src/cpu/ppc/vm/templateInterpreter_ppc.cpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7535
7ae4e26cb1e0
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2013, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #ifndef CC_INTERP
    28 #include "asm/macroAssembler.inline.hpp"
    29 #include "interpreter/bytecodeHistogram.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "interpreter/interpreterGenerator.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "interpreter/templateTable.hpp"
    34 #include "oops/arrayOop.hpp"
    35 #include "oops/methodData.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "prims/jvmtiExport.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/deoptimization.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    44 #include "runtime/stubRoutines.hpp"
    45 #include "runtime/synchronizer.hpp"
    46 #include "runtime/timer.hpp"
    47 #include "runtime/vframeArray.hpp"
    48 #include "utilities/debug.hpp"
    49 #include "utilities/macros.hpp"
    51 #undef __
    52 #define __ _masm->
    54 #ifdef PRODUCT
    55 #define BLOCK_COMMENT(str) /* nothing */
    56 #else
    57 #define BLOCK_COMMENT(str) __ block_comment(str)
    58 #endif
    60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    62 //-----------------------------------------------------------------------------
    64 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
    65 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    66   address entry = __ pc();
    67   __ unimplemented("generate_StackOverflowError_handler");
    68   return entry;
    69 }
    71 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    72   address entry = __ pc();
    73   __ empty_expression_stack();
    74   __ load_const_optimized(R4_ARG2, (address) name);
    75   // Index is in R17_tos.
    76   __ mr(R5_ARG3, R17_tos);
    77   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
    78   return entry;
    79 }
    81 #if 0
    82 // Call special ClassCastException constructor taking object to cast
    83 // and target class as arguments.
    84 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
    85   address entry = __ pc();
    87   // Expression stack must be empty before entering the VM if an
    88   // exception happened.
    89   __ empty_expression_stack();
    91   // Thread will be loaded to R3_ARG1.
    92   // Target class oop is in register R5_ARG3 by convention!
    93   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
    94   // Above call must not return here since exception pending.
    95   DEBUG_ONLY(__ should_not_reach_here();)
    96   return entry;
    97 }
    98 #endif
   100 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   101   address entry = __ pc();
   102   // Expression stack must be empty before entering the VM if an
   103   // exception happened.
   104   __ empty_expression_stack();
   106   // Load exception object.
   107   // Thread will be loaded to R3_ARG1.
   108   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
   109 #ifdef ASSERT
   110   // Above call must not return here since exception pending.
   111   __ should_not_reach_here();
   112 #endif
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   address entry = __ pc();
   118   //__ untested("generate_exception_handler_common");
   119   Register Rexception = R17_tos;
   121   // Expression stack must be empty before entering the VM if an exception happened.
   122   __ empty_expression_stack();
   124   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
   125   if (pass_oop) {
   126     __ mr(R5_ARG3, Rexception);
   127     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
   128   } else {
   129     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
   130     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
   131   }
   133   // Throw exception.
   134   __ mr(R3_ARG1, Rexception);
   135   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
   136   __ mtctr(R11_scratch1);
   137   __ bctr();
   139   return entry;
   140 }
   142 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   143   address entry = __ pc();
   144   __ unimplemented("generate_continuation_for");
   145   return entry;
   146 }
   148 // This entry is returned to when a call returns to the interpreter.
   149 // When we arrive here, we expect that the callee stack frame is already popped.
   150 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   151   address entry = __ pc();
   153   // Move the value out of the return register back to the TOS cache of current frame.
   154   switch (state) {
   155     case ltos:
   156     case btos:
   157     case ctos:
   158     case stos:
   159     case atos:
   160     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
   161     case ftos:
   162     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
   163     case vtos: break;                           // Nothing to do, this was a void return.
   164     default  : ShouldNotReachHere();
   165   }
   167   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
   168   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
   169   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
   171   // Compiled code destroys templateTableBase, reload.
   172   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
   174   if (state == atos) {
   175     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
   176   }
   178   const Register cache = R11_scratch1;
   179   const Register size  = R12_scratch2;
   180   __ get_cache_and_index_at_bcp(cache, 1, index_size);
   182   // Get least significant byte of 64 bit value:
   183 #if defined(VM_LITTLE_ENDIAN)
   184   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
   185 #else
   186   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
   187 #endif
   188   __ sldi(size, size, Interpreter::logStackElementSize);
   189   __ add(R15_esp, R15_esp, size);
   190   __ dispatch_next(state, step);
   191   return entry;
   192 }
   194 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   195   address entry = __ pc();
   196   // If state != vtos, we're returning from a native method, which put it's result
   197   // into the result register. So move the value out of the return register back
   198   // to the TOS cache of current frame.
   200   switch (state) {
   201     case ltos:
   202     case btos:
   203     case ctos:
   204     case stos:
   205     case atos:
   206     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
   207     case ftos:
   208     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
   209     case vtos: break;                           // Nothing to do, this was a void return.
   210     default  : ShouldNotReachHere();
   211   }
   213   // Load LcpoolCache @@@ should be already set!
   214   __ get_constant_pool_cache(R27_constPoolCache);
   216   // Handle a pending exception, fall through if none.
   217   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
   219   // Start executing bytecodes.
   220   __ dispatch_next(state, step);
   222   return entry;
   223 }
   225 // A result handler converts the native result into java format.
   226 // Use the shared code between c++ and template interpreter.
   227 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   228   return AbstractInterpreterGenerator::generate_result_handler_for(type);
   229 }
   231 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   232   address entry = __ pc();
   234   __ push(state);
   235   __ call_VM(noreg, runtime_entry);
   236   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   238   return entry;
   239 }
   241 // Helpers for commoning out cases in the various type of method entries.
   243 // Increment invocation count & check for overflow.
   244 //
   245 // Note: checking for negative value instead of overflow
   246 //       so we have a 'sticky' overflow test.
   247 //
   248 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   249   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
   250   Register Rscratch1   = R11_scratch1;
   251   Register Rscratch2   = R12_scratch2;
   252   Register R3_counters = R3_ARG1;
   253   Label done;
   255   if (TieredCompilation) {
   256     const int increment = InvocationCounter::count_increment;
   257     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   258     Label no_mdo;
   259     if (ProfileInterpreter) {
   260       const Register Rmdo = Rscratch1;
   261       // If no method data exists, go to profile_continue.
   262       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
   263       __ cmpdi(CCR0, Rmdo, 0);
   264       __ beq(CCR0, no_mdo);
   266       // Increment backedge counter in the MDO.
   267       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
   268       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
   269       __ addi(Rscratch2, Rscratch2, increment);
   270       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
   271       __ load_const_optimized(Rscratch1, mask, R0);
   272       __ and_(Rscratch1, Rscratch2, Rscratch1);
   273       __ bne(CCR0, done);
   274       __ b(*overflow);
   275     }
   277     // Increment counter in MethodCounters*.
   278     const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
   279     __ bind(no_mdo);
   280     __ get_method_counters(R19_method, R3_counters, done);
   281     __ lwz(Rscratch2, mo_bc_offs, R3_counters);
   282     __ addi(Rscratch2, Rscratch2, increment);
   283     __ stw(Rscratch2, mo_bc_offs, R3_counters);
   284     __ load_const_optimized(Rscratch1, mask, R0);
   285     __ and_(Rscratch1, Rscratch2, Rscratch1);
   286     __ beq(CCR0, *overflow);
   288     __ bind(done);
   290   } else {
   292     // Update standard invocation counters.
