds down to a HeapRegion boundary.)
   752   virtual void shrink(size_t expand_bytes);
   753   void shrink_helper(size_t expand_bytes);
   755   #if TASKQUEUE_STATS
   756   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   757   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   758   void reset_taskqueue_stats();
   759   #endif // TASKQUEUE_STATS
   761   // Schedule the VM operation that will do an evacuation pause to
   762   // satisfy an allocation request of word_size. *succeeded will
   763   // return whether the VM operation was successful (it did do an
   764   // evacuation pause) or not (another thread beat us to it or the GC
   765   // locker was active). Given that we should not be holding the
   766   // Heap_lock when we enter this method, we will pass the
   767   // gc_count_before (i.e., total_collections()) as a parameter since
   768   // it has to be read while holding the Heap_lock. Currently, both
   769   // methods that call do_collection_pause() release the Heap_lock
   770   // before the call, so it's easy to read gc_count_before just before.
   771   HeapWord* do_collection_pause(size_t         word_size,
   772                                 uint           gc_count_before,
   773                                 bool*          succeeded,
   774                                 GCCause::Cause gc_cause);
   776   // The guts of the incremental collection pause, executed by the vm
   777   // thread. It returns false if it is unable to do the collection due
   778   // to the GC locker being active, true otherwise
   779   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   781   // Actually do the work of evacuating the collection set.
   782   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   784   // The g1 remembered set of the heap.
   785   G1RemSet* _g1_rem_set;
   787   // A set of cards that cover the objects for which the Rsets should be updated
   788   // concurrently after the collection.
   789   DirtyCardQueueSet _dirty_card_queue_set;
   791   // The closure used to refine a single card.
   792   RefineCardTableEntryClosure* _refine_cte_cl;
   794   // A function to check the consistency of dirty card logs.
   795   void check_ct_logs_at_safepoint();
   797   // A DirtyCardQueueSet that is used to hold cards that contain
   798   // references into the current collection set. This is used to
   799   // update the remembered sets of the regions in the collection
   800   // set in the event of an evacuation failure.
   801   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   803   // After a collection pause, make the regions in the CS into free
   804   // regions.
   805   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   807   // Abandon the current collection set without recording policy
   808   // statistics or updating free lists.
   809   void abandon_collection_set(HeapRegion* cs_head);
   811   // The concurrent marker (and the thread it runs in.)
   812   ConcurrentMark* _cm;
   813   ConcurrentMarkThread* _cmThread;
   814   bool _mark_in_progress;
   816   // The concurrent refiner.
   817   ConcurrentG1Refine* _cg1r;
   819   // The parallel task queues
   820   RefToScanQueueSet *_task_queues;
   822   // True iff a evacuation has failed in the current collection.
   823   bool _evacuation_failed;
   825   EvacuationFailedInfo* _evacuation_failed_info_array;
   827   // Failed evacuations cause some logical from-space objects to have
   828   // forwarding pointers to themselves.  Reset them.
   829   void remove_self_forwarding_pointers();
   831   // Together, these store an object with a preserved mark, and its mark value.
   832   Stack<oop, mtGC>     _objs_with_preserved_marks;
   833   Stack<markOop, mtGC> _preserved_marks_of_objs;
   835   // Preserve the mark of "obj", if necessary, in preparation for its mark
   836   // word being overwritten with a self-forwarding-pointer.
   837   void preserve_mark_if_necessary(oop obj, markOop m);
   839   // The stack of evac-failure objects left to be scanned.
   840   GrowableArray<oop>*    _evac_failure_scan_stack;
   841   // The closure to apply to evac-failure objects.
   843   OopsInHeapRegionClosure* _evac_failure_closure;
   844   // Set the field above.
   845   void
   846   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   847     _evac_failure_closure = evac_failure_closure;
   848   }
   850   // Push "obj" on the scan stack.
   851   void push_on_evac_failure_scan_stack(oop obj);
   852   // Process scan stack entries until the stack is empty.
   853   void drain_evac_failure_scan_stack();
   854   // True iff an invocation of "drain_scan_stack" is in progress; to
   855   // prevent unnecessary recursion.
