src/share/vm/c1/c1_LIRGenerator.cpp

Thu, 24 May 2018 17:06:56 +0800

author
aoqi
date
Thu, 24 May 2018 17:06:56 +0800
changeset 8604
04d83ba48607
parent 8415
d109bda16490
parent 7994
04ff2f6cd0eb
child 8856
ac27a9c85bea
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "c1/c1_Defs.hpp"
    33 #include "c1/c1_Compilation.hpp"
    34 #include "c1/c1_FrameMap.hpp"
    35 #include "c1/c1_Instruction.hpp"
    36 #include "c1/c1_LIRAssembler.hpp"
    37 #include "c1/c1_LIRGenerator.hpp"
    38 #include "c1/c1_ValueStack.hpp"
    39 #include "ci/ciArrayKlass.hpp"
    40 #include "ci/ciInstance.hpp"
    41 #include "ci/ciObjArray.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "utilities/bitMap.inline.hpp"
    45 #include "utilities/macros.hpp"
    46 #if INCLUDE_ALL_GCS
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 #ifdef ASSERT
    51 #define __ gen()->lir(__FILE__, __LINE__)->
    52 #else
    53 #define __ gen()->lir()->
    54 #endif
    56 #ifndef PATCHED_ADDR
    57 #define PATCHED_ADDR  (max_jint)
    58 #endif
    60 void PhiResolverState::reset(int max_vregs) {
    61   // Initialize array sizes
    62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    63   _virtual_operands.trunc_to(0);
    64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    65   _other_operands.trunc_to(0);
    66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    67   _vreg_table.trunc_to(0);
    68 }
    72 //--------------------------------------------------------------
    73 // PhiResolver
    75 // Resolves cycles:
    76 //
    77 //  r1 := r2  becomes  temp := r1
    78 //  r2 := r1           r1 := r2
    79 //                     r2 := temp
    80 // and orders moves:
    81 //
    82 //  r2 := r3  becomes  r1 := r2
    83 //  r1 := r2           r2 := r3
    85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    86  : _gen(gen)
    87  , _state(gen->resolver_state())
    88  , _temp(LIR_OprFact::illegalOpr)
    89 {
    90   // reinitialize the shared state arrays
    91   _state.reset(max_vregs);
    92 }
    95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    96   assert(src->is_valid(), "");
    97   assert(dest->is_valid(), "");
    98   __ move(src, dest);
    99 }
   102 void PhiResolver::move_temp_to(LIR_Opr dest) {
   103   assert(_temp->is_valid(), "");
   104   emit_move(_temp, dest);
   105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   106 }
   109 void PhiResolver::move_to_temp(LIR_Opr src) {
   110   assert(_temp->is_illegal(), "");
   111   _temp = _gen->new_register(src->type());
   112   emit_move(src, _temp);
   113 }
   116 // Traverse assignment graph in depth first order and generate moves in post order
   117 // ie. two assignments: b := c, a := b start with node c:
   118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   119 // Generates moves in this order: move b to a and move c to b
   120 // ie. cycle a := b, b := a start with node a
   121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   122 // Generates moves in this order: move b to temp, move a to b, move temp to a
   123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   124   if (!dest->visited()) {
   125     dest->set_visited();
   126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   127       move(dest, dest->destination_at(i));
   128     }
   129   } else if (!dest->start_node()) {
   130     // cylce in graph detected
   131     assert(_loop == NULL, "only one loop valid!");
   132     _loop = dest;
   133     move_to_temp(src->operand());
   134     return;
   135   } // else dest is a start node
   137   if (!dest->assigned()) {
   138     if (_loop == dest) {
   139       move_temp_to(dest->operand());
   140       dest->set_assigned();
   141     } else if (src != NULL) {
   142       emit_move(src->operand(), dest->operand());
   143       dest->set_assigned();
   144     }
   145   }
   146 }
   149 PhiResolver::~PhiResolver() {
   150   int i;
   151   // resolve any cycles in moves from and to virtual registers
   152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   153     ResolveNode* node = virtual_operands()[i];
   154     if (!node->visited()) {
   155       _loop = NULL;
   156       move(NULL, node);
   157       node->set_start_node();
   158       assert(_temp->is_illegal(), "move_temp_to() call missing");
   159     }
   160   }
   162   // generate move for move from non virtual register to abitrary destination
   163   for (i = other_operands().length() - 1; i >= 0; i --) {
   164     ResolveNode* node = other_operands()[i];
   165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   166       emit_move(node->operand(), node->destination_at(j)->operand());
   167     }
   168   }
   169 }
   172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   173   ResolveNode* node;
   174   if (opr->is_virtual()) {
   175     int vreg_num = opr->vreg_number();
   176     node = vreg_table().at_grow(vreg_num, NULL);
   177     assert(node == NULL || node->operand() == opr, "");
   178     if (node == NULL) {
   179       node = new ResolveNode(opr);
   180       vreg_table()[vreg_num] = node;
   181     }
   182     // Make sure that all virtual operands show up in the list when
   183     // they are used as the source of a move.
   184     if (source && !virtual_operands().contains(node)) {
   185       virtual_operands().append(node);
   186     }
   187   } else {
   188     assert(source, "");
   189     node = new ResolveNode(opr);
   190     other_operands().append(node);
   191   }
   192   return node;
   193 }
   196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   197   assert(dest->is_virtual(), "");
   198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   199   assert(src->is_valid(), "");
   200   assert(dest->is_valid(), "");
   201   ResolveNode* source = source_node(src);
   202   source->append(destination_node(dest));
   203 }
   206 //--------------------------------------------------------------
   207 // LIRItem
   209 void LIRItem::set_result(LIR_Opr opr) {
   210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   211   value()->set_operand(opr);
   213   if (opr->is_virtual()) {
   214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   215   }
   217   _result = opr;
   218 }
   220 void LIRItem::load_item() {
   221   if (result()->is_illegal()) {
   222     // update the items result
   223     _result = value()->operand();
   224   }
   225   if (!result()->is_register()) {
   226     LIR_Opr reg = _gen->new_register(value()->type());
   227     __ move(result(), reg);
   228     if (result()->is_constant()) {
   229       _result = reg;
   230     } else {
   231       set_result(reg);
   232     }
   233   }
   234 }
   237 void LIRItem::load_for_store(BasicType type) {
   238   if (_gen->can_store_as_constant(value(), type)) {
   239     _result = value()->operand();
   240     if (!_result->is_constant()) {
   241       _result = LIR_OprFact::value_type(value()->type());
   242     }
   243   } else if (type == T_BYTE || type == T_BOOLEAN) {
   244     load_byte_item();
   245   } else {
   246     load_item();
   247   }
   248 }
   250 void LIRItem::load_item_force(LIR_Opr reg) {
   251   LIR_Opr r = result();
   252   if (r != reg) {
   253 #if !defined(ARM) && !defined(E500V2)
   254     if (r->type() != reg->type()) {
   255       // moves between different types need an intervening spill slot
   256       r = _gen->force_to_spill(r, reg->type());
   257     }
   258 #endif
   259     __ move(r, reg);
   260     _result = reg;
   261   }
   262 }
   264 ciObject* LIRItem::get_jobject_constant() const {
   265   ObjectType* oc = type()->as_ObjectType();
   266   if (oc) {
   267     return oc->constant_value();
   268   }
   269   return NULL;
   270 }
   273 jint LIRItem::get_jint_constant() const {
   274   assert(is_constant() && value() != NULL, "");
   275   assert(type()->as_IntConstant() != NULL, "type check");
   276   return type()->as_IntConstant()->value();
   277 }
   280 jint LIRItem::get_address_constant() const {
   281   assert(is_constant() && value() != NULL, "");
   282   assert(type()->as_AddressConstant() != NULL, "type check");
   283   return type()->as_AddressConstant()->value();
   284 }
   287 jfloat LIRItem::get_jfloat_constant() const {
   288   assert(is_constant() && value() != NULL, "");
   289   assert(type()->as_FloatConstant() != NULL, "type check");
   290   return type()->as_FloatConstant()->value();
   291 }
   294 jdouble LIRItem::get_jdouble_constant() const {
   295   assert(is_constant() && value() != NULL, "");
   296   assert(type()->as_DoubleConstant() != NULL, "type check");
   297   return type()->as_DoubleConstant()->value();
   298 }
   301 jlong LIRItem::get_jlong_constant() const {
   302   assert(is_constant() && value() != NULL, "");
   303   assert(type()->as_LongConstant() != NULL, "type check");
   304   return type()->as_LongConstant()->value();
   305 }
   309 //--------------------------------------------------------------
   312 void LIRGenerator::init() {
   313   _bs = Universe::heap()->barrier_set();
   314 #ifdef MIPS64
   315         assert(_bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   316         CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
   317         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   318         //_card_table_base = new LIR_Const((intptr_t)ct->byte_map_base);
   319         //        //FIXME, untested in 32bit. by aoqi
   320         _card_table_base = new LIR_Const(ct->byte_map_base);
   321 #endif
   322 }
   325 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   326 #ifndef PRODUCT
   327   if (PrintIRWithLIR) {
   328     block->print();
   329   }
   330 #endif
   332   // set up the list of LIR instructions
   333   assert(block->lir() == NULL, "LIR list already computed for this block");
   334   _lir = new LIR_List(compilation(), block);
   335   block->set_lir(_lir);
   337   __ branch_destination(block->label());
   339   if (LIRTraceExecution &&
   340       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   341       !block->is_set(BlockBegin::exception_entry_flag)) {
   342     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   343     trace_block_entry(block);
   344   }
   345 }
   348 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   349 #ifndef PRODUCT
   350   if (PrintIRWithLIR) {
   351     tty->cr();
   352   }
   353 #endif
   355   // LIR_Opr for unpinned constants shouldn't be referenced by other
   356   // blocks so clear them out after processing the block.
   357   for (int i = 0; i < _unpinned_constants.length(); i++) {
   358     _unpinned_constants.at(i)->clear_operand();
   359   }
   360   _unpinned_constants.trunc_to(0);
   362   // clear our any registers for other local constants
   363   _constants.trunc_to(0);
   364   _reg_for_constants.trunc_to(0);
   365 }
   368 void LIRGenerator::block_do(BlockBegin* block) {
   369   CHECK_BAILOUT();
   371   block_do_prolog(block);
   372   set_block(block);
   374   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   375     if (instr->is_pinned()) do_root(instr);
   376   }
   378   set_block(NULL);
   379   block_do_epilog(block);
   380 }
   383 //-------------------------LIRGenerator-----------------------------
   385 // This is where the tree-walk starts; instr must be root;
   386 void LIRGenerator::do_root(Value instr) {
   387   CHECK_BAILOUT();
   389   InstructionMark im(compilation(), instr);
   391   assert(instr->is_pinned(), "use only with roots");
   392   assert(instr->subst() == instr, "shouldn't have missed substitution");
   394   instr->visit(this);
   396   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   397          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   398 }
   401 // This is called for each node in tree; the walk stops if a root is reached
   402 void LIRGenerator::walk(Value instr) {
   403   InstructionMark im(compilation(), instr);
   404   //stop walk when encounter a root
   405   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   406     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   407   } else {
   408     assert(instr->subst() == instr, "shouldn't have missed substitution");
   409     instr->visit(this);
   410     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   411   }
   412 }
   415 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   416   assert(state != NULL, "state must be defined");
   418 #ifndef PRODUCT
   419   state->verify();
   420 #endif
   422   ValueStack* s = state;
   423   for_each_state(s) {
   424     if (s->kind() == ValueStack::EmptyExceptionState) {
   425       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   426       continue;
   427     }
   429     int index;
   430     Value value;
   431     for_each_stack_value(s, index, value) {
   432       assert(value->subst() == value, "missed substitution");
   433       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   434         walk(value);
   435         assert(value->operand()->is_valid(), "must be evaluated now");
   436       }
   437     }
   439     int bci = s->bci();
   440     IRScope* scope = s->scope();
   441     ciMethod* method = scope->method();
   443     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   444     if (bci == SynchronizationEntryBCI) {
   445       if (x->as_ExceptionObject() || x->as_Throw()) {
   446         // all locals are dead on exit from the synthetic unlocker
   447         liveness.clear();
   448       } else {
   449         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   450       }
   451     }
   452     if (!liveness.is_valid()) {
   453       // Degenerate or breakpointed method.
