src/cpu/ppc/vm/interp_masm_ppc_64.cpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7535
7ae4e26cb1e0
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    27 #include "precompiled.hpp"
    28 #include "asm/macroAssembler.inline.hpp"
    29 #include "interp_masm_ppc_64.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "prims/jvmtiThreadState.hpp"
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) // nothing
    35 #else
    36 #define BLOCK_COMMENT(str) block_comment(str)
    37 #endif
    39 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
    40 #ifdef CC_INTERP
    41   address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
    42 #else
    43   address exception_entry = Interpreter::throw_NullPointerException_entry();
    44 #endif
    45   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
    46 }
    48 void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
    49   assert(entry, "Entry must have been generated by now");
    50   if (is_within_range_of_b(entry, pc())) {
    51     b(entry);
    52   } else {
    53     load_const_optimized(Rscratch, entry, R0);
    54     mtctr(Rscratch);
    55     bctr();
    56   }
    57 }
    59 #ifndef CC_INTERP
    61 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
    62   Register bytecode = R12_scratch2;
    63   if (bcp_incr != 0) {
    64     lbzu(bytecode, bcp_incr, R14_bcp);
    65   } else {
    66     lbz(bytecode, 0, R14_bcp);
    67   }
    69   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
    70 }
    72 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
    73   // Load current bytecode.
    74   Register bytecode = R12_scratch2;
    75   lbz(bytecode, 0, R14_bcp);
    76   dispatch_Lbyte_code(state, bytecode, table);
    77 }
    79 // Dispatch code executed in the prolog of a bytecode which does not do it's
    80 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
    81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    82   Register bytecode = R12_scratch2;
    83   lbz(bytecode, bcp_incr, R14_bcp);
    85   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
    87   sldi(bytecode, bytecode, LogBytesPerWord);
    88   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
    89 }
    91 // Dispatch code executed in the epilog of a bytecode which does not do it's
    92 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
    93 // dispatch.
    94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    95   mtctr(R24_dispatch_addr);
    96   addi(R14_bcp, R14_bcp, bcp_incr);
    97   bctr();
    98 }
   100 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   101   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
   102   if (JvmtiExport::can_pop_frame()) {
   103     Label L;
   105     // Check the "pending popframe condition" flag in the current thread.
   106     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
   108     // Initiate popframe handling only if it is not already being
   109     // processed. If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
   113     beq(CCR0, L);
   115     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
   116     bne(CCR0, L);
   118     // Call the Interpreter::remove_activation_preserving_args_entry()
   119     // func to get the address of the same-named entrypoint in the
   120     // generated interpreter code.
   121 #if defined(ABI_ELFv2)
   122     call_c(CAST_FROM_FN_PTR(address,
   123                             Interpreter::remove_activation_preserving_args_entry),
   124            relocInfo::none);
   125 #else
   126     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
   127                             Interpreter::remove_activation_preserving_args_entry),
   128            relocInfo::none);
   129 #endif
   131     // Jump to Interpreter::_remove_activation_preserving_args_entry.
   132     mtctr(R3_RET);
   133     bctr();
   135     align(32, 12);
   136     bind(L);
   137   }
   138 }
   140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   141   const Register Rthr_state_addr = scratch_reg;
   142   if (JvmtiExport::can_force_early_return()) {
   143     Label Lno_early_ret;
   144     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
   145     cmpdi(CCR0, Rthr_state_addr, 0);
   146     beq(CCR0, Lno_early_ret);
   148     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
   149     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
   150     bne(CCR0, Lno_early_ret);
   152     // Jump to Interpreter::_earlyret_entry.
   153     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
   154     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
   155     mtlr(R3_RET);
   156     blr();
   158     align(32, 12);
   159     bind(Lno_early_ret);
   160   }
   161 }
   163 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
   164   const Register RjvmtiState = Rscratch1;
   165   const Register Rscratch2   = R0;
   167   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
   168   li(Rscratch2, 0);
   170   switch (state) {
   171     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
   172                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
   173                break;
   174     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   175                break;
   176     case btos: // fall through
   177     case ctos: // fall through
   178     case stos: // fall through
   179     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   180                break;
   181     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   182                break;
   183     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   184                break;
   185     case vtos: break;
   186     default  : ShouldNotReachHere();
   187   }
   189   // Clean up tos value in the jvmti thread state.
   190   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   191   // Set tos state field to illegal value.
   192   li(Rscratch2, ilgl);
   193   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
   194 }
   196 // Common code to dispatch and dispatch_only.
   197 // Dispatch value in Lbyte_code and increment Lbcp.
   199 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
   200   address table_base = (address)Interpreter::dispatch_table((TosState)0);
   201   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
   202   if (is_simm16(table_offs)) {
   203     addi(dst, R25_templateTableBase, (int)table_offs);
   204   } else {
   205     load_const_optimized(dst, table, R0);
   206   }
   207 }
   209 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
   210   if (verify) {
   211     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
   212   }
   214 #ifdef FAST_DISPATCH
   215   unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
   216 #else
   217   assert_different_registers(bytecode, R11_scratch1);
   219   // Calc dispatch table address.
   220   load_dispatch_table(R11_scratch1, table);
   222   sldi(R12_scratch2, bytecode, LogBytesPerWord);
   223   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
   225   // Jump off!
   226   mtctr(R11_scratch1);
   227   bctr();
   228 #endif
   229 }
   231 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
   232   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
   233   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
   234 }
   236 // helpers for expression stack
   238 void InterpreterMacroAssembler::pop_i(Register r) {
   239   lwzu(r, Interpreter::stackElementSize, R15_esp);
   240 }
   242 void InterpreterMacroAssembler::pop_ptr(Register r) {
   243   ldu(r, Interpreter::stackElementSize, R15_esp);
   244 }
   246 void InterpreterMacroAssembler::pop_l(Register r) {
   247   ld(r, Interpreter::stackElementSize, R15_esp);
   248   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
   249 }
   251 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
   252   lfsu(f, Interpreter::stackElementSize, R15_esp);
   253 }
   255 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
   256   lfd(f, Interpreter::stackElementSize, R15_esp);
   257   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
   258 }
   260 void InterpreterMacroAssembler::push_i(Register r) {
   261   stw(r, 0, R15_esp);
   262   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   263 }
   265 void InterpreterMacroAssembler::push_ptr(Register r) {
   266   std(r, 0, R15_esp);
   267   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   268 }
   270 void InterpreterMacroAssembler::push_l(Register r) {
   271   std(r, - Interpreter::stackElementSize, R15_esp);
   272   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   273 }
   275 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   276   stfs(f, 0, R15_esp);
   277   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   278 }
   280 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
   281   stfd(f, - Interpreter::stackElementSize, R15_esp);
   282   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   283 }
   285 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
   286   std(first, 0, R15_esp);
   287   std(second, -Interpreter::stackElementSize, R15_esp);
   288   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   289 }
   291 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
   292   std(l, 0, R15_esp);
   293   lfd(d, 0, R15_esp);
   294 }
   296 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
   297   stfd(d, 0, R15_esp);
   298   ld(l, 0, R15_esp);
   299 }
   301 void InterpreterMacroAssembler::push(TosState state) {
   302   switch (state) {
   303     case atos: push_ptr();                break;
   304     case btos:
   305     case ctos:
   306     case stos:
   307     case itos: push_i();                  break;
   308     case ltos: push_l();                  break;
   309     case ftos: push_f();                  break;
   310     case dtos: push_d();                  break;
   311     case vtos: /* nothing to do */        break;
   312     default  : ShouldNotReachHere();
   313   }
   314 }
   316 void InterpreterMacroAssembler::pop(TosState state) {
   317   switch (state) {
   318     case atos: pop_ptr();            break;
   319     case btos:
   320     case ctos:
   321     case stos:
   322     case itos: pop_i();              break;
   323     case ltos: pop_l();              break;
   324     case ftos: pop_f();              break;
   325     case dtos: pop_d();              break;
   326     case vtos: /* nothing to do */   break;
   327     default  : ShouldNotReachHere();
   328   }
   329   verify_oop(R17_tos, state);
   330 }
   332 void InterpreterMacroAssembler::empty_expression_stack() {
   333   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
   334 }
   336 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
   337                                                           Register    Rdst,
   338                                                           signedOrNot is_signed) {
   339 #if defined(VM_LITTLE_ENDIAN)
   340   if (bcp_offset) {
   341     load_const_optimized(Rdst, bcp_offset);
   342     lhbrx(Rdst, R14_bcp, Rdst);
   343   } else {
   344     lhbrx(Rdst, R14_bcp);
   345   }
   346   if (is_signed == Signed) {
   347     extsh(Rdst, Rdst);
   348   }
   349 #else
   350   // Read Java big endian format.
   351   if (is_signed == Signed) {
   352     lha(Rdst, bcp_offset, R14_bcp);
   353   } else {
   354     lhz(Rdst, bcp_offset, R14_bcp);
   355   }
   356 #endif
   357 }
   359 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
   360                                                           Register    Rdst,
   361                                                           signedOrNot is_signed) {
   362 #if defined(VM_LITTLE_ENDIAN)
   363   if (bcp_offset) {
   364     load_const_optimized(Rdst, bcp_offset);
   365     lwbrx(Rdst, R14_bcp, Rdst);
   366   } else {
   367     lwbrx(Rdst, R14_bcp);
   368   }
   369   if (is_signed == Signed) {
   370     extsw(Rdst, Rdst);
   371   }
   372 #else
   373   // Read Java big endian format.