   856   bool _drain_in_progress;
   858   // Do any necessary initialization for evacuation-failure handling.
   859   // "cl" is the closure that will be used to process evac-failure
   860   // objects.
   861   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   862   // Do any necessary cleanup for evacuation-failure handling data
   863   // structures.
   864   void finalize_for_evac_failure();
   866   // An attempt to evacuate "obj" has failed; take necessary steps.
   867   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   868   void handle_evacuation_failure_common(oop obj, markOop m);
   870 #ifndef PRODUCT
   871   // Support for forcing evacuation failures. Analogous to
   872   // PromotionFailureALot for the other collectors.
   874   // Records whether G1EvacuationFailureALot should be in effect
   875   // for the current GC
   876   bool _evacuation_failure_alot_for_current_gc;
   878   // Used to record the GC number for interval checking when
   879   // determining whether G1EvaucationFailureALot is in effect
   880   // for the current GC.
   881   size_t _evacuation_failure_alot_gc_number;
   883   // Count of the number of evacuations between failures.
   884   volatile size_t _evacuation_failure_alot_count;
   886   // Set whether G1EvacuationFailureALot should be in effect
   887   // for the current GC (based upon the type of GC and which
   888   // command line flags are set);
   889   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   890                                                   bool during_initial_mark,
   891                                                   bool during_marking);
   893   inline void set_evacuation_failure_alot_for_current_gc();
   895   // Return true if it's time to cause an evacuation failure.
   896   inline bool evacuation_should_fail();
   898   // Reset the G1EvacuationFailureALot counters.  Should be called at
   899   // the end of an evacuation pause in which an evacuation failure occurred.
   900   inline void reset_evacuation_should_fail();
   901 #endif // !PRODUCT
   903   // ("Weak") Reference processing support.
   904   //
   905   // G1 has 2 instances of the reference processor class. One
   906   // (_ref_processor_cm) handles reference object discovery
   907   // and subsequent processing during concurrent marking cycles.
   908   //
   909   // The other (_ref_processor_stw) handles reference object
   910   // discovery and processing during full GCs and incremental
   911   // evacuation pauses.
   912   //
   913   // During an incremental pause, reference discovery will be
   914   // temporarily disabled for _ref_processor_cm and will be
   915   // enabled for _ref_processor_stw. At the end of the evacuation
   916   // pause references discovered by _ref_processor_stw will be
   917   // processed and discovery will be disabled. The previous
   918   // setting for reference object discovery for _ref_processor_cm
   919   // will be re-instated.
   920   //
   921   // At the start of marking:
   922   //  * Discovery by the CM ref processor is verified to be inactive
   923   //    and it's discovered lists are empty.
   924   //  * Discovery by the CM ref processor is then enabled.
   925   //
   926   // At the end of marking:
   927   //  * Any references on the CM ref processor's discovered
   928   //    lists are processed (possibly MT).
   929   //
   930   // At the start of full GC we:
   931   //  * Disable discovery by the CM ref processor and
   932   //    empty CM ref processor's discovered lists
   933   //    (without processing any entries).
   934   //  * Verify that the STW ref processor is inactive and it's
   935   //    discovered lists are empty.
   936   //  * Temporarily set STW ref processor discovery as single threaded.
   937   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   938   //    field.
   939   //  * Finally enable discovery by the STW ref processor.
   940   //
   941   // The STW ref processor is used to record any discovered
   942   // references during the full GC.
   943   //
   944   // At the end of a full GC we:
   945   //  * Enqueue any reference objects discovered by the STW ref processor
   946   //    that have non-live referents. This has the side-effect of
   947   //    making the STW ref processor inactive by disabling discovery.
   948   //  * Verify that the CM ref processor is still inactive
   949   //    and no references have been placed on it's discovered
   950   //    lists (also checked as a precondition during initial marking).
   952   // The (stw) reference processor...