   454       bailout("Degenerate or breakpointed method");
   455     } else {
   456       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   457       for_each_local_value(s, index, value) {
   458         assert(value->subst() == value, "missed substition");
   459         if (liveness.at(index) && !value->type()->is_illegal()) {
   460           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   461             walk(value);
   462             assert(value->operand()->is_valid(), "must be evaluated now");
   463           }
   464         } else {
   465           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   466           s->invalidate_local(index);
   467         }
   468       }
   469     }
   470   }
   472   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
   473 }
   476 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   477   return state_for(x, x->exception_state());
   478 }
   481 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
   482   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
   483    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
   484    * the class. */
   485   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
   486     assert(info != NULL, "info must be set if class is not loaded");
   487     __ klass2reg_patch(NULL, r, info);
   488   } else {
   489     // no patching needed
   490     __ metadata2reg(obj->constant_encoding(), r);
   491   }
   492 }
   495 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   496                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   497   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   498   if (index->is_constant()) {
   499 #ifndef MIPS64
   500     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   501                 index->as_jint(), null_check_info);
   502     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   503 #else
   504         LIR_Opr left = LIR_OprFact::address(new LIR_Address(array, arrayOopDesc::length_offset_in_bytes(), T_INT));
   505         LIR_Opr right = LIR_OprFact::intConst(index->as_jint());
   506 	__ null_check_for_branch(lir_cond_belowEqual, left, right, null_check_info);
   507         __ branch(lir_cond_belowEqual, left, right ,T_INT, stub); // forward branch
   508 #endif
   509   } else {
   510 #ifndef MIPS64
   511     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   512                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   513     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   514 #else
   515         LIR_Opr left = index;
   516         LIR_Opr right = LIR_OprFact::address(new LIR_Address( array, arrayOopDesc::length_offset_in_bytes(), T_INT));
   517         __ null_check_for_branch(lir_cond_aboveEqual, left, right, null_check_info);
   518 	__ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch
   519 #endif
   520   }
   521 }
   524 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   525   CodeStub* stub = new RangeCheckStub(info, index, true);
   526   if (index->is_constant()) {
   527 #ifndef MIPS64
   528     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   529     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   530 #else
   531         LIR_Opr left = LIR_OprFact::address(new LIR_Address(buffer, java_nio_Buffer::limit_offset(),T_INT));
   532         LIR_Opr right = LIR_OprFact::intConst(index->as_jint());
   533 	__ null_check_for_branch(lir_cond_belowEqual, left, right, info);
   534         __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch
   535 #endif
   536   } else {
   537 #ifndef MIPS64
   538     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   539                 java_nio_Buffer::limit_offset(), T_INT, info);
   540     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   541 #else
   542         LIR_Opr left = index;
   543         LIR_Opr right = LIR_OprFact::address(new LIR_Address( buffer, java_nio_Buffer::limit_offset(), T_INT));
   544 	__ null_check_for_branch(lir_cond_aboveEqual, left, right, info);
   545         __ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch
   546 #endif
   547   }
   548   __ move(index, result);
   549 }
   553 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   554   LIR_Opr result_op = result;
   555   LIR_Opr left_op   = left;
   556   LIR_Opr right_op  = right;
   558   if (TwoOperandLIRForm && left_op != result_op) {
   559     assert(right_op != result_op, "malformed");
   560     __ move(left_op, result_op);
   561     left_op = result_op;
   562   }
   564   switch(code) {
   565     case Bytecodes::_dadd:
   566     case Bytecodes::_fadd:
   567     case Bytecodes::_ladd:
   568     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   569     case Bytecodes::_fmul:
   570     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   572     case Bytecodes::_dmul:
   573       {
   574         if (is_strictfp) {
   575           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   576         } else {
   577           __ mul(left_op, right_op, result_op); break;
   578         }
   579       }
   580       break;
   582     case Bytecodes::_imul:
   583       {
   584         bool    did_strength_reduce = false;
   586         if (right->is_constant()) {
   587           int c = right->as_jint();
   588           if (is_power_of_2(c)) {
   589             // do not need tmp here
   590             __ shift_left(left_op, exact_log2(c), result_op);
   591             did_strength_reduce = true;
   592           } else {
   593             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   594           }
   595         }
   596         // we couldn't strength reduce so just emit the multiply
   597         if (!did_strength_reduce) {
   598           __ mul(left_op, right_op, result_op);
   599         }
   600       }
   601       break;
   603     case Bytecodes::_dsub:
   604     case Bytecodes::_fsub:
   605     case Bytecodes::_lsub:
   606     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   608     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   609     // ldiv and lrem are implemented with a direct runtime call
   611     case Bytecodes::_ddiv:
   612       {
   613         if (is_strictfp) {
   614           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   615         } else {
   616           __ div (left_op, right_op, result_op); break;
   617         }
   618       }
   619       break;
   621     case Bytecodes::_drem:
   622     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   624     default: ShouldNotReachHere();
   625   }
   626 }
   629 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   630   arithmetic_op(code, result, left, right, false, tmp);
   631 }
   634 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   635   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   636 }
   639 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   640   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   641 }
   644 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   645   if (TwoOperandLIRForm && value != result_op) {
   646     assert(count != result_op, "malformed");
   647     __ move(value, result_op);
   648     value = result_op;
   649   }
   651   assert(count->is_constant() || count->is_register(), "must be");
   652   switch(code) {
   653   case Bytecodes::_ishl:
   654   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   655   case Bytecodes::_ishr:
   656   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   657   case Bytecodes::_iushr:
   658   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   659   default: ShouldNotReachHere();
   660   }
   661 }
   664 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   665   if (TwoOperandLIRForm && left_op != result_op) {
   666     assert(right_op != result_op, "malformed");
   667     __ move(left_op, result_op);
   668     left_op = result_op;
   669   }
   671   switch(code) {
   672     case Bytecodes::_iand:
   673     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   675     case Bytecodes::_ior:
   676     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   678     case Bytecodes::_ixor:
   679     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   681     default: ShouldNotReachHere();
   682   }
   683 }
   686 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   687   if (!GenerateSynchronizationCode) return;
   688   // for slow path, use debug info for state after successful locking
   689   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   690   __ load_stack_address_monitor(monitor_no, lock);
   691   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   692   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   693 }
   696 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   697   if (!GenerateSynchronizationCode) return;
   698   // setup registers
   699   LIR_Opr hdr = lock;
   700   lock = new_hdr;
   701   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   702   __ load_stack_address_monitor(monitor_no, lock);
   703   __ unlock_object(hdr, object, lock, scratch, slow_path);
   704 }
   706 #ifndef PRODUCT
   707 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
   708   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
   709     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
   710   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
   711     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
   712   }
   713 }
   714 #endif
   716 #ifndef MIPS64
   717 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   718 #else
   719 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3,
   720                                 LIR_Opr scratch4, LIR_Opr scratch5, LIR_Opr scratch6,LIR_Opr klass_reg, CodeEmitInfo* info) {
   721 #endif
   722   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
   723   // If klass is not loaded we do not know if the klass has finalizers:
   724   if (UseFastNewInstance && klass->is_loaded()
   725       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   727     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   729     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   731     assert(klass->is_loaded(), "must be loaded");
   732     // allocate space for instance
   733     assert(klass->size_helper() >= 0, "illegal instance size");
   734     const int instance_size = align_object_size(klass->size_helper());
   735 #ifndef MIPS64
   736     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   737                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   738 #else
   739     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, scratch5, scratch6,
   740                         oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   742 #endif
   743   } else {
   744     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   745 #ifndef MIPS64
   746     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   747     __ branch_destination(slow_path->continuation());
   748 #else
   749     __ branch(lir_cond_always, LIR_OprFact::illegalOpr,  LIR_OprFact::illegalOpr, T_ILLEGAL, slow_path);
   750     __ branch_destination(slow_path->continuation());
   751 #endif
   752   }
   753 }
   756 static bool is_constant_zero(Instruction* inst) {
   757   IntConstant* c = inst->type()->as_IntConstant();
   758   if (c) {
   759     return (c->value() == 0);
   760   }
   761   return false;
   762 }
   765 static bool positive_constant(Instruction* inst) {
   766   IntConstant* c = inst->type()->as_IntConstant();
   767   if (c) {
   768     return (c->value() >= 0);
   769   }
   770   return false;
   771 }
   774 static ciArrayKlass* as_array_klass(ciType* type) {
   775   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   776     return (ciArrayKlass*)type;
   777   } else {
   778     return NULL;
   779   }
   780 }
   782 static ciType* phi_declared_type(Phi* phi) {
   783   ciType* t = phi->operand_at(0)->declared_type();
   784   if (t == NULL) {
   785     return NULL;
   786   }
   787   for(int i = 1; i < phi->operand_count(); i++) {
   788     if (t != phi->operand_at(i)->declared_type()) {
   789       return NULL;
   790     }
   791   }
   792   return t;
   793 }
   795 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   796   Instruction* src     = x->argument_at(0);
   797   Instruction* src_pos = x->argument_at(1);
   798   Instruction* dst     = x->argument_at(2);
   799   Instruction* dst_pos = x->argument_at(3);
   800   Instruction* length  = x->argument_at(4);
   802   // first try to identify the likely type of the arrays involved
   803   ciArrayKlass* expected_type = NULL;
   804   bool is_exact = false, src_objarray = false, dst_objarray = false;
   805   {
   806     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   807     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   808     Phi* phi;
   809     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   810       src_declared_type = as_array_klass(phi_declared_type(phi));
   811     }
   812     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   813     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   814     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   815       dst_declared_type = as_array_klass(phi_declared_type(phi));
   816     }
   818     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   819       // the types exactly match so the type is fully known
   820       is_exact = true;
   821       expected_type = src_exact_type;
   822     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   823       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   824       ciArrayKlass* src_type = NULL;
   825       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   826         src_type = (ciArrayKlass*) src_exact_type;
   827       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   828         src_type = (ciArrayKlass*) src_declared_type;
   829       }
   830       if (src_type != NULL) {
   831         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   832           is_exact = true;
   833           expected_type = dst_type;
   834         }
   835       }
   836     }
   837     // at least pass along a good guess
   838     if (expected_type == NULL) expected_type = dst_exact_type;
   839     if (expected_type == NULL) expected_type = src_declared_type;
   840     if (expected_type == NULL) expected_type = dst_declared_type;
   842     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   843     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   844   }
   846   // if a probable array type has been identified, figure out if any
   847   // of the required checks for a fast case can be elided.
   848   int flags = LIR_OpArrayCopy::all_flags;
   850   if (!src_objarray)
   851     flags &= ~LIR_OpArrayCopy::src_objarray;
   852   if (!dst_objarray)
   853     flags &= ~LIR_OpArrayCopy::dst_objarray;
   855   if (!x->arg_needs_null_check(0))
   856     flags &= ~LIR_OpArrayCopy::src_null_check;
   857   if (!x->arg_needs_null_check(2))
   858     flags &= ~LIR_OpArrayCopy::dst_null_check;
   861   if (expected_type != NULL) {
   862     Value length_limit = NULL;
   864     IfOp* ifop = length->as_IfOp();
   865     if (ifop != NULL) {
   866       // look for expressions like min(v, a.length) which ends up as
   867       //   x > y ? y : x  or  x >= y ? y : x
   868       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   869           ifop->x() == ifop->fval() &&
   870           ifop->y() == ifop->tval()) {
   871         length_limit = ifop->y();
   872       }
   873     }
   875     // try to skip null checks and range checks
   876     NewArray* src_array = src->as_NewArray();
   877     if (src_array != NULL) {
   878       flags &= ~LIR_OpArrayCopy::src_null_check;
   879       if (length_limit != NULL &&
   880           src_array->length() == length_limit &&
   881           is_constant_zero(src_pos)) {
   882         flags &= ~LIR_OpArrayCopy::src_range_check;
   883       }
   884     }
   886     NewArray* dst_array = dst->as_NewArray();
   887     if (dst_array != NULL) {
   888       flags &= ~LIR_OpArrayCopy::dst_null_check;
   889       if (length_limit != NULL &&
   890           dst_array->length() == length_limit &&
   891           is_constant_zero(dst_pos)) {
   892         flags &= ~LIR_OpArrayCopy::dst_range_check;
   893       }
   894     }
   896     // check from incoming constant values
   897     if (positive_constant(src_pos))
   898       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   899     if (positive_constant(dst_pos))
   900       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   901     if (positive_constant(length))
   902       flags &= ~LIR_OpArrayCopy::length_positive_check;
   904     // see if the range check can be elided, which might also imply
   905     // that src or dst is non-null.
   906     ArrayLength* al = length->as_ArrayLength();
   907     if (al != NULL) {
   908       if (al->array() == src) {
   909         // it's the length of the source array
   910         flags &= ~LIR_OpArrayCopy::length_positive_check;
   911         flags &= ~LIR_OpArrayCopy::src_null_check;
   912         if (is_constant_zero(src_pos))
   913           flags &= ~LIR_OpArrayCopy::src_range_check;
   914       }
   915       if (al->array() == dst) {
   916         // it's the length of the destination array
   917         flags &= ~LIR_OpArrayCopy::length_positive_check;
   918         flags &= ~LIR_OpArrayCopy::dst_null_check;
   919         if (is_constant_zero(dst_pos))
   920           flags &= ~LIR_OpArrayCopy::dst_range_check;
   921       }
   922     }
   923     if (is_exact) {
   924       flags &= ~LIR_OpArrayCopy::type_check;
   925     }
   926   }
   928   IntConstant* src_int = src_pos->type()->as_IntConstant();
   929   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   930   if (src_int && dst_int) {
   931     int s_offs = src_int->value();
   932     int d_offs = dst_int->value();
   933     if (src_int->value() >= dst_int->value()) {
   934       flags &= ~LIR_OpArrayCopy::overlapping;
   935     }
   936     if (expected_type != NULL) {
   937       BasicType t = expected_type->element_type()->basic_type();
   938       int element_size = type2aelembytes(t);
   939       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   940           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   941         flags &= ~LIR_OpArrayCopy::unaligned;
   942       }
   943     }
   944   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   945     // src and dest positions are the same, or dst is zero so assume
   946     // nonoverlapping copy.
   947     flags &= ~LIR_OpArrayCopy::overlapping;
   948   }
   950   if (src == dst) {
   951     // moving within a single array so no type checks are needed
   952     if (flags & LIR_OpArrayCopy::type_check) {
   953       flags &= ~LIR_OpArrayCopy::type_check;
   954     }
   955   }
   956   *flagsp = flags;
   957   *expected_typep = (ciArrayKlass*)expected_type;
   958 }
   961 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   962   assert(opr->is_register(), "why spill if item is not register?");
   964   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   965     LIR_Opr result = new_register(T_FLOAT);
   966     set_vreg_flag(result, must_start_in_memory);
   967     assert(opr->is_register(), "only a register can be spilled");
   968     assert(opr->value_type()->is_float(), "rounding only for floats available");
   969     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   970     return result;
   971   }
   972   return opr;
   973 }
   976 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   977   assert(type2size[t] == type2size[value->type()],
   978          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   979   if (!value->is_register()) {
   980     // force into a register
   981     LIR_Opr r = new_register(value->type());
   982     __ move(value, r);
   983     value = r;
   984   }
   986   // create a spill location
   987   LIR_Opr tmp = new_register(t);
   988   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   990   // move from register to spill
   991   __ move(value, tmp);
   992   return tmp;
   993 }
   995 #ifndef MIPS64
   996 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   997   if (if_instr->should_profile()) {
   998     ciMethod* method = if_instr->profiled_method();
   999     assert(method != NULL, "method should be set if branch is profiled");
  1000     ciMethodData* md = method->method_data_or_null();
  1001     assert(md != NULL, "Sanity");
  1002     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
  1003     assert(data != NULL, "must have profiling data");
  1004     assert(data->is_BranchData(), "need BranchData for two-way branches");
  1005     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
  1006     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  1007     if (if_instr->is_swapped()) {
  1008       int t = taken_count_offset;
  1009       taken_count_offset = not_taken_count_offset;
  1010       not_taken_count_offset = t;
  1013     LIR_Opr md_reg = new_register(T_METADATA);
  1014     __ metadata2reg(md->constant_encoding(), md_reg);
  1016     LIR_Opr data_offset_reg = new_pointer_register();
  1017     __ cmove(lir_cond(cond),
  1018              LIR_OprFact::intptrConst(taken_count_offset),
  1019              LIR_OprFact::intptrConst(not_taken_count_offset),
  1020              data_offset_reg, as_BasicType(if_instr->x()->type()));
  1022     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
  1023     LIR_Opr data_reg = new_pointer_register();
  1024     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
  1025     __ move(data_addr, data_reg);
  1026     // Use leal instead of add to avoid destroying condition codes on x86
  1027     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
  1028     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
  1029     __ move(data_reg, data_addr);
  1032 #else
  1033 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond , LIR_Opr left, LIR_Opr right) {
  1034         if (if_instr->should_profile()) {
  1035                 ciMethod* method = if_instr->profiled_method();
  1036                 assert(method != NULL, "method should be set if branch is profiled");
  1037                 ciMethodData* md = method->method_data_or_null();
  1038                 if (md == NULL) {
  1039                         bailout("out of memory building methodDataOop");
  1040                         return;
  1042                 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
  1043                 assert(data != NULL, "must have profiling data");
  1044                 assert(data->is_BranchData(), "need BranchData for two-way branches");
  1045                 int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
  1046                 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  1047                 if (if_instr->is_swapped()) {
  1048                  int t = taken_count_offset;
  1049                  taken_count_offset = not_taken_count_offset;
  1050                  not_taken_count_offset = t; 
  1052                 LIR_Opr md_reg = new_register(T_METADATA);
  1053                 __ metadata2reg(md->constant_encoding(), md_reg);
  1054                 //__ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
  1055                 LIR_Opr data_offset_reg = new_pointer_register();
  1057                 LIR_Opr opr1 =  LIR_OprFact::intConst(taken_count_offset);
  1058                 LIR_Opr opr2 =  LIR_OprFact::intConst(not_taken_count_offset);
  1059                 LabelObj* skip = new LabelObj();
  1061                 __ move(opr1, data_offset_reg);
  1062                 __ branch( lir_cond(cond), left, right, skip->label());
  1063                 __ move(opr2, data_offset_reg);
  1064                 __ branch_destination(skip->label());
  1066                 LIR_Opr data_reg = new_pointer_register();
  1067                 LIR_Opr tmp_reg = new_pointer_register();
  1068                 // LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
  1069                                 __ move(data_offset_reg, tmp_reg);
  1070                 __ add(tmp_reg, md_reg, tmp_reg);
  1071                 LIR_Address* data_addr = new LIR_Address(tmp_reg, 0, T_INT);
  1072                 __ move(LIR_OprFact::address(data_addr), data_reg);
  1073                 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
  1074                 // Use leal instead of add to avoid destroying condition codes on x86
  1075                                 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
  1076                 __ move(data_reg, LIR_OprFact::address(data_addr));
  1080 #endif
  1082 // Phi technique:
  1083 // This is about passing live values from one basic block to the other.