   374   if (bcp_offset & 3) { // Offset unaligned?
   375     load_const_optimized(Rdst, bcp_offset);
   376     if (is_signed == Signed) {
   377       lwax(Rdst, R14_bcp, Rdst);
   378     } else {
   379       lwzx(Rdst, R14_bcp, Rdst);
   380     }
   381   } else {
   382     if (is_signed == Signed) {
   383       lwa(Rdst, bcp_offset, R14_bcp);
   384     } else {
   385       lwz(Rdst, bcp_offset, R14_bcp);
   386     }
   387   }
   388 #endif
   389 }
   392 // Load the constant pool cache index from the bytecode stream.
   393 //
   394 // Kills / writes:
   395 //   - Rdst, Rscratch
   396 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
   397   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   398   // Cache index is always in the native format, courtesy of Rewriter.
   399   if (index_size == sizeof(u2)) {
   400     lhz(Rdst, bcp_offset, R14_bcp);
   401   } else if (index_size == sizeof(u4)) {
   402     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   403     if (bcp_offset & 3) {
   404       load_const_optimized(Rdst, bcp_offset);
   405       lwax(Rdst, R14_bcp, Rdst);
   406     } else {
   407       lwa(Rdst, bcp_offset, R14_bcp);
   408     }
   409     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   410     nand(Rdst, Rdst, Rdst); // convert to plain index
   411   } else if (index_size == sizeof(u1)) {
   412     lbz(Rdst, bcp_offset, R14_bcp);
   413   } else {
   414     ShouldNotReachHere();
   415   }
   416   // Rdst now contains cp cache index.
   417 }
   419 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
   420   get_cache_index_at_bcp(cache, bcp_offset, index_size);
   421   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
   422   add(cache, R27_constPoolCache, cache);
   423 }
   425 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
   426 // from (Rsrc)+offset.
   427 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
   428                                        signedOrNot is_signed) {
   429 #if defined(VM_LITTLE_ENDIAN)
   430   if (offset) {
   431     load_const_optimized(Rdst, offset);
   432     lwbrx(Rdst, Rdst, Rsrc);
   433   } else {
   434     lwbrx(Rdst, Rsrc);
   435   }
   436   if (is_signed == Signed) {
   437     extsw(Rdst, Rdst);
   438   }
   439 #else
   440   if (is_signed == Signed) {
   441     lwa(Rdst, offset, Rsrc);
   442   } else {
   443     lwz(Rdst, offset, Rsrc);
   444   }
   445 #endif
   446 }
   448 // Load object from cpool->resolved_references(index).
   449 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
   450   assert_different_registers(result, index);
   451   get_constant_pool(result);
   453   // Convert from field index to resolved_references() index and from
   454   // word index to byte offset. Since this is a java object, it can be compressed.
   455   Register tmp = index;  // reuse
   456   sldi(tmp, index, LogBytesPerHeapOop);
   457   // Load pointer for resolved_references[] objArray.
   458   ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
   459   // JNIHandles::resolve(result)
   460   ld(result, 0, result);
   461 #ifdef ASSERT
   462   Label index_ok;
   463   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
   464   sldi(R0, R0, LogBytesPerHeapOop);
   465   cmpd(CCR0, tmp, R0);
   466   blt(CCR0, index_ok);
   467   stop("resolved reference index out of bounds", 0x09256);
   468   bind(index_ok);
   469 #endif
   470   // Add in the index.
   471   add(result, tmp, result);
   472   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
   473 }
   475 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   476 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
   477 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
   478                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
   479   // Profile the not-null value's klass.
   480   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
   481   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
   482   profile_typecheck_failed(Rtmp1, Rtmp2);
   483 }
   485 void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
   486   Label done;
   487   sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
   488   ld(Rscratch1, thread_(stack_overflow_limit));
   489   cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
   490   bgt(CCR0/*is_stack_overflow*/, done);
   492   // Load target address of the runtime stub.
   493   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
   494   load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
   495   mtctr(Rscratch1);
   496   // Restore caller_sp.
   497 #ifdef ASSERT
   498   ld(Rscratch1, 0, R1_SP);
   499   ld(R0, 0, R21_sender_SP);
   500   cmpd(CCR0, R0, Rscratch1);
   501   asm_assert_eq("backlink", 0x547);
   502 #endif // ASSERT
   503   mr(R1_SP, R21_sender_SP);
   504   bctr();
   506   align(32, 12);
   507   bind(done);
   508 }
   510 // Separate these two to allow for delay slot in middle.
   511 // These are used to do a test and full jump to exception-throwing code.
   513 // Check that index is in range for array, then shift index by index_shift,
   514 // and put arrayOop + shifted_index into res.
   515 // Note: res is still shy of address by array offset into object.
   517 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
   518   // Check that index is in range for array, then shift index by index_shift,
   519   // and put arrayOop + shifted_index into res.
   520   // Note: res is still shy of address by array offset into object.
   521   // Kills:
   522   //   - Rindex
   523   // Writes:
   524   //   - Rres: Address that corresponds to the array index if check was successful.
   525   verify_oop(Rarray);
   526   const Register Rlength   = R0;
   527   const Register RsxtIndex = Rtmp;
   528   Label LisNull, LnotOOR;
   530   // Array nullcheck
   531   if (!ImplicitNullChecks) {
   532     cmpdi(CCR0, Rarray, 0);
   533     beq(CCR0, LisNull);
   534   } else {
   535     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
   536   }
   538   // Rindex might contain garbage in upper bits (remember that we don't sign extend
   539   // during integer arithmetic operations). So kill them and put value into same register
   540   // where ArrayIndexOutOfBounds would expect the index in.
   541   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
   543   // Index check
   544   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
   545   cmplw(CCR0, Rindex, Rlength);
   546   sldi(RsxtIndex, RsxtIndex, index_shift);
   547   blt(CCR0, LnotOOR);
   548   // Index should be in R17_tos, array should be in R4_ARG2.
   549   mr(R17_tos, Rindex);
   550   mr(R4_ARG2, Rarray);
   551   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
   552   mtctr(Rtmp);
   553   bctr();
   555   if (!ImplicitNullChecks) {
   556     bind(LisNull);
   557     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
   558     mtctr(Rtmp);
   559     bctr();
   560   }
   562   align(32, 16);
   563   bind(LnotOOR);
   565   // Calc address
   566   add(Rres, RsxtIndex, Rarray);
   567 }
   569 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   570   // pop array
   571   pop_ptr(array);
   573   // check array
   574   index_check_without_pop(array, index, index_shift, tmp, res);
   575 }
   577 void InterpreterMacroAssembler::get_const(Register Rdst) {
   578   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
   579 }
   581 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   582   get_const(Rdst);
   583   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
   584 }
   586 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   587   get_constant_pool(Rdst);
   588   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
   589 }
   591 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   592   get_constant_pool(Rcpool);
   593   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
   594 }
   596 // Unlock if synchronized method.
   597 //
   598 // Unlock the receiver if this is a synchronized method.
   599 // Unlock any Java monitors from synchronized blocks.
   600 //
   601 // If there are locked Java monitors
   602 //   If throw_monitor_exception
   603 //     throws IllegalMonitorStateException
   604 //   Else if install_monitor_exception
   605 //     installs IllegalMonitorStateException
   606 //   Else
   607 //     no error processing
   608 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   609                                                               bool throw_monitor_exception,
   610                                                               bool install_monitor_exception) {
   611   Label Lunlocked, Lno_unlock;
   612   {
   613     Register Rdo_not_unlock_flag = R11_scratch1;
   614     Register Raccess_flags       = R12_scratch2;
   616     // Check if synchronized method or unlocking prevented by
   617     // JavaThread::do_not_unlock_if_synchronized flag.
   618     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   619     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
   620     li(R0, 0);
   621     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
   623     push(state);
   625     // Skip if we don't have to unlock.
   626     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
   627     beq(CCR0, Lunlocked);
   629     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
   630     bne(CCR0, Lno_unlock);
   631   }
   633   // Unlock
   634   {
   635     Register Rmonitor_base = R11_scratch1;
   637     Label Lunlock;
   638     // If it's still locked, everything is ok, unlock it.
   639     ld(Rmonitor_base, 0, R1_SP);
   640     addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
   642     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
   643     cmpdi(CCR0, R0, 0);
   644     bne(CCR0, Lunlock);
   646     // If it's already unlocked, throw exception.
   647     if (throw_monitor_exception) {
   648       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   649       should_not_reach_here();
   650     } else {
   651       if (install_monitor_exception) {
   652         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   653         b(Lunlocked);
   654       }
   655     }
   657     bind(Lunlock);
   658     unlock_object(Rmonitor_base);
   659   }
   661   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
   662   bind(Lunlocked);
   663   {
   664     Label Lexception, Lrestart;
   665     Register Rcurrent_obj_addr = R11_scratch1;
   666     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
   667     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
   669     bind(Lrestart);
   670     // Set up search loop: Calc num of iterations.
   671     {
   672       Register Riterations = R12_scratch2;
   673       Register Rmonitor_base = Rcurrent_obj_addr;
   674       ld(Rmonitor_base, 0, R1_SP);
   675       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
   677       subf_(Riterations, R26_monitor, Rmonitor_base);
   678       ble(CCR0, Lno_unlock);
   680       addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
   681       // Check if any monitor is on stack, bail out if not
   682       srdi(Riterations, Riterations, exact_log2(delta));
   683       mtctr(Riterations);
   684     }
   686     // The search loop: Look for locked monitors.
   687     {
   688       const Register Rcurrent_obj = R0;
   689       Label Lloop;
   691       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
   692       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
   693       bind(Lloop);
   695       // Check if current entry is used.
   696       cmpdi(CCR0, Rcurrent_obj, 0);
   697       bne(CCR0, Lexception);
   698       // Preload next iteration's compare value.
   699       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
   700       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
   701       bdnz(Lloop);
   702     }
   703     // Fell through: Everything's unlocked => finish.
   704     b(Lno_unlock);
   706     // An object is still locked => need to throw exception.
   707     bind(Lexception);
   708     if (throw_monitor_exception) {
   709       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   710       should_not_reach_here();
   711     } else {
   712       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
   713       // Unlock does not block, so don't have to worry about the frame.
   714       Register Rmonitor_addr = R11_scratch1;
   715       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
   716       unlock_object(Rmonitor_addr);
   717       if (install_monitor_exception) {
   718         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   719       }
   720       b(Lrestart);
   721     }
   722   }
   724   align(32, 12);
   725   bind(Lno_unlock);
   726   pop(state);
   727 }
   729 // Support function for remove_activation & Co.
   730 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
   731   // Pop interpreter frame.
   732   ld(Rscratch1, 0, R1_SP); // *SP
   733   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
   734   ld(Rscratch2, 0, Rscratch1); // **SP
   735 #ifdef ASSERT
   736   {
   737     Label Lok;
   738     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
   739     cmpdi(CCR0, R0, 0x5afe);
   740     beq(CCR0, Lok);
   741     stop("frame corrupted (remove activation)", 0x5afe);
   742     bind(Lok);
   743   }
   744 #endif
   745   if (return_pc!=noreg) {
   746     ld(return_pc, _abi(lr), Rscratch1); // LR
   747   }
   749   // Merge top frames.
   750   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
   751   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
   752 }
   754 // Remove activation.
   755 //
   756 // Unlock the receiver if this is a synchronized method.
   757 // Unlock any Java monitors from synchronized blocks.
   758 // Remove the activation from the stack.
   759 //
   760 // If there are locked Java monitors
   761 //    If throw_monitor_exception
   762 //       throws IllegalMonitorStateException
   763 //    Else if install_monitor_exception
   764 //       installs IllegalMonitorStateException
   765 //    Else
   766 //       no error processing
   767 void InterpreterMacroAssembler::remove_activation(TosState state,
   768                                                   bool throw_monitor_exception,
   769                                                   bool install_monitor_exception) {
   770   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
   772   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
   773   notify_method_exit(false, state, NotifyJVMTI, true);
   775   verify_oop(R17_tos, state);
   776   verify_thread();
   778   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
   779   mtlr(R0);
   780 }
   782 #endif // !CC_INTERP
   784 // Lock object
   785 //
   786 // Registers alive
   787 //   monitor - Address of the BasicObjectLock to be used for locking,
   788 //             which must be initialized with the object to lock.
   789 //   object  - Address of the object to be locked.
   790 //
   791 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
   792   if (UseHeavyMonitors) {
   793     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   794             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
   795   } else {
   796     // template code:
   797     //
   798     // markOop displaced_header = obj->mark().set_unlocked();
   799     // monitor->lock()->set_displaced_header(displaced_header);
   800     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
   801     //   // We stored the monitor address into the object's mark word.
   802     // } else if (THREAD->is_lock_owned((address)displaced_header))
   803     //   // Simple recursive case.
   804     //   monitor->lock()->set_displaced_header(NULL);
   805     // } else {
   806     //   // Slow path.
   807     //   InterpreterRuntime::monitorenter(THREAD, monitor);
   808     // }
   810     const Register displaced_header = R7_ARG5;
   811     const Register object_mark_addr = R8_ARG6;
   812     const Register current_header   = R9_ARG7;
   813     const Register tmp              = R10_ARG8;
   815     Label done;
   816     Label cas_failed, slow_case;
   818     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
   820     // markOop displaced_header = obj->mark().set_unlocked();
   822     // Load markOop from object into displaced_header.
   823     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
   825     if (UseBiasedLocking) {
   826       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
   827     }
   829     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
   830     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
   832     // monitor->lock()->set_displaced_header(displaced_header);
   834     // Initialize the box (Must happen before we update the object mark!).
   835     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
   836         BasicLock::displaced_header_offset_in_bytes(), monitor);
   838     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
   840     // Store stack address of the BasicObjectLock (this is monitor) into object.
   841     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
   843     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
   844     // CmpxchgX sets CCR0 to cmpX(current, displaced).
   845     fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
   846     cmpxchgd(/*flag=*/CCR0,
   847              /*current_value=*/current_header,
   848              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
   849              /*where=*/object_mark_addr,
   850              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
   851              MacroAssembler::cmpxchgx_hint_acquire_lock(),
   852              noreg,
   853              &cas_failed);
   855     // If the compare-and-exchange succeeded, then we found an unlocked
   856     // object and we have now locked it.
   857     b(done);
   858     bind(cas_failed);
   860     // } else if (THREAD->is_lock_owned((address)displaced_header))
   861     //   // Simple recursive case.
   862     //   monitor->lock()->set_displaced_header(NULL);
   864     // We did not see an unlocked object so try the fast recursive case.
   866     // Check if owner is self by comparing the value in the markOop of object
   867     // (current_header) with the stack pointer.
   868     sub(current_header, current_header, R1_SP);
   870     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
   871     load_const_optimized(tmp,
   872                          (address) (~(os::vm_page_size()-1) |
   873                                     markOopDesc::lock_mask_in_place));
   875     and_(R0/*==0?*/, current_header, tmp);
   876     // If condition is true we are done and hence we can store 0 in the displaced
   877     // header indicating it is a recursive lock.
   878     bne(CCR0, slow_case);
   879     release();
   880     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
   881         BasicLock::displaced_header_offset_in_bytes(), monitor);
   882     b(done);
   884     // } else {
   885     //   // Slow path.
   886     //   InterpreterRuntime::monitorenter(THREAD, monitor);
   888     // None of the above fast optimizations worked so we have to get into the
   889     // slow case of monitor enter.
   890     bind(slow_case);
   891     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   892             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
   893     // }
   894     align(32, 12);
   895     bind(done);
   896   }
   897 }
   899 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   900 //
   901 // Registers alive
   902 //   monitor - Address of the BasicObjectLock to be used for locking,
   903 //             which must be initialized with the object to lock.
   904 //
   905 // Throw IllegalMonitorException if object is not locked by current thread.
   906 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
   907   if (UseHeavyMonitors) {
   908     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   909             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
   910   } else {
   912     // template code:
   913     //
   914     // if ((displaced_header = monitor->displaced_header()) == NULL) {
   915     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
   916     //   monitor->set_obj(NULL);
   917     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
   918     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
   919     //   monitor->set_obj(NULL);
   920     // } else {
   921     //   // Slow path.
   922     //   InterpreterRuntime::monitorexit(THREAD, monitor);
   923     // }
   925     const Register object           = R7_ARG5;
   926     const Register displaced_header = R8_ARG6;
   927     const Register object_mark_addr = R9_ARG7;
   928     const Register current_header   = R10_ARG8;
   930     Label free_slot;
   931     Label slow_case;
   933     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
   935     if (UseBiasedLocking) {
   936       // The object address from the monitor is in object.
   937       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
   938       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
   939       biased_locking_exit(CCR0, object, displaced_header, free_slot);
   940     }
   942     // Test first if we are in the fast recursive case.
   943     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
   944            BasicLock::displaced_header_offset_in_bytes(), monitor);
   946     // If the displaced header is zero, we have a recursive unlock.
   947     cmpdi(CCR0, displaced_header, 0);
   948     beq(CCR0, free_slot); // recursive unlock
   950     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
   951     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
   952     //   monitor->set_obj(NULL);
   954     // If we still have a lightweight lock, unlock the object and be done.
   956     // The object address from the monitor is in object.
   957     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
   958     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
   960     // We have the displaced header in displaced_header. If the lock is still
   961     // lightweight, it will contain the monitor address and we'll store the
   962     // displaced header back into the object's mark word.
   963     // CmpxchgX sets CCR0 to cmpX(current, monitor).
   964     cmpxchgd(/*flag=*/CCR0,
   965              /*current_value=*/current_header,
   966              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
   967              /*where=*/object_mark_addr,
   968              MacroAssembler::MemBarRel,
   969              MacroAssembler::cmpxchgx_hint_release_lock(),
   970              noreg,
   971              &slow_case);
   972     b(free_slot);
   974     // } else {
   975     //   // Slow path.
   976     //   InterpreterRuntime::monitorexit(THREAD, monitor);
   978     // The lock has been converted into a heavy lock and hence
   979     // we need to get into the slow case.