   953   ReferenceProcessor* _ref_processor_stw;
   955   STWGCTimer* _gc_timer_stw;
   956   ConcurrentGCTimer* _gc_timer_cm;
   958   G1OldTracer* _gc_tracer_cm;
   959   G1NewTracer* _gc_tracer_stw;
   961   // During reference object discovery, the _is_alive_non_header
   962   // closure (if non-null) is applied to the referent object to
   963   // determine whether the referent is live. If so then the
   964   // reference object does not need to be 'discovered' and can
   965   // be treated as a regular oop. This has the benefit of reducing
   966   // the number of 'discovered' reference objects that need to
   967   // be processed.
   968   //
   969   // Instance of the is_alive closure for embedding into the
   970   // STW reference processor as the _is_alive_non_header field.
   971   // Supplying a value for the _is_alive_non_header field is
   972   // optional but doing so prevents unnecessary additions to
   973   // the discovered lists during reference discovery.
   974   G1STWIsAliveClosure _is_alive_closure_stw;
   976   // The (concurrent marking) reference processor...
   977   ReferenceProcessor* _ref_processor_cm;
   979   // Instance of the concurrent mark is_alive closure for embedding
   980   // into the Concurrent Marking reference processor as the
   981   // _is_alive_non_header field. Supplying a value for the
   982   // _is_alive_non_header field is optional but doing so prevents
   983   // unnecessary additions to the discovered lists during reference
   984   // discovery.
   985   G1CMIsAliveClosure _is_alive_closure_cm;
   987   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   988   HeapRegion** _worker_cset_start_region;
   990   // Time stamp to validate the regions recorded in the cache
   991   // used by G1CollectedHeap::start_cset_region_for_worker().
   992   // The heap region entry for a given worker is valid iff
   993   // the associated time stamp value matches the current value
   994   // of G1CollectedHeap::_gc_time_stamp.
   995   uint* _worker_cset_start_region_time_stamp;
   997   volatile bool _free_regions_coming;
   999 public:
  1001   void set_refine_cte_cl_concurrency(bool concurrent);
  1003   RefToScanQueue *task_queue(int i) const;
  1005   // A set of cards where updates happened during the GC
  1006   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1008   // A DirtyCardQueueSet that is used to hold cards that contain
  1009   // references into the current collection set. This is used to
  1010   // update the remembered sets of the regions in the collection
  1011   // set in the event of an evacuation failure.
  1012   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1013         { return _into_cset_dirty_card_queue_set; }
  1015   // Create a G1CollectedHeap with the specified policy.
  1016   // Must call the initialize method afterwards.
  1017   // May not return if something goes wrong.
  1018   G1CollectedHeap(G1CollectorPolicy* policy);
  1020   // Initialize the G1CollectedHeap to have the initial and
  1021   // maximum sizes and remembered and barrier sets
  1022   // specified by the policy object.
  1023   jint initialize();
  1025   virtual void stop();
  1027   // Return the (conservative) maximum heap alignment for any G1 heap
  1028   static size_t conservative_max_heap_alignment();
  1030   // Initialize weak reference processing.
  1031   virtual void ref_processing_init();
  1033   // Explicitly import set_par_threads into this scope
  1034   using SharedHeap::set_par_threads;
  1035   // Set _n_par_threads according to a policy TBD.
  1036   void set_par_threads();
  1038   virtual CollectedHeap::Name kind() const {
  1039     return CollectedHeap::G1CollectedHeap;
  1042   // The current policy object for the collector.
  1043   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1045   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1047   // Adaptive size policy.  No such thing for g1.
  1048   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1050   // The rem set and barrier set.
  1051   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1053   unsigned get_gc_time_stamp() {
  1054     return _gc_time_stamp;
  1057   inline void reset_gc_time_stamp();
  1059   void check_gc_time_stamps() PRODUCT_RETURN;
  1061   inline void increment_gc_time_stamp();
  1063   // Reset the given region's GC timestamp. If it's starts humongous,
  1064   // also reset the GC timestamp of its corresponding
  1065   // continues humongous regions too.
  1066   void reset_gc_time_stamps(HeapRegion* hr);
  1068   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1069                                   DirtyCardQueue* into_cset_dcq,
  1070                                   bool concurrent, uint worker_i);
  1072   // The shared block offset table array.
  1073   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1075   // Reference Processing accessors
  1077   // The STW reference processor....
  1078   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1080   // The Concurrent Marking reference processor...