   293     Register Rsum_ivc_bec = R4_ARG2;
   294     __ get_method_counters(R19_method, R3_counters, done);
   295     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
   296     // Increment interpreter invocation counter.
   297     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
   298       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
   299       __ addi(R12_scratch2, R12_scratch2, 1);
   300       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
   301     }
   302     // Check if we must create a method data obj.
   303     if (ProfileInterpreter && profile_method != NULL) {
   304       const Register profile_limit = Rscratch1;
   305       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
   306       __ lwz(profile_limit, pl_offs, profile_limit);
   307       // Test to see if we should create a method data oop.
   308       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
   309       __ blt(CCR0, *profile_method_continue);
   310       // If no method data exists, go to profile_method.
   311       __ test_method_data_pointer(*profile_method);
   312     }
   313     // Finally check for counter overflow.
   314     if (overflow) {
   315       const Register invocation_limit = Rscratch1;
   316       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
   317       __ lwz(invocation_limit, il_offs, invocation_limit);
   318       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
   319       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
   320       __ bge(CCR0, *overflow);
   321     }
   323     __ bind(done);
   324   }
   325 }
   327 // Generate code to initiate compilation on invocation counter overflow.
   328 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
   329   // Generate code to initiate compilation on the counter overflow.
   331   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
   332   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
   333   // We pass zero in.
   334   // The call returns the address of the verified entry point for the method or NULL
   335   // if the compilation did not complete (either went background or bailed out).
   336   //
   337   // Unlike the C++ interpreter above: Check exceptions!
   338   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
   339   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
   341   __ li(R4_ARG2, 0);
   342   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
   344   // Returns verified_entry_point or NULL.
   345   // We ignore it in any case.
   346   __ b(continue_entry);
   347 }
   349 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
   350   assert_different_registers(Rmem_frame_size, Rscratch1);
   351   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
   352 }
   354 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
   355   __ unlock_object(R26_monitor, check_exceptions);
   356 }
   358 // Lock the current method, interpreter register window must be set up!
   359 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
   360   const Register Robj_to_lock = Rscratch2;
   362   {
   363     if (!flags_preloaded) {
   364       __ lwz(Rflags, method_(access_flags));
   365     }
   367 #ifdef ASSERT
   368     // Check if methods needs synchronization.
   369     {
   370       Label Lok;
   371       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
   372       __ btrue(CCR0,Lok);
   373       __ stop("method doesn't need synchronization");
   374       __ bind(Lok);
   375     }
   376 #endif // ASSERT
   377   }
   379   // Get synchronization object to Rscratch2.
   380   {
   381     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   382     Label Lstatic;
   383     Label Ldone;
   385     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
   386     __ btrue(CCR0, Lstatic);
   388     // Non-static case: load receiver obj from stack and we're done.
   389     __ ld(Robj_to_lock, R18_locals);
   390     __ b(Ldone);
   392     __ bind(Lstatic); // Static case: Lock the java mirror
   393     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
   394     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
   395     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
   396     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
   398     __ bind(Ldone);
   399     __ verify_oop(Robj_to_lock);
   400   }
   402   // Got the oop to lock => execute!
   403   __ add_monitor_to_stack(true, Rscratch1, R0);
   405   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
   406   __ lock_object(R26_monitor, Robj_to_lock);
   407 }
   409 // Generate a fixed interpreter frame for pure interpreter
   410 // and I2N native transition frames.
   411 //
   412 // Before (stack grows downwards):
   413 //
   414 //         |  ...         |
   415 //         |------------- |
   416 //         |  java arg0   |
   417 //         |  ...         |
   418 //         |  java argn   |
   419 //         |              |   <-   R15_esp
   420 //         |              |
   421 //         |--------------|
   422 //         | abi_112      |
   423 //         |              |   <-   R1_SP
   424 //         |==============|
   425 //
   426 //
   427 // After:
   428 //
   429 //         |  ...         |
   430 //         |  java arg0   |<-   R18_locals
   431 //         |  ...         |
   432 //         |  java argn   |
   433 //         |--------------|
   434 //         |              |
   435 //         |  java locals |
   436 //         |              |
   437 //         |--------------|
   438 //         |  abi_48      |
   439 //         |==============|
   440 //         |              |
   441 //         |   istate     |
   442 //         |              |
   443 //         |--------------|
   444 //         |   monitor    |<-   R26_monitor
   445 //         |--------------|
   446 //         |              |<-   R15_esp
   447 //         | expression   |
   448 //         | stack        |
   449 //         |              |
   450 //         |--------------|
   451 //         |              |
   452 //         | abi_112      |<-   R1_SP
   453 //         |==============|
   454 //
   455 // The top most frame needs an abi space of 112 bytes. This space is needed,
   456 // since we call to c. The c function may spill their arguments to the caller
   457 // frame. When we call to java, we don't need these spill slots. In order to save
   458 // space on the stack, we resize the caller. However, java local reside in
   459 // the caller frame and the frame has to be increased. The frame_size for the
   460 // current frame was calculated based on max_stack as size for the expression
   461 // stack. At the call, just a part of the expression stack might be used.
   462 // We don't want to waste this space and cut the frame back accordingly.
   463 // The resulting amount for resizing is calculated as follows:
   464 // resize =   (number_of_locals - number_of_arguments) * slot_size
   465 //          + (R1_SP - R15_esp) + 48
   466 //
   467 // The size for the callee frame is calculated:
   468 // framesize = 112 + max_stack + monitor + state_size
   469 //
   470 // maxstack:   Max number of slots on the expression stack, loaded from the method.
   471 // monitor:    We statically reserve room for one monitor object.
   472 // state_size: We save the current state of the interpreter to this area.
   473 //
   474 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
   475   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
   476            top_frame_size      = R7_ARG5,
   477            Rconst_method       = R8_ARG6;
   479   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
   481   __ ld(Rconst_method, method_(const));
   482   __ lhz(Rsize_of_parameters /* number of params */,
   483          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
   484   if (native_call) {
   485     // If we're calling a native method, we reserve space for the worst-case signature
   486     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
   487     // We add two slots to the parameter_count, one for the jni
   488     // environment and one for a possible native mirror.
   489     Label skip_native_calculate_max_stack;
   490     __ addi(top_frame_size, Rsize_of_parameters, 2);
   491     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
   492     __ bge(CCR0, skip_native_calculate_max_stack);
   493     __ li(top_frame_size, Argument::n_register_parameters);
   494     __ bind(skip_native_calculate_max_stack);
   495     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
   496     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
   497     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
   498     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
   499   } else {
   500     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
   501     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
   502     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
   503     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
   504     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
   505     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
   506     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
   507     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
   508   }
   510   // Compute top frame size.
   511   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
   513   // Cut back area between esp and max_stack.
   514   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
   516   __ round_to(top_frame_size, frame::alignment_in_bytes);
   517   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
   518   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
   519   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
   521   {
   522     // --------------------------------------------------------------------------
   523     // Stack overflow check
   525     Label cont;
   526     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
   527     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
   528   }
   530   // Set up interpreter state registers.
