src/share/vm/code/compiledIC.cpp

Thu, 24 May 2018 17:06:56 +0800

author
aoqi
date
Thu, 24 May 2018 17:06:56 +0800
changeset 8604
04d83ba48607
parent 8075
be740540f60c
parent 7535
7ae4e26cb1e0
child 9041
95a08233f46c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/metadataFactory.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/icache.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "runtime/stubRoutines.hpp"
    42 #include "utilities/events.hpp"
    45 // Every time a compiled IC is changed or its type is being accessed,
    46 // either the CompiledIC_lock must be set or we must be at a safe point.
    48 //-----------------------------------------------------------------------------
    49 // Low-level access to an inline cache. Private, since they might not be
    50 // MT-safe to use.
    52 void* CompiledIC::cached_value() const {
    53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
    56   if (!is_in_transition_state()) {
    57     void* data = (void*)_value->data();
    58     // If we let the metadata value here be initialized to zero...
    59     assert(data != NULL || Universe::non_oop_word() == NULL,
    60            "no raw nulls in CompiledIC metadatas, because of patching races");
    61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
    62   } else {
    63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
    64   }
    65 }
    68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
    69   assert(entry_point != NULL, "must set legal entry point");
    70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
    72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
    74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
    76   // Don't use ic_destination for this test since that forwards
    77   // through ICBuffer instead of returning the actual current state of
    78   // the CompiledIC.
    79   if (is_icholder_entry(_ic_call->destination())) {
    80     // When patching for the ICStub case the cached value isn't
    81     // overwritten until the ICStub copied into the CompiledIC during
    82     // the next safepoint.  Make sure that the CompiledICHolder* is
    83     // marked for release at this point since it won't be identifiable
    84     // once the entry point is overwritten.
    85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
    86   }
    88   if (TraceCompiledIC) {
    89     tty->print("  ");
    90     print_compiled_ic();
    91     tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
    92     if (!is_optimized()) {
    93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
    94     }
    95     if (is_icstub) {
    96       tty->print(" (icstub)");
    97     }
    98     tty->cr();
    99   }
   101   {
   102     MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
   103 #ifdef ASSERT
   104     CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
   105     assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   106 #endif
   107      _ic_call->set_destination_mt_safe(entry_point);
   108   }
   110   if (is_optimized() || is_icstub) {
   111     // Optimized call sites don't have a cache value and ICStub call
   112     // sites only change the entry point.  Changing the value in that
   113     // case could lead to MT safety issues.
   114     assert(cache == NULL, "must be null");
   115     return;
   116   }
   118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
   120   _value->set_data((intptr_t)cache);
   121 }
   124 void CompiledIC::set_ic_destination(ICStub* stub) {
   125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
   126 }
   130 address CompiledIC::ic_destination() const {
   131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   132  if (!is_in_transition_state()) {
   133    return _ic_call->destination();
   134  } else {
   135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
   136  }
   137 }
   140 bool CompiledIC::is_in_transition_state() const {
   141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   142   return InlineCacheBuffer::contains(_ic_call->destination());
   143 }
   146 bool CompiledIC::is_icholder_call() const {
   147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   148   return !_is_optimized && is_icholder_entry(ic_destination());
   149 }
   151 // Returns native address of 'call' instruction in inline-cache. Used by
   152 // the InlineCacheBuffer when it needs to find the stub.
   153 address CompiledIC::stub_address() const {
   154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
   155   return _ic_call->destination();
   156 }
   158 // Clears the IC stub if the compiled IC is in transition state
   159 void CompiledIC::clear_ic_stub() {
   160   if (is_in_transition_state()) {
   161     ICStub* stub = ICStub_from_destination_address(stub_address());
   162     stub->clear();
   163   }
   164 }
   167 //-----------------------------------------------------------------------------
   168 // High-level access to an inline cache. Guaranteed to be MT-safe.