  1081   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1083   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1084   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1086   virtual size_t capacity() const;
  1087   virtual size_t used() const;
  1088   // This should be called when we're not holding the heap lock. The
  1089   // result might be a bit inaccurate.
  1090   size_t used_unlocked() const;
  1091   size_t recalculate_used() const;
  1093   // These virtual functions do the actual allocation.
  1094   // Some heaps may offer a contiguous region for shared non-blocking
  1095   // allocation, via inlined code (by exporting the address of the top and
  1096   // end fields defining the extent of the contiguous allocation region.)
  1097   // But G1CollectedHeap doesn't yet support this.
  1099   virtual bool is_maximal_no_gc() const {
  1100     return _hrm.available() == 0;
  1103   // The current number of regions in the heap.
  1104   uint num_regions() const { return _hrm.length(); }
  1106   // The max number of regions in the heap.
  1107   uint max_regions() const { return _hrm.max_length(); }
  1109   // The number of regions that are completely free.
  1110   uint num_free_regions() const { return _hrm.num_free_regions(); }
  1112   MemoryUsage get_auxiliary_data_memory_usage() const {
  1113     return _hrm.get_auxiliary_data_memory_usage();
  1116   // The number of regions that are not completely free.
  1117   uint num_used_regions() const { return num_regions() - num_free_regions(); }
  1119   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1120   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1121   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1122   void verify_dirty_young_regions() PRODUCT_RETURN;
  1124 #ifndef PRODUCT
  1125   // Make sure that the given bitmap has no marked objects in the
  1126   // range [from,limit). If it does, print an error message and return
  1127   // false. Otherwise, just return true. bitmap_name should be "prev"
  1128   // or "next".
  1129   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  1130                                 HeapWord* from, HeapWord* limit);
  1132   // Verify that the prev / next bitmap range [tams,end) for the given
  1133   // region has no marks. Return true if all is well, false if errors
  1134   // are detected.
  1135   bool verify_bitmaps(const char* caller, HeapRegion* hr);
  1136 #endif // PRODUCT
  1138   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
  1139   // the given region do not have any spurious marks. If errors are
  1140   // detected, print appropriate error messages and crash.
  1141   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
  1143   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
  1144   // have any spurious marks. If errors are detected, print
  1145   // appropriate error messages and crash.
  1146   void check_bitmaps(const char* caller) PRODUCT_RETURN;
  1148   // Do sanity check on the contents of the in-cset fast test table.
  1149   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
  1151   // verify_region_sets() performs verification over the region
  1152   // lists. It will be compiled in the product code to be used when
  1153   // necessary (i.e., during heap verification).
  1154   void verify_region_sets();
  1156   // verify_region_sets_optional() is planted in the code for
  1157   // list verification in non-product builds (and it can be enabled in
  1158   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1159 #if HEAP_REGION_SET_FORCE_VERIFY
  1160   void verify_region_sets_optional() {
  1161     verify_region_sets();
  1163 #else // HEAP_REGION_SET_FORCE_VERIFY
  1164   void verify_region_sets_optional() { }
  1165 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1167 #ifdef ASSERT
  1168   bool is_on_master_free_list(HeapRegion* hr) {
  1169     return _hrm.is_free(hr);
  1171 #endif // ASSERT
  1173   // Wrapper for the region list operations that can be called from
  1174   // methods outside this class.
  1176   void secondary_free_list_add(FreeRegionList* list) {
  1177     _secondary_free_list.add_ordered(list);
  1180   void append_secondary_free_list() {
  1181     _hrm.insert_list_into_free_list(&_secondary_free_list);
  1184   void append_secondary_free_list_if_not_empty_with_lock() {
  1185     // If the secondary free list looks empty there's no reason to
  1186     // take the lock and then try to append it.
  1187     if (!_secondary_free_list.is_empty()) {
  1188       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1189       append_secondary_free_list();
  1193   inline void old_set_remove(HeapRegion* hr);
  1195   size_t non_young_capacity_bytes() {
  1196     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1199   void set_free_regions_coming();
  1200   void reset_free_regions_coming();
  1201   bool free_regions_coming() { return _free_regions_coming; }
  1202   void wait_while_free_regions_coming();
  1204   // Determine whether the given region is one that we are using as an
  1205   // old GC alloc region.