   532   __ add(R18_locals, R15_esp, Rsize_of_parameters);
   533   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
   534   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
   536   // Set method data pointer.
   537   if (ProfileInterpreter) {
   538     Label zero_continue;
   539     __ ld(R28_mdx, method_(method_data));
   540     __ cmpdi(CCR0, R28_mdx, 0);
   541     __ beq(CCR0, zero_continue);
   542     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
   543     __ bind(zero_continue);
   544   }
   546   if (native_call) {
   547     __ li(R14_bcp, 0); // Must initialize.
   548   } else {
   549     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
   550   }
   552   // Resize parent frame.
   553   __ mflr(R12_scratch2);
   554   __ neg(parent_frame_resize, parent_frame_resize);
   555   __ resize_frame(parent_frame_resize, R11_scratch1);
   556   __ std(R12_scratch2, _abi(lr), R1_SP);
   558   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
   559   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
   561   // Store values.
   562   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
   563   // in InterpreterMacroAssembler::call_from_interpreter.
   564   __ std(R19_method, _ijava_state_neg(method), R1_SP);
   565   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
   566   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
   567   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
   569   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
   570   // be found in the frame after save_interpreter_state is done. This is always true
   571   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
   572   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
   573   // (Enhanced Stack Trace).
   574   // The signal handler does not save the interpreter state into the frame.
   575   __ li(R0, 0);
   576 #ifdef ASSERT
   577   // Fill remaining slots with constants.
   578   __ load_const_optimized(R11_scratch1, 0x5afe);
   579   __ load_const_optimized(R12_scratch2, 0xdead);
   580 #endif
   581   // We have to initialize some frame slots for native calls (accessed by GC).
   582   if (native_call) {
   583     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
   584     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
   585     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
   586   }
   587 #ifdef ASSERT
   588   else {
   589     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
   590     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
   591     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
   592   }
   593   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
   594   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
   595   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
   596   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
   597 #endif
   598   __ subf(R12_scratch2, top_frame_size, R1_SP);
   599   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
   600   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
   602   // Push top frame.
   603   __ push_frame(top_frame_size, R11_scratch1);
   604 }
   606 // End of helpers
   608 // ============================================================================
   609 // Various method entries
   610 //
   612 // Empty method, generate a very fast return. We must skip this entry if
   613 // someone's debugging, indicated by the flag
   614 // "interp_mode" in the Thread obj.
   615 // Note: empty methods are generated mostly methods that do assertions, which are
   616 // disabled in the "java opt build".
   617 address TemplateInterpreterGenerator::generate_empty_entry(void) {
   618   if (!UseFastEmptyMethods) {
   619     NOT_PRODUCT(__ should_not_reach_here();)
   620     return Interpreter::entry_for_kind(Interpreter::zerolocals);
   621   }
   623   Label Lslow_path;
   624   const Register Rjvmti_mode = R11_scratch1;
   625   address entry = __ pc();
   627   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
   628   __ cmpwi(CCR0, Rjvmti_mode, 0);
   629   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
   631   // Noone's debuggin: Simply return.
   632   // Pop c2i arguments (if any) off when we return.
   633 #ifdef ASSERT
   634     __ ld(R9_ARG7, 0, R1_SP);
   635     __ ld(R10_ARG8, 0, R21_sender_SP);
   636     __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   637     __ asm_assert_eq("backlink", 0x545);
   638 #endif // ASSERT
   639   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   641   // And we're done.
   642   __ blr();
   644   __ bind(Lslow_path);
   645   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
   646   __ flush();
   648   return entry;
   649 }
   651 // Support abs and sqrt like in compiler.
   652 // For others we can use a normal (native) entry.
   654 inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
   655   // Provide math entry with debugging on demand.
   656   // Note: Debugging changes which code will get executed:
   657   // Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
   658   // Not debugging and enabled InlineIntrinics: processor instruction will get used.
   659   // Result might differ slightly due to rounding etc.
   660   if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
   662   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
   663           (kind==Interpreter::java_lang_math_abs));
   664 }
   666 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
   667   if (!math_entry_available(kind)) {
   668     NOT_PRODUCT(__ should_not_reach_here();)
   669     return Interpreter::entry_for_kind(Interpreter::zerolocals);
   670   }
   672   Label Lslow_path;
   673   const Register Rjvmti_mode = R11_scratch1;
   674   address entry = __ pc();
   676   // Provide math entry with debugging on demand.
   677   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
   678   __ cmpwi(CCR0, Rjvmti_mode, 0);
   679   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
   681   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
   683   // Pop c2i arguments (if any) off when we return.
   684 #ifdef ASSERT
   685   __ ld(R9_ARG7, 0, R1_SP);
   686   __ ld(R10_ARG8, 0, R21_sender_SP);
   687   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   688   __ asm_assert_eq("backlink", 0x545);
   689 #endif // ASSERT
   690   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   692   if (kind == Interpreter::java_lang_math_sqrt) {
   693     __ fsqrt(F1_RET, F1_RET);
   694   } else if (kind == Interpreter::java_lang_math_abs) {
   695     __ fabs(F1_RET, F1_RET);
   696   } else {
   697     ShouldNotReachHere();
   698   }
   700   // And we're done.
   701   __ blr();
   703   // Provide slow path for JVMTI case.
   704   __ bind(Lslow_path);
   705   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
   706   __ flush();
   708   return entry;
   709 }
   711 // Interpreter stub for calling a native method. (asm interpreter)
   712 // This sets up a somewhat different looking stack for calling the
   713 // native method than the typical interpreter frame setup.
   714 //
   715 // On entry:
   716 //   R19_method    - method
   717 //   R16_thread    - JavaThread*
   718 //   R15_esp       - intptr_t* sender tos
   719 //
   720 //   abstract stack (grows up)
   721 //     [  IJava (caller of JNI callee)  ]  <-- ASP
   722 //        ...
   723 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
   725   address entry = __ pc();
   727   const bool inc_counter = UseCompiler || CountCompiledCalls;
   729   // -----------------------------------------------------------------------------
   730   // Allocate a new frame that represents the native callee (i2n frame).
   731   // This is not a full-blown interpreter frame, but in particular, the
   732   // following registers are valid after this:
   733   // - R19_method
   734   // - R18_local (points to start of argumuments to native function)
   735   //
   736   //   abstract stack (grows up)
   737   //     [  IJava (caller of JNI callee)  ]  <-- ASP
   738   //        ...
   740   const Register signature_handler_fd = R11_scratch1;
   741   const Register pending_exception    = R0;
   742   const Register result_handler_addr  = R31;
   743   const Register native_method_fd     = R11_scratch1;
   744   const Register access_flags         = R22_tmp2;
   745   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
   746   const Register sync_state           = R12_scratch2;
   747   const Register sync_state_addr      = sync_state;   // Address is dead after use.
   748   const Register suspend_flags        = R11_scratch1;
   750   //=============================================================================
   751   // Allocate new frame and initialize interpreter state.
   753   Label exception_return;
   754   Label exception_return_sync_check;
   755   Label stack_overflow_return;
   757   // Generate new interpreter state and jump to stack_overflow_return in case of
   758   // a stack overflow.
   759   //generate_compute_interpreter_state(stack_overflow_return);
   761   Register size_of_parameters = R22_tmp2;
   763   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
   765   //=============================================================================
   766   // Increment invocation counter. On overflow, entry to JNI method
   767   // will be compiled.