  1084 // In code generated with Java it is rather rare that more than one
  1085 // value is on the stack from one basic block to the other.
  1086 // We optimize our technique for efficient passing of one value
  1087 // (of type long, int, double..) but it can be extended.
  1088 // When entering or leaving a basic block, all registers and all spill
  1089 // slots are release and empty. We use the released registers
  1090 // and spill slots to pass the live values from one block
  1091 // to the other. The topmost value, i.e., the value on TOS of expression
  1092 // stack is passed in registers. All other values are stored in spilling
  1093 // area. Every Phi has an index which designates its spill slot
  1094 // At exit of a basic block, we fill the register(s) and spill slots.
  1095 // At entry of a basic block, the block_prolog sets up the content of phi nodes
  1096 // and locks necessary registers and spilling slots.
  1099 // move current value to referenced phi function
  1100 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
  1101   Phi* phi = sux_val->as_Phi();
  1102   // cur_val can be null without phi being null in conjunction with inlining
  1103   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
  1104     LIR_Opr operand = cur_val->operand();
  1105     if (cur_val->operand()->is_illegal()) {
  1106       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1107              "these can be produced lazily");
  1108       operand = operand_for_instruction(cur_val);
  1110     resolver->move(operand, operand_for_instruction(phi));
  1115 // Moves all stack values into their PHI position
  1116 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1117   BlockBegin* bb = block();
  1118   if (bb->number_of_sux() == 1) {
  1119     BlockBegin* sux = bb->sux_at(0);
  1120     assert(sux->number_of_preds() > 0, "invalid CFG");
  1122     // a block with only one predecessor never has phi functions
  1123     if (sux->number_of_preds() > 1) {
  1124       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1125       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1127       ValueStack* sux_state = sux->state();
  1128       Value sux_value;
  1129       int index;
  1131       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1132       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1133       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1135       for_each_stack_value(sux_state, index, sux_value) {
  1136         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1139       for_each_local_value(sux_state, index, sux_value) {
  1140         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1143       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1149 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1150   int vreg = _virtual_register_number;
  1151   // add a little fudge factor for the bailout, since the bailout is
  1152   // only checked periodically.  This gives a few extra registers to
  1153   // hand out before we really run out, which helps us keep from
  1154   // tripping over assertions.
  1155   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1156     bailout("out of virtual registers");
  1157     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1158       // wrap it around
  1159       _virtual_register_number = LIR_OprDesc::vreg_base;
  1162   _virtual_register_number += 1;
  1163   return LIR_OprFact::virtual_register(vreg, type);
  1167 // Try to lock using register in hint
  1168 LIR_Opr LIRGenerator::rlock(Value instr) {
  1169   return new_register(instr->type());
  1173 // does an rlock and sets result
  1174 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1175   LIR_Opr reg = rlock(x);
  1176   set_result(x, reg);
  1177   return reg;
  1181 // does an rlock and sets result
  1182 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1183   LIR_Opr reg;
  1184   switch (type) {
  1185   case T_BYTE:
  1186   case T_BOOLEAN:
  1187     reg = rlock_byte(type);
  1188     break;
  1189   default:
  1190     reg = rlock(x);
  1191     break;
  1194   set_result(x, reg);
  1195   return reg;
  1199 //---------------------------------------------------------------------
  1200 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1201   ObjectType* oc = value->type()->as_ObjectType();
  1202   if (oc) {
  1203     return oc->constant_value();
  1205   return NULL;
  1207 #ifdef MIPS64
  1208 void LIRGenerator::write_barrier(LIR_Opr addr) {
  1209         if (addr->is_address()) {
  1210         LIR_Address* address = (LIR_Address*)addr;
  1211         LIR_Opr ptr = new_register(T_OBJECT);
  1212         if (!address->index()->is_valid() && address->disp() == 0) {
  1213                 __ move(address->base(), ptr);
  1214         } else {
  1215                 __ leal(addr, ptr);
  1217                 addr = ptr;
  1219         assert(addr->is_register(), "must be a register at this point");
  1221         LIR_Opr tmp = new_pointer_register();
  1222         if (TwoOperandLIRForm) {
  1223                 __ move(addr, tmp);
  1224                 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1225         } else {
  1226                 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1228         if (can_inline_as_constant(card_table_base())) {
  1229                 __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, card_table_base()->as_jint(), T_BYTE));
  1230         } else {
  1231                 __ add(tmp, load_constant(card_table_base()), tmp);
  1232                 __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, 0, T_BYTE));
  1235 #endif
  1238 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1239   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1240   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1242   // no moves are created for phi functions at the begin of exception
  1243   // handlers, so assign operands manually here
  1244   for_each_phi_fun(block(), phi,
  1245                    operand_for_instruction(phi));
  1247   LIR_Opr thread_reg = getThreadPointer();
  1248   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1249                exceptionOopOpr());
  1250   __ move_wide(LIR_OprFact::oopConst(NULL),
  1251                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1252   __ move_wide(LIR_OprFact::oopConst(NULL),
  1253                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1255   LIR_Opr result = new_register(T_OBJECT);
  1256   __ move(exceptionOopOpr(), result);
  1257   set_result(x, result);
  1261 //----------------------------------------------------------------------
  1262 //----------------------------------------------------------------------
  1263 //----------------------------------------------------------------------
  1264 //----------------------------------------------------------------------
  1265 //                        visitor functions
  1266 //----------------------------------------------------------------------
  1267 //----------------------------------------------------------------------
  1268 //----------------------------------------------------------------------
  1269 //----------------------------------------------------------------------
  1271 void LIRGenerator::do_Phi(Phi* x) {
  1272   // phi functions are never visited directly
  1273   ShouldNotReachHere();
  1277 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1278 void LIRGenerator::do_Constant(Constant* x) {
  1279   if (x->state_before() != NULL) {
  1280     // Any constant with a ValueStack requires patching so emit the patch here
  1281     LIR_Opr reg = rlock_result(x);
  1282     CodeEmitInfo* info = state_for(x, x->state_before());
  1283     __ oop2reg_patch(NULL, reg, info);
  1284   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1285     if (!x->is_pinned()) {
  1286       // unpinned constants are handled specially so that they can be
  1287       // put into registers when they are used multiple times within a
  1288       // block.  After the block completes their operand will be
  1289       // cleared so that other blocks can't refer to that register.
  1290       set_result(x, load_constant(x));
  1291     } else {
  1292       LIR_Opr res = x->operand();
  1293       if (!res->is_valid()) {
  1294         res = LIR_OprFact::value_type(x->type());
  1296       if (res->is_constant()) {
  1297         LIR_Opr reg = rlock_result(x);
  1298         __ move(res, reg);
  1299       } else {
  1300         set_result(x, res);
  1303   } else {
  1304     set_result(x, LIR_OprFact::value_type(x->type()));
  1309 void LIRGenerator::do_Local(Local* x) {
  1310   // operand_for_instruction has the side effect of setting the result
  1311   // so there's no need to do it here.
  1312   operand_for_instruction(x);
  1316 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1317   Unimplemented();
  1321 void LIRGenerator::do_Return(Return* x) {
  1322   if (compilation()->env()->dtrace_method_probes()) {
  1323     BasicTypeList signature;
  1324     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1325     signature.append(T_METADATA); // Method*
  1326     LIR_OprList* args = new LIR_OprList();
  1327     args->append(getThreadPointer());
  1328     LIR_Opr meth = new_register(T_METADATA);
  1329     __ metadata2reg(method()->constant_encoding(), meth);
  1330     args->append(meth);
  1331     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1334   if (x->type()->is_void()) {
  1335     __ return_op(LIR_OprFact::illegalOpr);
  1336   } else {
  1337     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1338     LIRItem result(x->result(), this);
  1340     result.load_item_force(reg);
  1341     __ return_op(result.result());
  1343   set_no_result(x);
  1346 // Examble: ref.get()
  1347 // Combination of LoadField and g1 pre-write barrier
  1348 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1350   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1351   guarantee(referent_offset > 0, "referent offset not initialized");
  1353   assert(x->number_of_arguments() == 1, "wrong type");
  1355   LIRItem reference(x->argument_at(0), this);
  1356   reference.load_item();
  1358   // need to perform the null check on the reference objecy
  1359   CodeEmitInfo* info = NULL;
  1360   if (x->needs_null_check()) {
  1361     info = state_for(x);
  1364   LIR_Address* referent_field_adr =
  1365     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1367   LIR_Opr result = rlock_result(x);
  1369   __ load(referent_field_adr, result, info);
  1371   // Register the value in the referent field with the pre-barrier
  1372   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1373               result /* pre_val */,
  1374               false  /* do_load */,
  1375               false  /* patch */,
  1376               NULL   /* info */);
  1379 // Example: clazz.isInstance(object)
  1380 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1381   assert(x->number_of_arguments() == 2, "wrong type");
  1383   // TODO could try to substitute this node with an equivalent InstanceOf
  1384   // if clazz is known to be a constant Class. This will pick up newly found
  1385   // constants after HIR construction. I'll leave this to a future change.
  1387   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1388   // could follow the aastore example in a future change.
  1390   LIRItem clazz(x->argument_at(0), this);
  1391   LIRItem object(x->argument_at(1), this);
  1392   clazz.load_item();
  1393   object.load_item();
  1394   LIR_Opr result = rlock_result(x);
  1396   // need to perform null check on clazz
  1397   if (x->needs_null_check()) {
  1398     CodeEmitInfo* info = state_for(x);
  1399     __ null_check(clazz.result(), info);
  1402   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1403                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1404                                      x->type(),
  1405                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1406   __ move(call_result, result);
  1409 // Example: object.getClass ()
  1410 void LIRGenerator::do_getClass(Intrinsic* x) {
  1411   assert(x->number_of_arguments() == 1, "wrong type");
  1413   LIRItem rcvr(x->argument_at(0), this);
  1414   rcvr.load_item();
  1415   LIR_Opr temp = new_register(T_METADATA);
  1416   LIR_Opr result = rlock_result(x);
  1418   // need to perform the null check on the rcvr
  1419   CodeEmitInfo* info = NULL;
  1420   if (x->needs_null_check()) {
  1421     info = state_for(x);
  1424   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
  1425   // meaning of these two is mixed up (see JDK-8026837).
  1426   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
  1427   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1431 // Example: Thread.currentThread()
  1432 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1433   assert(x->number_of_arguments() == 0, "wrong type");
  1434   LIR_Opr reg = rlock_result(x);
  1435   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1439 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1440   assert(x->number_of_arguments() == 1, "wrong type");
  1441   LIRItem receiver(x->argument_at(0), this);
  1443   receiver.load_item();
  1444   BasicTypeList signature;
  1445   signature.append(T_OBJECT); // receiver
  1446   LIR_OprList* args = new LIR_OprList();
  1447   args->append(receiver.result());
  1448   CodeEmitInfo* info = state_for(x, x->state());
  1449   call_runtime(&signature, args,
  1450                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1451                voidType, info);
  1453   set_no_result(x);
  1457 //------------------------local access--------------------------------------
  1459 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1460   if (x->operand()->is_illegal()) {
  1461     Constant* c = x->as_Constant();
  1462     if (c != NULL) {
  1463       x->set_operand(LIR_OprFact::value_type(c->type()));
  1464     } else {
  1465       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1466       // allocate a virtual register for this local or phi
  1467       x->set_operand(rlock(x));
  1468       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1471   return x->operand();
  1475 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1476   if (opr->is_virtual()) {
  1477     return instruction_for_vreg(opr->vreg_number());
  1479   return NULL;
  1483 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1484   if (reg_num < _instruction_for_operand.length()) {
  1485     return _instruction_for_operand.at(reg_num);
  1487   return NULL;
  1491 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1492   if (_vreg_flags.size_in_bits() == 0) {
  1493     BitMap2D temp(100, num_vreg_flags);
  1494     temp.clear();
  1495     _vreg_flags = temp;
  1497   _vreg_flags.at_put_grow(vreg_num, f, true);
  1500 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1501   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1502     return false;
  1504   return _vreg_flags.at(vreg_num, f);
  1508 // Block local constant handling.  This code is useful for keeping
  1509 // unpinned constants and constants which aren't exposed in the IR in
  1510 // registers.  Unpinned Constant instructions have their operands
  1511 // cleared when the block is finished so that other blocks can't end
  1512 // up referring to their registers.