  1206   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1207     return _allocator->is_retained_old_region(hr);
  1210   // Perform a collection of the heap; intended for use in implementing
  1211   // "System.gc".  This probably implies as full a collection as the
  1212   // "CollectedHeap" supports.
  1213   virtual void collect(GCCause::Cause cause);
  1215   // The same as above but assume that the caller holds the Heap_lock.
  1216   void collect_locked(GCCause::Cause cause);
  1218   virtual bool copy_allocation_context_stats(const jint* contexts,
  1219                                              jlong* totals,
  1220                                              jbyte* accuracy,
  1221                                              jint len);
  1223   // True iff an evacuation has failed in the most-recent collection.
  1224   bool evacuation_failed() { return _evacuation_failed; }
  1226   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1227   void prepend_to_freelist(FreeRegionList* list);
  1228   void decrement_summary_bytes(size_t bytes);
  1230   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1231   virtual bool is_in(const void* p) const;
  1232 #ifdef ASSERT
  1233   // Returns whether p is in one of the available areas of the heap. Slow but
  1234   // extensive version.
  1235   bool is_in_exact(const void* p) const;
  1236 #endif
  1238   // Return "TRUE" iff the given object address is within the collection
  1239   // set. Slow implementation.
  1240   inline bool obj_in_cs(oop obj);
  1242   inline bool is_in_cset(oop obj);
  1244   inline bool is_in_cset_or_humongous(const oop obj);
  1246  private:
  1247   // This array is used for a quick test on whether a reference points into
  1248   // the collection set or not. Each of the array's elements denotes whether the
  1249   // corresponding region is in the collection set or not.
  1250   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
  1252  public:
  1254   inline InCSetState in_cset_state(const oop obj);
  1256   // Return "TRUE" iff the given object address is in the reserved
  1257   // region of g1.
  1258   bool is_in_g1_reserved(const void* p) const {
  1259     return _hrm.reserved().contains(p);
  1262   // Returns a MemRegion that corresponds to the space that has been
  1263   // reserved for the heap
  1264   MemRegion g1_reserved() const {
  1265     return _hrm.reserved();
  1268   virtual bool is_in_closed_subset(const void* p) const;
  1270   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
  1271     return (G1SATBCardTableLoggingModRefBS*) barrier_set();
  1274   // This resets the card table to all zeros.  It is used after
  1275   // a collection pause which used the card table to claim cards.
  1276   void cleanUpCardTable();
  1278   // Iteration functions.
  1280   // Iterate over all the ref-containing fields of all objects, calling
  1281   // "cl.do_oop" on each.
  1282   virtual void oop_iterate(ExtendedOopClosure* cl);
  1284   // Iterate over all objects, calling "cl.do_object" on each.
  1285   virtual void object_iterate(ObjectClosure* cl);
  1287   virtual void safe_object_iterate(ObjectClosure* cl) {
  1288     object_iterate(cl);
  1291   // Iterate over all spaces in use in the heap, in ascending address order.
  1292   virtual void space_iterate(SpaceClosure* cl);
  1294   // Iterate over heap regions, in address order, terminating the
  1295   // iteration early if the "doHeapRegion" method returns "true".
  1296   void heap_region_iterate(HeapRegionClosure* blk) const;
  1298   // Return the region with the given index. It assumes the index is valid.
  1299   inline HeapRegion* region_at(uint index) const;
  1301   // Calculate the region index of the given address. Given address must be
  1302   // within the heap.
  1303   inline uint addr_to_region(HeapWord* addr) const;
  1305   inline HeapWord* bottom_addr_for_region(uint index) const;
  1307   // Divide the heap region sequence into "chunks" of some size (the number
  1308   // of regions divided by the number of parallel threads times some
  1309   // overpartition factor, currently 4).  Assumes that this will be called
  1310   // in parallel by ParallelGCThreads worker threads with discinct worker
  1311   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1312   // calls will use the same "claim_value", and that that claim value is
  1313   // different from the claim_value of any heap region before the start of
  1314   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1315   // attempting to claim the first region in each chunk, and, if
  1316   // successful, applying the closure to each region in the chunk (and
  1317   // setting the claim value of the second and subsequent regions of the
  1318   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1319   // i.e., that a closure never attempt to abort a traversal.