   980     bind(slow_case);
   981     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   982             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
   983     // }
   985     Label done;
   986     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
   988     // Exchange worked, do monitor->set_obj(NULL);
   989     align(32, 12);
   990     bind(free_slot);
   991     li(R0, 0);
   992     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
   993     bind(done);
   994   }
   995 }
   997 #ifndef CC_INTERP
   999 // Load compiled (i2c) or interpreter entry when calling from interpreted and
  1000 // do the call. Centralized so that all interpreter calls will do the same actions.
  1001 // If jvmti single stepping is on for a thread we must not call compiled code.
  1002 //
  1003 // Input:
  1004 //   - Rtarget_method: method to call
  1005 //   - Rret_addr:      return address
  1006 //   - 2 scratch regs
  1007 //
  1008 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
  1009   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
  1010   // Assume we want to go compiled if available.
  1011   const Register Rtarget_addr = Rscratch1;
  1012   const Register Rinterp_only = Rscratch2;
  1014   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
  1016   if (JvmtiExport::can_post_interpreter_events()) {
  1017     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  1019     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
  1020     // compiled code in threads for which the event is enabled. Check here for
  1021     // interp_only_mode if these events CAN be enabled.
  1022     Label done;
  1023     verify_thread();
  1024     cmpwi(CCR0, Rinterp_only, 0);
  1025     beq(CCR0, done);
  1026     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
  1027     align(32, 12);
  1028     bind(done);
  1031 #ifdef ASSERT
  1033     Label Lok;
  1034     cmpdi(CCR0, Rtarget_addr, 0);
  1035     bne(CCR0, Lok);
  1036     stop("null entry point");
  1037     bind(Lok);
  1039 #endif // ASSERT
  1041   mr(R21_sender_SP, R1_SP);
  1043   // Calc a precise SP for the call. The SP value we calculated in
  1044   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
  1045   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
  1046   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
  1047   // Since esp already points to an empty slot, we just have to sub 1 additional slot
  1048   // to meet the abi scratch requirements.
  1049   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
  1050   // the return entry of the interpreter.
  1051   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
  1052   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
  1053   resize_frame_absolute(Rscratch2, Rscratch2, R0);
  1055   mr_if_needed(R19_method, Rtarget_method);
  1056   mtctr(Rtarget_addr);
  1057   mtlr(Rret_addr);
  1059   save_interpreter_state(Rscratch2);
  1060 #ifdef ASSERT
  1061   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
  1062   cmpd(CCR0, R21_sender_SP, Rscratch1);
  1063   asm_assert_eq("top_frame_sp incorrect", 0x951);
  1064 #endif
  1066   bctr();
  1069 // Set the method data pointer for the current bcp.
  1070 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1071   assert(ProfileInterpreter, "must be profiling interpreter");
  1072   Label get_continue;
  1073   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
  1074   test_method_data_pointer(get_continue);
  1075   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
  1077   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
  1078   add(R28_mdx, R28_mdx, R3_RET);
  1079   bind(get_continue);
  1082 // Test ImethodDataPtr. If it is null, continue at the specified label.
  1083 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1084   assert(ProfileInterpreter, "must be profiling interpreter");
  1085   cmpdi(CCR0, R28_mdx, 0);
  1086   beq(CCR0, zero_continue);
  1089 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1090   assert(ProfileInterpreter, "must be profiling interpreter");
  1091 #ifdef ASSERT
  1092   Label verify_continue;
  1093   test_method_data_pointer(verify_continue);
  1095   // If the mdp is valid, it will point to a DataLayout header which is
  1096   // consistent with the bcp. The converse is highly probable also.
  1097   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
  1098   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
  1099   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
  1100   add(R11_scratch1, R12_scratch2, R12_scratch2);
  1101   cmpd(CCR0, R11_scratch1, R14_bcp);
  1102   beq(CCR0, verify_continue);
  1104   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
  1106   bind(verify_continue);
  1107 #endif
  1110 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1111                                                                 Register Rscratch,
  1112                                                                 Label &profile_continue) {
  1113   assert(ProfileInterpreter, "must be profiling interpreter");
  1114   // Control will flow to "profile_continue" if the counter is less than the
  1115   // limit or if we call profile_method().
  1116   Label done;
  1118   // If no method data exists, and the counter is high enough, make one.
  1119   int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
  1120   lwz(Rscratch, ipl_offs, Rscratch);
  1122   cmpdi(CCR0, R28_mdx, 0);
  1123   // Test to see if we should create a method data oop.
  1124   cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
  1125   bne(CCR0, done);
  1126   bge(CCR1, profile_continue);
  1128   // Build it now.
  1129   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1130   set_method_data_pointer_for_bcp();
  1131   b(profile_continue);
  1133   align(32, 12);
  1134   bind(done);
  1137 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
  1138   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  1139   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  1141   Label did_not_overflow;
  1142   Label overflow_with_error;
  1144   int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
  1145   lwz(Rtmp, ibbl_offs, Rtmp);
  1146   cmpw(CCR0, backedge_count, Rtmp);
  1148   blt(CCR0, did_not_overflow);
  1150   // When ProfileInterpreter is on, the backedge_count comes from the
  1151   // methodDataOop, which value does not get reset on the call to
  1152   // frequency_counter_overflow(). To avoid excessive calls to the overflow
  1153   // routine while the method is being compiled, add a second test to make sure
  1154   // the overflow function is called only once every overflow_frequency.
  1155   if (ProfileInterpreter) {
  1156     const int overflow_frequency = 1024;
  1157     li(Rtmp, overflow_frequency-1);
  1158     andr(Rtmp, Rtmp, backedge_count);
  1159     cmpwi(CCR0, Rtmp, 0);
  1160     bne(CCR0, did_not_overflow);
  1163   // Overflow in loop, pass branch bytecode.
  1164   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
  1166   // Was an OSR adapter generated?
  1167   // O0 = osr nmethod
  1168   cmpdi(CCR0, R3_RET, 0);
  1169   beq(CCR0, overflow_with_error);
  1171   // Has the nmethod been invalidated already?
  1172   lwz(Rtmp, nmethod::entry_bci_offset(), R3_RET);
  1173   cmpwi(CCR0, Rtmp, InvalidOSREntryBci);
  1174   beq(CCR0, overflow_with_error);
  1176   // Migrate the interpreter frame off of the stack.
  1177   // We can use all registers because we will not return to interpreter from this point.
  1179   // Save nmethod.
  1180   const Register osr_nmethod = R31;
  1181   mr(osr_nmethod, R3_RET);
  1182   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
  1183   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
  1184   reset_last_Java_frame();
  1185   // OSR buffer is in ARG1
  1187   // Remove the interpreter frame.
  1188   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
  1190   // Jump to the osr code.
  1191   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
  1192   mtlr(R0);
  1193   mtctr(R11_scratch1);
  1194   bctr();
  1196   align(32, 12);
  1197   bind(overflow_with_error);
  1198   bind(did_not_overflow);
  1201 // Store a value at some constant offset from the method data pointer.
  1202 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1203   assert(ProfileInterpreter, "must be profiling interpreter");
  1205   std(value, constant, R28_mdx);
  1208 // Increment the value at some constant offset from the method data pointer.
  1209 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1210                                                       Register counter_addr,
  1211                                                       Register Rbumped_count,
  1212                                                       bool decrement) {
  1213   // Locate the counter at a fixed offset from the mdp:
  1214   addi(counter_addr, R28_mdx, constant);
  1215   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
  1218 // Increment the value at some non-fixed (reg + constant) offset from
  1219 // the method data pointer.
  1220 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1221                                                       int constant,
  1222                                                       Register scratch,
  1223                                                       Register Rbumped_count,
  1224                                                       bool decrement) {
  1225   // Add the constant to reg to get the offset.
  1226   add(scratch, R28_mdx, reg);
  1227   // Then calculate the counter address.
  1228   addi(scratch, scratch, constant);
  1229   increment_mdp_data_at(scratch, Rbumped_count, decrement);
  1232 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
  1233                                                       Register Rbumped_count,
  1234                                                       bool decrement) {
  1235   assert(ProfileInterpreter, "must be profiling interpreter");
  1237   // Load the counter.
  1238   ld(Rbumped_count, 0, counter_addr);
  1240   if (decrement) {
  1241     // Decrement the register. Set condition codes.
  1242     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
  1243     // Store the decremented counter, if it is still negative.
  1244     std(Rbumped_count, 0, counter_addr);
  1245     // Note: add/sub overflow check are not ported, since 64 bit
  1246     // calculation should never overflow.
  1247   } else {
  1248     // Increment the register. Set carry flag.
  1249     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
  1250     // Store the incremented counter.
  1251     std(Rbumped_count, 0, counter_addr);
  1255 // Set a flag value at the current method data pointer position.
  1256 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1257                                                 Register scratch) {
  1258   assert(ProfileInterpreter, "must be profiling interpreter");
  1259   // Load the data header.
  1260   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
  1261   // Set the flag.
  1262   ori(scratch, scratch, flag_constant);
  1263   // Store the modified header.
  1264   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
  1267 // Test the location at some offset from the method data pointer.
  1268 // If it is not equal to value, branch to the not_equal_continue Label.
  1269 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1270                                                  Register value,
  1271                                                  Label& not_equal_continue,
  1272                                                  Register test_out) {
  1273   assert(ProfileInterpreter, "must be profiling interpreter");
  1275   ld(test_out, offset, R28_mdx);
  1276   cmpd(CCR0,  value, test_out);
  1277   bne(CCR0, not_equal_continue);
  1280 // Update the method data pointer by the displacement located at some fixed
  1281 // offset from the method data pointer.
  1282 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1283                                                      Register scratch) {
  1284   assert(ProfileInterpreter, "must be profiling interpreter");
  1286   ld(scratch, offset_of_disp, R28_mdx);
  1287   add(R28_mdx, scratch, R28_mdx);
  1290 // Update the method data pointer by the displacement located at the
  1291 // offset (reg + offset_of_disp).
  1292 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1293                                                      int offset_of_disp,
  1294                                                      Register scratch) {
  1295   assert(ProfileInterpreter, "must be profiling interpreter");
  1297   add(scratch, reg, R28_mdx);
  1298   ld(scratch, offset_of_disp, scratch);
  1299   add(R28_mdx, scratch, R28_mdx);
  1302 // Update the method data pointer by a simple constant displacement.
  1303 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1304   assert(ProfileInterpreter, "must be profiling interpreter");
  1305   addi(R28_mdx, R28_mdx, constant);
  1308 // Update the method data pointer for a _ret bytecode whose target
  1309 // was not among our cached targets.
  1310 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1311                                                    Register return_bci) {
  1312   assert(ProfileInterpreter, "must be profiling interpreter");
  1314   push(state);
  1315   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
  1316   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1317   pop(state);
  1320 // Increments the backedge counter.
  1321 // Returns backedge counter + invocation counter in Rdst.
  1322 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
  1323                                                            const Register Rtmp1, Register Rscratch) {
  1324   assert(UseCompiler, "incrementing must be useful");
  1325   assert_different_registers(Rdst, Rtmp1);
  1326   const Register invocation_counter = Rtmp1;
  1327   const Register counter = Rdst;
  1328   // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
  1330   // Load backedge counter.
  1331   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
  1332                in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1333   // Load invocation counter.
  1334   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
  1335                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1337   // Add the delta to the backedge counter.
  1338   addi(counter, counter, InvocationCounter::count_increment);
  1340   // Mask the invocation counter.
  1341   li(Rscratch, InvocationCounter::count_mask_value);
  1342   andr(invocation_counter, invocation_counter, Rscratch);
  1344   // Store new counter value.
  1345   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
  1346                in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1347   // Return invocation counter + backedge counter.
  1348   add(counter, counter, invocation_counter);
  1351 // Count a taken branch in the bytecodes.
  1352 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1353   if (ProfileInterpreter) {
  1354     Label profile_continue;
  1356     // If no method data exists, go to profile_continue.
  1357     test_method_data_pointer(profile_continue);
  1359     // We are taking a branch. Increment the taken count.
  1360     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
  1362     // The method data pointer needs to be updated to reflect the new target.
  1363     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1364     bind (profile_continue);
  1368 // Count a not-taken branch in the bytecodes.
  1369 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
  1370   if (ProfileInterpreter) {
  1371     Label profile_continue;
  1373     // If no method data exists, go to profile_continue.
  1374     test_method_data_pointer(profile_continue);
  1376     // We are taking a branch. Increment the not taken count.
  1377     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
  1379     // The method data pointer needs to be updated to correspond to the
  1380     // next bytecode.
  1381     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1382     bind (profile_continue);
  1386 // Count a non-virtual call in the bytecodes.
  1387 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
  1388   if (ProfileInterpreter) {
  1389     Label profile_continue;
  1391     // If no method data exists, go to profile_continue.
  1392     test_method_data_pointer(profile_continue);
  1394     // We are making a call. Increment the count.
  1395     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1397     // The method data pointer needs to be updated to reflect the new target.
  1398     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1399     bind (profile_continue);
  1403 // Count a final call in the bytecodes.
  1404 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
  1405   if (ProfileInterpreter) {
  1406     Label profile_continue;
  1408     // If no method data exists, go to profile_continue.
  1409     test_method_data_pointer(profile_continue);
  1411     // We are making a call. Increment the count.
  1412     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1414     // The method data pointer needs to be updated to reflect the new target.
  1415     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1416     bind (profile_continue);
  1420 // Count a virtual call in the bytecodes.
  1421 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
  1422                                                      Register Rscratch1,
  1423                                                      Register Rscratch2,
  1424                                                      bool receiver_can_be_null) {
  1425   if (!ProfileInterpreter) { return; }
  1426   Label profile_continue;
  1428   // If no method data exists, go to profile_continue.
  1429   test_method_data_pointer(profile_continue);
  1431   Label skip_receiver_profile;
  1432   if (receiver_can_be_null) {
  1433     Label not_null;
  1434     cmpdi(CCR0, Rreceiver, 0);
  1435     bne(CCR0, not_null);
  1436     // We are making a call. Increment the count for null receiver.
  1437     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
  1438     b(skip_receiver_profile);
  1439     bind(not_null);
  1442   // Record the receiver type.
  1443   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
  1444   bind(skip_receiver_profile);
  1446   // The method data pointer needs to be updated to reflect the new target.
  1447   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1448   bind (profile_continue);
  1451 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
  1452   if (ProfileInterpreter) {
  1453     Label profile_continue;
  1455     // If no method data exists, go to profile_continue.
  1456     test_method_data_pointer(profile_continue);
  1458     int mdp_delta = in_bytes(BitData::bit_data_size());
  1459     if (TypeProfileCasts) {
  1460       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1462       // Record the object type.
  1463       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
  1466     // The method data pointer needs to be updated.
  1467     update_mdp_by_constant(mdp_delta);
  1469     bind (profile_continue);
  1473 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
  1474   if (ProfileInterpreter && TypeProfileCasts) {
  1475     Label profile_continue;
  1477     // If no method data exists, go to profile_continue.
  1478     test_method_data_pointer(profile_continue);
  1480     int count_offset = in_bytes(CounterData::count_offset());
  1481     // Back up the address, since we have already bumped the mdp.
  1482     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1484     // *Decrement* the counter. We expect to see zero or small negatives.
  1485     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
  1487     bind (profile_continue);
  1491 // Count a ret in the bytecodes.
  1492 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
  1493   if (ProfileInterpreter) {
  1494     Label profile_continue;
  1495     uint row;
  1497     // If no method data exists, go to profile_continue.
  1498     test_method_data_pointer(profile_continue);
  1500     // Update the total ret count.
  1501     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
  1503     for (row = 0; row < RetData::row_limit(); row++) {
  1504       Label next_test;
  1506       // See if return_bci is equal to bci[n]:
  1507       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
  1509       // return_bci is equal to bci[n]. Increment the count.
  1510       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
  1512       // The method data pointer needs to be updated to reflect the new target.
  1513       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
  1514       b(profile_continue);
  1515       bind(next_test);
  1518     update_mdp_for_ret(state, return_bci);
  1520     bind (profile_continue);
  1524 // Count the default case of a switch construct.
  1525 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
  1526   if (ProfileInterpreter) {
  1527     Label profile_continue;
  1529     // If no method data exists, go to profile_continue.
  1530     test_method_data_pointer(profile_continue);
  1532     // Update the default case count
  1533     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1534                           scratch1, scratch2);
  1536     // The method data pointer needs to be updated.
  1537     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
  1538                          scratch1);
  1540     bind (profile_continue);
  1544 // Count the index'th case of a switch construct.
  1545 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1546                                                     Register scratch1,
  1547                                                     Register scratch2,
  1548                                                     Register scratch3) {
  1549   if (ProfileInterpreter) {
  1550     assert_different_registers(index, scratch1, scratch2, scratch3);
  1551     Label profile_continue;
  1553     // If no method data exists, go to profile_continue.
  1554     test_method_data_pointer(profile_continue);
  1556     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
  1557     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
  1559     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
  1560     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
  1561     add(scratch1, scratch1, scratch3);
  1563     // Update the case count.
  1564     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
  1566     // The method data pointer needs to be updated.
  1567     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
  1569     bind (profile_continue);
  1573 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
  1574   if (ProfileInterpreter) {
  1575     assert_different_registers(Rscratch1, Rscratch2);
  1576     Label profile_continue;
  1578     // If no method data exists, go to profile_continue.
  1579     test_method_data_pointer(profile_continue);
  1581     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
  1583     // The method data pointer needs to be updated.
  1584     int mdp_delta = in_bytes(BitData::bit_data_size());
  1585     if (TypeProfileCasts) {
  1586       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1588     update_mdp_by_constant(mdp_delta);
  1590     bind (profile_continue);
  1594 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
  1595                                                         Register Rscratch1, Register Rscratch2,
  1596                                                         bool is_virtual_call) {
  1597   assert(ProfileInterpreter, "must be profiling");
  1598   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
  1600   Label done;
  1601   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
  1602   bind (done);
  1605 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1606                                         Register receiver, Register scratch1, Register scratch2,
  1607                                         int start_row, Label& done, bool is_virtual_call) {
  1608   if (TypeProfileWidth == 0) {
  1609     if (is_virtual_call) {
  1610       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1612     return;
  1615   int last_row = VirtualCallData::row_limit() - 1;
  1616   assert(start_row <= last_row, "must be work left to do");
  1617   // Test this row for both the receiver and for null.
  1618   // Take any of three different outcomes:
  1619   //   1. found receiver => increment count and goto done
  1620   //   2. found null => keep looking for case 1, maybe allocate this cell
  1621   //   3. found something else => keep looking for cases 1 and 2
  1622   // Case 3 is handled by a recursive call.
  1623   for (int row = start_row; row <= last_row; row++) {
  1624     Label next_test;
  1625     bool test_for_null_also = (row == start_row);
  1627     // See if the receiver is receiver[n].
  1628     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1629     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
  1630     // delayed()->tst(scratch);
  1632     // The receiver is receiver[n]. Increment count[n].
  1633     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1634     increment_mdp_data_at(count_offset, scratch1, scratch2);
  1635     b(done);
  1636     bind(next_test);
  1638     if (test_for_null_also) {
  1639       Label found_null;
  1640       // Failed the equality check on receiver[n]... Test for null.
  1641       if (start_row == last_row) {
  1642         // The only thing left to do is handle the null case.
  1643         if (is_virtual_call) {
  1644           // Scratch1 contains test_out from test_mdp_data_at.
  1645           cmpdi(CCR0, scratch1, 0);
  1646           beq(CCR0, found_null);
  1647           // Receiver did not match any saved receiver and there is no empty row for it.
  1648           // Increment total counter to indicate polymorphic case.
  1649           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1650           b(done);
  1651           bind(found_null);
  1652         } else {
  1653           cmpdi(CCR0, scratch1, 0);
  1654           bne(CCR0, done);
  1656         break;
  1658       // Since null is rare, make it be the branch-taken case.
  1659       cmpdi(CCR0, scratch1, 0);
  1660       beq(CCR0, found_null);
  1662       // Put all the "Case 3" tests here.
  1663       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
  1665       // Found a null. Keep searching for a matching receiver,
  1666       // but remember that this is an empty (unused) slot.
  1667       bind(found_null);
  1671   // In the fall-through case, we found no matching receiver, but we
  1672   // observed the receiver[start_row] is NULL.
  1674   // Fill in the receiver field and increment the count.
  1675   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1676   set_mdp_data_at(recvr_offset, receiver);
  1677   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1678   li(scratch1, DataLayout::counter_increment);
  1679   set_mdp_data_at(count_offset, scratch1);
  1680   if (start_row > 0) {
  1681     b(done);
  1685 // Argument and return type profilig.
  1686 // kills: tmp, tmp2, R0, CR0, CR1
  1687 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
  1688                                                  RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) {
  1689   Label do_nothing, do_update;
  1691   // tmp2 = obj is allowed
  1692   assert_different_registers(obj, mdo_addr_base, tmp, R0);
  1693   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
  1694   const Register klass = tmp2;
  1696   verify_oop(obj);
  1698   ld(tmp, mdo_addr_offs, mdo_addr_base);
  1700   // Set null_seen if obj is 0.
  1701   cmpdi(CCR0, obj, 0);
  1702   ori(R0, tmp, TypeEntries::null_seen);
  1703   beq(CCR0, do_update);
  1705   load_klass(klass, obj);
  1707   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
  1708   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
  1709   cmpd(CCR1, R0, klass);
  1710   // Klass seen before, nothing to do (regardless of unknown bit).
  1711   //beq(CCR1, do_nothing);
  1713   andi_(R0, klass, TypeEntries::type_unknown);
  1714   // Already unknown. Nothing to do anymore.
  1715   //bne(CCR0, do_nothing);
  1716   crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2); // cr0 eq = cr1 eq or cr0 ne
  1717   beq(CCR0, do_nothing);
  1719   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
  1720   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
  1721   beq(CCR0, do_update); // First time here. Set profile type.
  1723   // Different than before. Cannot keep accurate profile.
  1724   ori(R0, tmp, TypeEntries::type_unknown);
  1726   bind(do_update);
  1727   // update profile
  1728   std(R0, mdo_addr_offs, mdo_addr_base);
  1730   align(32, 12);
  1731   bind(do_nothing);
  1734 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
  1735   if (!ProfileInterpreter) {
  1736     return;
  1739   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
  1741   if (MethodData::profile_arguments() || MethodData::profile_return()) {
  1742     Label profile_continue;
  1744     test_method_data_pointer(profile_continue);
  1746     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
  1748     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
  1749     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
  1750     bne(CCR0, profile_continue);
  1752     if (MethodData::profile_arguments()) {
  1753       Label done;
  1754       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
  1755       add(R28_mdx, off_to_args, R28_mdx);
  1757       for (int i = 0; i < TypeProfileArgsLimit; i++) {
  1758         if (i > 0 || MethodData::profile_return()) {
  1759           // If return value type is profiled we may have no argument to profile.
  1760           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
  1761           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
  1762           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
  1763           blt(CCR0, done);
  1765         ld(tmp1, in_bytes(Method::const_offset()), callee);
  1766         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
  1767         // Stack offset o (zero based) from the start of the argument
  1768         // list, for n arguments translates into offset n - o - 1 from
  1769         // the end of the argument list. But there's an extra slot at
  1770         // the top of the stack. So the offset is n - o from Lesp.
  1771         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
  1772         subf(tmp1, tmp2, tmp1);
  1774         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
  1775         ldx(tmp1, tmp1, R15_esp);
  1777         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
  1779         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
  1780         addi(R28_mdx, R28_mdx, to_add);
  1781         off_to_args += to_add;
  1784       if (MethodData::profile_return()) {
  1785         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
  1786         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
  1789       bind(done);
  1791       if (MethodData::profile_return()) {
  1792         // We're right after the type profile for the last
  1793         // argument. tmp1 is the number of cells left in the
  1794         // CallTypeData/VirtualCallTypeData to reach its end. Non null
  1795         // if there's a return to profile.
  1796         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
  1797         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
  1798         add(R28_mdx, tmp1, R28_mdx);
  1800     } else {
  1801       assert(MethodData::profile_return(), "either profile call args or call ret");
  1802       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
  1805     // Mdp points right after the end of the
  1806     // CallTypeData/VirtualCallTypeData, right after the cells for the
  1807     // return value type if there's one.
  1808     align(32, 12);
  1809     bind(profile_continue);
  1813 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
  1814   assert_different_registers(ret, tmp1, tmp2);
  1815   if (ProfileInterpreter && MethodData::profile_return()) {
  1816     Label profile_continue;
  1818     test_method_data_pointer(profile_continue);
  1820     if (MethodData::profile_return_jsr292_only()) {
  1821       // If we don't profile all invoke bytecodes we must make sure
  1822       // it's a bytecode we indeed profile. We can't go back to the
  1823       // begining of the ProfileData we intend to update to check its
  1824       // type because we're right after it and we don't known its
  1825       // length.
  1826       lbz(tmp1, 0, R14_bcp);
  1827       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
  1828       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
  1829       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
  1830       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
  1831       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
  1832       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
  1833       bne(CCR0, profile_continue);
  1836     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
  1838     align(32, 12);
  1839     bind(profile_continue);
  1843 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  1844   if (ProfileInterpreter && MethodData::profile_parameters()) {
  1845     Label profile_continue, done;
  1847     test_method_data_pointer(profile_continue);
  1849     // Load the offset of the area within the MDO used for
  1850     // parameters. If it's negative we're not profiling any parameters.
  1851     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
  1852     cmpwi(CCR0, tmp1, 0);
  1853     blt(CCR0, profile_continue);
  1855     // Compute a pointer to the area for parameters from the offset
  1856     // and move the pointer to the slot for the last
  1857     // parameters. Collect profiling from last parameter down.
  1858     // mdo start + parameters offset + array length - 1
  1860     // Pointer to the parameter area in the MDO.
  1861     const Register mdp = tmp1;
  1862     add(mdp, tmp1, R28_mdx);
  1864     // Pffset of the current profile entry to update.
  1865     const Register entry_offset = tmp2;
  1866     // entry_offset = array len in number of cells
  1867     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
  1869     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
  1870     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
  1872     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
  1873     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
  1874     // entry_offset in bytes
  1875     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
  1877     Label loop;
  1878     align(32, 12);
  1879     bind(loop);
  1881     // Load offset on the stack from the slot for this parameter.
  1882     ld(tmp3, entry_offset, mdp);
  1883     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
  1884     neg(tmp3, tmp3);
  1885     // Read the parameter from the local area.
  1886     ldx(tmp3, tmp3, R18_locals);
  1888     // Make entry_offset now point to the type field for this parameter.
  1889     int type_base = in_bytes(ParametersTypeData::type_offset(0));
  1890     assert(type_base > off_base, "unexpected");
  1891     addi(entry_offset, entry_offset, type_base - off_base);
  1893     // Profile the parameter.
  1894     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
  1896     // Go to next parameter.
  1897     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
  1898     cmpdi(CCR0, entry_offset, off_base + delta);
  1899     addi(entry_offset, entry_offset, -delta);
  1900     bge(CCR0, loop);
  1902     align(32, 12);
  1903     bind(profile_continue);
  1907 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
  1908 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
  1910   // Very-local scratch registers.
  1911   const Register esp  = Rtemp1;
  1912   const Register slot = Rtemp2;
  1914   // Extracted monitor_size.
  1915   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
  1916   assert(Assembler::is_aligned((unsigned int)monitor_size,
  1917                                (unsigned int)frame::alignment_in_bytes),
  1918          "size of a monitor must respect alignment of SP");
  1920   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
  1921   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
  1923   // Shuffle expression stack down. Recall that stack_base points
  1924   // just above the new expression stack bottom. Old_tos and new_tos
  1925   // are used to scan thru the old and new expression stacks.
  1926   if (!stack_is_empty) {
  1927     Label copy_slot, copy_slot_finished;
  1928     const Register n_slots = slot;
  1930     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
  1931     subf(n_slots, esp, R26_monitor);
  1932     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
  1933     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
  1934     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
  1936     mtctr(n_slots);
  1938     // loop
  1939     bind(copy_slot);
  1940     ld(slot, 0, esp);              // Move expression stack down.
  1941     std(slot, -monitor_size, esp); // distance = monitor_size
  1942     addi(esp, esp, BytesPerWord);
  1943     bdnz(copy_slot);
  1945     bind(copy_slot_finished);
  1948   addi(R15_esp, R15_esp, -monitor_size);
  1949   addi(R26_monitor, R26_monitor, -monitor_size);
  1951   // Restart interpreter
  1954 // ============================================================================
  1955 // Java locals access
  1957 // Load a local variable at index in Rindex into register Rdst_value.
  1958 // Also puts address of local into Rdst_address as a service.
  1959 // Kills:
  1960 //   - Rdst_value
  1961 //   - Rdst_address
  1962 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
  1963   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  1964   subf(Rdst_address, Rdst_address, R18_locals);
  1965   lwz(Rdst_value, 0, Rdst_address);
  1968 // Load a local variable at index in Rindex into register Rdst_value.
  1969 // Also puts address of local into Rdst_address as a service.
  1970 // Kills:
  1971 //   - Rdst_value
  1972 //   - Rdst_address
  1973 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
  1974   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  1975   subf(Rdst_address, Rdst_address, R18_locals);
  1976   ld(Rdst_value, -8, Rdst_address);
  1979 // Load a local variable at index in Rindex into register Rdst_value.
  1980 // Also puts address of local into Rdst_address as a service.
  1981 // Input:
  1982 //   - Rindex:      slot nr of local variable
  1983 // Kills:
  1984 //   - Rdst_value
  1985 //   - Rdst_address
  1986 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
  1987   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  1988   subf(Rdst_address, Rdst_address, R18_locals);
  1989   ld(Rdst_value, 0, Rdst_address);
  1992 // Load a local variable at index in Rindex into register Rdst_value.
  1993 // Also puts address of local into Rdst_address as a service.
  1994 // Kills:
  1995 //   - Rdst_value
  1996 //   - Rdst_address
  1997 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
  1998   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  1999   subf(Rdst_address, Rdst_address, R18_locals);
  2000   lfs(Rdst_value, 0, Rdst_address);
  2003 // Load a local variable at index in Rindex into register Rdst_value.
  2004 // Also puts address of local into Rdst_address as a service.
  2005 // Kills:
  2006 //   - Rdst_value
  2007 //   - Rdst_address
  2008 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
  2009   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2010   subf(Rdst_address, Rdst_address, R18_locals);
  2011   lfd(Rdst_value, -8, Rdst_address);
  2014 // Store an int value at local variable slot Rindex.
  2015 // Kills:
  2016 //   - Rindex
  2017 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
  2018   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2019   subf(Rindex, Rindex, R18_locals);
  2020   stw(Rvalue, 0, Rindex);
  2023 // Store a long value at local variable slot Rindex.
  2024 // Kills:
  2025 //   - Rindex
  2026 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
  2027   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2028   subf(Rindex, Rindex, R18_locals);
  2029   std(Rvalue, -8, Rindex);
  2032 // Store an oop value at local variable slot Rindex.
  2033 // Kills:
  2034 //   - Rindex
  2035 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
  2036   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2037   subf(Rindex, Rindex, R18_locals);
  2038   std(Rvalue, 0, Rindex);
  2041 // Store an int value at local variable slot Rindex.
  2042 // Kills:
  2043 //   - Rindex
  2044 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
  2045   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2046   subf(Rindex, Rindex, R18_locals);
  2047   stfs(Rvalue, 0, Rindex);
  2050 // Store an int value at local variable slot Rindex.
  2051 // Kills:
  2052 //   - Rindex
  2053 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
  2054   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2055   subf(Rindex, Rindex, R18_locals);
  2056   stfd(Rvalue, -8, Rindex);
  2059 // Read pending exception from thread and jump to interpreter.
  2060 // Throw exception entry if one if pending. Fall through otherwise.
  2061 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
  2062   assert_different_registers(Rscratch1, Rscratch2, R3);
  2063   Register Rexception = Rscratch1;
  2064   Register Rtmp       = Rscratch2;
  2065   Label Ldone;
  2066   // Get pending exception oop.
  2067   ld(Rexception, thread_(pending_exception));
  2068   cmpdi(CCR0, Rexception, 0);
  2069   beq(CCR0, Ldone);
  2070   li(Rtmp, 0);
  2071   mr_if_needed(R3, Rexception);
  2072   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
  2073   if (Interpreter::rethrow_exception_entry() != NULL) {
  2074     // Already got entry address.
  2075     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
  2076   } else {
  2077     // Dynamically load entry address.
  2078     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
  2079     ld(Rtmp, simm16_rest, Rtmp);
  2081   mtctr(Rtmp);
  2082   save_interpreter_state(Rtmp);
  2083   bctr();
  2085   align(32, 12);
  2086   bind(Ldone);
  2089 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
  2090   save_interpreter_state(R11_scratch1);
  2092   MacroAssembler::call_VM(oop_result, entry_point, false);
  2094   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
  2096   check_and_handle_popframe(R11_scratch1);
  2097   check_and_handle_earlyret(R11_scratch1);
  2098   // Now check exceptions manually.
  2099   if (check_exceptions) {
  2100     check_and_forward_exception(R11_scratch1, R12_scratch2);
  2104 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  2105   // ARG1 is reserved for the thread.
  2106   mr_if_needed(R4_ARG2, arg_1);
  2107   call_VM(oop_result, entry_point, check_exceptions);
  2110 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  2111   // ARG1 is reserved for the thread.
  2112   mr_if_needed(R4_ARG2, arg_1);
  2113   assert(arg_2 != R4_ARG2, "smashed argument");
  2114   mr_if_needed(R5_ARG3, arg_2);
  2115   call_VM(oop_result, entry_point, check_exceptions);
  2118 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  2119   // ARG1 is reserved for the thread.
  2120   mr_if_needed(R4_ARG2, arg_1);
  2121   assert(arg_2 != R4_ARG2, "smashed argument");
  2122   mr_if_needed(R5_ARG3, arg_2);
  2123   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
  2124   mr_if_needed(R6_ARG4, arg_3);
  2125   call_VM(oop_result, entry_point, check_exceptions);
  2128 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
  2129   ld(scratch, 0, R1_SP);
  2130   std(R15_esp, _ijava_state_neg(esp), scratch);
  2131   std(R14_bcp, _ijava_state_neg(bcp), scratch);
  2132   std(R26_monitor, _ijava_state_neg(monitors), scratch);
  2133   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
  2134   // Other entries should be unchanged.
  2137 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
  2138   ld(scratch, 0, R1_SP);
  2139   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
  2140   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
  2141   if (!bcp_and_mdx_only) {
  2142     // Following ones are Metadata.
  2143     ld(R19_method, _ijava_state_neg(method), scratch);
  2144     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
  2145     // Following ones are stack addresses and don't require reload.
  2146     ld(R15_esp, _ijava_state_neg(esp), scratch);
  2147     ld(R18_locals, _ijava_state_neg(locals), scratch);
  2148     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
  2150 #ifdef ASSERT
  2152     Label Lok;
  2153     subf(R0, R1_SP, scratch);
  2154     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
  2155     bge(CCR0, Lok);
  2156     stop("frame too small (restore istate)", 0x5432);
  2157     bind(Lok);
  2160     Label Lok;
  2161     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
  2162     cmpdi(CCR0, R0, 0x5afe);
  2163     beq(CCR0, Lok);
  2164     stop("frame corrupted (restore istate)", 0x5afe);
  2165     bind(Lok);
  2167 #endif
  2170 #endif // !CC_INTERP
  2172 void InterpreterMacroAssembler::get_method_counters(Register method,
  2173                                                     Register Rcounters,
  2174                                                     Label& skip) {
  2175   BLOCK_COMMENT("Load and ev. allocate counter object {");
  2176   Label has_counters;
  2177   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
  2178   cmpdi(CCR0, Rcounters, 0);
  2179   bne(CCR0, has_counters);
  2180   call_VM(noreg, CAST_FROM_FN_PTR(address,
  2181                                   InterpreterRuntime::build_method_counters), method, false);
  2182   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
  2183   cmpdi(CCR0, Rcounters, 0);
  2184   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
  2185   BLOCK_COMMENT("} Load and ev. allocate counter object");
  2187   bind(has_counters);
  2190 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
  2191   assert(UseCompiler, "incrementing must be useful");
  2192   Register invocation_count = iv_be_count;
  2193   Register backedge_count   = Rtmp_r0;
  2194   int delta = InvocationCounter::count_increment;
  2196   // Load each counter in a register.
  2197   //  ld(inv_counter, Rtmp);
  2198   //  ld(be_counter, Rtmp2);
  2199   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
  2200                                     InvocationCounter::counter_offset());
  2201   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
  2202                                     InvocationCounter::counter_offset());
  2204   BLOCK_COMMENT("Increment profiling counters {");
  2206   // Load the backedge counter.
  2207   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
  2208   // Mask the backedge counter.
  2209   Register tmp = invocation_count;
  2210   li(tmp, InvocationCounter::count_mask_value);
  2211   andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
  2213   // Load the invocation counter.
  2214   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
  2215   // Add the delta to the invocation counter and store the result.
  2216   addi(invocation_count, invocation_count, delta);
  2217   // Store value.
  2218   stw(invocation_count, inv_counter_offset, Rcounters);
  2220   // Add invocation counter + backedge counter.
  2221   add(iv_be_count, backedge_count, invocation_count);
  2223   // Note that this macro must leave the backedge_count + invocation_count in
  2224   // register iv_be_count!
  2225   BLOCK_COMMENT("} Increment profiling counters");
  2228 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  2229   if (state == atos) { MacroAssembler::verify_oop(reg); }
  2232 #ifndef CC_INTERP
  2233 // Local helper function for the verify_oop_or_return_address macro.
  2234 static bool verify_return_address(Method* m, int bci) {
  2235 #ifndef PRODUCT
  2236   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
  2237   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
  2238   if (!m->contains(pc))                                            return false;
  2239   address jsr_pc;
  2240   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2241   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2242   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2243   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2244 #endif // PRODUCT
  2245   return false;
  2248 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2249   if (VerifyFPU) {
  2250     unimplemented("verfiyFPU");
  2254 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2255   if (!VerifyOops) return;
  2257   // The VM documentation for the astore[_wide] bytecode allows
  2258   // the TOS to be not only an oop but also a return address.
  2259   Label test;
  2260   Label skip;
  2261   // See if it is an address (in the current method):
  2263   const int log2_bytecode_size_limit = 16;
  2264   srdi_(Rtmp, reg, log2_bytecode_size_limit);
  2265   bne(CCR0, test);
  2267   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
  2268   const int nbytes_save = 11*8; // volatile gprs except R0
  2269   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
  2270   save_LR_CR(Rtmp); // Save in old frame.
  2271   push_frame_reg_args(nbytes_save, Rtmp);
  2273   load_const_optimized(Rtmp, fd, R0);
  2274   mr_if_needed(R4_ARG2, reg);
  2275   mr(R3_ARG1, R19_method);
  2276   call_c(Rtmp); // call C
  2278   pop_frame();
  2279   restore_LR_CR(Rtmp);
  2280   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
  2281   b(skip);
  2283   // Perform a more elaborate out-of-line call.
  2284   // Not an address; verify it:
  2285   bind(test);
  2286   verify_oop(reg);
  2287   bind(skip);
  2289 #endif // !CC_INTERP
  2291 // Inline assembly for:
  2292 //
  2293 // if (thread is in interp_only_mode) {
  2294 //   InterpreterRuntime::post_method_entry();
  2295 // }
  2296 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
  2297 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
  2298 //   SharedRuntime::jvmpi_method_entry(method, receiver);
  2299 // }
  2300 void InterpreterMacroAssembler::notify_method_entry() {
  2301   // JVMTI
  2302   // Whenever JVMTI puts a thread in interp_only_mode, method
  2303   // entry/exit events are sent for that thread to track stack
  2304   // depth. If it is possible to enter interp_only_mode we add
  2305   // the code to check if the event should be sent.
  2306   if (JvmtiExport::can_post_interpreter_events()) {
  2307     Label jvmti_post_done;
  2309     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  2310     cmpwi(CCR0, R0, 0);
  2311     beq(CCR0, jvmti_post_done);
  2312     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
  2313             /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
  2315     bind(jvmti_post_done);
  2319 // Inline assembly for:
  2320 //
  2321 // if (thread is in interp_only_mode) {
  2322 //   // save result
  2323 //   InterpreterRuntime::post_method_exit();
  2324 //   // restore result
  2325 // }
  2326 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
  2327 //   // save result
  2328 //   SharedRuntime::jvmpi_method_exit();
  2329 //   // restore result
  2330 // }
  2331 //
  2332 // Native methods have their result stored in d_tmp and l_tmp.
  2333 // Java methods have their result stored in the expression stack.
  2334 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
  2335                                                    NotifyMethodExitMode mode, bool check_exceptions) {
  2336   // JVMTI
  2337   // Whenever JVMTI puts a thread in interp_only_mode, method
  2338   // entry/exit events are sent for that thread to track stack
  2339   // depth. If it is possible to enter interp_only_mode we add
  2340   // the code to check if the event should be sent.
  2341   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2342     Label jvmti_post_done;
  2344     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  2345     cmpwi(CCR0, R0, 0);
  2346     beq(CCR0, jvmti_post_done);
  2347     CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
  2348     if (!is_native_method) push(state); // Expose tos to GC.
  2349     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
  2350             /*check_exceptions=*/check_exceptions);
  2351     if (!is_native_method) pop(state);
  2353     align(32, 12);
  2354     bind(jvmti_post_done);
  2357   // Dtrace support not implemented.
  2360 #ifdef CC_INTERP
  2361 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
  2362 // (using parent_frame_resize) and push a new interpreter
  2363 // TOP_IJAVA_FRAME (using frame_size).
  2364 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
  2365                                                        Register tmp1, Register tmp2, Register tmp3,
  2366                                                        Register tmp4, Register pc) {
  2367   assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
  2368   ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2369   mr(tmp2/*top_frame_sp*/, R1_SP);
  2370   // Move initial_caller_sp.
  2371   ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2372   neg(parent_frame_resize, parent_frame_resize);
  2373   resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
  2375   // Set LR in new parent frame.
  2376   std(tmp1, _abi(lr), R1_SP);
  2377   // Set top_frame_sp info for new parent frame.
  2378   std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
  2379   std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2381   // Push new TOP_IJAVA_FRAME.
  2382   push_frame(top_frame_size, tmp2);
  2384   get_PC_trash_LR(tmp3);
  2385   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2386   // Used for non-initial callers by unextended_sp().
  2387   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2390 // Pop the topmost TOP_IJAVA_FRAME and convert the previous
  2391 // PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
  2392 void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  2393   assert_different_registers(tmp1, tmp2, tmp3, tmp4);
  2395   ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
  2396   ld(tmp3, _abi(lr), tmp1);
  2398   ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
  2400   ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
  2401   // Merge top frame.
  2402   std(tmp2, _abi(callers_sp), R1_SP);
  2404   ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
  2406   // Update C stack pointer to caller's top_abi.
  2407   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
  2409   // Update LR in top_frame.
  2410   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2412   std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2414   // Store the top-frame stack-pointer for c2i adapters.
  2415   std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
  2418 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
  2419 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
  2420   assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
  2422   if (state == R14_state) {
  2423     ld(tmp1/*state's fp*/, state_(_last_Java_fp));
  2424     ld(tmp2/*state's sp*/, state_(_last_Java_sp));
  2425   } else if (state == R15_prev_state) {
  2426     ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
  2427     ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
  2428   } else {
  2429     ShouldNotReachHere();
  2432   // Merge top frames.
  2433   std(tmp1, _abi(callers_sp), R1_SP);
  2435   // Tmp2 is new SP.
  2436   // Tmp1 is parent's SP.
  2437   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
  2439   // Update LR in top_frame.
  2440   // Must be interpreter frame.
  2441   get_PC_trash_LR(tmp3);
  2442   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2443   // Used for non-initial callers by unextended_sp().
  2444   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2447 // Set SP to initial caller's sp, but before fix the back chain.
  2448 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
  2449   ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2450   ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
  2451   std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
  2452   mr(R1_SP, tmp1); // ... and resize to initial caller.
  2455 // Pop the current interpreter state (without popping the correspoding
  2456 // frame) and restore R14_state and R15_prev_state accordingly.
  2457 // Use prev_state_may_be_0 to indicate whether prev_state may be 0
  2458 // in order to generate an extra check before retrieving prev_state_(_prev_link).
  2459 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
  2461   // Move prev_state to state and restore prev_state from state_(_prev_link).
  2462   Label prev_state_is_0;
  2463   mr(R14_state, R15_prev_state);
  2465   // Don't retrieve /*state==*/prev_state_(_prev_link)
  2466   // if /*state==*/prev_state is 0.
  2467   if (prev_state_may_be_0) {
  2468     cmpdi(CCR0, R15_prev_state, 0);
  2469     beq(CCR0, prev_state_is_0);
  2472   ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
  2473   bind(prev_state_is_0);
  2476 void InterpreterMacroAssembler::restore_prev_state() {
  2477   // _prev_link is private, but cInterpreter is a friend.
  2478   ld(R15_prev_state, state_(_prev_link));
  2480 #endif // CC_INTERP

mercurial