   170 void CompiledIC::initialize_from_iter(RelocIterator* iter) {
   171   assert(iter->addr() == _ic_call->instruction_address(), "must find ic_call");
   173   if (iter->type() == relocInfo::virtual_call_type) {
   174     virtual_call_Relocation* r = iter->virtual_call_reloc();
   175     _is_optimized = false;
   176     _value = nativeMovConstReg_at(r->cached_value());
   177   } else {
   178     assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   179     _is_optimized = true;
   180     _value = NULL;
   181   }
   182 }
   184 CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
   185   : _ic_call(call)
   186 {
   187   address ic_call = _ic_call->instruction_address();
   189   assert(ic_call != NULL, "ic_call address must be set");
   190   assert(nm != NULL, "must pass nmethod");
   191   assert(nm->contains(ic_call), "must be in nmethod");
   193   // Search for the ic_call at the given address.
   194   RelocIterator iter(nm, ic_call, ic_call+1);
   195   bool ret = iter.next();
   196   assert(ret == true, "relocInfo must exist at this address");
   197   assert(iter.addr() == ic_call, "must find ic_call");
   199   initialize_from_iter(&iter);
   200 }
   202 CompiledIC::CompiledIC(RelocIterator* iter)
   203   : _ic_call(nativeCall_at(iter->addr()))
   204 {
   205   address ic_call = _ic_call->instruction_address();
   207   nmethod* nm = iter->code();
   208   assert(ic_call != NULL, "ic_call address must be set");
   209   assert(nm != NULL, "must pass nmethod");
   210   assert(nm->contains(ic_call), "must be in nmethod");
   212   initialize_from_iter(iter);
   213 }
   215 bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
   216   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   217   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
   218   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
   220   address entry;
   221   if (call_info->call_kind() == CallInfo::itable_call) {
   222     assert(bytecode == Bytecodes::_invokeinterface, "");
   223     int itable_index = call_info->itable_index();
   224     entry = VtableStubs::find_itable_stub(itable_index);
   225     if (entry == false) {
   226       return false;
   227     }
   228 #ifdef ASSERT
   229     int index = call_info->resolved_method()->itable_index();
   230     assert(index == itable_index, "CallInfo pre-computes this");
   231 #endif //ASSERT
   232     InstanceKlass* k = call_info->resolved_method()->method_holder();
   233     assert(k->verify_itable_index(itable_index), "sanity check");
   234     InlineCacheBuffer::create_transition_stub(this, k, entry);
   235   } else {
   236     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
   237     // Can be different than selected_method->vtable_index(), due to package-private etc.
   238     int vtable_index = call_info->vtable_index();
   239     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
   240     entry = VtableStubs::find_vtable_stub(vtable_index);
   241     if (entry == NULL) {
   242       return false;
   243     }
   244     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   245   }
   247   if (TraceICs) {
   248     ResourceMark rm;
   249     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
   250                    p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
   251   }
   253   // We can't check this anymore. With lazy deopt we could have already
   254   // cleaned this IC entry before we even return. This is possible if
   255   // we ran out of space in the inline cache buffer trying to do the
   256   // set_next and we safepointed to free up space. This is a benign
   257   // race because the IC entry was complete when we safepointed so
   258   // cleaning it immediately is harmless.
   259   // assert(is_megamorphic(), "sanity check");
   260   return true;
   261 }
   264 // true if destination is megamorphic stub
   265 bool CompiledIC::is_megamorphic() const {
   266   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   267   assert(!is_optimized(), "an optimized call cannot be megamorphic");
   269   // Cannot rely on cached_value. It is either an interface or a method.
   270   return VtableStubs::is_entry_point(ic_destination());
   271 }
   273 bool CompiledIC::is_call_to_compiled() const {
   274   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   276   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
   277   // method is guaranteed to still exist, since we only remove methods after all inline caches
   278   // has been cleaned up
   279   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   280   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
   281   // Check that the cached_value is a klass for non-optimized monomorphic calls
   282   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
   283   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
   284 #ifdef ASSERT
   285   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
   286   bool is_c1_method = caller->is_compiled_by_c1();
   287   assert( is_c1_method ||
   288          !is_monomorphic ||
   289          is_optimized() ||
   290          !caller->is_alive() ||
   291          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
   292 #endif // ASSERT
   293   return is_monomorphic;
   294 }
   297 bool CompiledIC::is_call_to_interpreted() const {
   298   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   299   // Call to interpreter if destination is either calling to a stub (if it
   300   // is optimized), or calling to an I2C blob
   301   bool is_call_to_interpreted = false;
   302   if (!is_optimized()) {
   303     // must use unsafe because the destination can be a zombie (and we're cleaning)
   304     // and the print_compiled_ic code wants to know if site (in the non-zombie)
   305     // is to the interpreter.
   306     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   307     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
   308     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
   309   } else {
   310     // Check if we are calling into our own codeblob (i.e., to a stub)
   311     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
   312     address dest = ic_destination();
   313 #ifdef ASSERT
   314     {
   315       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
   316       assert(!db->is_adapter_blob(), "must use stub!");
   317     }
   318 #endif /* ASSERT */
   319     is_call_to_interpreted = cb->contains(dest);
   320   }
   321   return is_call_to_interpreted;
   322 }
   325 void CompiledIC::set_to_clean(bool in_use) {
   326   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
   327   if (TraceInlineCacheClearing || TraceICs) {
   328     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
   329     print();
   330   }
   332   address entry;
   333   if (is_optimized()) {
   334     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
   335   } else {
   336     entry = SharedRuntime::get_resolve_virtual_call_stub();
   337   }
   339   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
   340   // we only need to patch the destination
   341   bool safe_transition = !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();
   343   if (safe_transition) {
   344     // Kill any leftover stub we might have too
   345     clear_ic_stub();
   346     if (is_optimized()) {
   347       set_ic_destination(entry);
   348     } else {
   349       set_ic_destination_and_value(entry, (void*)NULL);
   350     }
   351   } else {
   352     // Unsafe transition - create stub.
   353     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   354   }
   355   // We can't check this anymore. With lazy deopt we could have already
   356   // cleaned this IC entry before we even return. This is possible if
   357   // we ran out of space in the inline cache buffer trying to do the
   358   // set_next and we safepointed to free up space. This is a benign
   359   // race because the IC entry was complete when we safepointed so
   360   // cleaning it immediately is harmless.
   361   // assert(is_clean(), "sanity check");
   362 }
   365 bool CompiledIC::is_clean() const {
   366   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   367   bool is_clean = false;
   368   address dest = ic_destination();
   369   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
   370              dest == SharedRuntime::get_resolve_virtual_call_stub();
   371   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
   372   return is_clean;
   373 }
   376 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
   377   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   378   // Updating a cache to the wrong entry can cause bugs that are very hard
   379   // to track down - if cache entry gets invalid - we just clean it. In
   380   // this way it is always the same code path that is responsible for
   381   // updating and resolving an inline cache
   382   //
   383   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
   384   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
   385   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
   386   //
   387   // In both of these cases the only thing being modifed is the jump/call target and these
   388   // transitions are mt_safe
   390   Thread *thread = Thread::current();
   391   if (info.to_interpreter()) {
   392     // Call to interpreter
   393     if (info.is_optimized() && is_optimized()) {
   394        assert(is_clean(), "unsafe IC path");
   395        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   396       // the call analysis (callee structure) specifies that the call is optimized
   397       // (either because of CHA or the static target is final)
   398       // At code generation time, this call has been emitted as static call
   399       // Call via stub
   400       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
   401       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
   402       methodHandle method (thread, (Method*)info.cached_metadata());
   403       csc->set_to_interpreted(method, info.entry());
   404       if (TraceICs) {
   405          ResourceMark rm(thread);
   406          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
   407            p2i(instruction_address()),
   408            method->print_value_string());
   409       }
   410     } else {
   411       // Call via method-klass-holder
   412       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
   413       if (TraceICs) {
   414          ResourceMark rm(thread);
   415          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
   416       }
   417     }
   418   } else {
   419     // Call to compiled code
   420     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
   421 #ifdef ASSERT
   422     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
   423     assert (cb->is_nmethod(), "must be compiled!");
   424 #endif /* ASSERT */
   426     // This is MT safe if we come from a clean-cache and go through a
   427     // non-verified entry point
   428     bool safe = SafepointSynchronize::is_at_safepoint() ||
   429                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
   431     if (!safe) {
   432       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
   433     } else {
   434       if (is_optimized()) {
   435       set_ic_destination(info.entry());
   436       } else {
   437         set_ic_destination_and_value(info.entry(), info.cached_metadata());
   438       }
   439     }
   441     if (TraceICs) {
   442       ResourceMark rm(thread);
   443       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
   444       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
   445         p2i(instruction_address()),
   446         ((Klass*)info.cached_metadata())->print_value_string(),
   447         (safe) ? "" : "via stub");
   448     }
   449   }
   450   // We can't check this anymore. With lazy deopt we could have already
   451   // cleaned this IC entry before we even return. This is possible if
   452   // we ran out of space in the inline cache buffer trying to do the
   453   // set_next and we safepointed to free up space. This is a benign
   454   // race because the IC entry was complete when we safepointed so
   455   // cleaning it immediately is harmless.