  1320   void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1321                                        uint worker_id,
  1322                                        uint num_workers,
  1323                                        jint claim_value) const;
  1325   // It resets all the region claim values to the default.
  1326   void reset_heap_region_claim_values();
  1328   // Resets the claim values of regions in the current
  1329   // collection set to the default.
  1330   void reset_cset_heap_region_claim_values();
  1332 #ifdef ASSERT
  1333   bool check_heap_region_claim_values(jint claim_value);
  1335   // Same as the routine above but only checks regions in the
  1336   // current collection set.
  1337   bool check_cset_heap_region_claim_values(jint claim_value);
  1338 #endif // ASSERT
  1340   // Clear the cached cset start regions and (more importantly)
  1341   // the time stamps. Called when we reset the GC time stamp.
  1342   void clear_cset_start_regions();
  1344   // Given the id of a worker, obtain or calculate a suitable
  1345   // starting region for iterating over the current collection set.
  1346   HeapRegion* start_cset_region_for_worker(uint worker_i);
  1348   // Iterate over the regions (if any) in the current collection set.
  1349   void collection_set_iterate(HeapRegionClosure* blk);
  1351   // As above but starting from region r
  1352   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1354   HeapRegion* next_compaction_region(const HeapRegion* from) const;
  1356   // A CollectedHeap will contain some number of spaces.  This finds the
  1357   // space containing a given address, or else returns NULL.
  1358   virtual Space* space_containing(const void* addr) const;
  1360   // Returns the HeapRegion that contains addr. addr must not be NULL.
  1361   template <class T>
  1362   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1364   // Returns the HeapRegion that contains addr. addr must not be NULL.
  1365   // If addr is within a humongous continues region, it returns its humongous start region.
  1366   template <class T>
  1367   inline HeapRegion* heap_region_containing(const T addr) const;
  1369   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1370   // each address in the (reserved) heap is a member of exactly
  1371   // one block.  The defining characteristic of a block is that it is
  1372   // possible to find its size, and thus to progress forward to the next
  1373   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1374   // represent Java objects, or they might be free blocks in a
  1375   // free-list-based heap (or subheap), as long as the two kinds are
  1376   // distinguishable and the size of each is determinable.
  1378   // Returns the address of the start of the "block" that contains the
  1379   // address "addr".  We say "blocks" instead of "object" since some heaps
  1380   // may not pack objects densely; a chunk may either be an object or a
  1381   // non-object.
  1382   virtual HeapWord* block_start(const void* addr) const;
  1384   // Requires "addr" to be the start of a chunk, and returns its size.
  1385   // "addr + size" is required to be the start of a new chunk, or the end
  1386   // of the active area of the heap.
  1387   virtual size_t block_size(const HeapWord* addr) const;
  1389   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1390   // the block is an object.
  1391   virtual bool block_is_obj(const HeapWord* addr) const;
  1393   // Does this heap support heap inspection? (+PrintClassHistogram)
  1394   virtual bool supports_heap_inspection() const { return true; }
  1396   // Section on thread-local allocation buffers (TLABs)
  1397   // See CollectedHeap for semantics.
  1399   bool supports_tlab_allocation() const;
  1400   size_t tlab_capacity(Thread* ignored) const;
  1401   size_t tlab_used(Thread* ignored) const;
  1402   size_t max_tlab_size() const;
  1403   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1405   // Can a compiler initialize a new object without store barriers?
  1406   // This permission only extends from the creation of a new object
  1407   // via a TLAB up to the first subsequent safepoint. If such permission
  1408   // is granted for this heap type, the compiler promises to call
  1409   // defer_store_barrier() below on any slow path allocation of
  1410   // a new object for which such initializing store barriers will
  1411   // have been elided. G1, like CMS, allows this, but should be
  1412   // ready to provide a compensating write barrier as necessary
  1413   // if that storage came out of a non-young region. The efficiency
  1414   // of this implementation depends crucially on being able to
  1415   // answer very efficiently in constant time whether a piece of
  1416   // storage in the heap comes from a young region or not.