   768   Label invocation_counter_overflow, continue_after_compile;
   769   if (inc_counter) {
   770     if (synchronized) {
   771       // Since at this point in the method invocation the exception handler
   772       // would try to exit the monitor of synchronized methods which hasn't
   773       // been entered yet, we set the thread local variable
   774       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   775       // runtime, exception handling i.e. unlock_if_synchronized_method will
   776       // check this thread local flag.
   777       // This flag has two effects, one is to force an unwind in the topmost
   778       // interpreter frame and not perform an unlock while doing so.
   779       __ li(R0, 1);
   780       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   781     }
   782     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   784     __ BIND(continue_after_compile);
   785     // Reset the _do_not_unlock_if_synchronized flag.
   786     if (synchronized) {
   787       __ li(R0, 0);
   788       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   789     }
   790   }
   792   // access_flags = method->access_flags();
   793   // Load access flags.
   794   assert(access_flags->is_nonvolatile(),
   795          "access_flags must be in a non-volatile register");
   796   // Type check.
   797   assert(4 == sizeof(AccessFlags), "unexpected field size");
   798   __ lwz(access_flags, method_(access_flags));
   800   // We don't want to reload R19_method and access_flags after calls
   801   // to some helper functions.
   802   assert(R19_method->is_nonvolatile(),
   803          "R19_method must be a non-volatile register");
   805   // Check for synchronized methods. Must happen AFTER invocation counter
   806   // check, so method is not locked if counter overflows.
   808   if (synchronized) {
   809     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
   811     // Update monitor in state.
   812     __ ld(R11_scratch1, 0, R1_SP);
   813     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
   814   }
   816   // jvmti/jvmpi support
   817   __ notify_method_entry();
   819   //=============================================================================
   820   // Get and call the signature handler.
   822   __ ld(signature_handler_fd, method_(signature_handler));
   823   Label call_signature_handler;
   825   __ cmpdi(CCR0, signature_handler_fd, 0);
   826   __ bne(CCR0, call_signature_handler);
   828   // Method has never been called. Either generate a specialized
   829   // handler or point to the slow one.
   830   //
   831   // Pass parameter 'false' to avoid exception check in call_VM.
   832   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
   834   // Check for an exception while looking up the target method. If we
   835   // incurred one, bail.
   836   __ ld(pending_exception, thread_(pending_exception));
   837   __ cmpdi(CCR0, pending_exception, 0);
   838   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
   840   // Reload signature handler, it may have been created/assigned in the meanwhile.
   841   __ ld(signature_handler_fd, method_(signature_handler));
   842   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
   844   __ BIND(call_signature_handler);
   846   // Before we call the signature handler we push a new frame to
   847   // protect the interpreter frame volatile registers when we return
   848   // from jni but before we can get back to Java.
   850   // First set the frame anchor while the SP/FP registers are
   851   // convenient and the slow signature handler can use this same frame
   852   // anchor.
   854   // We have a TOP_IJAVA_FRAME here, which belongs to us.
   855   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
   857   // Now the interpreter frame (and its call chain) have been
   858   // invalidated and flushed. We are now protected against eager
   859   // being enabled in native code. Even if it goes eager the
   860   // registers will be reloaded as clean and we will invalidate after
   861   // the call so no spurious flush should be possible.
   863   // Call signature handler and pass locals address.
   864   //
   865   // Our signature handlers copy required arguments to the C stack
   866   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
   867   __ mr(R3_ARG1, R18_locals);
   868 #if !defined(ABI_ELFv2)
   869   __ ld(signature_handler_fd, 0, signature_handler_fd);
   870 #endif
   872   __ call_stub(signature_handler_fd);
   874   // Remove the register parameter varargs slots we allocated in
   875   // compute_interpreter_state. SP+16 ends up pointing to the ABI
   876   // outgoing argument area.
   877   //
   878   // Not needed on PPC64.
   879   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
   881   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
   882   // Save across call to native method.
   883   __ mr(result_handler_addr, R3_RET);
   885   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
   887   // Set up fixed parameters and call the native method.
   888   // If the method is static, get mirror into R4_ARG2.
   889   {
   890     Label method_is_not_static;
   891     // Access_flags is non-volatile and still, no need to restore it.
   893     // Restore access flags.
   894     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
   895     __ bfalse(CCR0, method_is_not_static);
   897     // constants = method->constants();
   898     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
   899     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
   900     // pool_holder = method->constants()->pool_holder();
   901     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
   902           R11_scratch1/*constants*/);
   904     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   906     // mirror = pool_holder->klass_part()->java_mirror();
   907     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
   908     // state->_native_mirror = mirror;
   910     __ ld(R11_scratch1, 0, R1_SP);
   911     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
   912     // R4_ARG2 = &state->_oop_temp;
   913     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
   914     __ BIND(method_is_not_static);
   915   }
   917   // At this point, arguments have been copied off the stack into
   918   // their JNI positions. Oops are boxed in-place on the stack, with
   919   // handles copied to arguments. The result handler address is in a
   920   // register.
   922   // Pass JNIEnv address as first parameter.
   923   __ addir(R3_ARG1, thread_(jni_environment));
   925   // Load the native_method entry before we change the thread state.
   926   __ ld(native_method_fd, method_(native_function));
   928   //=============================================================================
   929   // Transition from _thread_in_Java to _thread_in_native. As soon as
   930   // we make this change the safepoint code needs to be certain that
   931   // the last Java frame we established is good. The pc in that frame
   932   // just needs to be near here not an actual return address.
   934   // We use release_store_fence to update values like the thread state, where
   935   // we don't want the current thread to continue until all our prior memory
   936   // accesses (including the new thread state) are visible to other threads.
   937   __ li(R0, _thread_in_native);
   938   __ release();
   940   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
   941   __ stw(R0, thread_(thread_state));
   943   if (UseMembar) {
   944     __ fence();
   945   }
   947   //=============================================================================
   948   // Call the native method. Argument registers must not have been
   949   // overwritten since "__ call_stub(signature_handler);" (except for
   950   // ARG1 and ARG2 for static methods).
   951   __ call_c(native_method_fd);
   953   __ li(R0, 0);
   954   __ ld(R11_scratch1, 0, R1_SP);
   955   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
   956   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
   957   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
   959   // Note: C++ interpreter needs the following here:
   960   // The frame_manager_lr field, which we use for setting the last
   961   // java frame, gets overwritten by the signature handler. Restore
   962   // it now.
   963   //__ get_PC_trash_LR(R11_scratch1);
   964   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
   966   // Because of GC R19_method may no longer be valid.
   968   // Block, if necessary, before resuming in _thread_in_Java state.
   969   // In order for GC to work, don't clear the last_Java_sp until after
   970   // blocking.
   972   //=============================================================================
   973   // Switch thread to "native transition" state before reading the
   974   // synchronization state. This additional state is necessary
   975   // because reading and testing the synchronization state is not
   976   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
   977   // in _thread_in_native state, loads _not_synchronized and is
   978   // preempted. VM thread changes sync state to synchronizing and
   979   // suspends threads for GC. Thread A is resumed to finish this
   980   // native method, but doesn't block here since it didn't see any
   981   // synchronization in progress, and escapes.
   983   // We use release_store_fence to update values like the thread state, where
   984   // we don't want the current thread to continue until all our prior memory
   985   // accesses (including the new thread state) are visible to other threads.
   986   __ li(R0/*thread_state*/, _thread_in_native_trans);
   987   __ release();
   988   __ stw(R0/*thread_state*/, thread_(thread_state));
   989   if (UseMembar) {
   990     __ fence();
   991   }
   992   // Write serialization page so that the VM thread can do a pseudo remote
   993   // membar. We use the current thread pointer to calculate a thread
   994   // specific offset to write to within the page. This minimizes bus
   995   // traffic due to cache line collision.
   996   else {
   997     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
   998   }
  1000   // Now before we return to java we must look for a current safepoint
  1001   // (a new safepoint can not start since we entered native_trans).
  1002   // We must check here because a current safepoint could be modifying
  1003   // the callers registers right this moment.
  1005   // Acquire isn't strictly necessary here because of the fence, but
  1006   // sync_state is declared to be volatile, so we do it anyway
  1007   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
  1008   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
  1010   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  1011   __ lwz(sync_state, sync_state_offs, sync_state_addr);
  1013   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  1014   __ lwz(suspend_flags, thread_(suspend_flags));
  1016   Label sync_check_done;
  1017   Label do_safepoint;
  1018   // No synchronization in progress nor yet synchronized.
  1019   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  1020   // Not suspended.
  1021   __ cmpwi(CCR1, suspend_flags, 0);
  1023   __ bne(CCR0, do_safepoint);
  1024   __ beq(CCR1, sync_check_done);
  1025   __ bind(do_safepoint);
  1026   __ isync();
  1027   // Block. We do the call directly and leave the current
  1028   // last_Java_frame setup undisturbed. We must save any possible
  1029   // native result across the call. No oop is present.
  1031   __ mr(R3_ARG1, R16_thread);
  1032 #if defined(ABI_ELFv2)
  1033   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1034             relocInfo::none);
  1035 #else
  1036   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
  1037             relocInfo::none);
  1038 #endif
  1040   __ bind(sync_check_done);
  1042   //=============================================================================
  1043   // <<<<<< Back in Interpreter Frame >>>>>
  1045   // We are in thread_in_native_trans here and back in the normal
  1046   // interpreter frame. We don't have to do anything special about
  1047   // safepoints and we can switch to Java mode anytime we are ready.
  1049   // Note: frame::interpreter_frame_result has a dependency on how the
  1050   // method result is saved across the call to post_method_exit. For
  1051   // native methods it assumes that the non-FPU/non-void result is
  1052   // saved in _native_lresult and a FPU result in _native_fresult. If
  1053   // this changes then the interpreter_frame_result implementation
  1054   // will need to be updated too.
  1056   // On PPC64, we have stored the result directly after the native call.
  1058   //=============================================================================
  1059   // Back in Java
  1061   // We use release_store_fence to update values like the thread state, where
  1062   // we don't want the current thread to continue until all our prior memory
  1063   // accesses (including the new thread state) are visible to other threads.
  1064   __ li(R0/*thread_state*/, _thread_in_Java);
  1065   __ release();
  1066   __ stw(R0/*thread_state*/, thread_(thread_state));
  1067   if (UseMembar) {
  1068     __ fence();
  1071   __ reset_last_Java_frame();
  1073   // Jvmdi/jvmpi support. Whether we've got an exception pending or
  1074   // not, and whether unlocking throws an exception or not, we notify
  1075   // on native method exit. If we do have an exception, we'll end up
  1076   // in the caller's context to handle it, so if we don't do the
  1077   // notify here, we'll drop it on the floor.
  1078   __ notify_method_exit(true/*native method*/,
  1079                         ilgl /*illegal state (not used for native methods)*/,
  1080                         InterpreterMacroAssembler::NotifyJVMTI,
  1081                         false /*check_exceptions*/);
  1083   //=============================================================================
  1084   // Handle exceptions
  1086   if (synchronized) {
  1087     // Don't check for exceptions since we're still in the i2n frame. Do that
  1088     // manually afterwards.
  1089     unlock_method(false);
  1092   // Reset active handles after returning from native.
  1093   // thread->active_handles()->clear();
  1094   __ ld(active_handles, thread_(active_handles));
  1095   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  1096   __ li(R0, 0);
  1097   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
  1099   Label exception_return_sync_check_already_unlocked;
  1100   __ ld(R0/*pending_exception*/, thread_(pending_exception));
  1101   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
  1102   __ bne(CCR0, exception_return_sync_check_already_unlocked);
  1104   //-----------------------------------------------------------------------------
  1105   // No exception pending.
  1107   // Move native method result back into proper registers and return.
  1108   // Invoke result handler (may unbox/promote).
  1109   __ ld(R11_scratch1, 0, R1_SP);
  1110   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
  1111   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
  1112   __ call_stub(result_handler_addr);
  1114   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
  1116   // Must use the return pc which was loaded from the caller's frame
  1117   // as the VM uses return-pc-patching for deoptimization.
  1118   __ mtlr(R0);
  1119   __ blr();
  1121   //-----------------------------------------------------------------------------
  1122   // An exception is pending. We call into the runtime only if the
  1123   // caller was not interpreted. If it was interpreted the
  1124   // interpreter will do the correct thing. If it isn't interpreted
  1125   // (call stub/compiled code) we will change our return and continue.
  1127   __ BIND(exception_return_sync_check);
  1129   if (synchronized) {
  1130     // Don't check for exceptions since we're still in the i2n frame. Do that
  1131     // manually afterwards.
  1132     unlock_method(false);
  1134   __ BIND(exception_return_sync_check_already_unlocked);
  1136   const Register return_pc = R31;
  1138   __ ld(return_pc, 0, R1_SP);
  1139   __ ld(return_pc, _abi(lr), return_pc);
  1141   // Get the address of the exception handler.
  1142   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1143                   R16_thread,
  1144                   return_pc /* return pc */);
  1145   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
  1147   // Load the PC of the the exception handler into LR.
  1148   __ mtlr(R3_RET);
  1150   // Load exception into R3_ARG1 and clear pending exception in thread.
  1151   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
  1152   __ li(R4_ARG2, 0);
  1153   __ std(R4_ARG2, thread_(pending_exception));
  1155   // Load the original return pc into R4_ARG2.
  1156   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
  1158   // Return to exception handler.
  1159   __ blr();
  1161   //=============================================================================
  1162   // Counter overflow.
  1164   if (inc_counter) {
  1165     // Handle invocation counter overflow.
  1166     __ bind(invocation_counter_overflow);
  1168     generate_counter_overflow(continue_after_compile);
  1171   return entry;
  1174 // Generic interpreted method entry to (asm) interpreter.
  1175 //
  1176 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
  1177   bool inc_counter = UseCompiler || CountCompiledCalls;
  1178   address entry = __ pc();
  1179   // Generate the code to allocate the interpreter stack frame.
  1180   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
  1181            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
  1183   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
  1185 #ifdef FAST_DISPATCH
  1186   __ unimplemented("Fast dispatch in generate_normal_entry");
  1187 #if 0
  1188   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1189   // Set bytecode dispatch table base.
  1190 #endif
  1191 #endif
  1193   // --------------------------------------------------------------------------
  1194   // Zero out non-parameter locals.
  1195   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
  1196   // worth to ask the flag, just do it.
  1197   Register Rslot_addr = R6_ARG4,
  1198            Rnum       = R7_ARG5;
  1199   Label Lno_locals, Lzero_loop;
  1201   // Set up the zeroing loop.
  1202   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
  1203   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
  1204   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
  1205   __ beq(CCR0, Lno_locals);
  1206   __ li(R0, 0);
  1207   __ mtctr(Rnum);
  1209   // The zero locals loop.
  1210   __ bind(Lzero_loop);
  1211   __ std(R0, 0, Rslot_addr);
  1212   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
  1213   __ bdnz(Lzero_loop);
  1215   __ bind(Lno_locals);
  1217   // --------------------------------------------------------------------------
  1218   // Counter increment and overflow check.
  1219   Label invocation_counter_overflow,
  1220         profile_method,
  1221         profile_method_continue;
  1222   if (inc_counter || ProfileInterpreter) {
  1224     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
  1225     if (synchronized) {
  1226       // Since at this point in the method invocation the exception handler
  1227       // would try to exit the monitor of synchronized methods which hasn't
  1228       // been entered yet, we set the thread local variable
  1229       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1230       // runtime, exception handling i.e. unlock_if_synchronized_method will
  1231       // check this thread local flag.
  1232       // This flag has two effects, one is to force an unwind in the topmost
  1233       // interpreter frame and not perform an unlock while doing so.
  1234       __ li(R0, 1);
  1235       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
  1238     // Argument and return type profiling.
  1239     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
  1241     // Increment invocation counter and check for overflow.
  1242     if (inc_counter) {
  1243       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1246     __ bind(profile_method_continue);
  1248     // Reset the _do_not_unlock_if_synchronized flag.
  1249     if (synchronized) {
  1250       __ li(R0, 0);
  1251       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
  1255   // --------------------------------------------------------------------------
  1256   // Locking of synchronized methods. Must happen AFTER invocation_counter
  1257   // check and stack overflow check, so method is not locked if overflows.
  1258   if (synchronized) {
  1259     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
  1261 #ifdef ASSERT
  1262   else {
  1263     Label Lok;
  1264     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
  1265     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
  1266     __ asm_assert_eq("method needs synchronization", 0x8521);
  1267     __ bind(Lok);
  1269 #endif // ASSERT
  1271   __ verify_thread();
  1273   // --------------------------------------------------------------------------
  1274   // JVMTI support
  1275   __ notify_method_entry();
  1277   // --------------------------------------------------------------------------
  1278   // Start executing instructions.
  1279   __ dispatch_next(vtos);
  1281   // --------------------------------------------------------------------------
  1282   // Out of line counter overflow and MDO creation code.
  1283   if (ProfileInterpreter) {
  1284     // We have decided to profile this method in the interpreter.
  1285     __ bind(profile_method);
  1286     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1287     __ set_method_data_pointer_for_bcp();
  1288     __ b(profile_method_continue);
  1291   if (inc_counter) {
  1292     // Handle invocation counter overflow.
  1293     __ bind(invocation_counter_overflow);
  1294     generate_counter_overflow(profile_method_continue);
  1296   return entry;
  1299 // =============================================================================
  1300 // Entry points
  1302 address AbstractInterpreterGenerator::generate_method_entry(
  1303                                         AbstractInterpreter::MethodKind kind) {
  1304   // Determine code generation flags.
  1305   bool synchronized = false;
  1306   address entry_point = NULL;
  1308   switch (kind) {
  1309   case Interpreter::zerolocals             :                                                                             break;
  1310   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1311   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
  1312   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
  1313   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
  1314   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
  1315   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
  1317   case Interpreter::java_lang_math_sin     : // fall thru
  1318   case Interpreter::java_lang_math_cos     : // fall thru
  1319   case Interpreter::java_lang_math_tan     : // fall thru
  1320   case Interpreter::java_lang_math_abs     : // fall thru
  1321   case Interpreter::java_lang_math_log     : // fall thru
  1322   case Interpreter::java_lang_math_log10   : // fall thru
  1323   case Interpreter::java_lang_math_sqrt    : // fall thru
  1324   case Interpreter::java_lang_math_pow     : // fall thru
  1325   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
  1326   case Interpreter::java_lang_ref_reference_get
  1327                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1328   default                                  : ShouldNotReachHere();                                                       break;
  1331   if (entry_point) {
  1332     return entry_point;
  1335   return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized);
  1338 // These should never be compiled since the interpreter will prefer
  1339 // the compiled version to the intrinsic version.
  1340 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1341   return !math_entry_available(method_kind(m));
  1344 // How much stack a method activation needs in stack slots.
  1345 // We must calc this exactly like in generate_fixed_frame.
  1346 // Note: This returns the conservative size assuming maximum alignment.
  1347 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1348   const int max_alignment_size = 2;
  1349   const int abi_scratch = frame::abi_reg_args_size;
  1350   return method->max_locals() + method->max_stack() +
  1351          frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
  1354 // Returns number of stackElementWords needed for the interpreter frame with the
  1355 // given sections.
  1356 // This overestimates the stack by one slot in case of alignments.
  1357 int AbstractInterpreter::size_activation(int max_stack,
  1358                                          int temps,
  1359                                          int extra_args,
  1360                                          int monitors,
  1361                                          int callee_params,
  1362                                          int callee_locals,
  1363                                          bool is_top_frame) {
  1364   // Note: This calculation must exactly parallel the frame setup
  1365   // in AbstractInterpreterGenerator::generate_method_entry.
  1366   assert(Interpreter::stackElementWords == 1, "sanity");
  1367   const int max_alignment_space = StackAlignmentInBytes / Interpreter::stackElementSize;
  1368   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
  1369                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
  1370   const int size =
  1371     max_stack                                                +
  1372     (callee_locals - callee_params)                          +
  1373     monitors * frame::interpreter_frame_monitor_size()       +
  1374     max_alignment_space                                      +
  1375     abi_scratch                                              +
  1376     frame::ijava_state_size / Interpreter::stackElementSize;
  1378   // Fixed size of an interpreter frame, align to 16-byte.
  1379   return (size & -2);
  1382 // Fills a sceletal interpreter frame generated during deoptimizations.
  1383 //
  1384 // Parameters:
  1385 //
  1386 // interpreter_frame != NULL:
  1387 //   set up the method, locals, and monitors.
  1388 //   The frame interpreter_frame, if not NULL, is guaranteed to be the
  1389 //   right size, as determined by a previous call to this method.
  1390 //   It is also guaranteed to be walkable even though it is in a skeletal state
  1391 //
  1392 // is_top_frame == true:
  1393 //   We're processing the *oldest* interpreter frame!
  1394 //
  1395 // pop_frame_extra_args:
  1396 //   If this is != 0 we are returning to a deoptimized frame by popping
  1397 //   off the callee frame. We want to re-execute the call that called the
  1398 //   callee interpreted, but since the return to the interpreter would pop
  1399 //   the arguments off advance the esp by dummy popframe_extra_args slots.
  1400 //   Popping off those will establish the stack layout as it was before the call.
  1401 //
  1402 void AbstractInterpreter::layout_activation(Method* method,
  1403                                             int tempcount,
  1404                                             int popframe_extra_args,
  1405                                             int moncount,
  1406                                             int caller_actual_parameters,
  1407                                             int callee_param_count,
  1408                                             int callee_locals_count,
  1409                                             frame* caller,
  1410                                             frame* interpreter_frame,
  1411                                             bool is_top_frame,
  1412                                             bool is_bottom_frame) {
  1414   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
  1415                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
  1417   intptr_t* locals_base  = (caller->is_interpreted_frame()) ?
  1418     caller->interpreter_frame_esp() + caller_actual_parameters :
  1419     caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
  1421   intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
  1422   intptr_t* monitor      = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
  1423   intptr_t* esp_base     = monitor - 1;
  1424   intptr_t* esp          = esp_base - tempcount - popframe_extra_args;
  1425   intptr_t* sp           = (intptr_t *) (((intptr_t) (esp_base - callee_locals_count + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
  1426   intptr_t* sender_sp    = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
  1427   intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
  1429   interpreter_frame->interpreter_frame_set_method(method);
  1430   interpreter_frame->interpreter_frame_set_locals(locals_base);
  1431   interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
  1432   interpreter_frame->interpreter_frame_set_esp(esp);
  1433   interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
  1434   interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
  1435   if (!is_bottom_frame) {
  1436     interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
  1440 // =============================================================================
  1441 // Exceptions
  1443 void TemplateInterpreterGenerator::generate_throw_exception() {
  1444   Register Rexception    = R17_tos,
  1445            Rcontinuation = R3_RET;
  1447   // --------------------------------------------------------------------------
  1448   // Entry point if an method returns with a pending exception (rethrow).
  1449   Interpreter::_rethrow_exception_entry = __ pc();
  1451     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
  1452     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
  1453     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
  1455     // Compiled code destroys templateTableBase, reload.
  1456     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  1459   // Entry point if a interpreted method throws an exception (throw).
  1460   Interpreter::_throw_exception_entry = __ pc();
  1462     __ mr(Rexception, R3_RET);
  1464     __ verify_thread();
  1465     __ verify_oop(Rexception);
  1467     // Expression stack must be empty before entering the VM in case of an exception.
  1468     __ empty_expression_stack();
  1469     // Find exception handler address and preserve exception oop.
  1470     // Call C routine to find handler and jump to it.
  1471     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
  1472     __ mtctr(Rcontinuation);
  1473     // Push exception for exception handler bytecodes.
  1474     __ push_ptr(Rexception);
  1476     // Jump to exception handler (may be remove activation entry!).
  1477     __ bctr();
  1480   // If the exception is not handled in the current frame the frame is
  1481   // removed and the exception is rethrown (i.e. exception
  1482   // continuation is _rethrow_exception).
  1483   //
  1484   // Note: At this point the bci is still the bxi for the instruction
  1485   // which caused the exception and the expression stack is
  1486   // empty. Thus, for any VM calls at this point, GC will find a legal
  1487   // oop map (with empty expression stack).
  1489   // In current activation
  1490   // tos: exception
  1491   // bcp: exception bcp
  1493   // --------------------------------------------------------------------------
  1494   // JVMTI PopFrame support
  1496   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1498     // Set the popframe_processing bit in popframe_condition indicating that we are
  1499     // currently handling popframe, so that call_VMs that may happen later do not
  1500     // trigger new popframe handling cycles.
  1501     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1502     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
  1503     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1505     // Empty the expression stack, as in normal exception handling.
  1506     __ empty_expression_stack();
  1507     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1509     // Check to see whether we are returning to a deoptimized frame.
  1510     // (The PopFrame call ensures that the caller of the popped frame is
  1511     // either interpreted or compiled and deoptimizes it if compiled.)
  1512     // Note that we don't compare the return PC against the
  1513     // deoptimization blob's unpack entry because of the presence of
  1514     // adapter frames in C2.
  1515     Label Lcaller_not_deoptimized;
  1516     Register return_pc = R3_ARG1;
  1517     __ ld(return_pc, 0, R1_SP);
  1518     __ ld(return_pc, _abi(lr), return_pc);
  1519     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
  1520     __ cmpdi(CCR0, R3_RET, 0);
  1521     __ bne(CCR0, Lcaller_not_deoptimized);
  1523     // The deoptimized case.
  1524     // In this case, we can't call dispatch_next() after the frame is
  1525     // popped, but instead must save the incoming arguments and restore
  1526     // them after deoptimization has occurred.
  1527     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
  1528     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
  1529     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
  1530     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
  1531     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
  1532     // Save these arguments.
  1533     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
  1535     // Inform deoptimization that it is responsible for restoring these arguments.
  1536     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
  1537     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1539     // Return from the current method into the deoptimization blob. Will eventually
  1540     // end up in the deopt interpeter entry, deoptimization prepared everything that
  1541     // we will reexecute the call that called us.
  1542     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
  1543     __ mtlr(return_pc);
  1544     __ blr();
  1546     // The non-deoptimized case.
  1547     __ bind(Lcaller_not_deoptimized);
  1549     // Clear the popframe condition flag.
  1550     __ li(R0, 0);
  1551     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1553     // Get out of the current method and re-execute the call that called us.
  1554     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
  1555     __ restore_interpreter_state(R11_scratch1);
  1556     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
  1557     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
  1558     if (ProfileInterpreter) {
  1559       __ set_method_data_pointer_for_bcp();
  1560       __ ld(R11_scratch1, 0, R1_SP);
  1561       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
  1563 #if INCLUDE_JVMTI
  1564     Label L_done;
  1566     __ lbz(R11_scratch1, 0, R14_bcp);
  1567     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
  1568     __ bne(CCR0, L_done);
  1570     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1571     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1572     __ ld(R4_ARG2, 0, R18_locals);
  1573     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
  1574     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
  1575     __ cmpdi(CCR0, R4_ARG2, 0);
  1576     __ beq(CCR0, L_done);
  1577     __ std(R4_ARG2, wordSize, R15_esp);
  1578     __ bind(L_done);
  1579 #endif // INCLUDE_JVMTI
  1580     __ dispatch_next(vtos);
  1582   // end of JVMTI PopFrame support
  1584   // --------------------------------------------------------------------------
  1585   // Remove activation exception entry.
  1586   // This is jumped to if an interpreted method can't handle an exception itself
  1587   // (we come from the throw/rethrow exception entry above). We're going to call
  1588   // into the VM to find the exception handler in the caller, pop the current
  1589   // frame and return the handler we calculated.
  1590   Interpreter::_remove_activation_entry = __ pc();
  1592     __ pop_ptr(Rexception);
  1593     __ verify_thread();
  1594     __ verify_oop(Rexception);
  1595     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  1597     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
  1598     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
  1600     __ get_vm_result(Rexception);
  1602     // We are done with this activation frame; find out where to go next.
  1603     // The continuation point will be an exception handler, which expects
  1604     // the following registers set up:
  1605     //
  1606     // RET:  exception oop
  1607     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
  1609     Register return_pc = R31; // Needs to survive the runtime call.
  1610     __ ld(return_pc, 0, R1_SP);
  1611     __ ld(return_pc, _abi(lr), return_pc);
  1612     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
  1614     // Remove the current activation.
  1615     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
  1617     __ mr(R4_ARG2, return_pc);
  1618     __ mtlr(R3_RET);
  1619     __ mr(R3_RET, Rexception);
  1620     __ blr();
  1624 // JVMTI ForceEarlyReturn support.
  1625 // Returns "in the middle" of a method with a "fake" return value.
  1626 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1628   Register Rscratch1 = R11_scratch1,
  1629            Rscratch2 = R12_scratch2;
  1631   address entry = __ pc();
  1632   __ empty_expression_stack();
  1634   __ load_earlyret_value(state, Rscratch1);
  1636   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
  1637   // Clear the earlyret state.
  1638   __ li(R0, 0);
  1639   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
  1641   __ remove_activation(state, false, false);
  1642   // Copied from TemplateTable::_return.
  1643   // Restoration of lr done by remove_activation.
  1644   switch (state) {
  1645     case ltos:
  1646     case btos:
  1647     case ctos:
  1648     case stos:
  1649     case atos:
  1650     case itos: __ mr(R3_RET, R17_tos); break;
  1651     case ftos:
  1652     case dtos: __ fmr(F1_RET, F15_ftos); break;
  1653     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
  1654                // to get visible before the reference to the object gets stored anywhere.
  1655                __ membar(Assembler::StoreStore); break;
  1656     default  : ShouldNotReachHere();
  1658   __ blr();
  1660   return entry;
  1661 } // end of ForceEarlyReturn support
  1663 //-----------------------------------------------------------------------------
  1664 // Helper for vtos entry point generation
  1666 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1667                                                          address& bep,
  1668                                                          address& cep,
  1669                                                          address& sep,
  1670                                                          address& aep,
  1671                                                          address& iep,
  1672                                                          address& lep,
  1673                                                          address& fep,
  1674                                                          address& dep,
  1675                                                          address& vep) {
  1676   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1677   Label L;
  1679   aep = __ pc();  __ push_ptr();  __ b(L);
  1680   fep = __ pc();  __ push_f();    __ b(L);
  1681   dep = __ pc();  __ push_d();    __ b(L);
  1682   lep = __ pc();  __ push_l();    __ b(L);
  1683   __ align(32, 12, 24); // align L
  1684   bep = cep = sep =
  1685   iep = __ pc();  __ push_i();
  1686   vep = __ pc();
  1687   __ bind(L);
  1688   generate_and_dispatch(t);
  1691 //-----------------------------------------------------------------------------
  1692 // Generation of individual instructions
  1694 // helpers for generate_and_dispatch
  1696 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1697   : TemplateInterpreterGenerator(code) {
  1698   generate_all(); // Down here so it can be "virtual".
  1701 //-----------------------------------------------------------------------------
  1703 // Non-product code
  1704 #ifndef PRODUCT
  1705 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1706   //__ flush_bundle();
  1707   address entry = __ pc();
  1709   const char *bname = NULL;
  1710   uint tsize = 0;
  1711   switch(state) {
  1712   case ftos:
  1713     bname = "trace_code_ftos {";
  1714     tsize = 2;
  1715     break;
  1716   case btos:
  1717     bname = "trace_code_btos {";
  1718     tsize = 2;
  1719     break;
  1720   case ctos:
  1721     bname = "trace_code_ctos {";
  1722     tsize = 2;
  1723     break;
  1724   case stos:
  1725     bname = "trace_code_stos {";
  1726     tsize = 2;
  1727     break;
  1728   case itos:
  1729     bname = "trace_code_itos {";
  1730     tsize = 2;
  1731     break;
  1732   case ltos:
  1733     bname = "trace_code_ltos {";
  1734     tsize = 3;
  1735     break;
  1736   case atos:
  1737     bname = "trace_code_atos {";
  1738     tsize = 2;
  1739     break;
  1740   case vtos:
  1741     // Note: In case of vtos, the topmost of stack value could be a int or doubl
  1742     // In case of a double (2 slots) we won't see the 2nd stack value.
  1743     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
  1744     bname = "trace_code_vtos {";
  1745     tsize = 2;
  1747     break;
  1748   case dtos:
  1749     bname = "trace_code_dtos {";
  1750     tsize = 3;
  1751     break;
  1752   default:
  1753     ShouldNotReachHere();
  1755   BLOCK_COMMENT(bname);
  1757   // Support short-cut for TraceBytecodesAt.
  1758   // Don't call into the VM if we don't want to trace to speed up things.
  1759   Label Lskip_vm_call;
  1760   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
  1761     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
  1762     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
  1763     __ ld(R11_scratch1, offs1, R11_scratch1);
  1764     __ lwa(R12_scratch2, offs2, R12_scratch2);
  1765     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
  1766     __ blt(CCR0, Lskip_vm_call);
  1769   __ push(state);
  1770   // Load 2 topmost expression stack values.
  1771   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
  1772   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
  1773   __ mflr(R31);
  1774   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
  1775   __ mtlr(R31);
  1776   __ pop(state);
  1778   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
  1779     __ bind(Lskip_vm_call);
  1781   __ blr();
  1782   BLOCK_COMMENT("} trace_code");
  1783   return entry;
  1786 void TemplateInterpreterGenerator::count_bytecode() {
  1787   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
  1788   __ lwz(R12_scratch2, offs, R11_scratch1);
  1789   __ addi(R12_scratch2, R12_scratch2, 1);
  1790   __ stw(R12_scratch2, offs, R11_scratch1);
  1793 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1794   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
  1795   __ lwz(R12_scratch2, offs, R11_scratch1);
  1796   __ addi(R12_scratch2, R12_scratch2, 1);
  1797   __ stw(R12_scratch2, offs, R11_scratch1);
  1800 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1801   const Register addr = R11_scratch1,
  1802                  tmp  = R12_scratch2;
  1803   // Get index, shift out old bytecode, bring in new bytecode, and store it.
  1804   // _index = (_index >> log2_number_of_codes) |
  1805   //          (bytecode << log2_number_of_codes);
  1806   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
  1807   __ lwz(tmp, offs1, addr);
  1808   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
  1809   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1810   __ stw(tmp, offs1, addr);
  1812   // Bump bucket contents.
  1813   // _counters[_index] ++;
  1814   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
  1815   __ sldi(tmp, tmp, LogBytesPerInt);
  1816   __ add(addr, tmp, addr);
  1817   __ lwz(tmp, offs2, addr);
  1818   __ addi(tmp, tmp, 1);
  1819   __ stw(tmp, offs2, addr);
  1822 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1823   // Call a little run-time stub to avoid blow-up for each bytecode.
  1824   // The run-time runtime saves the right registers, depending on
  1825   // the tosca in-state for the given template.
  1827   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1828          "entry must have been generated");
  1830   // Note: we destroy LR here.
  1831   __ bl(Interpreter::trace_code(t->tos_in()));
  1834 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1835   Label L;
  1836   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
  1837   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
  1838   __ ld(R11_scratch1, offs1, R11_scratch1);
  1839   __ lwa(R12_scratch2, offs2, R12_scratch2);
  1840   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
  1841   __ bne(CCR0, L);
  1842   __ illtrap();
  1843   __ bind(L);
  1846 #endif // !PRODUCT
  1847 #endif // !CC_INTERP

mercurial