   456   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   457 }
   460 // is_optimized: Compiler has generated an optimized call (i.e., no inline
   461 // cache) static_bound: The call can be static bound (i.e, no need to use
   462 // inline cache)
   463 void CompiledIC::compute_monomorphic_entry(methodHandle method,
   464                                            KlassHandle receiver_klass,
   465                                            bool is_optimized,
   466                                            bool static_bound,
   467                                            CompiledICInfo& info,
   468                                            TRAPS) {
   469   nmethod* method_code = method->code();
   470   address entry = NULL;
   471   if (method_code != NULL && method_code->is_in_use()) {
   472     // Call to compiled code
   473     if (static_bound || is_optimized) {
   474       entry      = method_code->verified_entry_point();
   475     } else {
   476       entry      = method_code->entry_point();
   477     }
   478   }
   479   if (entry != NULL) {
   480     // Call to compiled code
   481     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
   482   } else {
   483     // Note: the following problem exists with Compiler1:
   484     //   - at compile time we may or may not know if the destination is final
   485     //   - if we know that the destination is final, we will emit an optimized
   486     //     virtual call (no inline cache), and need a Method* to make a call
   487     //     to the interpreter
   488     //   - if we do not know if the destination is final, we emit a standard
   489     //     virtual call, and use CompiledICHolder to call interpreted code
   490     //     (no static call stub has been generated)
   491     //     However in that case we will now notice it is static_bound
   492     //     and convert the call into what looks to be an optimized
   493     //     virtual call. This causes problems in verifying the IC because
   494     //     it look vanilla but is optimized. Code in is_call_to_interpreted
   495     //     is aware of this and weakens its asserts.
   497     // static_bound should imply is_optimized -- otherwise we have a
   498     // performance bug (statically-bindable method is called via
   499     // dynamically-dispatched call note: the reverse implication isn't
   500     // necessarily true -- the call may have been optimized based on compiler
   501     // analysis (static_bound is only based on "final" etc.)
   502 #ifdef COMPILER2
   503 #ifdef TIERED
   504 #if defined(ASSERT)
   505     // can't check the assert because we don't have the CompiledIC with which to
   506     // find the address if the call instruction.
   507     //
   508     // CodeBlob* cb = find_blob_unsafe(instruction_address());
   509     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
   510 #endif // ASSERT
   511 #else
   512     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
   513 #endif // TIERED
   514 #endif // COMPILER2
   515     if (is_optimized) {
   516       // Use stub entry
   517       info.set_interpreter_entry(method()->get_c2i_entry(), method());
   518     } else {
   519       // Use icholder entry
   520       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
   521       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
   522     }
   523   }
   524   assert(info.is_optimized() == is_optimized, "must agree");
   525 }
   528 bool CompiledIC::is_icholder_entry(address entry) {
   529   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
   530   return (cb != NULL && cb->is_adapter_blob());
   531 }
   533 // ----------------------------------------------------------------------------
   535 void CompiledStaticCall::set_to_clean() {
   536   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   537   // Reset call site
   538   MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
   539 #ifdef ASSERT
   540   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
   541   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   542 #endif
   543   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
   545   // Do not reset stub here:  It is too expensive to call find_stub.
   546   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
   547   // both the call and its stub.
   548 }
   551 bool CompiledStaticCall::is_clean() const {
   552   return destination() == SharedRuntime::get_resolve_static_call_stub();
   553 }
   555 bool CompiledStaticCall::is_call_to_compiled() const {
   556   return CodeCache::contains(destination());
   557 }
   560 bool CompiledStaticCall::is_call_to_interpreted() const {
   561   // It is a call to interpreted, if it calls to a stub. Hence, the destination
   562   // must be in the stub part of the nmethod that contains the call
   563   nmethod* nm = CodeCache::find_nmethod(instruction_address());
   564   return nm->stub_contains(destination());
   565 }
   567 void CompiledStaticCall::set(const StaticCallInfo& info) {
   568   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   569   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   570   // Updating a cache to the wrong entry can cause bugs that are very hard
   571   // to track down - if cache entry gets invalid - we just clean it. In
   572   // this way it is always the same code path that is responsible for
   573   // updating and resolving an inline cache
   574   assert(is_clean(), "do not update a call entry - use clean");
   576   if (info._to_interpreter) {
   577     // Call to interpreted code
   578     set_to_interpreted(info.callee(), info.entry());
   579   } else {
   580     if (TraceICs) {
   581       ResourceMark rm;
   582       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
   583                     p2i(instruction_address()),
   584                     p2i(info.entry()));
   585     }
   586     // Call to compiled code
   587     assert (CodeCache::contains(info.entry()), "wrong entry point");
   588     set_destination_mt_safe(info.entry());
   589   }
   590 }
   593 // Compute settings for a CompiledStaticCall. Since we might have to set
   594 // the stub when calling to the interpreter, we need to return arguments.
   595 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
   596   nmethod* m_code = m->code();
   597   info._callee = m;
   598   if (m_code != NULL && m_code->is_in_use()) {
   599     info._to_interpreter = false;
   600     info._entry  = m_code->verified_entry_point();
   601   } else {
   602     // Callee is interpreted code.  In any case entering the interpreter
   603     // puts a converter-frame on the stack to save arguments.
   604     assert(!m->is_method_handle_intrinsic(), "Compiled code should never call interpreter MH intrinsics");
   605     info._to_interpreter = true;
   606     info._entry      = m()->get_c2i_entry();
   607   }
   608 }
   610 address CompiledStaticCall::find_stub() {
   611   // Find reloc. information containing this call-site
   612   RelocIterator iter((nmethod*)NULL, instruction_address());
   613   while (iter.next()) {
   614     if (iter.addr() == instruction_address()) {
   615       switch(iter.type()) {
   616         case relocInfo::static_call_type:
   617           return iter.static_call_reloc()->static_stub();
   618         // We check here for opt_virtual_call_type, since we reuse the code
   619         // from the CompiledIC implementation
   620         case relocInfo::opt_virtual_call_type:
   621           return iter.opt_virtual_call_reloc()->static_stub();
   622         case relocInfo::poll_type:
   623         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
   624         default:
   625           ShouldNotReachHere();
   626       }
   627     }
   628   }
   629   return NULL;
   630 }
   633 //-----------------------------------------------------------------------------
   634 // Non-product mode code
   635 #ifndef PRODUCT
   637 void CompiledIC::verify() {
   638   // make sure code pattern is actually a call imm32 instruction
   639   _ic_call->verify();
   640   if (os::is_MP()) {
   641     _ic_call->verify_alignment();
   642   }
   643   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
   644           || is_optimized() || is_megamorphic(), "sanity check");
   645 }
   647 void CompiledIC::print() {
   648   print_compiled_ic();
   649   tty->cr();
   650 }
   652 void CompiledIC::print_compiled_ic() {
   653   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
   654              p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
   655 }
   657 void CompiledStaticCall::print() {
   658   tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
   659   if (is_clean()) {
   660     tty->print("clean");
   661   } else if (is_call_to_compiled()) {
   662     tty->print("compiled");
   663   } else if (is_call_to_interpreted()) {
   664     tty->print("interpreted");
   665   }
   666   tty->cr();
   667 }
   669 #endif // !PRODUCT

mercurial