  1417   // See ReduceInitialCardMarks.
  1418   virtual bool can_elide_tlab_store_barriers() const {
  1419     return true;
  1422   virtual bool card_mark_must_follow_store() const {
  1423     return true;
  1426   inline bool is_in_young(const oop obj);
  1428 #ifdef ASSERT
  1429   virtual bool is_in_partial_collection(const void* p);
  1430 #endif
  1432   virtual bool is_scavengable(const void* addr);
  1434   // We don't need barriers for initializing stores to objects
  1435   // in the young gen: for the SATB pre-barrier, there is no
  1436   // pre-value that needs to be remembered; for the remembered-set
  1437   // update logging post-barrier, we don't maintain remembered set
  1438   // information for young gen objects.
  1439   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1441   // Returns "true" iff the given word_size is "very large".
  1442   static bool isHumongous(size_t word_size) {
  1443     // Note this has to be strictly greater-than as the TLABs
  1444     // are capped at the humongous thresold and we want to
  1445     // ensure that we don't try to allocate a TLAB as
  1446     // humongous and that we don't allocate a humongous
  1447     // object in a TLAB.
  1448     return word_size > _humongous_object_threshold_in_words;
  1451   // Update mod union table with the set of dirty cards.
  1452   void updateModUnion();
  1454   // Set the mod union bits corresponding to the given memRegion.  Note
  1455   // that this is always a safe operation, since it doesn't clear any
  1456   // bits.
  1457   void markModUnionRange(MemRegion mr);
  1459   // Records the fact that a marking phase is no longer in progress.
  1460   void set_marking_complete() {
  1461     _mark_in_progress = false;
  1463   void set_marking_started() {
  1464     _mark_in_progress = true;
  1466   bool mark_in_progress() {
  1467     return _mark_in_progress;
  1470   // Print the maximum heap capacity.
  1471   virtual size_t max_capacity() const;
  1473   virtual jlong millis_since_last_gc();
  1476   // Convenience function to be used in situations where the heap type can be
  1477   // asserted to be this type.
  1478   static G1CollectedHeap* heap();
  1480   void set_region_short_lived_locked(HeapRegion* hr);
  1481   // add appropriate methods for any other surv rate groups
  1483   YoungList* young_list() const { return _young_list; }
  1485   // debugging
  1486   bool check_young_list_well_formed() {
  1487     return _young_list->check_list_well_formed();
  1490   bool check_young_list_empty(bool check_heap,
  1491                               bool check_sample = true);
  1493   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1494   // many of these need to be public.
  1496   // The functions below are helper functions that a subclass of
  1497   // "CollectedHeap" can use in the implementation of its virtual
  1498   // functions.
  1499   // This performs a concurrent marking of the live objects in a
  1500   // bitmap off to the side.
  1501   void doConcurrentMark();
  1503   bool isMarkedPrev(oop obj) const;
  1504   bool isMarkedNext(oop obj) const;
  1506   // Determine if an object is dead, given the object and also
  1507   // the region to which the object belongs. An object is dead
  1508   // iff a) it was not allocated since the last mark and b) it
  1509   // is not marked.
  1510   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1511     return
  1512       !hr->obj_allocated_since_prev_marking(obj) &&
  1513       !isMarkedPrev(obj);
  1516   // This function returns true when an object has been
  1517   // around since the previous marking and hasn't yet
  1518   // been marked during this marking.
  1519   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1520     return
  1521       !hr->obj_allocated_since_next_marking(obj) &&
  1522       !isMarkedNext(obj);
  1525   // Determine if an object is dead, given only the object itself.
  1526   // This will find the region to which the object belongs and
  1527   // then call the region version of the same function.
  1529   // Added if it is NULL it isn't dead.