  1514 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1515   assert(!x->is_pinned(), "only for unpinned constants");
  1516   _unpinned_constants.append(x);
  1517   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1521 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1522   BasicType t = c->type();
  1523   for (int i = 0; i < _constants.length(); i++) {
  1524     LIR_Const* other = _constants.at(i);
  1525     if (t == other->type()) {
  1526       switch (t) {
  1527       case T_INT:
  1528       case T_FLOAT:
  1529         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1530         break;
  1531       case T_LONG:
  1532       case T_DOUBLE:
  1533         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1534         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1535         break;
  1536       case T_OBJECT:
  1537         if (c->as_jobject() != other->as_jobject()) continue;
  1538         break;
  1540       return _reg_for_constants.at(i);
  1544   LIR_Opr result = new_register(t);
  1545   __ move((LIR_Opr)c, result);
  1546   _constants.append(c);
  1547   _reg_for_constants.append(result);
  1548   return result;
  1551 // Various barriers
  1553 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1554                                bool do_load, bool patch, CodeEmitInfo* info) {
  1555   // Do the pre-write barrier, if any.
  1556   switch (_bs->kind()) {
  1557 #if INCLUDE_ALL_GCS
  1558     case BarrierSet::G1SATBCT:
  1559     case BarrierSet::G1SATBCTLogging:
  1560       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1561       break;
  1562 #endif // INCLUDE_ALL_GCS
  1563     case BarrierSet::CardTableModRef:
  1564     case BarrierSet::CardTableExtension:
  1565       // No pre barriers
  1566       break;
  1567     case BarrierSet::ModRef:
  1568     case BarrierSet::Other:
  1569       // No pre barriers
  1570       break;
  1571     default      :
  1572       ShouldNotReachHere();
  1577 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1578   switch (_bs->kind()) {
  1579 #if INCLUDE_ALL_GCS
  1580     case BarrierSet::G1SATBCT:
  1581     case BarrierSet::G1SATBCTLogging:
  1582       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1583       break;
  1584 #endif // INCLUDE_ALL_GCS
  1585     case BarrierSet::CardTableModRef:
  1586     case BarrierSet::CardTableExtension:
  1587       CardTableModRef_post_barrier(addr,  new_val);
  1588       break;
  1589     case BarrierSet::ModRef:
  1590     case BarrierSet::Other:
  1591       // No post barriers
  1592       break;
  1593     default      :
  1594       ShouldNotReachHere();
  1598 ////////////////////////////////////////////////////////////////////////
  1599 #if INCLUDE_ALL_GCS
  1601 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1602                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1603   // First we test whether marking is in progress.
  1604   BasicType flag_type;
  1605   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1606     flag_type = T_INT;
  1607   } else {
  1608     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1609               "Assumption");
  1610     flag_type = T_BYTE;
  1612   LIR_Opr thrd = getThreadPointer();
  1613   LIR_Address* mark_active_flag_addr =
  1614     new LIR_Address(thrd,
  1615                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1616                              PtrQueue::byte_offset_of_active()),
  1617                     flag_type);
  1618   // Read the marking-in-progress flag.
  1619   LIR_Opr flag_val = new_register(T_INT);
  1620   __ load(mark_active_flag_addr, flag_val);
  1621   //MIPS not support cmp.
  1622 #ifndef MIPS64
  1623   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1624 #endif
  1626   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1628   CodeStub* slow;
  1630   if (do_load) {
  1631     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1632     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1634     if (patch)
  1635       pre_val_patch_code = lir_patch_normal;
  1637     pre_val = new_register(T_OBJECT);
  1639     if (!addr_opr->is_address()) {
  1640       assert(addr_opr->is_register(), "must be");
  1641       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1643     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1644   } else {
  1645     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1646     assert(pre_val->is_register(), "must be");
  1647     assert(pre_val->type() == T_OBJECT, "must be an object");
  1648     assert(info == NULL, "sanity");
  1650     slow = new G1PreBarrierStub(pre_val);
  1653 #ifndef MIPS64
  1654   __ branch(lir_cond_notEqual, T_INT, slow);
  1655 #else
  1656   __ branch(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0), T_INT, slow);
  1657 #endif
  1658   __ branch_destination(slow->continuation());
  1661 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1662   // If the "new_val" is a constant NULL, no barrier is necessary.
  1663   if (new_val->is_constant() &&
  1664       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1666   if (!new_val->is_register()) {
  1667     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1668     if (new_val->is_constant()) {
  1669       __ move(new_val, new_val_reg);
  1670     } else {
  1671       __ leal(new_val, new_val_reg);
  1673     new_val = new_val_reg;
  1675   assert(new_val->is_register(), "must be a register at this point");
  1677   if (addr->is_address()) {
  1678     LIR_Address* address = addr->as_address_ptr();
  1679     LIR_Opr ptr = new_pointer_register();
  1680     if (!address->index()->is_valid() && address->disp() == 0) {
  1681       __ move(address->base(), ptr);
  1682     } else {
  1683       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1684       __ leal(addr, ptr);
  1686     addr = ptr;
  1688   assert(addr->is_register(), "must be a register at this point");
  1690   LIR_Opr xor_res = new_pointer_register();
  1691   LIR_Opr xor_shift_res = new_pointer_register();
  1692   if (TwoOperandLIRForm ) {
  1693     __ move(addr, xor_res);
  1694     __ logical_xor(xor_res, new_val, xor_res);
  1695     __ move(xor_res, xor_shift_res);
  1696     __ unsigned_shift_right(xor_shift_res,
  1697                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1698                             xor_shift_res,
  1699                             LIR_OprDesc::illegalOpr());
  1700   } else {
  1701     __ logical_xor(addr, new_val, xor_res);
  1702     __ unsigned_shift_right(xor_res,
  1703                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1704                             xor_shift_res,
  1705                             LIR_OprDesc::illegalOpr());
  1708   if (!new_val->is_register()) {
  1709     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1710     __ leal(new_val, new_val_reg);
  1711     new_val = new_val_reg;
  1713   assert(new_val->is_register(), "must be a register at this point");
  1715 #ifndef MIPS64
  1716   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1718 #endif
  1719   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1720 #ifndef MIPS64
  1721   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1722 #else
  1723   __ branch(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst((intptr_t)NULL_WORD), LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1724 #endif
  1725   __ branch_destination(slow->continuation());
  1728 #endif // INCLUDE_ALL_GCS
  1729 ////////////////////////////////////////////////////////////////////////
  1731 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1733   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1734   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1735   if (addr->is_address()) {
  1736     LIR_Address* address = addr->as_address_ptr();
  1737     // ptr cannot be an object because we use this barrier for array card marks
  1738     // and addr can point in the middle of an array.
  1739     LIR_Opr ptr = new_pointer_register();
  1740     if (!address->index()->is_valid() && address->disp() == 0) {
  1741       __ move(address->base(), ptr);
  1742     } else {
  1743       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1744       __ leal(addr, ptr);
  1746     addr = ptr;
  1748   assert(addr->is_register(), "must be a register at this point");
  1750 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
  1751   CardTableModRef_post_barrier_helper(addr, card_table_base);
  1752 #else
  1753   LIR_Opr tmp = new_pointer_register();
  1754   if (TwoOperandLIRForm) {
  1755     __ move(addr, tmp);
  1756     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1757   } else {
  1758     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1760   if (can_inline_as_constant(card_table_base)) {
  1761     __ move(LIR_OprFact::intConst(0),
  1762               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1763   } else {
  1764 #ifndef MIPS64
  1765     __ move(LIR_OprFact::intConst(0),
  1766               new LIR_Address(tmp, load_constant(card_table_base),
  1767                               T_BYTE));
  1768 #else
  1769     __ add(tmp, load_constant(card_table_base), tmp);
  1770     __ move(LIR_OprFact::intConst(0),
  1771               new LIR_Address(tmp, 0,
  1772                               T_BYTE));
  1773 #endif
  1775 #endif
  1779 //------------------------field access--------------------------------------
  1781 // Comment copied form templateTable_i486.cpp
  1782 // ----------------------------------------------------------------------------
  1783 // Volatile variables demand their effects be made known to all CPU's in
  1784 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1785 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1786 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1787 // reorder volatile references, the hardware also must not reorder them).
  1788 //
  1789 // According to the new Java Memory Model (JMM):
  1790 // (1) All volatiles are serialized wrt to each other.
  1791 // ALSO reads & writes act as aquire & release, so:
  1792 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1793 // the read float up to before the read.  It's OK for non-volatile memory refs
  1794 // that happen before the volatile read to float down below it.
  1795 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1796 // that happen BEFORE the write float down to after the write.  It's OK for
  1797 // non-volatile memory refs that happen after the volatile write to float up
  1798 // before it.
  1799 //
  1800 // We only put in barriers around volatile refs (they are expensive), not
  1801 // _between_ memory refs (that would require us to track the flavor of the
  1802 // previous memory refs).  Requirements (2) and (3) require some barriers
  1803 // before volatile stores and after volatile loads.  These nearly cover
  1804 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1805 // case is placed after volatile-stores although it could just as well go
  1806 // before volatile-loads.
  1809 void LIRGenerator::do_StoreField(StoreField* x) {
  1810   bool needs_patching = x->needs_patching();
  1811   bool is_volatile = x->field()->is_volatile();
  1812   BasicType field_type = x->field_type();
  1813   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1815   CodeEmitInfo* info = NULL;
  1816   if (needs_patching) {
  1817     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1818     info = state_for(x, x->state_before());
  1819   } else if (x->needs_null_check()) {
  1820     NullCheck* nc = x->explicit_null_check();
  1821     if (nc == NULL) {
  1822       info = state_for(x);
  1823     } else {
  1824       info = state_for(nc);
  1829   LIRItem object(x->obj(), this);
  1830   LIRItem value(x->value(),  this);
  1832   object.load_item();
  1834   if (is_volatile || needs_patching) {
  1835     // load item if field is volatile (fewer special cases for volatiles)
  1836     // load item if field not initialized
  1837     // load item if field not constant
  1838     // because of code patching we cannot inline constants
  1839     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1840       value.load_byte_item();
  1841     } else  {
  1842       value.load_item();
  1844   } else {
  1845     value.load_for_store(field_type);
  1848   set_no_result(x);
  1850 #ifndef PRODUCT
  1851   if (PrintNotLoaded && needs_patching) {
  1852     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1853                   x->is_static() ?  "static" : "field", x->printable_bci());
  1855 #endif
  1857   if (x->needs_null_check() &&
  1858       (needs_patching ||
  1859        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1860     // emit an explicit null check because the offset is too large
  1861     __ null_check(object.result(), new CodeEmitInfo(info));
  1864   LIR_Address* address;
  1865   if (needs_patching) {
  1866     // we need to patch the offset in the instruction so don't allow
  1867     // generate_address to try to be smart about emitting the -1.
  1868     // Otherwise the patching code won't know how to find the
  1869     // instruction to patch.
  1870     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1871   } else {
  1872     address = generate_address(object.result(), x->offset(), field_type);
  1875   if (is_volatile && os::is_MP()) {
  1876     __ membar_release();
  1879   if (is_oop) {
  1880     // Do the pre-write barrier, if any.
  1881     pre_barrier(LIR_OprFact::address(address),
  1882                 LIR_OprFact::illegalOpr /* pre_val */,
  1883                 true /* do_load*/,
  1884                 needs_patching,
  1885                 (info ? new CodeEmitInfo(info) : NULL));
  1888   if (is_volatile && !needs_patching) {
  1889     volatile_field_store(value.result(), address, info);
  1890   } else {
  1891     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1892     __ store(value.result(), address, info, patch_code);
  1895   if (is_oop) {
  1896     // Store to object so mark the card of the header
  1897     post_barrier(object.result(), value.result());
  1900   if (is_volatile && os::is_MP()) {
  1901     __ membar();
  1906 void LIRGenerator::do_LoadField(LoadField* x) {
  1907   bool needs_patching = x->needs_patching();
  1908   bool is_volatile = x->field()->is_volatile();
  1909   BasicType field_type = x->field_type();
  1911   CodeEmitInfo* info = NULL;
  1912   if (needs_patching) {
  1913     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1914     info = state_for(x, x->state_before());
  1915   } else if (x->needs_null_check()) {
  1916     NullCheck* nc = x->explicit_null_check();
  1917     if (nc == NULL) {
  1918       info = state_for(x);
  1919     } else {
  1920       info = state_for(nc);
  1924   LIRItem object(x->obj(), this);
  1926   object.load_item();
  1928 #ifndef PRODUCT
  1929   if (PrintNotLoaded && needs_patching) {
  1930     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1931                   x->is_static() ?  "static" : "field", x->printable_bci());
  1933 #endif
  1935   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
  1936   if (x->needs_null_check() &&
  1937       (needs_patching ||
  1938        MacroAssembler::needs_explicit_null_check(x->offset()) ||
  1939        stress_deopt)) {
  1940     LIR_Opr obj = object.result();
  1941     if (stress_deopt) {
  1942       obj = new_register(T_OBJECT);
  1943       __ move(LIR_OprFact::oopConst(NULL), obj);
  1945     // emit an explicit null check because the offset is too large
  1946     __ null_check(obj, new CodeEmitInfo(info));
  1949   LIR_Opr reg = rlock_result(x, field_type);
  1950   LIR_Address* address;
  1951   if (needs_patching) {
  1952     // we need to patch the offset in the instruction so don't allow
  1953     // generate_address to try to be smart about emitting the -1.
  1954     // Otherwise the patching code won't know how to find the
  1955     // instruction to patch.
  1956     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1957   } else {
  1958     address = generate_address(object.result(), x->offset(), field_type);
  1961   if (is_volatile && !needs_patching) {
  1962     volatile_field_load(address, reg, info);
  1963   } else {
  1964     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1965     __ load(address, reg, info, patch_code);
  1968   if (is_volatile && os::is_MP()) {
  1969     __ membar_acquire();
  1974 //------------------------java.nio.Buffer.checkIndex------------------------
  1976 // int java.nio.Buffer.checkIndex(int)
  1977 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1978   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1979   // the buffer is non-null (because checkIndex is package-private and
  1980   // only called from within other methods in the buffer).
  1981   assert(x->number_of_arguments() == 2, "wrong type");
  1982   LIRItem buf  (x->argument_at(0), this);
  1983   LIRItem index(x->argument_at(1), this);
  1984   buf.load_item();
  1985   index.load_item();
  1987   LIR_Opr result = rlock_result(x);
  1988   if (GenerateRangeChecks) {
  1989     CodeEmitInfo* info = state_for(x);
  1990     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1991     if (index.result()->is_constant()) {
  1992 #ifndef MIPS64
  1993       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1994       __ branch(lir_cond_belowEqual, T_INT, stub);
  1995 #else
  1996             LIR_Opr left = LIR_OprFact::address(new LIR_Address( buf.result(),
  1997                                                 java_nio_Buffer::limit_offset(),T_INT));
  1998         LIR_Opr right = LIR_OprFact::intConst(index.result()->as_jint());
  1999       __ null_check_for_branch(lir_cond_belowEqual, left, right, info);
  2000             __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch
  2002 #endif
  2003     } else {
  2004 #ifndef MIPS64
  2005       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  2006                   java_nio_Buffer::limit_offset(), T_INT, info);
  2007       __ branch(lir_cond_aboveEqual, T_INT, stub);
  2008 #else
  2009             LIR_Opr right = LIR_OprFact::address(new LIR_Address( buf.result(), java_nio_Buffer::limit_offset(),T_INT));
  2010             LIR_Opr left =  index.result();
  2011       __ null_check_for_branch(lir_cond_aboveEqual, left, right, info);
  2012             __ branch(lir_cond_aboveEqual, left, right , T_INT, stub); // forward branch
  2013 #endif
  2015     __ move(index.result(), result);
  2016   } else {
  2017     // Just load the index into the result register
  2018     __ move(index.result(), result);
  2023 //------------------------array access--------------------------------------
  2026 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  2027   LIRItem array(x->array(), this);
  2028   array.load_item();
  2029   LIR_Opr reg = rlock_result(x);
  2031   CodeEmitInfo* info = NULL;
  2032   if (x->needs_null_check()) {
  2033     NullCheck* nc = x->explicit_null_check();
  2034     if (nc == NULL) {
  2035       info = state_for(x);
  2036     } else {
  2037       info = state_for(nc);
  2039     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
  2040       LIR_Opr obj = new_register(T_OBJECT);
  2041       __ move(LIR_OprFact::oopConst(NULL), obj);
  2042       __ null_check(obj, new CodeEmitInfo(info));
  2045   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  2049 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  2050   bool use_length = x->length() != NULL;
  2051   LIRItem array(x->array(), this);
  2052   LIRItem index(x->index(), this);
  2053   LIRItem length(this);
  2054   bool needs_range_check = x->compute_needs_range_check();
  2056   if (use_length && needs_range_check) {
  2057     length.set_instruction(x->length());
  2058     length.load_item();
  2061   array.load_item();
  2062   if (index.is_constant() && can_inline_as_constant(x->index())) {
  2063     // let it be a constant
  2064     index.dont_load_item();
  2065   } else {
  2066     index.load_item();
  2069   CodeEmitInfo* range_check_info = state_for(x);
  2070   CodeEmitInfo* null_check_info = NULL;
  2071   if (x->needs_null_check()) {
  2072     NullCheck* nc = x->explicit_null_check();
  2073     if (nc != NULL) {
  2074       null_check_info = state_for(nc);
  2075     } else {
  2076       null_check_info = range_check_info;
  2078     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
  2079       LIR_Opr obj = new_register(T_OBJECT);
  2080       __ move(LIR_OprFact::oopConst(NULL), obj);
  2081       __ null_check(obj, new CodeEmitInfo(null_check_info));
  2085   // emit array address setup early so it schedules better
  2086   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  2088   if (GenerateRangeChecks && needs_range_check) {
  2089     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
  2090 #ifndef MIPS64
  2091       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
  2092 #else
  2093      tty->print_cr("LIRGenerator::do_LoadIndexed(LoadIndexed* x) unimplemented yet!");
  2094      Unimplemented();
  2095 #endif
  2096     } else if (use_length) {
  2097       // TODO: use a (modified) version of array_range_check that does not require a
  2098       //       constant length to be loaded to a register
  2099 #ifndef MIPS64
  2100       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  2101       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  2102 #else
  2103       __ branch(lir_cond_belowEqual, length.result(), index.result(),T_INT, new RangeCheckStub(range_check_info, index.result()));
  2104 #endif
  2105     } else {
  2106       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  2107       // The range check performs the null check, so clear it out for the load
  2108       null_check_info = NULL;
  2112   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  2116 void LIRGenerator::do_NullCheck(NullCheck* x) {
  2117   if (x->can_trap()) {
  2118     LIRItem value(x->obj(), this);
  2119     value.load_item();
  2120     CodeEmitInfo* info = state_for(x);
  2121     __ null_check(value.result(), info);
  2126 void LIRGenerator::do_TypeCast(TypeCast* x) {
  2127   LIRItem value(x->obj(), this);
  2128   value.load_item();
  2129   // the result is the same as from the node we are casting
  2130   set_result(x, value.result());
  2134 void LIRGenerator::do_Throw(Throw* x) {
  2135   LIRItem exception(x->exception(), this);
  2136   exception.load_item();
  2137   set_no_result(x);
  2138   LIR_Opr exception_opr = exception.result();
  2139   CodeEmitInfo* info = state_for(x, x->state());
  2141 #ifndef PRODUCT
  2142   if (PrintC1Statistics) {
  2143     increment_counter(Runtime1::throw_count_address(), T_INT);
  2145 #endif
  2147   // check if the instruction has an xhandler in any of the nested scopes
  2148   bool unwind = false;
  2149   if (info->exception_handlers()->length() == 0) {
  2150     // this throw is not inside an xhandler
  2151     unwind = true;
  2152   } else {
  2153     // get some idea of the throw type
  2154     bool type_is_exact = true;
  2155     ciType* throw_type = x->exception()->exact_type();
  2156     if (throw_type == NULL) {
  2157       type_is_exact = false;
  2158       throw_type = x->exception()->declared_type();
  2160     if (throw_type != NULL && throw_type->is_instance_klass()) {
  2161       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  2162       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  2166   // do null check before moving exception oop into fixed register
  2167   // to avoid a fixed interval with an oop during the null check.
  2168   // Use a copy of the CodeEmitInfo because debug information is
  2169   // different for null_check and throw.
  2170   if (GenerateCompilerNullChecks &&
  2171       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  2172     // if the exception object wasn't created using new then it might be null.
  2173     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  2176   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  2177     // we need to go through the exception lookup path to get JVMTI
  2178     // notification done
  2179     unwind = false;
  2182   // move exception oop into fixed register
  2183   __ move(exception_opr, exceptionOopOpr());
  2185   if (unwind) {
  2186     __ unwind_exception(exceptionOopOpr());
  2187   } else {
  2188     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2193 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2194   LIRItem input(x->input(), this);
  2195   input.load_item();
  2196   LIR_Opr input_opr = input.result();
  2197   assert(input_opr->is_register(), "why round if value is not in a register?");
  2198   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2199   if (input_opr->is_single_fpu()) {
  2200     set_result(x, round_item(input_opr)); // This code path not currently taken
  2201   } else {
  2202     LIR_Opr result = new_register(T_DOUBLE);
  2203     set_vreg_flag(result, must_start_in_memory);
  2204     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2205     set_result(x, result);
  2209 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
  2210 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
  2211 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2212   LIRItem base(x->base(), this);
  2213   LIRItem idx(this);
  2215   base.load_item();
  2216   if (x->has_index()) {
  2217     idx.set_instruction(x->index());
  2218     idx.load_nonconstant();
  2221   LIR_Opr reg = rlock_result(x, x->basic_type());
  2223   int   log2_scale = 0;
  2224   if (x->has_index()) {
  2225     log2_scale = x->log2_scale();
  2228   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2230   LIR_Opr base_op = base.result();
  2231   LIR_Opr index_op = idx.result();
  2232 #ifndef _LP64
  2233   if (base_op->type() == T_LONG) {
  2234     base_op = new_register(T_INT);
  2235     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2237   if (x->has_index()) {
  2238     if (index_op->type() == T_LONG) {
  2239       LIR_Opr long_index_op = index_op;
  2240       if (index_op->is_constant()) {
  2241         long_index_op = new_register(T_LONG);
  2242         __ move(index_op, long_index_op);
  2244       index_op = new_register(T_INT);
  2245       __ convert(Bytecodes::_l2i, long_index_op, index_op);
  2246     } else {
  2247       assert(x->index()->type()->tag() == intTag, "must be");
  2250   // At this point base and index should be all ints.
  2251   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2252   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
  2253 #else
  2254   if (x->has_index()) {
  2255     if (index_op->type() == T_INT) {
  2256       if (!index_op->is_constant()) {
  2257         index_op = new_register(T_LONG);
  2258         __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2260     } else {
  2261       assert(index_op->type() == T_LONG, "must be");
  2262       if (index_op->is_constant()) {
  2263         index_op = new_register(T_LONG);
  2264         __ move(idx.result(), index_op);
  2268   // At this point base is a long non-constant
  2269   // Index is a long register or a int constant.
  2270   // We allow the constant to stay an int because that would allow us a more compact encoding by
  2271   // embedding an immediate offset in the address expression. If we have a long constant, we have to
  2272   // move it into a register first.
  2273   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
  2274   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
  2275                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
  2276 #endif
  2278   BasicType dst_type = x->basic_type();
  2280   LIR_Address* addr;
  2281   if (index_op->is_constant()) {
  2282     assert(log2_scale == 0, "must not have a scale");
  2283     assert(index_op->type() == T_INT, "only int constants supported");
  2284     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2285   } else {
  2286 #ifdef X86
  2287     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2288 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
  2289     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2290 #else
  2291     if (index_op->is_illegal() || log2_scale == 0) {
  2292 #ifndef MIPS64
  2293       addr = new LIR_Address(base_op, index_op, dst_type);
  2294 #else
  2295    #ifdef _LP64
  2296       LIR_Opr ptr = new_register(T_LONG);
  2297    #else
  2298       LIR_Opr ptr = new_register(T_INT);
  2299    #endif
  2300       __ move(base_op, ptr);
  2301       if(index_op -> is_valid())
  2302          __ add(ptr, index_op, ptr);
  2303       addr = new LIR_Address(ptr, 0, dst_type);
  2304 #endif
  2305     } else {
  2306       LIR_Opr tmp = new_pointer_register();
  2307       __ shift_left(index_op, log2_scale, tmp);
  2308       addr = new LIR_Address(base_op, tmp, dst_type);
  2310 #endif
  2313   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2314     __ unaligned_move(addr, reg);
  2315   } else {
  2316     if (dst_type == T_OBJECT && x->is_wide()) {
  2317       __ move_wide(addr, reg);
  2318     } else {
  2319       __ move(addr, reg);
  2325 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2326   int  log2_scale = 0;
  2327   BasicType type = x->basic_type();
  2329   if (x->has_index()) {
  2330     log2_scale = x->log2_scale();
  2333   LIRItem base(x->base(), this);
  2334   LIRItem value(x->value(), this);
  2335   LIRItem idx(this);
  2337   base.load_item();
  2338   if (x->has_index()) {
  2339     idx.set_instruction(x->index());
  2340     idx.load_item();
  2343   if (type == T_BYTE || type == T_BOOLEAN) {
  2344     value.load_byte_item();
  2345   } else {
  2346     value.load_item();
  2349   set_no_result(x);
  2351   LIR_Opr base_op = base.result();
  2352   LIR_Opr index_op = idx.result();
  2354 #ifdef GENERATE_ADDRESS_IS_PREFERRED
  2355   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
  2356 #else
  2357 #ifndef _LP64
  2358   if (base_op->type() == T_LONG) {
  2359     base_op = new_register(T_INT);
  2360     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2362   if (x->has_index()) {
  2363     if (index_op->type() == T_LONG) {
  2364       index_op = new_register(T_INT);
  2365       __ convert(Bytecodes::_l2i, idx.result(), index_op);
  2368   // At this point base and index should be all ints and not constants
  2369   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2370   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
  2371 #else
  2372   if (x->has_index()) {
  2373     if (index_op->type() == T_INT) {
  2374       index_op = new_register(T_LONG);
  2375       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2378   // At this point base and index are long and non-constant
  2379   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
  2380   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
  2381 #endif
  2383   if (log2_scale != 0) {
  2384     // temporary fix (platform dependent code without shift on Intel would be better)
  2385     // TODO: ARM also allows embedded shift in the address
  2386     LIR_Opr tmp = new_pointer_register();
  2387     if (TwoOperandLIRForm) {
  2388       __ move(index_op, tmp);
  2389       index_op = tmp;
  2391     __ shift_left(index_op, log2_scale, tmp);
  2392     if (!TwoOperandLIRForm) {
  2393       index_op = tmp;
  2397   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2398 #endif // !GENERATE_ADDRESS_IS_PREFERRED
  2399   __ move(value.result(), addr);
  2403 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2404   BasicType type = x->basic_type();
  2405   LIRItem src(x->object(), this);
  2406   LIRItem off(x->offset(), this);
  2408   off.load_item();
  2409   src.load_item();
  2411   LIR_Opr value = rlock_result(x, x->basic_type());
  2413   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2415 #if INCLUDE_ALL_GCS
  2416   // We might be reading the value of the referent field of a
  2417   // Reference object in order to attach it back to the live
  2418   // object graph. If G1 is enabled then we need to record
  2419   // the value that is being returned in an SATB log buffer.
  2420   //
  2421   // We need to generate code similar to the following...
  2422   //
  2423   // if (offset == java_lang_ref_Reference::referent_offset) {
  2424   //   if (src != NULL) {
  2425   //     if (klass(src)->reference_type() != REF_NONE) {
  2426   //       pre_barrier(..., value, ...);
  2427   //     }
  2428   //   }
  2429   // }
  2431   if (UseG1GC && type == T_OBJECT) {
  2432     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2433     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2434     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2435     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2437     if (off.is_constant()) {
  2438       jlong off_con = (off.type()->is_int() ?
  2439                         (jlong) off.get_jint_constant() :
  2440                         off.get_jlong_constant());
  2443       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2444         // The constant offset is something other than referent_offset.
  2445         // We can skip generating/checking the remaining guards and
  2446         // skip generation of the code stub.
  2447         gen_pre_barrier = false;
  2448       } else {
  2449         // The constant offset is the same as referent_offset -
  2450         // we do not need to generate a runtime offset check.
  2451         gen_offset_check = false;
  2455     // We don't need to generate stub if the source object is an array
  2456     if (gen_pre_barrier && src.type()->is_array()) {
  2457       gen_pre_barrier = false;
  2460     if (gen_pre_barrier) {
  2461       // We still need to continue with the checks.
  2462       if (src.is_constant()) {
  2463         ciObject* src_con = src.get_jobject_constant();
  2464         guarantee(src_con != NULL, "no source constant");
  2466         if (src_con->is_null_object()) {
  2467           // The constant src object is null - We can skip
  2468           // generating the code stub.
  2469           gen_pre_barrier = false;
  2470         } else {
  2471           // Non-null constant source object. We still have to generate
  2472           // the slow stub - but we don't need to generate the runtime
  2473           // null object check.
  2474           gen_source_check = false;
  2478     if (gen_pre_barrier && !PatchALot) {
  2479       // Can the klass of object be statically determined to be
  2480       // a sub-class of Reference?
  2481       ciType* type = src.value()->declared_type();
  2482       if ((type != NULL) && type->is_loaded()) {
  2483         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2484           gen_type_check = false;
  2485         } else if (type->is_klass() &&
  2486                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2487           // Not Reference and not Object klass.
  2488           gen_pre_barrier = false;
  2493     if (gen_pre_barrier) {
  2494       LabelObj* Lcont = new LabelObj();
  2496       // We can have generate one runtime check here. Let's start with
  2497       // the offset check.
  2498       if (gen_offset_check) {
  2499         // if (offset != referent_offset) -> continue
  2500         // If offset is an int then we can do the comparison with the
  2501         // referent_offset constant; otherwise we need to move
  2502         // referent_offset into a temporary register and generate
  2503         // a reg-reg compare.
  2505         LIR_Opr referent_off;
  2507         if (off.type()->is_int()) {
  2508           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2509         } else {
  2510           assert(off.type()->is_long(), "what else?");
  2511           referent_off = new_register(T_LONG);
  2512           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2514 #ifndef MIPS64
  2515         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2516         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2517 #else
  2518         __ branch(lir_cond_notEqual, off.result(), referent_off,  Lcont->label());
  2519 #endif
  2521       if (gen_source_check) {
  2522         // offset is a const and equals referent offset
  2523         // if (source == null) -> continue
  2524 #ifndef MIPS64
  2525         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2526         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2527 #else
  2528         __ branch(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL),  Lcont->label());
  2529 #endif
  2531       LIR_Opr src_klass = new_register(T_OBJECT);
  2532       if (gen_type_check) {
  2533         // We have determined that offset == referent_offset && src != null.
  2534         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2535         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
  2536         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2537         LIR_Opr reference_type = new_register(T_INT);
  2538         __ move(reference_type_addr, reference_type);
  2539 #ifndef MIPS64
  2540         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2541         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2542 #else
  2543         __ branch(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE),  Lcont->label());
  2544 #endif
  2547         // We have determined that src->_klass->_reference_type != REF_NONE
  2548         // so register the value in the referent field with the pre-barrier.
  2549         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2550                     value  /* pre_val */,
  2551                     false  /* do_load */,
  2552                     false  /* patch */,
  2553                     NULL   /* info */);
  2555       __ branch_destination(Lcont->label());
  2558 #endif // INCLUDE_ALL_GCS
  2560   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2564 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2565   BasicType type = x->basic_type();
  2566   LIRItem src(x->object(), this);
  2567   LIRItem off(x->offset(), this);
  2568   LIRItem data(x->value(), this);
  2570   src.load_item();
  2571   if (type == T_BOOLEAN || type == T_BYTE) {
  2572     data.load_byte_item();
  2573   } else {
  2574     data.load_item();
  2576   off.load_item();
  2578   set_no_result(x);
  2580   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2581   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2582   if (x->is_volatile() && os::is_MP()) __ membar();
  2586 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2587   LIRItem src(x->object(), this);
  2588   LIRItem off(x->offset(), this);
  2590   src.load_item();
  2591   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2592     // let it be a constant
  2593     off.dont_load_item();
  2594   } else {
  2595     off.load_item();
  2598   set_no_result(x);
  2600   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2601   __ prefetch(addr, is_store);
  2605 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2606   do_UnsafePrefetch(x, false);
  2610 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2611   do_UnsafePrefetch(x, true);
  2615 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2616   int lng = x->length();
  2618   for (int i = 0; i < lng; i++) {
  2619     SwitchRange* one_range = x->at(i);
  2620     int low_key = one_range->low_key();
  2621     int high_key = one_range->high_key();
  2622     BlockBegin* dest = one_range->sux();
  2623     if (low_key == high_key) {
  2624 #ifndef MIPS64
  2625       __ cmp(lir_cond_equal, value, low_key);
  2626       __ branch(lir_cond_equal, T_INT, dest);
  2627 #else
  2628       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest);
  2629 #endif
  2630     } else if (high_key - low_key == 1) {
  2631 #ifndef MIPS64
  2632       __ cmp(lir_cond_equal, value, low_key);
  2633       __ branch(lir_cond_equal, T_INT, dest);
  2634       __ cmp(lir_cond_equal, value, high_key);
  2635       __ branch(lir_cond_equal, T_INT, dest);
  2636 #else
  2637       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest);
  2638       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(high_key), T_INT, dest);
  2640 #endif
  2641     } else {
  2642       LabelObj* L = new LabelObj();
  2643 #ifndef MIPS64
  2644       __ cmp(lir_cond_less, value, low_key);
  2645       __ branch(lir_cond_less, T_INT, L->label());
  2646       __ cmp(lir_cond_lessEqual, value, high_key);
  2647       __ branch(lir_cond_lessEqual, T_INT, dest);
  2648       __ branch_destination(L->label());
  2649 #else
  2650       __ branch(lir_cond_less, value, LIR_OprFact::intConst(low_key), L->label());
  2651       __ branch(lir_cond_lessEqual, value, LIR_OprFact::intConst(high_key), T_INT, dest);
  2652       __ branch_destination(L->label());
  2653 #endif
  2656   __ jump(default_sux);
  2660 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2661   SwitchRangeList* res = new SwitchRangeList();
  2662   int len = x->length();
  2663   if (len > 0) {
  2664     BlockBegin* sux = x->sux_at(0);
  2665     int key = x->lo_key();
  2666     BlockBegin* default_sux = x->default_sux();
  2667     SwitchRange* range = new SwitchRange(key, sux);
  2668     for (int i = 0; i < len; i++, key++) {
  2669       BlockBegin* new_sux = x->sux_at(i);
  2670       if (sux == new_sux) {
  2671         // still in same range
  2672         range->set_high_key(key);
  2673       } else {
  2674         // skip tests which explicitly dispatch to the default
  2675         if (sux != default_sux) {
  2676           res->append(range);
  2678         range = new SwitchRange(key, new_sux);
  2680       sux = new_sux;
  2682     if (res->length() == 0 || res->last() != range)  res->append(range);
  2684   return res;
  2688 // we expect the keys to be sorted by increasing value
  2689 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2690   SwitchRangeList* res = new SwitchRangeList();
  2691   int len = x->length();
  2692   if (len > 0) {
  2693     BlockBegin* default_sux = x->default_sux();
  2694     int key = x->key_at(0);
  2695     BlockBegin* sux = x->sux_at(0);
  2696     SwitchRange* range = new SwitchRange(key, sux);
  2697     for (int i = 1; i < len; i++) {
  2698       int new_key = x->key_at(i);
  2699       BlockBegin* new_sux = x->sux_at(i);
  2700       if (key+1 == new_key && sux == new_sux) {
  2701         // still in same range
  2702         range->set_high_key(new_key);
  2703       } else {
  2704         // skip tests which explicitly dispatch to the default
  2705         if (range->sux() != default_sux) {
  2706           res->append(range);
  2708         range = new SwitchRange(new_key, new_sux);
  2710       key = new_key;
  2711       sux = new_sux;
  2713     if (res->length() == 0 || res->last() != range)  res->append(range);
  2715   return res;
  2719 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2720   LIRItem tag(x->tag(), this);
  2721   tag.load_item();
  2722   set_no_result(x);
  2724   if (x->is_safepoint()) {
  2725     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2728   // move values into phi locations
  2729   move_to_phi(x->state());
  2731   int lo_key = x->lo_key();
  2732   int hi_key = x->hi_key();
  2733   int len = x->length();
  2734   LIR_Opr value = tag.result();
  2735   if (UseTableRanges) {
  2736     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2737   } else {
  2738     for (int i = 0; i < len; i++) {
  2739 #ifndef MIPS64
  2740       __ cmp(lir_cond_equal, value, i + lo_key);
  2741       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2742 #else
  2743       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(i+lo_key), T_INT, x->sux_at(i));
  2744 #endif
  2746     __ jump(x->default_sux());
  2751 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2752   LIRItem tag(x->tag(), this);
  2753   tag.load_item();
  2754   set_no_result(x);
  2756   if (x->is_safepoint()) {
  2757     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2760   // move values into phi locations
  2761   move_to_phi(x->state());
  2763   LIR_Opr value = tag.result();
  2764   if (UseTableRanges) {
  2765     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2766   } else {
  2767     int len = x->length();
  2768     for (int i = 0; i < len; i++) {
  2769 #ifndef MIPS64
  2770       __ cmp(lir_cond_equal, value, x->key_at(i));
  2771       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2772 #else
  2773       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(x->key_at(i)), T_INT, x->sux_at(i));
  2774 #endif
  2776     __ jump(x->default_sux());
  2781 void LIRGenerator::do_Goto(Goto* x) {
  2782   set_no_result(x);
  2784   if (block()->next()->as_OsrEntry()) {
  2785     // need to free up storage used for OSR entry point
  2786     LIR_Opr osrBuffer = block()->next()->operand();
  2787     BasicTypeList signature;
  2788     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
  2789     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2790     __ move(osrBuffer, cc->args()->at(0));
  2791     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2792                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2795   if (x->is_safepoint()) {
  2796     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2798     // increment backedge counter if needed
  2799     CodeEmitInfo* info = state_for(x, state);
  2800     increment_backedge_counter(info, x->profiled_bci());
  2801     CodeEmitInfo* safepoint_info = state_for(x, state);
  2802     __ safepoint(safepoint_poll_register(), safepoint_info);
  2805   // Gotos can be folded Ifs, handle this case.
  2806   if (x->should_profile()) {
  2807     ciMethod* method = x->profiled_method();
  2808     assert(method != NULL, "method should be set if branch is profiled");
  2809     ciMethodData* md = method->method_data_or_null();
  2810     assert(md != NULL, "Sanity");
  2811     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2812     assert(data != NULL, "must have profiling data");
  2813     int offset;
  2814     if (x->direction() == Goto::taken) {
  2815       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2816       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2817     } else if (x->direction() == Goto::not_taken) {
  2818       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2819       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2820     } else {
  2821       assert(data->is_JumpData(), "need JumpData for branches");
  2822       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2824     LIR_Opr md_reg = new_register(T_METADATA);
  2825     __ metadata2reg(md->constant_encoding(), md_reg);
  2827     increment_counter(new LIR_Address(md_reg, offset,
  2828                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2831   // emit phi-instruction move after safepoint since this simplifies
  2832   // describing the state as the safepoint.
  2833   move_to_phi(x->state());
  2835   __ jump(x->default_sux());
  2838 /**
  2839  * Emit profiling code if needed for arguments, parameters, return value types
  2841  * @param md                    MDO the code will update at runtime
  2842  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
  2843  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
  2844  * @param profiled_k            current profile
  2845  * @param obj                   IR node for the object to be profiled
  2846  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
  2847  *                              Set once we find an update to make and use for next ones.
  2848  * @param not_null              true if we know obj cannot be null
  2849  * @param signature_at_call_k   signature at call for obj
  2850  * @param callee_signature_k    signature of callee for obj
  2851  *                              at call and callee signatures differ at method handle call
  2852  * @return                      the only klass we know will ever be seen at this profile point
  2853  */
  2854 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
  2855                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
  2856                                     ciKlass* callee_signature_k) {
  2857   ciKlass* result = NULL;
  2858   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
  2859   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
  2860   // known not to be null or null bit already set and already set to
  2861   // unknown: nothing we can do to improve profiling
  2862   if (!do_null && !do_update) {
  2863     return result;
  2866   ciKlass* exact_klass = NULL;
  2867   Compilation* comp = Compilation::current();
  2868   if (do_update) {
  2869     // try to find exact type, using CHA if possible, so that loading
  2870     // the klass from the object can be avoided
  2871     ciType* type = obj->exact_type();
  2872     if (type == NULL) {
  2873       type = obj->declared_type();
  2874       type = comp->cha_exact_type(type);
  2876     assert(type == NULL || type->is_klass(), "type should be class");
  2877     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
  2879     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2882   if (!do_null && !do_update) {
  2883     return result;
  2886   ciKlass* exact_signature_k = NULL;
  2887   if (do_update) {
  2888     // Is the type from the signature exact (the only one possible)?
  2889     exact_signature_k = signature_at_call_k->exact_klass();
  2890     if (exact_signature_k == NULL) {
  2891       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
  2892     } else {
  2893       result = exact_signature_k;
  2894       // Known statically. No need to emit any code: prevent
  2895       // LIR_Assembler::emit_profile_type() from emitting useless code
  2896       profiled_k = ciTypeEntries::with_status(result, profiled_k);
  2898     // exact_klass and exact_signature_k can be both non NULL but
  2899     // different if exact_klass is loaded after the ciObject for
  2900     // exact_signature_k is created.
  2901     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
  2902       // sometimes the type of the signature is better than the best type
  2903       // the compiler has
  2904       exact_klass = exact_signature_k;
  2906     if (callee_signature_k != NULL &&
  2907         callee_signature_k != signature_at_call_k) {
  2908       ciKlass* improved_klass = callee_signature_k->exact_klass();
  2909       if (improved_klass == NULL) {
  2910         improved_klass = comp->cha_exact_type(callee_signature_k);
  2912       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
  2913         exact_klass = exact_signature_k;
  2916     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2919   if (!do_null && !do_update) {
  2920     return result;
  2923   if (mdp == LIR_OprFact::illegalOpr) {
  2924     mdp = new_register(T_METADATA);
  2925     __ metadata2reg(md->constant_encoding(), mdp);
  2926     if (md_base_offset != 0) {
  2927       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
  2928       mdp = new_pointer_register();
  2929       __ leal(LIR_OprFact::address(base_type_address), mdp);
  2932   LIRItem value(obj, this);
  2933   value.load_item();
  2934   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
  2935                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
  2936   return result;
  2939 // profile parameters on entry to the root of the compilation
  2940 void LIRGenerator::profile_parameters(Base* x) {
  2941   if (compilation()->profile_parameters()) {
  2942     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2943     ciMethodData* md = scope()->method()->method_data_or_null();
  2944     assert(md != NULL, "Sanity");
  2946     if (md->parameters_type_data() != NULL) {
  2947       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  2948       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  2949       LIR_Opr mdp = LIR_OprFact::illegalOpr;
  2950       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
  2951         LIR_Opr src = args->at(i);
  2952         assert(!src->is_illegal(), "check");
  2953         BasicType t = src->type();
  2954         if (t == T_OBJECT || t == T_ARRAY) {
  2955           intptr_t profiled_k = parameters->type(j);
  2956           Local* local = x->state()->local_at(java_index)->as_Local();
  2957           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  2958                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
  2959                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
  2960           // If the profile is known statically set it once for all and do not emit any code
  2961           if (exact != NULL) {
  2962             md->set_parameter_type(j, exact);
  2964           j++;
  2966         java_index += type2size[t];
  2972 void LIRGenerator::do_Base(Base* x) {
  2973   __ std_entry(LIR_OprFact::illegalOpr);
  2974   // Emit moves from physical registers / stack slots to virtual registers
  2975   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2976   IRScope* irScope = compilation()->hir()->top_scope();
  2977   int java_index = 0;
  2978   for (int i = 0; i < args->length(); i++) {
  2979     LIR_Opr src = args->at(i);
  2980     assert(!src->is_illegal(), "check");
  2981     BasicType t = src->type();
  2983     // Types which are smaller than int are passed as int, so
  2984     // correct the type which passed.
  2985     switch (t) {
  2986     case T_BYTE:
  2987     case T_BOOLEAN:
  2988     case T_SHORT:
  2989     case T_CHAR:
  2990       t = T_INT;
  2991       break;
  2994     LIR_Opr dest = new_register(t);
  2995     __ move(src, dest);
  2997     // Assign new location to Local instruction for this local
  2998     Local* local = x->state()->local_at(java_index)->as_Local();
  2999     assert(local != NULL, "Locals for incoming arguments must have been created");
  3000 #ifndef __SOFTFP__
  3001     // The java calling convention passes double as long and float as int.
  3002     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  3003 #endif // __SOFTFP__
  3004     local->set_operand(dest);
  3005     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  3006     java_index += type2size[t];
  3009   if (compilation()->env()->dtrace_method_probes()) {
  3010     BasicTypeList signature;
  3011     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  3012     signature.append(T_METADATA); // Method*
  3013     LIR_OprList* args = new LIR_OprList();
  3014     args->append(getThreadPointer());
  3015     LIR_Opr meth = new_register(T_METADATA);
  3016     __ metadata2reg(method()->constant_encoding(), meth);
  3017     args->append(meth);
  3018     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  3021   if (method()->is_synchronized()) {
  3022     LIR_Opr obj;
  3023     if (method()->is_static()) {
  3024       obj = new_register(T_OBJECT);
  3025       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  3026     } else {
  3027       Local* receiver = x->state()->local_at(0)->as_Local();
  3028       assert(receiver != NULL, "must already exist");
  3029       obj = receiver->operand();
  3031     assert(obj->is_valid(), "must be valid");
  3033     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  3034       LIR_Opr lock = new_register(T_INT);
  3035       __ load_stack_address_monitor(0, lock);
  3037       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
  3038       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  3040       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  3041       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  3045   // increment invocation counters if needed
  3046   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  3047     profile_parameters(x);
  3048     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
  3049     increment_invocation_counter(info);
  3052   // all blocks with a successor must end with an unconditional jump
  3053   // to the successor even if they are consecutive
  3054   __ jump(x->default_sux());
  3058 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  3059   // construct our frame and model the production of incoming pointer
  3060   // to the OSR buffer.
  3061   __ osr_entry(LIR_Assembler::osrBufferPointer());
  3062   LIR_Opr result = rlock_result(x);
  3063   __ move(LIR_Assembler::osrBufferPointer(), result);
  3067 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  3068   assert(args->length() == arg_list->length(),
  3069          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  3070   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  3071     LIRItem* param = args->at(i);
  3072     LIR_Opr loc = arg_list->at(i);
  3073     if (loc->is_register()) {
  3074       param->load_item_force(loc);
  3075     } else {
  3076       LIR_Address* addr = loc->as_address_ptr();
  3077       param->load_for_store(addr->type());
  3078       if (addr->type() == T_OBJECT) {
  3079         __ move_wide(param->result(), addr);
  3080       } else
  3081         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3082           __ unaligned_move(param->result(), addr);
  3083         } else {
  3084           __ move(param->result(), addr);
  3089   if (x->has_receiver()) {
  3090     LIRItem* receiver = args->at(0);
  3091     LIR_Opr loc = arg_list->at(0);
  3092     if (loc->is_register()) {
  3093       receiver->load_item_force(loc);
  3094     } else {
  3095       assert(loc->is_address(), "just checking");
  3096       receiver->load_for_store(T_OBJECT);
  3097       __ move_wide(receiver->result(), loc->as_address_ptr());
  3103 // Visits all arguments, returns appropriate items without loading them
  3104 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  3105   LIRItemList* argument_items = new LIRItemList();
  3106   if (x->has_receiver()) {
  3107     LIRItem* receiver = new LIRItem(x->receiver(), this);
  3108     argument_items->append(receiver);
  3110   for (int i = 0; i < x->number_of_arguments(); i++) {
  3111     LIRItem* param = new LIRItem(x->argument_at(i), this);
  3112     argument_items->append(param);
  3114   return argument_items;
  3118 // The invoke with receiver has following phases:
  3119 //   a) traverse and load/lock receiver;
  3120 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  3121 //   c) push receiver on stack
  3122 //   d) load each of the items and push on stack
  3123 //   e) unlock receiver
  3124 //   f) move receiver into receiver-register %o0
  3125 //   g) lock result registers and emit call operation
  3126 //
  3127 // Before issuing a call, we must spill-save all values on stack
  3128 // that are in caller-save register. "spill-save" moves those registers
  3129 // either in a free callee-save register or spills them if no free
  3130 // callee save register is available.
  3131 //
  3132 // The problem is where to invoke spill-save.
  3133 // - if invoked between e) and f), we may lock callee save
  3134 //   register in "spill-save" that destroys the receiver register
  3135 //   before f) is executed
  3136 // - if we rearrange f) to be earlier (by loading %o0) it
  3137 //   may destroy a value on the stack that is currently in %o0
  3138 //   and is waiting to be spilled
  3139 // - if we keep the receiver locked while doing spill-save,
  3140 //   we cannot spill it as it is spill-locked
  3141 //
  3142 void LIRGenerator::do_Invoke(Invoke* x) {
  3143   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  3145   LIR_OprList* arg_list = cc->args();
  3146   LIRItemList* args = invoke_visit_arguments(x);
  3147   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  3149   // setup result register
  3150   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  3151   if (x->type() != voidType) {
  3152     result_register = result_register_for(x->type());
  3155   CodeEmitInfo* info = state_for(x, x->state());
  3157   invoke_load_arguments(x, args, arg_list);
  3159   if (x->has_receiver()) {
  3160     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  3161     receiver = args->at(0)->result();
  3164   // emit invoke code
  3165   bool optimized = x->target_is_loaded() && x->target_is_final();
  3166   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  3168   // JSR 292
  3169   // Preserve the SP over MethodHandle call sites, if needed.
  3170   ciMethod* target = x->target();
  3171   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  3172                                   target->is_method_handle_intrinsic() ||
  3173                                   target->is_compiled_lambda_form());
  3174   if (is_method_handle_invoke) {
  3175     info->set_is_method_handle_invoke(true);
  3176     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
  3177         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  3181   switch (x->code()) {
  3182     case Bytecodes::_invokestatic:
  3183       __ call_static(target, result_register,
  3184                      SharedRuntime::get_resolve_static_call_stub(),
  3185                      arg_list, info);
  3186       break;
  3187     case Bytecodes::_invokespecial:
  3188     case Bytecodes::_invokevirtual:
  3189     case Bytecodes::_invokeinterface:
  3190       // for final target we still produce an inline cache, in order
  3191       // to be able to call mixed mode
  3192       if (x->code() == Bytecodes::_invokespecial || optimized) {
  3193         __ call_opt_virtual(target, receiver, result_register,
  3194                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3195                             arg_list, info);
  3196       } else if (x->vtable_index() < 0) {
  3197         __ call_icvirtual(target, receiver, result_register,
  3198                           SharedRuntime::get_resolve_virtual_call_stub(),
  3199                           arg_list, info);
  3200       } else {
  3201         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  3202         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3203         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  3205       break;
  3206     case Bytecodes::_invokedynamic: {
  3207       __ call_dynamic(target, receiver, result_register,
  3208                       SharedRuntime::get_resolve_static_call_stub(),
  3209                       arg_list, info);
  3210       break;
  3212     default:
  3213       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  3214       break;
  3217   // JSR 292
  3218   // Restore the SP after MethodHandle call sites, if needed.
  3219   if (is_method_handle_invoke
  3220       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
  3221     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  3224   if (x->type()->is_float() || x->type()->is_double()) {
  3225     // Force rounding of results from non-strictfp when in strictfp
  3226     // scope (or when we don't know the strictness of the callee, to
  3227     // be safe.)
  3228     if (method()->is_strict()) {
  3229       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  3230         result_register = round_item(result_register);
  3235   if (result_register->is_valid()) {
  3236     LIR_Opr result = rlock_result(x);
  3237     __ move(result_register, result);
  3242 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  3243   assert(x->number_of_arguments() == 1, "wrong type");
  3244   LIRItem value       (x->argument_at(0), this);
  3245   LIR_Opr reg = rlock_result(x);
  3246   value.load_item();
  3247   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  3248   __ move(tmp, reg);
  3253 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  3254 void LIRGenerator::do_IfOp(IfOp* x) {
  3255 #ifdef ASSERT
  3257     ValueTag xtag = x->x()->type()->tag();
  3258     ValueTag ttag = x->tval()->type()->tag();
  3259     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  3260     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  3261     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  3263 #endif
  3265   LIRItem left(x->x(), this);
  3266   LIRItem right(x->y(), this);
  3267   left.load_item();
  3268   if (can_inline_as_constant(right.value())) {
  3269     right.dont_load_item();
  3270   } else {
  3271     right.load_item();
  3274   LIRItem t_val(x->tval(), this);
  3275   LIRItem f_val(x->fval(), this);
  3276   t_val.dont_load_item();
  3277   f_val.dont_load_item();
  3278   LIR_Opr reg = rlock_result(x);
  3280 #ifndef MIPS64
  3281   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  3282   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  3283 #else
  3284   LIR_Opr opr1 =  t_val.result();
  3285   LIR_Opr opr2 =  f_val.result();
  3286   LabelObj* skip = new LabelObj();
  3287   __ move(opr1, reg);
  3288   __ branch(lir_cond(x->cond()), left.result(), right.result(), skip->label());
  3289   __ move(opr2, reg);
  3290   __ branch_destination(skip->label());
  3291 #endif
  3294 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  3295     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  3296     LIR_Opr reg = result_register_for(x->type());
  3297     __ call_runtime_leaf(routine, getThreadTemp(),
  3298                          reg, new LIR_OprList());
  3299     LIR_Opr result = rlock_result(x);
  3300     __ move(reg, result);
  3303 #ifdef TRACE_HAVE_INTRINSICS
  3304 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  3305     LIR_Opr thread = getThreadPointer();
  3306     LIR_Opr osthread = new_pointer_register();
  3307     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  3308     size_t thread_id_size = OSThread::thread_id_size();
  3309     if (thread_id_size == (size_t) BytesPerLong) {
  3310       LIR_Opr id = new_register(T_LONG);
  3311       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  3312       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  3313     } else if (thread_id_size == (size_t) BytesPerInt) {
  3314       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  3315     } else {
  3316       ShouldNotReachHere();
  3320 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  3321     CodeEmitInfo* info = state_for(x);
  3322     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  3323     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  3324     assert(info != NULL, "must have info");
  3325     LIRItem arg(x->argument_at(1), this);
  3326     arg.load_item();
  3327     LIR_Opr klass = new_pointer_register();
  3328     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  3329     LIR_Opr id = new_register(T_LONG);
  3330     ByteSize offset = TRACE_ID_OFFSET;
  3331     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  3332     __ move(trace_id_addr, id);
  3333     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  3334     __ store(id, trace_id_addr);
  3335     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  3336     __ move(id, rlock_result(x));
  3338 #endif
  3340 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  3341   switch (x->id()) {
  3342   case vmIntrinsics::_intBitsToFloat      :
  3343   case vmIntrinsics::_doubleToRawLongBits :
  3344   case vmIntrinsics::_longBitsToDouble    :
  3345   case vmIntrinsics::_floatToRawIntBits   : {
  3346     do_FPIntrinsics(x);
  3347     break;
  3350 #ifdef TRACE_HAVE_INTRINSICS
  3351   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  3352   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  3353   case vmIntrinsics::_counterTime:
  3354     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  3355     break;
  3356 #endif
  3358   case vmIntrinsics::_currentTimeMillis:
  3359     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  3360     break;
  3362   case vmIntrinsics::_nanoTime:
  3363     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  3364     break;
  3366   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  3367   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  3368   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  3369   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  3371   case vmIntrinsics::_dlog:           // fall through
  3372   case vmIntrinsics::_dlog10:         // fall through
  3373   case vmIntrinsics::_dabs:           // fall through
  3374   case vmIntrinsics::_dsqrt:          // fall through
  3375   case vmIntrinsics::_dtan:           // fall through
  3376   case vmIntrinsics::_dsin :          // fall through
  3377   case vmIntrinsics::_dcos :          // fall through
  3378   case vmIntrinsics::_dexp :          // fall through
  3379   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  3380   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  3382   // java.nio.Buffer.checkIndex
  3383   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  3385   case vmIntrinsics::_compareAndSwapObject:
  3386     do_CompareAndSwap(x, objectType);
  3387     break;
  3388   case vmIntrinsics::_compareAndSwapInt:
  3389     do_CompareAndSwap(x, intType);
  3390     break;
  3391   case vmIntrinsics::_compareAndSwapLong:
  3392     do_CompareAndSwap(x, longType);
  3393     break;
  3395   case vmIntrinsics::_loadFence :
  3396     if (os::is_MP()) __ membar_acquire();
  3397     break;
  3398   case vmIntrinsics::_storeFence:
  3399     if (os::is_MP()) __ membar_release();
  3400     break;
  3401   case vmIntrinsics::_fullFence :
  3402     if (os::is_MP()) __ membar();
  3403     break;
  3405   case vmIntrinsics::_Reference_get:
  3406     do_Reference_get(x);
  3407     break;
  3409   case vmIntrinsics::_updateCRC32:
  3410   case vmIntrinsics::_updateBytesCRC32:
  3411   case vmIntrinsics::_updateByteBufferCRC32:
  3412     do_update_CRC32(x);
  3413     break;
  3415   default: ShouldNotReachHere(); break;
  3419 void LIRGenerator::profile_arguments(ProfileCall* x) {
  3420   if (compilation()->profile_arguments()) {
  3421     int bci = x->bci_of_invoke();
  3422     ciMethodData* md = x->method()->method_data_or_null();
  3423     ciProfileData* data = md->bci_to_data(bci);
  3424     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
  3425         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
  3426       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
  3427       int base_offset = md->byte_offset_of_slot(data, extra);
  3428       LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3429       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
  3431       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3432       int start = 0;
  3433       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
  3434       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
  3435         // first argument is not profiled at call (method handle invoke)
  3436         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
  3437         start = 1;
  3439       ciSignature* callee_signature = x->callee()->signature();
  3440       // method handle call to virtual method
  3441       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
  3442       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
  3444       bool ignored_will_link;
  3445       ciSignature* signature_at_call = NULL;
  3446       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3447       ciSignatureStream signature_at_call_stream(signature_at_call);
  3449       // if called through method handle invoke, some arguments may have been popped
  3450       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
  3451         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
  3452         ciKlass* exact = profile_type(md, base_offset, off,
  3453                                       args->type(i), x->profiled_arg_at(i+start), mdp,
  3454                                       !x->arg_needs_null_check(i+start),
  3455                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
  3456         if (exact != NULL) {
  3457           md->set_argument_type(bci, i, exact);
  3460     } else {
  3461 #ifdef ASSERT
  3462       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
  3463       int n = x->nb_profiled_args();
  3464       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
  3465                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
  3466              "only at JSR292 bytecodes");
  3467 #endif
  3472 // profile parameters on entry to an inlined method
  3473 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
  3474   if (compilation()->profile_parameters() && x->inlined()) {
  3475     ciMethodData* md = x->callee()->method_data_or_null();
  3476     if (md != NULL) {
  3477       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  3478       if (parameters_type_data != NULL) {
  3479         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  3480         LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3481         bool has_receiver = !x->callee()->is_static();
  3482         ciSignature* sig = x->callee()->signature();
  3483         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
  3484         int i = 0; // to iterate on the Instructions
  3485         Value arg = x->recv();
  3486         bool not_null = false;
  3487         int bci = x->bci_of_invoke();
  3488         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3489         // The first parameter is the receiver so that's what we start
  3490         // with if it exists. One exception is method handle call to
  3491         // virtual method: the receiver is in the args list
  3492         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
  3493           i = 1;
  3494           arg = x->profiled_arg_at(0);
  3495           not_null = !x->arg_needs_null_check(0);
  3497         int k = 0; // to iterate on the profile data
  3498         for (;;) {
  3499           intptr_t profiled_k = parameters->type(k);
  3500           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  3501                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
  3502                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
  3503           // If the profile is known statically set it once for all and do not emit any code
  3504           if (exact != NULL) {
  3505             md->set_parameter_type(k, exact);
  3507           k++;
  3508           if (k >= parameters_type_data->number_of_parameters()) {
  3509 #ifdef ASSERT
  3510             int extra = 0;
  3511             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
  3512                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
  3513                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
  3514               extra += 1;
  3516             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
  3517 #endif
  3518             break;
  3520           arg = x->profiled_arg_at(i);
  3521           not_null = !x->arg_needs_null_check(i);
  3522           i++;
  3529 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3530   // Need recv in a temporary register so it interferes with the other temporaries
  3531   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3532   LIR_Opr mdo = new_register(T_OBJECT);
  3533   // tmp is used to hold the counters on SPARC
  3534   LIR_Opr tmp = new_pointer_register();
  3536   if (x->nb_profiled_args() > 0) {
  3537     profile_arguments(x);
  3540   // profile parameters on inlined method entry including receiver
  3541   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
  3542     profile_parameters_at_call(x);
  3545   if (x->recv() != NULL) {
  3546     LIRItem value(x->recv(), this);
  3547     value.load_item();
  3548     recv = new_register(T_OBJECT);
  3549     __ move(value.result(), recv);
  3551   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3554 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
  3555   int bci = x->bci_of_invoke();
  3556   ciMethodData* md = x->method()->method_data_or_null();
  3557   ciProfileData* data = md->bci_to_data(bci);
  3558   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
  3559   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
  3560   LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3562   bool ignored_will_link;
  3563   ciSignature* signature_at_call = NULL;
  3564   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3566   // The offset within the MDO of the entry to update may be too large
  3567   // to be used in load/store instructions on some platforms. So have
  3568   // profile_type() compute the address of the profile in a register.
  3569   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
  3570                                 ret->type(), x->ret(), mdp,
  3571                                 !x->needs_null_check(),
  3572                                 signature_at_call->return_type()->as_klass(),
  3573                                 x->callee()->signature()->return_type()->as_klass());
  3574   if (exact != NULL) {
  3575     md->set_return_type(bci, exact);
  3579 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3580   // We can safely ignore accessors here, since c2 will inline them anyway,
  3581   // accessors are also always mature.
  3582   if (!x->inlinee()->is_accessor()) {
  3583     CodeEmitInfo* info = state_for(x, x->state(), true);
  3584     // Notify the runtime very infrequently only to take care of counter overflows
  3585     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3589 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3590   int freq_log = 0;
  3591   int level = compilation()->env()->comp_level();
  3592   if (level == CompLevel_limited_profile) {
  3593     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3594   } else if (level == CompLevel_full_profile) {
  3595     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3596   } else {
  3597     ShouldNotReachHere();
  3599   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3600   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3603 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3604                                                 ciMethod *method, int frequency,
  3605                                                 int bci, bool backedge, bool notify) {
  3606   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3607   int level = _compilation->env()->comp_level();
  3608   assert(level > CompLevel_simple, "Shouldn't be here");
  3610   int offset = -1;
  3611   LIR_Opr counter_holder = NULL;
  3612   if (level == CompLevel_limited_profile) {
  3613     MethodCounters* counters_adr = method->ensure_method_counters();
  3614     if (counters_adr == NULL) {
  3615       bailout("method counters allocation failed");
  3616       return;
  3618     counter_holder = new_pointer_register();
  3619     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
  3620     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
  3621                                  MethodCounters::invocation_counter_offset());
  3622   } else if (level == CompLevel_full_profile) {
  3623     counter_holder = new_register(T_METADATA);
  3624     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3625                                  MethodData::invocation_counter_offset());
  3626     ciMethodData* md = method->method_data_or_null();
  3627     assert(md != NULL, "Sanity");
  3628     __ metadata2reg(md->constant_encoding(), counter_holder);
  3629   } else {
  3630     ShouldNotReachHere();
  3632   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3633   LIR_Opr result = new_register(T_INT);
  3634   __ load(counter, result);
  3635   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3636   __ store(result, counter);
  3637   if (notify) {
  3638     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3639     LIR_Opr meth = new_register(T_METADATA);
  3640     __ metadata2reg(method->constant_encoding(), meth);
  3641     __ logical_and(result, mask, result);
  3642 #ifndef MIPS64
  3643     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3644 #endif
  3645     // The bci for info can point to cmp for if's we want the if bci
  3646     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3647 #ifndef MIPS64
  3648     __ branch(lir_cond_equal, T_INT, overflow);
  3649 #else
  3650     __ branch(lir_cond_equal, result, LIR_OprFact::intConst(0), T_INT, overflow);
  3651 #endif
  3652     __ branch_destination(overflow->continuation());
  3656 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3657   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3658   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3660   if (x->pass_thread()) {
  3661     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  3662     args->append(getThreadPointer());
  3665   for (int i = 0; i < x->number_of_arguments(); i++) {
  3666     Value a = x->argument_at(i);
  3667     LIRItem* item = new LIRItem(a, this);
  3668     item->load_item();
  3669     args->append(item->result());
  3670     signature->append(as_BasicType(a->type()));
  3673   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3674   if (x->type() == voidType) {
  3675     set_no_result(x);
  3676   } else {
  3677     __ move(result, rlock_result(x));
  3681 #ifdef ASSERT
  3682 void LIRGenerator::do_Assert(Assert *x) {
  3683   ValueTag tag = x->x()->type()->tag();
  3684   If::Condition cond = x->cond();
  3686   LIRItem xitem(x->x(), this);
  3687   LIRItem yitem(x->y(), this);
  3688   LIRItem* xin = &xitem;
  3689   LIRItem* yin = &yitem;
  3691   assert(tag == intTag, "Only integer assertions are valid!");
  3693   xin->load_item();
  3694   yin->dont_load_item();
  3696   set_no_result(x);
  3698   LIR_Opr left = xin->result();
  3699   LIR_Opr right = yin->result();
  3701   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
  3703 #endif
  3705 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
  3708   Instruction *a = x->x();
  3709   Instruction *b = x->y();
  3710   if (!a || StressRangeCheckElimination) {
  3711     assert(!b || StressRangeCheckElimination, "B must also be null");
  3713     CodeEmitInfo *info = state_for(x, x->state());
  3714     CodeStub* stub = new PredicateFailedStub(info);
  3716     __ jump(stub);
  3717   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
  3718     int a_int = a->type()->as_IntConstant()->value();
  3719     int b_int = b->type()->as_IntConstant()->value();
  3721     bool ok = false;
  3723     switch(x->cond()) {
  3724       case Instruction::eql: ok = (a_int == b_int); break;
  3725       case Instruction::neq: ok = (a_int != b_int); break;
  3726       case Instruction::lss: ok = (a_int < b_int); break;
  3727       case Instruction::leq: ok = (a_int <= b_int); break;
  3728       case Instruction::gtr: ok = (a_int > b_int); break;
  3729       case Instruction::geq: ok = (a_int >= b_int); break;
  3730       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
  3731       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
  3732       default: ShouldNotReachHere();
  3735     if (ok) {
  3737       CodeEmitInfo *info = state_for(x, x->state());
  3738       CodeStub* stub = new PredicateFailedStub(info);
  3740       __ jump(stub);
  3742   } else {
  3744     ValueTag tag = x->x()->type()->tag();
  3745     If::Condition cond = x->cond();
  3746     LIRItem xitem(x->x(), this);
  3747     LIRItem yitem(x->y(), this);
  3748     LIRItem* xin = &xitem;
  3749     LIRItem* yin = &yitem;
  3751     assert(tag == intTag, "Only integer deoptimizations are valid!");
  3753     xin->load_item();
  3754     yin->dont_load_item();
  3755     set_no_result(x);
  3757     LIR_Opr left = xin->result();
  3758     LIR_Opr right = yin->result();
  3760     CodeEmitInfo *info = state_for(x, x->state());
  3761     CodeStub* stub = new PredicateFailedStub(info);
  3763 #ifndef MIPS64
  3764     __ cmp(lir_cond(cond), left, right);
  3765     __ branch(lir_cond(cond), right->type(), stub);
  3766 #else
  3767     tty->print_cr("LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) unimplemented yet!");
  3768     Unimplemented();
  3769 #endif
  3774 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3775   LIRItemList args(1);
  3776   LIRItem value(arg1, this);
  3777   args.append(&value);
  3778   BasicTypeList signature;
  3779   signature.append(as_BasicType(arg1->type()));
  3781   return call_runtime(&signature, &args, entry, result_type, info);
  3785 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3786   LIRItemList args(2);
  3787   LIRItem value1(arg1, this);
  3788   LIRItem value2(arg2, this);
  3789   args.append(&value1);
  3790   args.append(&value2);
  3791   BasicTypeList signature;
  3792   signature.append(as_BasicType(arg1->type()));
  3793   signature.append(as_BasicType(arg2->type()));
  3795   return call_runtime(&signature, &args, entry, result_type, info);
  3799 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3800                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3801   // get a result register
  3802   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3803   LIR_Opr result = LIR_OprFact::illegalOpr;
  3804   if (result_type->tag() != voidTag) {
  3805     result = new_register(result_type);
  3806     phys_reg = result_register_for(result_type);
  3809   // move the arguments into the correct location
  3810   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3811   assert(cc->length() == args->length(), "argument mismatch");
  3812   for (int i = 0; i < args->length(); i++) {
  3813     LIR_Opr arg = args->at(i);
  3814     LIR_Opr loc = cc->at(i);
  3815     if (loc->is_register()) {
  3816       __ move(arg, loc);
  3817     } else {
  3818       LIR_Address* addr = loc->as_address_ptr();
  3819 //           if (!can_store_as_constant(arg)) {
  3820 //             LIR_Opr tmp = new_register(arg->type());
  3821 //             __ move(arg, tmp);
  3822 //             arg = tmp;
  3823 //           }
  3824       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3825         __ unaligned_move(arg, addr);
  3826       } else {
  3827         __ move(arg, addr);
  3832   if (info) {
  3833     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3834   } else {
  3835     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3837   if (result->is_valid()) {
  3838     __ move(phys_reg, result);
  3840   return result;
  3844 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3845                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3846   // get a result register
  3847   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3848   LIR_Opr result = LIR_OprFact::illegalOpr;
  3849   if (result_type->tag() != voidTag) {
  3850     result = new_register(result_type);
  3851     phys_reg = result_register_for(result_type);
  3854   // move the arguments into the correct location
  3855   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3857   assert(cc->length() == args->length(), "argument mismatch");
  3858   for (int i = 0; i < args->length(); i++) {
  3859     LIRItem* arg = args->at(i);
  3860     LIR_Opr loc = cc->at(i);
  3861     if (loc->is_register()) {
  3862       arg->load_item_force(loc);
  3863     } else {
  3864       LIR_Address* addr = loc->as_address_ptr();
  3865       arg->load_for_store(addr->type());
  3866       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3867         __ unaligned_move(arg->result(), addr);
  3868       } else {
  3869         __ move(arg->result(), addr);
  3874   if (info) {
  3875     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3876   } else {
  3877     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3879   if (result->is_valid()) {
  3880     __ move(phys_reg, result);
  3882   return result;
  3885 void LIRGenerator::do_MemBar(MemBar* x) {
  3886   if (os::is_MP()) {
  3887     LIR_Code code = x->code();
  3888     switch(code) {
  3889       case lir_membar_acquire   : __ membar_acquire(); break;
  3890       case lir_membar_release   : __ membar_release(); break;
  3891       case lir_membar           : __ membar(); break;
  3892       case lir_membar_loadload  : __ membar_loadload(); break;
  3893       case lir_membar_storestore: __ membar_storestore(); break;
  3894       case lir_membar_loadstore : __ membar_loadstore(); break;
  3895       case lir_membar_storeload : __ membar_storeload(); break;
  3896       default                   : ShouldNotReachHere(); break;
  3901 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
  3902   if (x->check_boolean()) {
  3903     LIR_Opr value_fixed = rlock_byte(T_BYTE);
  3904     if (TwoOperandLIRForm) {
  3905       __ move(value, value_fixed);
  3906       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
  3907     } else {
  3908       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
  3910     LIR_Opr klass = new_register(T_METADATA);
  3911     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
  3912     null_check_info = NULL;
  3913     LIR_Opr layout = new_register(T_INT);
  3914     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
  3915     int diffbit = Klass::layout_helper_boolean_diffbit();
  3916     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
  3917     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
  3918     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
  3919     value = value_fixed;
  3921   return value;

mercurial