  1531   inline bool is_obj_dead(const oop obj) const;
  1533   inline bool is_obj_ill(const oop obj) const;
  1535   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1536   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1537   bool is_marked(oop obj, VerifyOption vo);
  1538   const char* top_at_mark_start_str(VerifyOption vo);
  1540   ConcurrentMark* concurrent_mark() const { return _cm; }
  1542   // Refinement
  1544   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1546   // The dirty cards region list is used to record a subset of regions
  1547   // whose cards need clearing. The list if populated during the
  1548   // remembered set scanning and drained during the card table
  1549   // cleanup. Although the methods are reentrant, population/draining
  1550   // phases must not overlap. For synchronization purposes the last
  1551   // element on the list points to itself.
  1552   HeapRegion* _dirty_cards_region_list;
  1553   void push_dirty_cards_region(HeapRegion* hr);
  1554   HeapRegion* pop_dirty_cards_region();
  1556   // Optimized nmethod scanning support routines
  1558   // Register the given nmethod with the G1 heap
  1559   virtual void register_nmethod(nmethod* nm);
  1561   // Unregister the given nmethod from the G1 heap
  1562   virtual void unregister_nmethod(nmethod* nm);
  1564   // Free up superfluous code root memory.
  1565   void purge_code_root_memory();
  1567   // Rebuild the stong code root lists for each region
  1568   // after a full GC
  1569   void rebuild_strong_code_roots();
  1571   // Delete entries for dead interned string and clean up unreferenced symbols
  1572   // in symbol table, possibly in parallel.
  1573   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1575   // Parallel phase of unloading/cleaning after G1 concurrent mark.
  1576   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
  1578   // Redirty logged cards in the refinement queue.
  1579   void redirty_logged_cards();
  1580   // Verification
  1582   // The following is just to alert the verification code
  1583   // that a full collection has occurred and that the
  1584   // remembered sets are no longer up to date.
  1585   bool _full_collection;
  1586   void set_full_collection() { _full_collection = true;}
  1587   void clear_full_collection() {_full_collection = false;}
  1588   bool full_collection() {return _full_collection;}
  1590   // Perform any cleanup actions necessary before allowing a verification.
  1591   virtual void prepare_for_verify();
  1593   // Perform verification.
  1595   // vo == UsePrevMarking  -> use "prev" marking information,
  1596   // vo == UseNextMarking -> use "next" marking information
  1597   // vo == UseMarkWord    -> use the mark word in the object header
  1598   //
  1599   // NOTE: Only the "prev" marking information is guaranteed to be
  1600   // consistent most of the time, so most calls to this should use
  1601   // vo == UsePrevMarking.
  1602   // Currently, there is only one case where this is called with
  1603   // vo == UseNextMarking, which is to verify the "next" marking
  1604   // information at the end of remark.
  1605   // Currently there is only one place where this is called with
  1606   // vo == UseMarkWord, which is to verify the marking during a
  1607   // full GC.
  1608   void verify(bool silent, VerifyOption vo);
  1610   // Override; it uses the "prev" marking information
  1611   virtual void verify(bool silent);
  1613   // The methods below are here for convenience and dispatch the
  1614   // appropriate method depending on value of the given VerifyOption
  1615   // parameter. The values for that parameter, and their meanings,
  1616   // are the same as those above.
  1618   bool is_obj_dead_cond(const oop obj,
  1619                         const HeapRegion* hr,
  1620                         const VerifyOption vo) const;
  1622   bool is_obj_dead_cond(const oop obj,
  1623                         const VerifyOption vo) const;
  1625   // Printing
  1627   virtual void print_on(outputStream* st) const;
  1628   virtual void print_extended_on(outputStream* st) const;
  1629   virtual void print_on_error(outputStream* st) const;
  1631   virtual void print_gc_threads_on(outputStream* st) const;
  1632   virtual void gc_threads_do(ThreadClosure* tc) const;
  1634   // Override
  1635   void print_tracing_info() const;
  1637   // The following two methods are helpful for debugging RSet issues.
  1638   void print_cset_rsets() PRODUCT_RETURN;
  1639   void print_all_rsets() PRODUCT_RETURN;
  1641 public:
  1642   size_t pending_card_num();
  1643   size_t cards_scanned();
  1645 protected:
  1646   size_t _max_heap_capacity;
  1647 };
  1649 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial