src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Thu, 24 May 2018 17:06:56 +0800

author
aoqi
date
Thu, 24 May 2018 17:06:56 +0800
changeset 8604
04d83ba48607
parent 8318
ea7ac121a5d3
parent 7994
04ff2f6cd0eb
child 9041
95a08233f46c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #ifndef _WINDOWS
    27 #include "alloca.h"
    28 #endif
    29 #include "asm/macroAssembler.hpp"
    30 #include "asm/macroAssembler.inline.hpp"
    31 #include "code/debugInfoRec.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "oops/compiledICHolder.hpp"
    36 #include "prims/jvmtiRedefineClassesTrace.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/vframeArray.hpp"
    39 #include "vmreg_x86.inline.hpp"
    40 #ifdef COMPILER1
    41 #include "c1/c1_Runtime1.hpp"
    42 #endif
    43 #ifdef COMPILER2
    44 #include "opto/runtime.hpp"
    45 #endif
    47 #define __ masm->
    49 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    51 class SimpleRuntimeFrame {
    53   public:
    55   // Most of the runtime stubs have this simple frame layout.
    56   // This class exists to make the layout shared in one place.
    57   // Offsets are for compiler stack slots, which are jints.
    58   enum layout {
    59     // The frame sender code expects that rbp will be in the "natural" place and
    60     // will override any oopMap setting for it. We must therefore force the layout
    61     // so that it agrees with the frame sender code.
    62     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    63     rbp_off2,
    64     return_off, return_off2,
    65     framesize
    66   };
    67 };
    69 class RegisterSaver {
    70   // Capture info about frame layout.  Layout offsets are in jint
    71   // units because compiler frame slots are jints.
    72 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    73   enum layout {
    74     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    75     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    76     DEF_XMM_OFFS(0),
    77     DEF_XMM_OFFS(1),
    78     DEF_XMM_OFFS(2),
    79     DEF_XMM_OFFS(3),
    80     DEF_XMM_OFFS(4),
    81     DEF_XMM_OFFS(5),
    82     DEF_XMM_OFFS(6),
    83     DEF_XMM_OFFS(7),
    84     DEF_XMM_OFFS(8),
    85     DEF_XMM_OFFS(9),
    86     DEF_XMM_OFFS(10),
    87     DEF_XMM_OFFS(11),
    88     DEF_XMM_OFFS(12),
    89     DEF_XMM_OFFS(13),
    90     DEF_XMM_OFFS(14),
    91     DEF_XMM_OFFS(15),
    92     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    93     fpu_stateH_end,
    94     r15_off, r15H_off,
    95     r14_off, r14H_off,
    96     r13_off, r13H_off,
    97     r12_off, r12H_off,
    98     r11_off, r11H_off,
    99     r10_off, r10H_off,
   100     r9_off,  r9H_off,
   101     r8_off,  r8H_off,
   102     rdi_off, rdiH_off,
   103     rsi_off, rsiH_off,
   104     ignore_off, ignoreH_off,  // extra copy of rbp
   105     rsp_off, rspH_off,
   106     rbx_off, rbxH_off,
   107     rdx_off, rdxH_off,
   108     rcx_off, rcxH_off,
   109     rax_off, raxH_off,
   110     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   111     align_off, alignH_off,
   112     flags_off, flagsH_off,
   113     // The frame sender code expects that rbp will be in the "natural" place and
   114     // will override any oopMap setting for it. We must therefore force the layout
   115     // so that it agrees with the frame sender code.
   116     rbp_off, rbpH_off,        // copy of rbp we will restore
   117     return_off, returnH_off,  // slot for return address
   118     reg_save_size             // size in compiler stack slots
   119   };
   121  public:
   122   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
   123   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
   125   // Offsets into the register save area
   126   // Used by deoptimization when it is managing result register
   127   // values on its own
   129   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   130   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   131   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   132   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   133   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   135   // During deoptimization only the result registers need to be restored,
   136   // all the other values have already been extracted.
   137   static void restore_result_registers(MacroAssembler* masm);
   138 };
   140 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
   141   int vect_words = 0;
   142 #ifdef COMPILER2
   143   if (save_vectors) {
   144     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   145     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   146     // Save upper half of YMM registes
   147     vect_words = 16 * 16 / wordSize;
   148     additional_frame_words += vect_words;
   149   }
   150 #else
   151   assert(!save_vectors, "vectors are generated only by C2");
   152 #endif
   154   // Always make the frame size 16-byte aligned
   155   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   156                                      reg_save_size*BytesPerInt, 16);
   157   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   158   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   159   // The caller will allocate additional_frame_words
   160   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   161   // CodeBlob frame size is in words.
   162   int frame_size_in_words = frame_size_in_bytes / wordSize;
   163   *total_frame_words = frame_size_in_words;
   165   // Save registers, fpu state, and flags.
   166   // We assume caller has already pushed the return address onto the
   167   // stack, so rsp is 8-byte aligned here.
   168   // We push rpb twice in this sequence because we want the real rbp
   169   // to be under the return like a normal enter.
   171   __ enter();          // rsp becomes 16-byte aligned here
   172   __ push_CPU_state(); // Push a multiple of 16 bytes
   174   if (vect_words > 0) {
   175     assert(vect_words*wordSize == 256, "");
   176     __ subptr(rsp, 256); // Save upper half of YMM registes
   177     __ vextractf128h(Address(rsp,  0),xmm0);
   178     __ vextractf128h(Address(rsp, 16),xmm1);
   179     __ vextractf128h(Address(rsp, 32),xmm2);
   180     __ vextractf128h(Address(rsp, 48),xmm3);
   181     __ vextractf128h(Address(rsp, 64),xmm4);
   182     __ vextractf128h(Address(rsp, 80),xmm5);
   183     __ vextractf128h(Address(rsp, 96),xmm6);
   184     __ vextractf128h(Address(rsp,112),xmm7);
   185     __ vextractf128h(Address(rsp,128),xmm8);
   186     __ vextractf128h(Address(rsp,144),xmm9);
   187     __ vextractf128h(Address(rsp,160),xmm10);
   188     __ vextractf128h(Address(rsp,176),xmm11);
   189     __ vextractf128h(Address(rsp,192),xmm12);
   190     __ vextractf128h(Address(rsp,208),xmm13);
   191     __ vextractf128h(Address(rsp,224),xmm14);
   192     __ vextractf128h(Address(rsp,240),xmm15);
   193   }
   194   if (frame::arg_reg_save_area_bytes != 0) {
   195     // Allocate argument register save area
   196     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   197   }
   199   // Set an oopmap for the call site.  This oopmap will map all
   200   // oop-registers and debug-info registers as callee-saved.  This
   201   // will allow deoptimization at this safepoint to find all possible
   202   // debug-info recordings, as well as let GC find all oops.
   204   OopMapSet *oop_maps = new OopMapSet();
   205   OopMap* map = new OopMap(frame_size_in_slots, 0);
   207 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
   209   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
   210   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
   211   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
   213   // rbp location is known implicitly by the frame sender code, needs no oopmap
   214   // and the location where rbp was saved by is ignored
   215   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
   229   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
   230   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
   231   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
   235   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
   236   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
   238   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
   239   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
   240   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
   242   // %%% These should all be a waste but we'll keep things as they were for now
   243   if (true) {
   244     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
   245     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
   246     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
   247     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
   248     // rbp location is known implicitly by the frame sender code, needs no oopmap
   249     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
   250     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
   251     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
   252     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
   253     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
   254     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
   255     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
   256     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
   257     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
   258     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
   259     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
   260     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
   261     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
   262     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
   263     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
   264     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
   265     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
   266     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
   267     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
   268     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
   269     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
   270     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
   271     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
   272     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
   273     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
   274     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
   275   }
   277   return map;
   278 }
   280 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
   281   if (frame::arg_reg_save_area_bytes != 0) {
   282     // Pop arg register save area
   283     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   284   }
   285 #ifdef COMPILER2
   286   if (restore_vectors) {
   287     // Restore upper half of YMM registes.
   288     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   289     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   290     __ vinsertf128h(xmm0, Address(rsp,  0));
   291     __ vinsertf128h(xmm1, Address(rsp, 16));
   292     __ vinsertf128h(xmm2, Address(rsp, 32));
   293     __ vinsertf128h(xmm3, Address(rsp, 48));
   294     __ vinsertf128h(xmm4, Address(rsp, 64));
   295     __ vinsertf128h(xmm5, Address(rsp, 80));
   296     __ vinsertf128h(xmm6, Address(rsp, 96));
   297     __ vinsertf128h(xmm7, Address(rsp,112));
   298     __ vinsertf128h(xmm8, Address(rsp,128));
   299     __ vinsertf128h(xmm9, Address(rsp,144));
   300     __ vinsertf128h(xmm10, Address(rsp,160));
   301     __ vinsertf128h(xmm11, Address(rsp,176));
   302     __ vinsertf128h(xmm12, Address(rsp,192));
   303     __ vinsertf128h(xmm13, Address(rsp,208));
   304     __ vinsertf128h(xmm14, Address(rsp,224));
   305     __ vinsertf128h(xmm15, Address(rsp,240));
   306     __ addptr(rsp, 256);
   307   }
   308 #else
   309   assert(!restore_vectors, "vectors are generated only by C2");
   310 #endif
   311   // Recover CPU state
   312   __ pop_CPU_state();
   313   // Get the rbp described implicitly by the calling convention (no oopMap)
   314   __ pop(rbp);
   315 }
   317 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   319   // Just restore result register. Only used by deoptimization. By
   320   // now any callee save register that needs to be restored to a c2
   321   // caller of the deoptee has been extracted into the vframeArray
   322   // and will be stuffed into the c2i adapter we create for later
   323   // restoration so only result registers need to be restored here.
   325   // Restore fp result register
   326   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   327   // Restore integer result register
   328   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   329   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   331   // Pop all of the register save are off the stack except the return address
   332   __ addptr(rsp, return_offset_in_bytes());
   333 }
   335 // Is vector's size (in bytes) bigger than a size saved by default?
   336 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
   337 bool SharedRuntime::is_wide_vector(int size) {
   338   return size > 16;
   339 }
   341 // The java_calling_convention describes stack locations as ideal slots on
   342 // a frame with no abi restrictions. Since we must observe abi restrictions
   343 // (like the placement of the register window) the slots must be biased by
   344 // the following value.
   345 static int reg2offset_in(VMReg r) {
   346   // Account for saved rbp and return address
   347   // This should really be in_preserve_stack_slots
   348   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   349 }
   351 static int reg2offset_out(VMReg r) {
   352   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   353 }
   355 // ---------------------------------------------------------------------------
   356 // Read the array of BasicTypes from a signature, and compute where the
   357 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   358 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   359 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   360 // as framesizes are fixed.
   361 // VMRegImpl::stack0 refers to the first slot 0(sp).
   362 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   363 // up to RegisterImpl::number_of_registers) are the 64-bit
   364 // integer registers.
   366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   368 // units regardless of build. Of course for i486 there is no 64 bit build
   370 // The Java calling convention is a "shifted" version of the C ABI.
   371 // By skipping the first C ABI register we can call non-static jni methods
   372 // with small numbers of arguments without having to shuffle the arguments
   373 // at all. Since we control the java ABI we ought to at least get some
   374 // advantage out of it.
   376 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   377                                            VMRegPair *regs,
   378                                            int total_args_passed,
   379                                            int is_outgoing) {
   381   // Create the mapping between argument positions and
   382   // registers.
   383   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   384     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   385   };
   386   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   387     j_farg0, j_farg1, j_farg2, j_farg3,
   388     j_farg4, j_farg5, j_farg6, j_farg7
   389   };
   392   uint int_args = 0;
   393   uint fp_args = 0;
   394   uint stk_args = 0; // inc by 2 each time
   396   for (int i = 0; i < total_args_passed; i++) {
   397     switch (sig_bt[i]) {
   398     case T_BOOLEAN:
   399     case T_CHAR:
   400     case T_BYTE:
   401     case T_SHORT:
   402     case T_INT:
   403       if (int_args < Argument::n_int_register_parameters_j) {
   404         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   405       } else {
   406         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   407         stk_args += 2;
   408       }
   409       break;
   410     case T_VOID:
   411       // halves of T_LONG or T_DOUBLE
   412       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   413       regs[i].set_bad();
   414       break;
   415     case T_LONG:
   416       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   417       // fall through
   418     case T_OBJECT:
   419     case T_ARRAY:
   420     case T_ADDRESS:
   421       if (int_args < Argument::n_int_register_parameters_j) {
   422         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   423       } else {
   424         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   425         stk_args += 2;
   426       }
   427       break;
   428     case T_FLOAT:
   429       if (fp_args < Argument::n_float_register_parameters_j) {
   430         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   431       } else {
   432         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   433         stk_args += 2;
   434       }
   435       break;
   436     case T_DOUBLE:
   437       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   438       if (fp_args < Argument::n_float_register_parameters_j) {
   439         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   440       } else {
   441         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   442         stk_args += 2;
   443       }
   444       break;
   445     default:
   446       ShouldNotReachHere();
   447       break;
   448     }
   449   }
   451   return round_to(stk_args, 2);
   452 }
   454 // Patch the callers callsite with entry to compiled code if it exists.
   455 static void patch_callers_callsite(MacroAssembler *masm) {
   456   Label L;
   457   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   458   __ jcc(Assembler::equal, L);
   460   // Save the current stack pointer
   461   __ mov(r13, rsp);
   462   // Schedule the branch target address early.
   463   // Call into the VM to patch the caller, then jump to compiled callee
   464   // rax isn't live so capture return address while we easily can
   465   __ movptr(rax, Address(rsp, 0));
   467   // align stack so push_CPU_state doesn't fault
   468   __ andptr(rsp, -(StackAlignmentInBytes));
   469   __ push_CPU_state();
   471   // VM needs caller's callsite
   472   // VM needs target method
   473   // This needs to be a long call since we will relocate this adapter to
   474   // the codeBuffer and it may not reach
   476   // Allocate argument register save area
   477   if (frame::arg_reg_save_area_bytes != 0) {
   478     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   479   }
   480   __ mov(c_rarg0, rbx);
   481   __ mov(c_rarg1, rax);
   482   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   484   // De-allocate argument register save area
   485   if (frame::arg_reg_save_area_bytes != 0) {
   486     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   487   }
   489   __ pop_CPU_state();
   490   // restore sp
   491   __ mov(rsp, r13);
   492   __ bind(L);
   493 }
   496 static void gen_c2i_adapter(MacroAssembler *masm,
   497                             int total_args_passed,
   498                             int comp_args_on_stack,
   499                             const BasicType *sig_bt,
   500                             const VMRegPair *regs,
   501                             Label& skip_fixup) {
   502   // Before we get into the guts of the C2I adapter, see if we should be here
   503   // at all.  We've come from compiled code and are attempting to jump to the
   504   // interpreter, which means the caller made a static call to get here
   505   // (vcalls always get a compiled target if there is one).  Check for a
   506   // compiled target.  If there is one, we need to patch the caller's call.
   507   patch_callers_callsite(masm);
   509   __ bind(skip_fixup);
   511   // Since all args are passed on the stack, total_args_passed *
   512   // Interpreter::stackElementSize is the space we need. Plus 1 because
   513   // we also account for the return address location since
   514   // we store it first rather than hold it in rax across all the shuffling
   516   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   518   // stack is aligned, keep it that way
   519   extraspace = round_to(extraspace, 2*wordSize);
   521   // Get return address
   522   __ pop(rax);
   524   // set senderSP value
   525   __ mov(r13, rsp);
   527   __ subptr(rsp, extraspace);
   529   // Store the return address in the expected location
   530   __ movptr(Address(rsp, 0), rax);
   532   // Now write the args into the outgoing interpreter space
   533   for (int i = 0; i < total_args_passed; i++) {
   534     if (sig_bt[i] == T_VOID) {
   535       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   536       continue;
   537     }
   539     // offset to start parameters
   540     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   541     int next_off = st_off - Interpreter::stackElementSize;
   543     // Say 4 args:
   544     // i   st_off
   545     // 0   32 T_LONG
   546     // 1   24 T_VOID
   547     // 2   16 T_OBJECT
   548     // 3    8 T_BOOL
   549     // -    0 return address
   550     //
   551     // However to make thing extra confusing. Because we can fit a long/double in
   552     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   553     // leaves one slot empty and only stores to a single slot. In this case the
   554     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   556     VMReg r_1 = regs[i].first();
   557     VMReg r_2 = regs[i].second();
   558     if (!r_1->is_valid()) {
   559       assert(!r_2->is_valid(), "");
   560       continue;
   561     }
   562     if (r_1->is_stack()) {
   563       // memory to memory use rax
   564       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   565       if (!r_2->is_valid()) {
   566         // sign extend??
   567         __ movl(rax, Address(rsp, ld_off));
   568         __ movptr(Address(rsp, st_off), rax);
   570       } else {
   572         __ movq(rax, Address(rsp, ld_off));
   574         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   575         // T_DOUBLE and T_LONG use two slots in the interpreter
   576         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   577           // ld_off == LSW, ld_off+wordSize == MSW
   578           // st_off == MSW, next_off == LSW
   579           __ movq(Address(rsp, next_off), rax);
   580 #ifdef ASSERT
   581           // Overwrite the unused slot with known junk
   582           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   583           __ movptr(Address(rsp, st_off), rax);
   584 #endif /* ASSERT */
   585         } else {
   586           __ movq(Address(rsp, st_off), rax);
   587         }
   588       }
   589     } else if (r_1->is_Register()) {
   590       Register r = r_1->as_Register();
   591       if (!r_2->is_valid()) {
   592         // must be only an int (or less ) so move only 32bits to slot
   593         // why not sign extend??
   594         __ movl(Address(rsp, st_off), r);
   595       } else {
   596         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   597         // T_DOUBLE and T_LONG use two slots in the interpreter
   598         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   599           // long/double in gpr
   600 #ifdef ASSERT
   601           // Overwrite the unused slot with known junk
   602           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   603           __ movptr(Address(rsp, st_off), rax);
   604 #endif /* ASSERT */
   605           __ movq(Address(rsp, next_off), r);
   606         } else {
   607           __ movptr(Address(rsp, st_off), r);
   608         }
   609       }
   610     } else {
   611       assert(r_1->is_XMMRegister(), "");
   612       if (!r_2->is_valid()) {
   613         // only a float use just part of the slot
   614         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   615       } else {
   616 #ifdef ASSERT
   617         // Overwrite the unused slot with known junk
   618         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   619         __ movptr(Address(rsp, st_off), rax);
   620 #endif /* ASSERT */
   621         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   622       }
   623     }
   624   }
   626   // Schedule the branch target address early.
   627   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   628   __ jmp(rcx);
   629 }
   631 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   632                         address code_start, address code_end,
   633                         Label& L_ok) {
   634   Label L_fail;
   635   __ lea(temp_reg, ExternalAddress(code_start));
   636   __ cmpptr(pc_reg, temp_reg);
   637   __ jcc(Assembler::belowEqual, L_fail);
   638   __ lea(temp_reg, ExternalAddress(code_end));
   639   __ cmpptr(pc_reg, temp_reg);
   640   __ jcc(Assembler::below, L_ok);
   641   __ bind(L_fail);
   642 }
   644 static void gen_i2c_adapter(MacroAssembler *masm,
   645                             int total_args_passed,
   646                             int comp_args_on_stack,
   647                             const BasicType *sig_bt,
   648                             const VMRegPair *regs) {
   650   // Note: r13 contains the senderSP on entry. We must preserve it since
   651   // we may do a i2c -> c2i transition if we lose a race where compiled
   652   // code goes non-entrant while we get args ready.
   653   // In addition we use r13 to locate all the interpreter args as
   654   // we must align the stack to 16 bytes on an i2c entry else we
   655   // lose alignment we expect in all compiled code and register
   656   // save code can segv when fxsave instructions find improperly
   657   // aligned stack pointer.
   659   // Adapters can be frameless because they do not require the caller
   660   // to perform additional cleanup work, such as correcting the stack pointer.
   661   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   662   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   663   // even if a callee has modified the stack pointer.
   664   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   665   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   666   // up via the senderSP register).
   667   // In other words, if *either* the caller or callee is interpreted, we can
   668   // get the stack pointer repaired after a call.
   669   // This is why c2i and i2c adapters cannot be indefinitely composed.
   670   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   671   // both caller and callee would be compiled methods, and neither would
   672   // clean up the stack pointer changes performed by the two adapters.
   673   // If this happens, control eventually transfers back to the compiled
   674   // caller, but with an uncorrected stack, causing delayed havoc.
   676   // Pick up the return address
   677   __ movptr(rax, Address(rsp, 0));
   679   if (VerifyAdapterCalls &&
   680       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   681     // So, let's test for cascading c2i/i2c adapters right now.
   682     //  assert(Interpreter::contains($return_addr) ||
   683     //         StubRoutines::contains($return_addr),
   684     //         "i2c adapter must return to an interpreter frame");
   685     __ block_comment("verify_i2c { ");
   686     Label L_ok;
   687     if (Interpreter::code() != NULL)
   688       range_check(masm, rax, r11,
   689                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   690                   L_ok);
   691     if (StubRoutines::code1() != NULL)
   692       range_check(masm, rax, r11,
   693                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   694                   L_ok);
   695     if (StubRoutines::code2() != NULL)
   696       range_check(masm, rax, r11,
   697                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   698                   L_ok);
   699     const char* msg = "i2c adapter must return to an interpreter frame";
   700     __ block_comment(msg);
   701     __ stop(msg);
   702     __ bind(L_ok);
   703     __ block_comment("} verify_i2ce ");
   704   }
   706   // Must preserve original SP for loading incoming arguments because
   707   // we need to align the outgoing SP for compiled code.
   708   __ movptr(r11, rsp);
   710   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   711   // in registers, we will occasionally have no stack args.
   712   int comp_words_on_stack = 0;
   713   if (comp_args_on_stack) {
   714     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   715     // registers are below.  By subtracting stack0, we either get a negative
   716     // number (all values in registers) or the maximum stack slot accessed.
   718     // Convert 4-byte c2 stack slots to words.
   719     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   720     // Round up to miminum stack alignment, in wordSize
   721     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   722     __ subptr(rsp, comp_words_on_stack * wordSize);
   723   }
   726   // Ensure compiled code always sees stack at proper alignment
   727   __ andptr(rsp, -16);
   729   // push the return address and misalign the stack that youngest frame always sees
   730   // as far as the placement of the call instruction
   731   __ push(rax);
   733   // Put saved SP in another register
   734   const Register saved_sp = rax;
   735   __ movptr(saved_sp, r11);
   737   // Will jump to the compiled code just as if compiled code was doing it.
   738   // Pre-load the register-jump target early, to schedule it better.
   739   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
   741   // Now generate the shuffle code.  Pick up all register args and move the
   742   // rest through the floating point stack top.
   743   for (int i = 0; i < total_args_passed; i++) {
   744     if (sig_bt[i] == T_VOID) {
   745       // Longs and doubles are passed in native word order, but misaligned
   746       // in the 32-bit build.
   747       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   748       continue;
   749     }
   751     // Pick up 0, 1 or 2 words from SP+offset.
   753     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   754             "scrambled load targets?");
   755     // Load in argument order going down.
   756     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   757     // Point to interpreter value (vs. tag)
   758     int next_off = ld_off - Interpreter::stackElementSize;
   759     //
   760     //
   761     //
   762     VMReg r_1 = regs[i].first();
   763     VMReg r_2 = regs[i].second();
   764     if (!r_1->is_valid()) {
   765       assert(!r_2->is_valid(), "");
   766       continue;
   767     }
   768     if (r_1->is_stack()) {
   769       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   770       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   772       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   773       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   774       // will be generated.
   775       if (!r_2->is_valid()) {
   776         // sign extend???
   777         __ movl(r13, Address(saved_sp, ld_off));
   778         __ movptr(Address(rsp, st_off), r13);
   779       } else {
   780         //
   781         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   782         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   783         // So we must adjust where to pick up the data to match the interpreter.
   784         //
   785         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   786         // are accessed as negative so LSW is at LOW address
   788         // ld_off is MSW so get LSW
   789         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   790                            next_off : ld_off;
   791         __ movq(r13, Address(saved_sp, offset));
   792         // st_off is LSW (i.e. reg.first())
   793         __ movq(Address(rsp, st_off), r13);
   794       }
   795     } else if (r_1->is_Register()) {  // Register argument
   796       Register r = r_1->as_Register();
   797       assert(r != rax, "must be different");
   798       if (r_2->is_valid()) {
   799         //
   800         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   801         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   802         // So we must adjust where to pick up the data to match the interpreter.
   804         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   805                            next_off : ld_off;
   807         // this can be a misaligned move
   808         __ movq(r, Address(saved_sp, offset));
   809       } else {
   810         // sign extend and use a full word?
   811         __ movl(r, Address(saved_sp, ld_off));
   812       }
   813     } else {
   814       if (!r_2->is_valid()) {
   815         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   816       } else {
   817         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   818       }
   819     }
   820   }
   822   // 6243940 We might end up in handle_wrong_method if
   823   // the callee is deoptimized as we race thru here. If that
   824   // happens we don't want to take a safepoint because the
   825   // caller frame will look interpreted and arguments are now
   826   // "compiled" so it is much better to make this transition
   827   // invisible to the stack walking code. Unfortunately if
   828   // we try and find the callee by normal means a safepoint
   829   // is possible. So we stash the desired callee in the thread
   830   // and the vm will find there should this case occur.
   832   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   834   // put Method* where a c2i would expect should we end up there
   835   // only needed becaus eof c2 resolve stubs return Method* as a result in
   836   // rax
   837   __ mov(rax, rbx);
   838   __ jmp(r11);
   839 }
   841 // ---------------------------------------------------------------
   842 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   843                                                             int total_args_passed,
   844                                                             int comp_args_on_stack,
   845                                                             const BasicType *sig_bt,
   846                                                             const VMRegPair *regs,
   847                                                             AdapterFingerPrint* fingerprint) {
   848   address i2c_entry = __ pc();
   850   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   852   // -------------------------------------------------------------------------
   853   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
   854   // to the interpreter.  The args start out packed in the compiled layout.  They
   855   // need to be unpacked into the interpreter layout.  This will almost always
   856   // require some stack space.  We grow the current (compiled) stack, then repack
   857   // the args.  We  finally end in a jump to the generic interpreter entry point.
   858   // On exit from the interpreter, the interpreter will restore our SP (lest the
   859   // compiled code, which relys solely on SP and not RBP, get sick).
   861   address c2i_unverified_entry = __ pc();
   862   Label skip_fixup;
   863   Label ok;
   865   Register holder = rax;
   866   Register receiver = j_rarg0;
   867   Register temp = rbx;
   869   {
   870     __ load_klass(temp, receiver);
   871     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   872     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   873     __ jcc(Assembler::equal, ok);
   874     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   876     __ bind(ok);
   877     // Method might have been compiled since the call site was patched to
   878     // interpreted if that is the case treat it as a miss so we can get
   879     // the call site corrected.
   880     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   881     __ jcc(Assembler::equal, skip_fixup);
   882     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   883   }
   885   address c2i_entry = __ pc();
   887   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   889   __ flush();
   890   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   891 }
   893 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   894                                          VMRegPair *regs,
   895                                          VMRegPair *regs2,
   896                                          int total_args_passed) {
   897   assert(regs2 == NULL, "not needed on x86");
   898 // We return the amount of VMRegImpl stack slots we need to reserve for all
   899 // the arguments NOT counting out_preserve_stack_slots.
   901 // NOTE: These arrays will have to change when c1 is ported
   902 #ifdef _WIN64
   903     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   904       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   905     };
   906     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   907       c_farg0, c_farg1, c_farg2, c_farg3
   908     };
   909 #else
   910     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   911       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   912     };
   913     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   914       c_farg0, c_farg1, c_farg2, c_farg3,
   915       c_farg4, c_farg5, c_farg6, c_farg7
   916     };
   917 #endif // _WIN64
   920     uint int_args = 0;
   921     uint fp_args = 0;
   922     uint stk_args = 0; // inc by 2 each time
   924     for (int i = 0; i < total_args_passed; i++) {
   925       switch (sig_bt[i]) {
   926       case T_BOOLEAN:
   927       case T_CHAR:
   928       case T_BYTE:
   929       case T_SHORT:
   930       case T_INT:
   931         if (int_args < Argument::n_int_register_parameters_c) {
   932           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   933 #ifdef _WIN64
   934           fp_args++;
   935           // Allocate slots for callee to stuff register args the stack.
   936           stk_args += 2;
   937 #endif
   938         } else {
   939           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   940           stk_args += 2;
   941         }
   942         break;
   943       case T_LONG:
   944         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   945         // fall through
   946       case T_OBJECT:
   947       case T_ARRAY:
   948       case T_ADDRESS:
   949       case T_METADATA:
   950         if (int_args < Argument::n_int_register_parameters_c) {
   951           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   952 #ifdef _WIN64
   953           fp_args++;
   954           stk_args += 2;
   955 #endif
   956         } else {
   957           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   958           stk_args += 2;
   959         }
   960         break;
   961       case T_FLOAT:
   962         if (fp_args < Argument::n_float_register_parameters_c) {
   963           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   964 #ifdef _WIN64
   965           int_args++;
   966           // Allocate slots for callee to stuff register args the stack.
   967           stk_args += 2;
   968 #endif
   969         } else {
   970           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   971           stk_args += 2;
   972         }
   973         break;
   974       case T_DOUBLE:
   975         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   976         if (fp_args < Argument::n_float_register_parameters_c) {
   977           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   978 #ifdef _WIN64
   979           int_args++;
   980           // Allocate slots for callee to stuff register args the stack.
   981           stk_args += 2;
   982 #endif
   983         } else {
   984           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   985           stk_args += 2;
   986         }
   987         break;
   988       case T_VOID: // Halves of longs and doubles
   989         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   990         regs[i].set_bad();
   991         break;
   992       default:
   993         ShouldNotReachHere();
   994         break;
   995       }
   996     }
   997 #ifdef _WIN64
   998   // windows abi requires that we always allocate enough stack space
   999   // for 4 64bit registers to be stored down.
  1000   if (stk_args < 8) {
  1001     stk_args = 8;
  1003 #endif // _WIN64
  1005   return stk_args;
  1008 // On 64 bit we will store integer like items to the stack as
  1009 // 64 bits items (sparc abi) even though java would only store
  1010 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1011 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1012 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1013   if (src.first()->is_stack()) {
  1014     if (dst.first()->is_stack()) {
  1015       // stack to stack
  1016       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
  1017       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1018     } else {
  1019       // stack to reg
  1020       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1022   } else if (dst.first()->is_stack()) {
  1023     // reg to stack
  1024     // Do we really have to sign extend???
  1025     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  1026     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1027   } else {
  1028     // Do we really have to sign extend???
  1029     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
  1030     if (dst.first() != src.first()) {
  1031       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1036 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1037   if (src.first()->is_stack()) {
  1038     if (dst.first()->is_stack()) {
  1039       // stack to stack
  1040       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1041       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1042     } else {
  1043       // stack to reg
  1044       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1046   } else if (dst.first()->is_stack()) {
  1047     // reg to stack
  1048     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1049   } else {
  1050     if (dst.first() != src.first()) {
  1051       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1056 // An oop arg. Must pass a handle not the oop itself
  1057 static void object_move(MacroAssembler* masm,
  1058                         OopMap* map,
  1059                         int oop_handle_offset,
  1060                         int framesize_in_slots,
  1061                         VMRegPair src,
  1062                         VMRegPair dst,
  1063                         bool is_receiver,
  1064                         int* receiver_offset) {
  1066   // must pass a handle. First figure out the location we use as a handle
  1068   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
  1070   // See if oop is NULL if it is we need no handle
  1072   if (src.first()->is_stack()) {
  1074     // Oop is already on the stack as an argument
  1075     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1076     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1077     if (is_receiver) {
  1078       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1081     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1082     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1083     // conditionally move a NULL
  1084     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1085   } else {
  1087     // Oop is in an a register we must store it to the space we reserve
  1088     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1090     const Register rOop = src.first()->as_Register();
  1091     int oop_slot;
  1092     if (rOop == j_rarg0)
  1093       oop_slot = 0;
  1094     else if (rOop == j_rarg1)
  1095       oop_slot = 1;
  1096     else if (rOop == j_rarg2)
  1097       oop_slot = 2;
  1098     else if (rOop == j_rarg3)
  1099       oop_slot = 3;
  1100     else if (rOop == j_rarg4)
  1101       oop_slot = 4;
  1102     else {
  1103       assert(rOop == j_rarg5, "wrong register");
  1104       oop_slot = 5;
  1107     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1108     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1110     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1111     // Store oop in handle area, may be NULL
  1112     __ movptr(Address(rsp, offset), rOop);
  1113     if (is_receiver) {
  1114       *receiver_offset = offset;
  1117     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1118     __ lea(rHandle, Address(rsp, offset));
  1119     // conditionally move a NULL from the handle area where it was just stored
  1120     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1123   // If arg is on the stack then place it otherwise it is already in correct reg.
  1124   if (dst.first()->is_stack()) {
  1125     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1129 // A float arg may have to do float reg int reg conversion
  1130 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1131   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1133   // The calling conventions assures us that each VMregpair is either
  1134   // all really one physical register or adjacent stack slots.
  1135   // This greatly simplifies the cases here compared to sparc.
  1137   if (src.first()->is_stack()) {
  1138     if (dst.first()->is_stack()) {
  1139       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1140       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1141     } else {
  1142       // stack to reg
  1143       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1144       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1146   } else if (dst.first()->is_stack()) {
  1147     // reg to stack
  1148     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1149     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1150   } else {
  1151     // reg to reg
  1152     // In theory these overlap but the ordering is such that this is likely a nop
  1153     if ( src.first() != dst.first()) {
  1154       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1159 // A long move
  1160 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1162   // The calling conventions assures us that each VMregpair is either
  1163   // all really one physical register or adjacent stack slots.
  1164   // This greatly simplifies the cases here compared to sparc.
  1166   if (src.is_single_phys_reg() ) {
  1167     if (dst.is_single_phys_reg()) {
  1168       if (dst.first() != src.first()) {
  1169         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1171     } else {
  1172       assert(dst.is_single_reg(), "not a stack pair");
  1173       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1175   } else if (dst.is_single_phys_reg()) {
  1176     assert(src.is_single_reg(),  "not a stack pair");
  1177     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1178   } else {
  1179     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1180     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1181     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1185 // A double move
  1186 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1188   // The calling conventions assures us that each VMregpair is either
  1189   // all really one physical register or adjacent stack slots.
  1190   // This greatly simplifies the cases here compared to sparc.
  1192   if (src.is_single_phys_reg() ) {
  1193     if (dst.is_single_phys_reg()) {
  1194       // In theory these overlap but the ordering is such that this is likely a nop
  1195       if ( src.first() != dst.first()) {
  1196         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1198     } else {
  1199       assert(dst.is_single_reg(), "not a stack pair");
  1200       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1202   } else if (dst.is_single_phys_reg()) {
  1203     assert(src.is_single_reg(),  "not a stack pair");
  1204     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1205   } else {
  1206     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1207     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1208     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1213 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1214   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1215   // which by this time is free to use
  1216   switch (ret_type) {
  1217   case T_FLOAT:
  1218     __ movflt(Address(rbp, -wordSize), xmm0);
  1219     break;
  1220   case T_DOUBLE:
  1221     __ movdbl(Address(rbp, -wordSize), xmm0);
  1222     break;
  1223   case T_VOID:  break;
  1224   default: {
  1225     __ movptr(Address(rbp, -wordSize), rax);
  1230 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1231   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1232   // which by this time is free to use
  1233   switch (ret_type) {
  1234   case T_FLOAT:
  1235     __ movflt(xmm0, Address(rbp, -wordSize));
  1236     break;
  1237   case T_DOUBLE:
  1238     __ movdbl(xmm0, Address(rbp, -wordSize));
  1239     break;
  1240   case T_VOID:  break;
  1241   default: {
  1242     __ movptr(rax, Address(rbp, -wordSize));
  1247 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1248     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1249       if (args[i].first()->is_Register()) {
  1250         __ push(args[i].first()->as_Register());
  1251       } else if (args[i].first()->is_XMMRegister()) {
  1252         __ subptr(rsp, 2*wordSize);
  1253         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1258 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1259     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1260       if (args[i].first()->is_Register()) {
  1261         __ pop(args[i].first()->as_Register());
  1262       } else if (args[i].first()->is_XMMRegister()) {
  1263         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1264         __ addptr(rsp, 2*wordSize);
  1270 static void save_or_restore_arguments(MacroAssembler* masm,
  1271                                       const int stack_slots,
  1272                                       const int total_in_args,
  1273                                       const int arg_save_area,
  1274                                       OopMap* map,
  1275                                       VMRegPair* in_regs,
  1276                                       BasicType* in_sig_bt) {
  1277   // if map is non-NULL then the code should store the values,
  1278   // otherwise it should load them.
  1279   int slot = arg_save_area;
  1280   // Save down double word first
  1281   for ( int i = 0; i < total_in_args; i++) {
  1282     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1283       int offset = slot * VMRegImpl::stack_slot_size;
  1284       slot += VMRegImpl::slots_per_word;
  1285       assert(slot <= stack_slots, "overflow");
  1286       if (map != NULL) {
  1287         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1288       } else {
  1289         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1292     if (in_regs[i].first()->is_Register() &&
  1293         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1294       int offset = slot * VMRegImpl::stack_slot_size;
  1295       if (map != NULL) {
  1296         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
  1297         if (in_sig_bt[i] == T_ARRAY) {
  1298           map->set_oop(VMRegImpl::stack2reg(slot));;
  1300       } else {
  1301         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1303       slot += VMRegImpl::slots_per_word;
  1306   // Save or restore single word registers
  1307   for ( int i = 0; i < total_in_args; i++) {
  1308     if (in_regs[i].first()->is_Register()) {
  1309       int offset = slot * VMRegImpl::stack_slot_size;
  1310       slot++;
  1311       assert(slot <= stack_slots, "overflow");
  1313       // Value is in an input register pass we must flush it to the stack
  1314       const Register reg = in_regs[i].first()->as_Register();
  1315       switch (in_sig_bt[i]) {
  1316         case T_BOOLEAN:
  1317         case T_CHAR:
  1318         case T_BYTE:
  1319         case T_SHORT:
  1320         case T_INT:
  1321           if (map != NULL) {
  1322             __ movl(Address(rsp, offset), reg);
  1323           } else {
  1324             __ movl(reg, Address(rsp, offset));
  1326           break;
  1327         case T_ARRAY:
  1328         case T_LONG:
  1329           // handled above
  1330           break;
  1331         case T_OBJECT:
  1332         default: ShouldNotReachHere();
  1334     } else if (in_regs[i].first()->is_XMMRegister()) {
  1335       if (in_sig_bt[i] == T_FLOAT) {
  1336         int offset = slot * VMRegImpl::stack_slot_size;
  1337         slot++;
  1338         assert(slot <= stack_slots, "overflow");
  1339         if (map != NULL) {
  1340           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1341         } else {
  1342           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1345     } else if (in_regs[i].first()->is_stack()) {
  1346       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1347         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1348         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1355 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1356 // keeps a new JNI critical region from starting until a GC has been
  1357 // forced.  Save down any oops in registers and describe them in an
  1358 // OopMap.
  1359 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1360                                                int stack_slots,
  1361                                                int total_c_args,
  1362                                                int total_in_args,
  1363                                                int arg_save_area,
  1364                                                OopMapSet* oop_maps,
  1365                                                VMRegPair* in_regs,
  1366                                                BasicType* in_sig_bt) {
  1367   __ block_comment("check GC_locker::needs_gc");
  1368   Label cont;
  1369   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1370   __ jcc(Assembler::equal, cont);
  1372   // Save down any incoming oops and call into the runtime to halt for a GC
  1374   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1375   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1376                             arg_save_area, map, in_regs, in_sig_bt);
  1378   address the_pc = __ pc();
  1379   oop_maps->add_gc_map( __ offset(), map);
  1380   __ set_last_Java_frame(rsp, noreg, the_pc);
  1382   __ block_comment("block_for_jni_critical");
  1383   __ movptr(c_rarg0, r15_thread);
  1384   __ mov(r12, rsp); // remember sp
  1385   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1386   __ andptr(rsp, -16); // align stack as required by ABI
  1387   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1388   __ mov(rsp, r12); // restore sp
  1389   __ reinit_heapbase();
  1391   __ reset_last_Java_frame(false, true);
  1393   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1394                             arg_save_area, NULL, in_regs, in_sig_bt);
  1396   __ bind(cont);
  1397 #ifdef ASSERT
  1398   if (StressCriticalJNINatives) {
  1399     // Stress register saving
  1400     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1401     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1402                               arg_save_area, map, in_regs, in_sig_bt);
  1403     // Destroy argument registers
  1404     for (int i = 0; i < total_in_args - 1; i++) {
  1405       if (in_regs[i].first()->is_Register()) {
  1406         const Register reg = in_regs[i].first()->as_Register();
  1407         __ xorptr(reg, reg);
  1408       } else if (in_regs[i].first()->is_XMMRegister()) {
  1409         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1410       } else if (in_regs[i].first()->is_FloatRegister()) {
  1411         ShouldNotReachHere();
  1412       } else if (in_regs[i].first()->is_stack()) {
  1413         // Nothing to do
  1414       } else {
  1415         ShouldNotReachHere();
  1417       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1418         i++;
  1422     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1423                               arg_save_area, NULL, in_regs, in_sig_bt);
  1425 #endif
  1428 // Unpack an array argument into a pointer to the body and the length
  1429 // if the array is non-null, otherwise pass 0 for both.
  1430 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1431   Register tmp_reg = rax;
  1432   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1433          "possible collision");
  1434   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1435          "possible collision");
  1437   __ block_comment("unpack_array_argument {");
  1439   // Pass the length, ptr pair
  1440   Label is_null, done;
  1441   VMRegPair tmp;
  1442   tmp.set_ptr(tmp_reg->as_VMReg());
  1443   if (reg.first()->is_stack()) {
  1444     // Load the arg up from the stack
  1445     move_ptr(masm, reg, tmp);
  1446     reg = tmp;
  1448   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1449   __ jccb(Assembler::equal, is_null);
  1450   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1451   move_ptr(masm, tmp, body_arg);
  1452   // load the length relative to the body.
  1453   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1454                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1455   move32_64(masm, tmp, length_arg);
  1456   __ jmpb(done);
  1457   __ bind(is_null);
  1458   // Pass zeros
  1459   __ xorptr(tmp_reg, tmp_reg);
  1460   move_ptr(masm, tmp, body_arg);
  1461   move32_64(masm, tmp, length_arg);
  1462   __ bind(done);
  1464   __ block_comment("} unpack_array_argument");
  1468 // Different signatures may require very different orders for the move
  1469 // to avoid clobbering other arguments.  There's no simple way to
  1470 // order them safely.  Compute a safe order for issuing stores and
  1471 // break any cycles in those stores.  This code is fairly general but
  1472 // it's not necessary on the other platforms so we keep it in the
  1473 // platform dependent code instead of moving it into a shared file.
  1474 // (See bugs 7013347 & 7145024.)
  1475 // Note that this code is specific to LP64.
  1476 class ComputeMoveOrder: public StackObj {
  1477   class MoveOperation: public ResourceObj {
  1478     friend class ComputeMoveOrder;
  1479    private:
  1480     VMRegPair        _src;
  1481     VMRegPair        _dst;
  1482     int              _src_index;
  1483     int              _dst_index;
  1484     bool             _processed;
  1485     MoveOperation*  _next;
  1486     MoveOperation*  _prev;
  1488     static int get_id(VMRegPair r) {
  1489       return r.first()->value();
  1492    public:
  1493     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
  1494       _src(src)
  1495     , _src_index(src_index)
  1496     , _dst(dst)
  1497     , _dst_index(dst_index)
  1498     , _next(NULL)
  1499     , _prev(NULL)
  1500     , _processed(false) {
  1503     VMRegPair src() const              { return _src; }
  1504     int src_id() const                 { return get_id(src()); }
  1505     int src_index() const              { return _src_index; }
  1506     VMRegPair dst() const              { return _dst; }
  1507     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
  1508     int dst_index() const              { return _dst_index; }
  1509     int dst_id() const                 { return get_id(dst()); }
  1510     MoveOperation* next() const       { return _next; }
  1511     MoveOperation* prev() const       { return _prev; }
  1512     void set_processed()               { _processed = true; }
  1513     bool is_processed() const          { return _processed; }
  1515     // insert
  1516     void break_cycle(VMRegPair temp_register) {
  1517       // create a new store following the last store
  1518       // to move from the temp_register to the original
  1519       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
  1521       // break the cycle of links and insert new_store at the end
  1522       // break the reverse link.
  1523       MoveOperation* p = prev();
  1524       assert(p->next() == this, "must be");
  1525       _prev = NULL;
  1526       p->_next = new_store;
  1527       new_store->_prev = p;
  1529       // change the original store to save it's value in the temp.
  1530       set_dst(-1, temp_register);
  1533     void link(GrowableArray<MoveOperation*>& killer) {
  1534       // link this store in front the store that it depends on
  1535       MoveOperation* n = killer.at_grow(src_id(), NULL);
  1536       if (n != NULL) {
  1537         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
  1538         _next = n;
  1539         n->_prev = this;
  1542   };
  1544  private:
  1545   GrowableArray<MoveOperation*> edges;
  1547  public:
  1548   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
  1549                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
  1550     // Move operations where the dest is the stack can all be
  1551     // scheduled first since they can't interfere with the other moves.
  1552     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  1553       if (in_sig_bt[i] == T_ARRAY) {
  1554         c_arg--;
  1555         if (out_regs[c_arg].first()->is_stack() &&
  1556             out_regs[c_arg + 1].first()->is_stack()) {
  1557           arg_order.push(i);
  1558           arg_order.push(c_arg);
  1559         } else {
  1560           if (out_regs[c_arg].first()->is_stack() ||
  1561               in_regs[i].first() == out_regs[c_arg].first()) {
  1562             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
  1563           } else {
  1564             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1567       } else if (in_sig_bt[i] == T_VOID) {
  1568         arg_order.push(i);
  1569         arg_order.push(c_arg);
  1570       } else {
  1571         if (out_regs[c_arg].first()->is_stack() ||
  1572             in_regs[i].first() == out_regs[c_arg].first()) {
  1573           arg_order.push(i);
  1574           arg_order.push(c_arg);
  1575         } else {
  1576           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1580     // Break any cycles in the register moves and emit the in the
  1581     // proper order.
  1582     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
  1583     for (int i = 0; i < stores->length(); i++) {
  1584       arg_order.push(stores->at(i)->src_index());
  1585       arg_order.push(stores->at(i)->dst_index());
  1589   // Collected all the move operations
  1590   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
  1591     if (src.first() == dst.first()) return;
  1592     edges.append(new MoveOperation(src_index, src, dst_index, dst));
  1595   // Walk the edges breaking cycles between moves.  The result list
  1596   // can be walked in order to produce the proper set of loads
  1597   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
  1598     // Record which moves kill which values
  1599     GrowableArray<MoveOperation*> killer;
  1600     for (int i = 0; i < edges.length(); i++) {
  1601       MoveOperation* s = edges.at(i);
  1602       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
  1603       killer.at_put_grow(s->dst_id(), s, NULL);
  1605     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
  1606            "make sure temp isn't in the registers that are killed");
  1608     // create links between loads and stores
  1609     for (int i = 0; i < edges.length(); i++) {
  1610       edges.at(i)->link(killer);
  1613     // at this point, all the move operations are chained together
  1614     // in a doubly linked list.  Processing it backwards finds
  1615     // the beginning of the chain, forwards finds the end.  If there's
  1616     // a cycle it can be broken at any point,  so pick an edge and walk
  1617     // backward until the list ends or we end where we started.
  1618     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
  1619     for (int e = 0; e < edges.length(); e++) {
  1620       MoveOperation* s = edges.at(e);
  1621       if (!s->is_processed()) {
  1622         MoveOperation* start = s;
  1623         // search for the beginning of the chain or cycle
  1624         while (start->prev() != NULL && start->prev() != s) {
  1625           start = start->prev();
  1627         if (start->prev() == s) {
  1628           start->break_cycle(temp_register);
  1630         // walk the chain forward inserting to store list
  1631         while (start != NULL) {
  1632           stores->append(start);
  1633           start->set_processed();
  1634           start = start->next();
  1638     return stores;
  1640 };
  1642 static void verify_oop_args(MacroAssembler* masm,
  1643                             methodHandle method,
  1644                             const BasicType* sig_bt,
  1645                             const VMRegPair* regs) {
  1646   Register temp_reg = rbx;  // not part of any compiled calling seq
  1647   if (VerifyOops) {
  1648     for (int i = 0; i < method->size_of_parameters(); i++) {
  1649       if (sig_bt[i] == T_OBJECT ||
  1650           sig_bt[i] == T_ARRAY) {
  1651         VMReg r = regs[i].first();
  1652         assert(r->is_valid(), "bad oop arg");
  1653         if (r->is_stack()) {
  1654           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1655           __ verify_oop(temp_reg);
  1656         } else {
  1657           __ verify_oop(r->as_Register());
  1664 static void gen_special_dispatch(MacroAssembler* masm,
  1665                                  methodHandle method,
  1666                                  const BasicType* sig_bt,
  1667                                  const VMRegPair* regs) {
  1668   verify_oop_args(masm, method, sig_bt, regs);
  1669   vmIntrinsics::ID iid = method->intrinsic_id();
  1671   // Now write the args into the outgoing interpreter space
  1672   bool     has_receiver   = false;
  1673   Register receiver_reg   = noreg;
  1674   int      member_arg_pos = -1;
  1675   Register member_reg     = noreg;
  1676   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1677   if (ref_kind != 0) {
  1678     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1679     member_reg = rbx;  // known to be free at this point
  1680     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1681   } else if (iid == vmIntrinsics::_invokeBasic) {
  1682     has_receiver = true;
  1683   } else {
  1684     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1687   if (member_reg != noreg) {
  1688     // Load the member_arg into register, if necessary.
  1689     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1690     VMReg r = regs[member_arg_pos].first();
  1691     if (r->is_stack()) {
  1692       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1693     } else {
  1694       // no data motion is needed
  1695       member_reg = r->as_Register();
  1699   if (has_receiver) {
  1700     // Make sure the receiver is loaded into a register.
  1701     assert(method->size_of_parameters() > 0, "oob");
  1702     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1703     VMReg r = regs[0].first();
  1704     assert(r->is_valid(), "bad receiver arg");
  1705     if (r->is_stack()) {
  1706       // Porting note:  This assumes that compiled calling conventions always
  1707       // pass the receiver oop in a register.  If this is not true on some
  1708       // platform, pick a temp and load the receiver from stack.
  1709       fatal("receiver always in a register");
  1710       receiver_reg = j_rarg0;  // known to be free at this point
  1711       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1712     } else {
  1713       // no data motion is needed
  1714       receiver_reg = r->as_Register();
  1718   // Figure out which address we are really jumping to:
  1719   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1720                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1723 // ---------------------------------------------------------------------------
  1724 // Generate a native wrapper for a given method.  The method takes arguments
  1725 // in the Java compiled code convention, marshals them to the native
  1726 // convention (handlizes oops, etc), transitions to native, makes the call,
  1727 // returns to java state (possibly blocking), unhandlizes any result and
  1728 // returns.
  1729 //
  1730 // Critical native functions are a shorthand for the use of
  1731 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1732 // functions.  The wrapper is expected to unpack the arguments before
  1733 // passing them to the callee and perform checks before and after the
  1734 // native call to ensure that they GC_locker
  1735 // lock_critical/unlock_critical semantics are followed.  Some other
  1736 // parts of JNI setup are skipped like the tear down of the JNI handle
  1737 // block and the check for pending exceptions it's impossible for them
  1738 // to be thrown.
  1739 //
  1740 // They are roughly structured like this:
  1741 //    if (GC_locker::needs_gc())
  1742 //      SharedRuntime::block_for_jni_critical();
  1743 //    tranistion to thread_in_native
  1744 //    unpack arrray arguments and call native entry point
  1745 //    check for safepoint in progress
  1746 //    check if any thread suspend flags are set
  1747 //      call into JVM and possible unlock the JNI critical
  1748 //      if a GC was suppressed while in the critical native.
  1749 //    transition back to thread_in_Java
  1750 //    return to caller
  1751 //
  1752 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1753                                                 methodHandle method,
  1754                                                 int compile_id,
  1755                                                 BasicType* in_sig_bt,
  1756                                                 VMRegPair* in_regs,
  1757                                                 BasicType ret_type) {
  1758   if (method->is_method_handle_intrinsic()) {
  1759     vmIntrinsics::ID iid = method->intrinsic_id();
  1760     intptr_t start = (intptr_t)__ pc();
  1761     int vep_offset = ((intptr_t)__ pc()) - start;
  1762     gen_special_dispatch(masm,
  1763                          method,
  1764                          in_sig_bt,
  1765                          in_regs);
  1766     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1767     __ flush();
  1768     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1769     return nmethod::new_native_nmethod(method,
  1770                                        compile_id,
  1771                                        masm->code(),
  1772                                        vep_offset,
  1773                                        frame_complete,
  1774                                        stack_slots / VMRegImpl::slots_per_word,
  1775                                        in_ByteSize(-1),
  1776                                        in_ByteSize(-1),
  1777                                        (OopMapSet*)NULL);
  1779   bool is_critical_native = true;
  1780   address native_func = method->critical_native_function();
  1781   if (native_func == NULL) {
  1782     native_func = method->native_function();
  1783     is_critical_native = false;
  1785   assert(native_func != NULL, "must have function");
  1787   // An OopMap for lock (and class if static)
  1788   OopMapSet *oop_maps = new OopMapSet();
  1789   intptr_t start = (intptr_t)__ pc();
  1791   // We have received a description of where all the java arg are located
  1792   // on entry to the wrapper. We need to convert these args to where
  1793   // the jni function will expect them. To figure out where they go
  1794   // we convert the java signature to a C signature by inserting
  1795   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1797   const int total_in_args = method->size_of_parameters();
  1798   int total_c_args = total_in_args;
  1799   if (!is_critical_native) {
  1800     total_c_args += 1;
  1801     if (method->is_static()) {
  1802       total_c_args++;
  1804   } else {
  1805     for (int i = 0; i < total_in_args; i++) {
  1806       if (in_sig_bt[i] == T_ARRAY) {
  1807         total_c_args++;
  1812   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1813   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1814   BasicType* in_elem_bt = NULL;
  1816   int argc = 0;
  1817   if (!is_critical_native) {
  1818     out_sig_bt[argc++] = T_ADDRESS;
  1819     if (method->is_static()) {
  1820       out_sig_bt[argc++] = T_OBJECT;
  1823     for (int i = 0; i < total_in_args ; i++ ) {
  1824       out_sig_bt[argc++] = in_sig_bt[i];
  1826   } else {
  1827     Thread* THREAD = Thread::current();
  1828     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1829     SignatureStream ss(method->signature());
  1830     for (int i = 0; i < total_in_args ; i++ ) {
  1831       if (in_sig_bt[i] == T_ARRAY) {
  1832         // Arrays are passed as int, elem* pair
  1833         out_sig_bt[argc++] = T_INT;
  1834         out_sig_bt[argc++] = T_ADDRESS;
  1835         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1836         const char* at = atype->as_C_string();
  1837         if (strlen(at) == 2) {
  1838           assert(at[0] == '[', "must be");
  1839           switch (at[1]) {
  1840             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1841             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1842             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1843             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1844             case 'I': in_elem_bt[i]  = T_INT; break;
  1845             case 'J': in_elem_bt[i]  = T_LONG; break;
  1846             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1847             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1848             default: ShouldNotReachHere();
  1851       } else {
  1852         out_sig_bt[argc++] = in_sig_bt[i];
  1853         in_elem_bt[i] = T_VOID;
  1855       if (in_sig_bt[i] != T_VOID) {
  1856         assert(in_sig_bt[i] == ss.type(), "must match");
  1857         ss.next();
  1862   // Now figure out where the args must be stored and how much stack space
  1863   // they require.
  1864   int out_arg_slots;
  1865   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  1867   // Compute framesize for the wrapper.  We need to handlize all oops in
  1868   // incoming registers
  1870   // Calculate the total number of stack slots we will need.
  1872   // First count the abi requirement plus all of the outgoing args
  1873   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1875   // Now the space for the inbound oop handle area
  1876   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  1877   if (is_critical_native) {
  1878     // Critical natives may have to call out so they need a save area
  1879     // for register arguments.
  1880     int double_slots = 0;
  1881     int single_slots = 0;
  1882     for ( int i = 0; i < total_in_args; i++) {
  1883       if (in_regs[i].first()->is_Register()) {
  1884         const Register reg = in_regs[i].first()->as_Register();
  1885         switch (in_sig_bt[i]) {
  1886           case T_BOOLEAN:
  1887           case T_BYTE:
  1888           case T_SHORT:
  1889           case T_CHAR:
  1890           case T_INT:  single_slots++; break;
  1891           case T_ARRAY:  // specific to LP64 (7145024)
  1892           case T_LONG: double_slots++; break;
  1893           default:  ShouldNotReachHere();
  1895       } else if (in_regs[i].first()->is_XMMRegister()) {
  1896         switch (in_sig_bt[i]) {
  1897           case T_FLOAT:  single_slots++; break;
  1898           case T_DOUBLE: double_slots++; break;
  1899           default:  ShouldNotReachHere();
  1901       } else if (in_regs[i].first()->is_FloatRegister()) {
  1902         ShouldNotReachHere();
  1905     total_save_slots = double_slots * 2 + single_slots;
  1906     // align the save area
  1907     if (double_slots != 0) {
  1908       stack_slots = round_to(stack_slots, 2);
  1912   int oop_handle_offset = stack_slots;
  1913   stack_slots += total_save_slots;
  1915   // Now any space we need for handlizing a klass if static method
  1917   int klass_slot_offset = 0;
  1918   int klass_offset = -1;
  1919   int lock_slot_offset = 0;
  1920   bool is_static = false;
  1922   if (method->is_static()) {
  1923     klass_slot_offset = stack_slots;
  1924     stack_slots += VMRegImpl::slots_per_word;
  1925     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1926     is_static = true;
  1929   // Plus a lock if needed
  1931   if (method->is_synchronized()) {
  1932     lock_slot_offset = stack_slots;
  1933     stack_slots += VMRegImpl::slots_per_word;
  1936   // Now a place (+2) to save return values or temp during shuffling
  1937   // + 4 for return address (which we own) and saved rbp
  1938   stack_slots += 6;
  1940   // Ok The space we have allocated will look like:
  1941   //
  1942   //
  1943   // FP-> |                     |
  1944   //      |---------------------|
  1945   //      | 2 slots for moves   |
  1946   //      |---------------------|
  1947   //      | lock box (if sync)  |
  1948   //      |---------------------| <- lock_slot_offset
  1949   //      | klass (if static)   |
  1950   //      |---------------------| <- klass_slot_offset
  1951   //      | oopHandle area      |
  1952   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1953   //      | outbound memory     |
  1954   //      | based arguments     |
  1955   //      |                     |
  1956   //      |---------------------|
  1957   //      |                     |
  1958   // SP-> | out_preserved_slots |
  1959   //
  1960   //
  1963   // Now compute actual number of stack words we need rounding to make
  1964   // stack properly aligned.
  1965   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1967   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1969   // First thing make an ic check to see if we should even be here
  1971   // We are free to use all registers as temps without saving them and
  1972   // restoring them except rbp. rbp is the only callee save register
  1973   // as far as the interpreter and the compiler(s) are concerned.
  1976   const Register ic_reg = rax;
  1977   const Register receiver = j_rarg0;
  1979   Label hit;
  1980   Label exception_pending;
  1982   assert_different_registers(ic_reg, receiver, rscratch1);
  1983   __ verify_oop(receiver);
  1984   __ load_klass(rscratch1, receiver);
  1985   __ cmpq(ic_reg, rscratch1);
  1986   __ jcc(Assembler::equal, hit);
  1988   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1990   // Verified entry point must be aligned
  1991   __ align(8);
  1993   __ bind(hit);
  1995   int vep_offset = ((intptr_t)__ pc()) - start;
  1997   // The instruction at the verified entry point must be 5 bytes or longer
  1998   // because it can be patched on the fly by make_non_entrant. The stack bang
  1999   // instruction fits that requirement.
  2001   // Generate stack overflow check
  2003   if (UseStackBanging) {
  2004     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2005   } else {
  2006     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2007     __ fat_nop();
  2010   // Generate a new frame for the wrapper.
  2011   __ enter();
  2012   // -2 because return address is already present and so is saved rbp
  2013   __ subptr(rsp, stack_size - 2*wordSize);
  2015   // Frame is now completed as far as size and linkage.
  2016   int frame_complete = ((intptr_t)__ pc()) - start;
  2018     if (UseRTMLocking) {
  2019       // Abort RTM transaction before calling JNI
  2020       // because critical section will be large and will be
  2021       // aborted anyway. Also nmethod could be deoptimized.
  2022       __ xabort(0);
  2025 #ifdef ASSERT
  2027       Label L;
  2028       __ mov(rax, rsp);
  2029       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  2030       __ cmpptr(rax, rsp);
  2031       __ jcc(Assembler::equal, L);
  2032       __ stop("improperly aligned stack");
  2033       __ bind(L);
  2035 #endif /* ASSERT */
  2038   // We use r14 as the oop handle for the receiver/klass
  2039   // It is callee save so it survives the call to native
  2041   const Register oop_handle_reg = r14;
  2043   if (is_critical_native) {
  2044     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
  2045                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2048   //
  2049   // We immediately shuffle the arguments so that any vm call we have to
  2050   // make from here on out (sync slow path, jvmti, etc.) we will have
  2051   // captured the oops from our caller and have a valid oopMap for
  2052   // them.
  2054   // -----------------
  2055   // The Grand Shuffle
  2057   // The Java calling convention is either equal (linux) or denser (win64) than the
  2058   // c calling convention. However the because of the jni_env argument the c calling
  2059   // convention always has at least one more (and two for static) arguments than Java.
  2060   // Therefore if we move the args from java -> c backwards then we will never have
  2061   // a register->register conflict and we don't have to build a dependency graph
  2062   // and figure out how to break any cycles.
  2063   //
  2065   // Record esp-based slot for receiver on stack for non-static methods
  2066   int receiver_offset = -1;
  2068   // This is a trick. We double the stack slots so we can claim
  2069   // the oops in the caller's frame. Since we are sure to have
  2070   // more args than the caller doubling is enough to make
  2071   // sure we can capture all the incoming oop args from the
  2072   // caller.
  2073   //
  2074   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2076   // Mark location of rbp (someday)
  2077   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  2079   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  2080   // All inbound args are referenced based on rbp and all outbound args via rsp.
  2083 #ifdef ASSERT
  2084   bool reg_destroyed[RegisterImpl::number_of_registers];
  2085   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  2086   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2087     reg_destroyed[r] = false;
  2089   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  2090     freg_destroyed[f] = false;
  2093 #endif /* ASSERT */
  2095   // This may iterate in two different directions depending on the
  2096   // kind of native it is.  The reason is that for regular JNI natives
  2097   // the incoming and outgoing registers are offset upwards and for
  2098   // critical natives they are offset down.
  2099   GrowableArray<int> arg_order(2 * total_in_args);
  2100   VMRegPair tmp_vmreg;
  2101   tmp_vmreg.set1(rbx->as_VMReg());
  2103   if (!is_critical_native) {
  2104     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  2105       arg_order.push(i);
  2106       arg_order.push(c_arg);
  2108   } else {
  2109     // Compute a valid move order, using tmp_vmreg to break any cycles
  2110     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  2113   int temploc = -1;
  2114   for (int ai = 0; ai < arg_order.length(); ai += 2) {
  2115     int i = arg_order.at(ai);
  2116     int c_arg = arg_order.at(ai + 1);
  2117     __ block_comment(err_msg("move %d -> %d", i, c_arg));
  2118     if (c_arg == -1) {
  2119       assert(is_critical_native, "should only be required for critical natives");
  2120       // This arg needs to be moved to a temporary
  2121       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
  2122       in_regs[i] = tmp_vmreg;
  2123       temploc = i;
  2124       continue;
  2125     } else if (i == -1) {
  2126       assert(is_critical_native, "should only be required for critical natives");
  2127       // Read from the temporary location
  2128       assert(temploc != -1, "must be valid");
  2129       i = temploc;
  2130       temploc = -1;
  2132 #ifdef ASSERT
  2133     if (in_regs[i].first()->is_Register()) {
  2134       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  2135     } else if (in_regs[i].first()->is_XMMRegister()) {
  2136       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  2138     if (out_regs[c_arg].first()->is_Register()) {
  2139       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2140     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2141       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2143 #endif /* ASSERT */
  2144     switch (in_sig_bt[i]) {
  2145       case T_ARRAY:
  2146         if (is_critical_native) {
  2147           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  2148           c_arg++;
  2149 #ifdef ASSERT
  2150           if (out_regs[c_arg].first()->is_Register()) {
  2151             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2152           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2153             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2155 #endif
  2156           break;
  2158       case T_OBJECT:
  2159         assert(!is_critical_native, "no oop arguments");
  2160         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2161                     ((i == 0) && (!is_static)),
  2162                     &receiver_offset);
  2163         break;
  2164       case T_VOID:
  2165         break;
  2167       case T_FLOAT:
  2168         float_move(masm, in_regs[i], out_regs[c_arg]);
  2169           break;
  2171       case T_DOUBLE:
  2172         assert( i + 1 < total_in_args &&
  2173                 in_sig_bt[i + 1] == T_VOID &&
  2174                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2175         double_move(masm, in_regs[i], out_regs[c_arg]);
  2176         break;
  2178       case T_LONG :
  2179         long_move(masm, in_regs[i], out_regs[c_arg]);
  2180         break;
  2182       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2184       default:
  2185         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2189   int c_arg;
  2191   // Pre-load a static method's oop into r14.  Used both by locking code and
  2192   // the normal JNI call code.
  2193   if (!is_critical_native) {
  2194     // point c_arg at the first arg that is already loaded in case we
  2195     // need to spill before we call out
  2196     c_arg = total_c_args - total_in_args;
  2198     if (method->is_static()) {
  2200       //  load oop into a register
  2201       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
  2203       // Now handlize the static class mirror it's known not-null.
  2204       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  2205       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2207       // Now get the handle
  2208       __ lea(oop_handle_reg, Address(rsp, klass_offset));
  2209       // store the klass handle as second argument
  2210       __ movptr(c_rarg1, oop_handle_reg);
  2211       // and protect the arg if we must spill
  2212       c_arg--;
  2214   } else {
  2215     // For JNI critical methods we need to save all registers in save_args.
  2216     c_arg = 0;
  2219   // Change state to native (we save the return address in the thread, since it might not
  2220   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  2221   // points into the right code segment. It does not have to be the correct return pc.
  2222   // We use the same pc/oopMap repeatedly when we call out
  2224   intptr_t the_pc = (intptr_t) __ pc();
  2225   oop_maps->add_gc_map(the_pc - start, map);
  2227   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  2230   // We have all of the arguments setup at this point. We must not touch any register
  2231   // argument registers at this point (what if we save/restore them there are no oop?
  2234     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2235     // protect the args we've loaded
  2236     save_args(masm, total_c_args, c_arg, out_regs);
  2237     __ mov_metadata(c_rarg1, method());
  2238     __ call_VM_leaf(
  2239       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2240       r15_thread, c_rarg1);
  2241     restore_args(masm, total_c_args, c_arg, out_regs);
  2244   // RedefineClasses() tracing support for obsolete method entry
  2245   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2246     // protect the args we've loaded
  2247     save_args(masm, total_c_args, c_arg, out_regs);
  2248     __ mov_metadata(c_rarg1, method());
  2249     __ call_VM_leaf(
  2250       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2251       r15_thread, c_rarg1);
  2252     restore_args(masm, total_c_args, c_arg, out_regs);
  2255   // Lock a synchronized method
  2257   // Register definitions used by locking and unlocking
  2259   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  2260   const Register obj_reg  = rbx;  // Will contain the oop
  2261   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  2262   const Register old_hdr  = r13;  // value of old header at unlock time
  2264   Label slow_path_lock;
  2265   Label lock_done;
  2267   if (method->is_synchronized()) {
  2268     assert(!is_critical_native, "unhandled");
  2271     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2273     // Get the handle (the 2nd argument)
  2274     __ mov(oop_handle_reg, c_rarg1);
  2276     // Get address of the box
  2278     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2280     // Load the oop from the handle
  2281     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2283     if (UseBiasedLocking) {
  2284       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  2287     // Load immediate 1 into swap_reg %rax
  2288     __ movl(swap_reg, 1);
  2290     // Load (object->mark() | 1) into swap_reg %rax
  2291     __ orptr(swap_reg, Address(obj_reg, 0));
  2293     // Save (object->mark() | 1) into BasicLock's displaced header
  2294     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2296     if (os::is_MP()) {
  2297       __ lock();
  2300     // src -> dest iff dest == rax else rax <- dest
  2301     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2302     __ jcc(Assembler::equal, lock_done);
  2304     // Hmm should this move to the slow path code area???
  2306     // Test if the oopMark is an obvious stack pointer, i.e.,
  2307     //  1) (mark & 3) == 0, and
  2308     //  2) rsp <= mark < mark + os::pagesize()
  2309     // These 3 tests can be done by evaluating the following
  2310     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2311     // assuming both stack pointer and pagesize have their
  2312     // least significant 2 bits clear.
  2313     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  2315     __ subptr(swap_reg, rsp);
  2316     __ andptr(swap_reg, 3 - os::vm_page_size());
  2318     // Save the test result, for recursive case, the result is zero
  2319     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2320     __ jcc(Assembler::notEqual, slow_path_lock);
  2322     // Slow path will re-enter here
  2324     __ bind(lock_done);
  2328   // Finally just about ready to make the JNI call
  2331   // get JNIEnv* which is first argument to native
  2332   if (!is_critical_native) {
  2333     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  2336   // Now set thread in native
  2337   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  2339   __ call(RuntimeAddress(native_func));
  2341   // Verify or restore cpu control state after JNI call
  2342   __ restore_cpu_control_state_after_jni();
  2344   // Unpack native results.
  2345   switch (ret_type) {
  2346   case T_BOOLEAN: __ c2bool(rax);            break;
  2347   case T_CHAR   : __ movzwl(rax, rax);      break;
  2348   case T_BYTE   : __ sign_extend_byte (rax); break;
  2349   case T_SHORT  : __ sign_extend_short(rax); break;
  2350   case T_INT    : /* nothing to do */        break;
  2351   case T_DOUBLE :
  2352   case T_FLOAT  :
  2353     // Result is in xmm0 we'll save as needed
  2354     break;
  2355   case T_ARRAY:                 // Really a handle
  2356   case T_OBJECT:                // Really a handle
  2357       break; // can't de-handlize until after safepoint check
  2358   case T_VOID: break;
  2359   case T_LONG: break;
  2360   default       : ShouldNotReachHere();
  2363   // Switch thread to "native transition" state before reading the synchronization state.
  2364   // This additional state is necessary because reading and testing the synchronization
  2365   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2366   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2367   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2368   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2369   //     didn't see any synchronization is progress, and escapes.
  2370   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2372   if(os::is_MP()) {
  2373     if (UseMembar) {
  2374       // Force this write out before the read below
  2375       __ membar(Assembler::Membar_mask_bits(
  2376            Assembler::LoadLoad | Assembler::LoadStore |
  2377            Assembler::StoreLoad | Assembler::StoreStore));
  2378     } else {
  2379       // Write serialization page so VM thread can do a pseudo remote membar.
  2380       // We use the current thread pointer to calculate a thread specific
  2381       // offset to write to within the page. This minimizes bus traffic
  2382       // due to cache line collision.
  2383       __ serialize_memory(r15_thread, rcx);
  2387   Label after_transition;
  2389   // check for safepoint operation in progress and/or pending suspend requests
  2391     Label Continue;
  2393     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2394              SafepointSynchronize::_not_synchronized);
  2396     Label L;
  2397     __ jcc(Assembler::notEqual, L);
  2398     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  2399     __ jcc(Assembler::equal, Continue);
  2400     __ bind(L);
  2402     // Don't use call_VM as it will see a possible pending exception and forward it
  2403     // and never return here preventing us from clearing _last_native_pc down below.
  2404     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2405     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2406     // by hand.
  2407     //
  2408     save_native_result(masm, ret_type, stack_slots);
  2409     __ mov(c_rarg0, r15_thread);
  2410     __ mov(r12, rsp); // remember sp
  2411     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2412     __ andptr(rsp, -16); // align stack as required by ABI
  2413     if (!is_critical_native) {
  2414       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  2415     } else {
  2416       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
  2418     __ mov(rsp, r12); // restore sp
  2419     __ reinit_heapbase();
  2420     // Restore any method result value
  2421     restore_native_result(masm, ret_type, stack_slots);
  2423     if (is_critical_native) {
  2424       // The call above performed the transition to thread_in_Java so
  2425       // skip the transition logic below.
  2426       __ jmpb(after_transition);
  2429     __ bind(Continue);
  2432   // change thread state
  2433   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2434   __ bind(after_transition);
  2436   Label reguard;
  2437   Label reguard_done;
  2438   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2439   __ jcc(Assembler::equal, reguard);
  2440   __ bind(reguard_done);
  2442   // native result if any is live
  2444   // Unlock
  2445   Label unlock_done;
  2446   Label slow_path_unlock;
  2447   if (method->is_synchronized()) {
  2449     // Get locked oop from the handle we passed to jni
  2450     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2452     Label done;
  2454     if (UseBiasedLocking) {
  2455       __ biased_locking_exit(obj_reg, old_hdr, done);
  2458     // Simple recursive lock?
  2460     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  2461     __ jcc(Assembler::equal, done);
  2463     // Must save rax if if it is live now because cmpxchg must use it
  2464     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2465       save_native_result(masm, ret_type, stack_slots);
  2469     // get address of the stack lock
  2470     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2471     //  get old displaced header
  2472     __ movptr(old_hdr, Address(rax, 0));
  2474     // Atomic swap old header if oop still contains the stack lock
  2475     if (os::is_MP()) {
  2476       __ lock();
  2478     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  2479     __ jcc(Assembler::notEqual, slow_path_unlock);
  2481     // slow path re-enters here
  2482     __ bind(unlock_done);
  2483     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2484       restore_native_result(masm, ret_type, stack_slots);
  2487     __ bind(done);
  2491     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2492     save_native_result(masm, ret_type, stack_slots);
  2493     __ mov_metadata(c_rarg1, method());
  2494     __ call_VM_leaf(
  2495          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2496          r15_thread, c_rarg1);
  2497     restore_native_result(masm, ret_type, stack_slots);
  2500   __ reset_last_Java_frame(false, true);
  2502   // Unpack oop result
  2503   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2504       Label L;
  2505       __ testptr(rax, rax);
  2506       __ jcc(Assembler::zero, L);
  2507       __ movptr(rax, Address(rax, 0));
  2508       __ bind(L);
  2509       __ verify_oop(rax);
  2512   if (!is_critical_native) {
  2513     // reset handle block
  2514     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  2515     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  2518   // pop our frame
  2520   __ leave();
  2522   if (!is_critical_native) {
  2523     // Any exception pending?
  2524     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2525     __ jcc(Assembler::notEqual, exception_pending);
  2528   // Return
  2530   __ ret(0);
  2532   // Unexpected paths are out of line and go here
  2534   if (!is_critical_native) {
  2535     // forward the exception
  2536     __ bind(exception_pending);
  2538     // and forward the exception
  2539     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2542   // Slow path locking & unlocking
  2543   if (method->is_synchronized()) {
  2545     // BEGIN Slow path lock
  2546     __ bind(slow_path_lock);
  2548     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2549     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2551     // protect the args we've loaded
  2552     save_args(masm, total_c_args, c_arg, out_regs);
  2554     __ mov(c_rarg0, obj_reg);
  2555     __ mov(c_rarg1, lock_reg);
  2556     __ mov(c_rarg2, r15_thread);
  2558     // Not a leaf but we have last_Java_frame setup as we want
  2559     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  2560     restore_args(masm, total_c_args, c_arg, out_regs);
  2562 #ifdef ASSERT
  2563     { Label L;
  2564     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2565     __ jcc(Assembler::equal, L);
  2566     __ stop("no pending exception allowed on exit from monitorenter");
  2567     __ bind(L);
  2569 #endif
  2570     __ jmp(lock_done);
  2572     // END Slow path lock
  2574     // BEGIN Slow path unlock
  2575     __ bind(slow_path_unlock);
  2577     // If we haven't already saved the native result we must save it now as xmm registers
  2578     // are still exposed.
  2580     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2581       save_native_result(masm, ret_type, stack_slots);
  2584     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2586     __ mov(c_rarg0, obj_reg);
  2587     __ mov(r12, rsp); // remember sp
  2588     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2589     __ andptr(rsp, -16); // align stack as required by ABI
  2591     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2592     // NOTE that obj_reg == rbx currently
  2593     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  2594     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2596     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2597     __ mov(rsp, r12); // restore sp
  2598     __ reinit_heapbase();
  2599 #ifdef ASSERT
  2601       Label L;
  2602       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2603       __ jcc(Assembler::equal, L);
  2604       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2605       __ bind(L);
  2607 #endif /* ASSERT */
  2609     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  2611     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2612       restore_native_result(masm, ret_type, stack_slots);
  2614     __ jmp(unlock_done);
  2616     // END Slow path unlock
  2618   } // synchronized
  2620   // SLOW PATH Reguard the stack if needed
  2622   __ bind(reguard);
  2623   save_native_result(masm, ret_type, stack_slots);
  2624   __ mov(r12, rsp); // remember sp
  2625   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2626   __ andptr(rsp, -16); // align stack as required by ABI
  2627   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2628   __ mov(rsp, r12); // restore sp
  2629   __ reinit_heapbase();
  2630   restore_native_result(masm, ret_type, stack_slots);
  2631   // and continue
  2632   __ jmp(reguard_done);
  2636   __ flush();
  2638   nmethod *nm = nmethod::new_native_nmethod(method,
  2639                                             compile_id,
  2640                                             masm->code(),
  2641                                             vep_offset,
  2642                                             frame_complete,
  2643                                             stack_slots / VMRegImpl::slots_per_word,
  2644                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2645                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2646                                             oop_maps);
  2648   if (is_critical_native) {
  2649     nm->set_lazy_critical_native(true);
  2652   return nm;
  2656 #ifdef HAVE_DTRACE_H
  2657 // ---------------------------------------------------------------------------
  2658 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2659 // in the Java compiled code convention, marshals them to the native
  2660 // abi and then leaves nops at the position you would expect to call a native
  2661 // function. When the probe is enabled the nops are replaced with a trap
  2662 // instruction that dtrace inserts and the trace will cause a notification
  2663 // to dtrace.
  2664 //
  2665 // The probes are only able to take primitive types and java/lang/String as
  2666 // arguments.  No other java types are allowed. Strings are converted to utf8
  2667 // strings so that from dtrace point of view java strings are converted to C
  2668 // strings. There is an arbitrary fixed limit on the total space that a method
  2669 // can use for converting the strings. (256 chars per string in the signature).
  2670 // So any java string larger then this is truncated.
  2672 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2673 static bool offsets_initialized = false;
  2676 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  2677                                                 methodHandle method) {
  2680   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2681   // be single threaded in this method.
  2682   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2684   if (!offsets_initialized) {
  2685     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  2686     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  2687     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  2688     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  2689     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  2690     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  2692     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  2693     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  2694     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  2695     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  2696     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  2697     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  2698     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  2699     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  2701     offsets_initialized = true;
  2703   // Fill in the signature array, for the calling-convention call.
  2704   int total_args_passed = method->size_of_parameters();
  2706   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2707   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2709   // The signature we are going to use for the trap that dtrace will see
  2710   // java/lang/String is converted. We drop "this" and any other object
  2711   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2712   // is converted to a two-slot long, which is why we double the allocation).
  2713   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2714   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2716   int i=0;
  2717   int total_strings = 0;
  2718   int first_arg_to_pass = 0;
  2719   int total_c_args = 0;
  2721   // Skip the receiver as dtrace doesn't want to see it
  2722   if( !method->is_static() ) {
  2723     in_sig_bt[i++] = T_OBJECT;
  2724     first_arg_to_pass = 1;
  2727   // We need to convert the java args to where a native (non-jni) function
  2728   // would expect them. To figure out where they go we convert the java
  2729   // signature to a C signature.
  2731   SignatureStream ss(method->signature());
  2732   for ( ; !ss.at_return_type(); ss.next()) {
  2733     BasicType bt = ss.type();
  2734     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2735     out_sig_bt[total_c_args++] = bt;
  2736     if( bt == T_OBJECT) {
  2737       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2738       if (s == vmSymbols::java_lang_String()) {
  2739         total_strings++;
  2740         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2741       } else if (s == vmSymbols::java_lang_Boolean() ||
  2742                  s == vmSymbols::java_lang_Character() ||
  2743                  s == vmSymbols::java_lang_Byte() ||
  2744                  s == vmSymbols::java_lang_Short() ||
  2745                  s == vmSymbols::java_lang_Integer() ||
  2746                  s == vmSymbols::java_lang_Float()) {
  2747         out_sig_bt[total_c_args-1] = T_INT;
  2748       } else if (s == vmSymbols::java_lang_Long() ||
  2749                  s == vmSymbols::java_lang_Double()) {
  2750         out_sig_bt[total_c_args-1] = T_LONG;
  2751         out_sig_bt[total_c_args++] = T_VOID;
  2753     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2754       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2755       // We convert double to long
  2756       out_sig_bt[total_c_args-1] = T_LONG;
  2757       out_sig_bt[total_c_args++] = T_VOID;
  2758     } else if ( bt == T_FLOAT) {
  2759       // We convert float to int
  2760       out_sig_bt[total_c_args-1] = T_INT;
  2764   assert(i==total_args_passed, "validly parsed signature");
  2766   // Now get the compiled-Java layout as input arguments
  2767   int comp_args_on_stack;
  2768   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2769       in_sig_bt, in_regs, total_args_passed, false);
  2771   // Now figure out where the args must be stored and how much stack space
  2772   // they require (neglecting out_preserve_stack_slots but space for storing
  2773   // the 1st six register arguments). It's weird see int_stk_helper.
  2775   int out_arg_slots;
  2776   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2778   // Calculate the total number of stack slots we will need.
  2780   // First count the abi requirement plus all of the outgoing args
  2781   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2783   // Now space for the string(s) we must convert
  2784   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2785   for (i = 0; i < total_strings ; i++) {
  2786     string_locs[i] = stack_slots;
  2787     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2790   // Plus the temps we might need to juggle register args
  2791   // regs take two slots each
  2792   stack_slots += (Argument::n_int_register_parameters_c +
  2793                   Argument::n_float_register_parameters_c) * 2;
  2796   // + 4 for return address (which we own) and saved rbp,
  2798   stack_slots += 4;
  2800   // Ok The space we have allocated will look like:
  2801   //
  2802   //
  2803   // FP-> |                     |
  2804   //      |---------------------|
  2805   //      | string[n]           |
  2806   //      |---------------------| <- string_locs[n]
  2807   //      | string[n-1]         |
  2808   //      |---------------------| <- string_locs[n-1]
  2809   //      | ...                 |
  2810   //      | ...                 |
  2811   //      |---------------------| <- string_locs[1]
  2812   //      | string[0]           |
  2813   //      |---------------------| <- string_locs[0]
  2814   //      | outbound memory     |
  2815   //      | based arguments     |
  2816   //      |                     |
  2817   //      |---------------------|
  2818   //      |                     |
  2819   // SP-> | out_preserved_slots |
  2820   //
  2821   //
  2823   // Now compute actual number of stack words we need rounding to make
  2824   // stack properly aligned.
  2825   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2827   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2829   intptr_t start = (intptr_t)__ pc();
  2831   // First thing make an ic check to see if we should even be here
  2833   // We are free to use all registers as temps without saving them and
  2834   // restoring them except rbp. rbp, is the only callee save register
  2835   // as far as the interpreter and the compiler(s) are concerned.
  2837   const Register ic_reg = rax;
  2838   const Register receiver = rcx;
  2839   Label hit;
  2840   Label exception_pending;
  2843   __ verify_oop(receiver);
  2844   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2845   __ jcc(Assembler::equal, hit);
  2847   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2849   // verified entry must be aligned for code patching.
  2850   // and the first 5 bytes must be in the same cache line
  2851   // if we align at 8 then we will be sure 5 bytes are in the same line
  2852   __ align(8);
  2854   __ bind(hit);
  2856   int vep_offset = ((intptr_t)__ pc()) - start;
  2859   // The instruction at the verified entry point must be 5 bytes or longer
  2860   // because it can be patched on the fly by make_non_entrant. The stack bang
  2861   // instruction fits that requirement.
  2863   // Generate stack overflow check
  2865   if (UseStackBanging) {
  2866     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2867       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2868     } else {
  2869       __ movl(rax, stack_size);
  2870       __ bang_stack_size(rax, rbx);
  2872   } else {
  2873     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2874     __ fat_nop();
  2877   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2878          "valid size for make_non_entrant");
  2880   // Generate a new frame for the wrapper.
  2881   __ enter();
  2883   // -4 because return address is already present and so is saved rbp,
  2884   if (stack_size - 2*wordSize != 0) {
  2885     __ subq(rsp, stack_size - 2*wordSize);
  2888   // Frame is now completed as far a size and linkage.
  2890   int frame_complete = ((intptr_t)__ pc()) - start;
  2892   int c_arg, j_arg;
  2894   // State of input register args
  2896   bool  live[ConcreteRegisterImpl::number_of_registers];
  2898   live[j_rarg0->as_VMReg()->value()] = false;
  2899   live[j_rarg1->as_VMReg()->value()] = false;
  2900   live[j_rarg2->as_VMReg()->value()] = false;
  2901   live[j_rarg3->as_VMReg()->value()] = false;
  2902   live[j_rarg4->as_VMReg()->value()] = false;
  2903   live[j_rarg5->as_VMReg()->value()] = false;
  2905   live[j_farg0->as_VMReg()->value()] = false;
  2906   live[j_farg1->as_VMReg()->value()] = false;
  2907   live[j_farg2->as_VMReg()->value()] = false;
  2908   live[j_farg3->as_VMReg()->value()] = false;
  2909   live[j_farg4->as_VMReg()->value()] = false;
  2910   live[j_farg5->as_VMReg()->value()] = false;
  2911   live[j_farg6->as_VMReg()->value()] = false;
  2912   live[j_farg7->as_VMReg()->value()] = false;
  2915   bool rax_is_zero = false;
  2917   // All args (except strings) destined for the stack are moved first
  2918   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2919        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2920     VMRegPair src = in_regs[j_arg];
  2921     VMRegPair dst = out_regs[c_arg];
  2923     // Get the real reg value or a dummy (rsp)
  2925     int src_reg = src.first()->is_reg() ?
  2926                   src.first()->value() :
  2927                   rsp->as_VMReg()->value();
  2929     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2930                     (in_sig_bt[j_arg] == T_OBJECT &&
  2931                      out_sig_bt[c_arg] != T_INT &&
  2932                      out_sig_bt[c_arg] != T_ADDRESS &&
  2933                      out_sig_bt[c_arg] != T_LONG);
  2935     live[src_reg] = !useless;
  2937     if (dst.first()->is_stack()) {
  2939       // Even though a string arg in a register is still live after this loop
  2940       // after the string conversion loop (next) it will be dead so we take
  2941       // advantage of that now for simpler code to manage live.
  2943       live[src_reg] = false;
  2944       switch (in_sig_bt[j_arg]) {
  2946         case T_ARRAY:
  2947         case T_OBJECT:
  2949             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2951             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2952               // need to unbox a one-word value
  2953               Register in_reg = rax;
  2954               if ( src.first()->is_reg() ) {
  2955                 in_reg = src.first()->as_Register();
  2956               } else {
  2957                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2958                 rax_is_zero = false;
  2960               Label skipUnbox;
  2961               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2962                         (int32_t)NULL_WORD);
  2963               __ testq(in_reg, in_reg);
  2964               __ jcc(Assembler::zero, skipUnbox);
  2966               BasicType bt = out_sig_bt[c_arg];
  2967               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2968               Address src1(in_reg, box_offset);
  2969               if ( bt == T_LONG ) {
  2970                 __ movq(in_reg,  src1);
  2971                 __ movq(stack_dst, in_reg);
  2972                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2973                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2974               } else {
  2975                 __ movl(in_reg,  src1);
  2976                 __ movl(stack_dst, in_reg);
  2979               __ bind(skipUnbox);
  2980             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2981               // Convert the arg to NULL
  2982               if (!rax_is_zero) {
  2983                 __ xorq(rax, rax);
  2984                 rax_is_zero = true;
  2986               __ movq(stack_dst, rax);
  2989           break;
  2991         case T_VOID:
  2992           break;
  2994         case T_FLOAT:
  2995           // This does the right thing since we know it is destined for the
  2996           // stack
  2997           float_move(masm, src, dst);
  2998           break;
  3000         case T_DOUBLE:
  3001           // This does the right thing since we know it is destined for the
  3002           // stack
  3003           double_move(masm, src, dst);
  3004           break;
  3006         case T_LONG :
  3007           long_move(masm, src, dst);
  3008           break;
  3010         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3012         default:
  3013           move32_64(masm, src, dst);
  3019   // If we have any strings we must store any register based arg to the stack
  3020   // This includes any still live xmm registers too.
  3022   int sid = 0;
  3024   if (total_strings > 0 ) {
  3025     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3026          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3027       VMRegPair src = in_regs[j_arg];
  3028       VMRegPair dst = out_regs[c_arg];
  3030       if (src.first()->is_reg()) {
  3031         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  3033         // string oops were left untouched by the previous loop even if the
  3034         // eventual (converted) arg is destined for the stack so park them
  3035         // away now (except for first)
  3037         if (out_sig_bt[c_arg] == T_ADDRESS) {
  3038           Address utf8_addr = Address(
  3039               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3040           if (sid != 1) {
  3041             // The first string arg won't be killed until after the utf8
  3042             // conversion
  3043             __ movq(utf8_addr, src.first()->as_Register());
  3045         } else if (dst.first()->is_reg()) {
  3046           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  3048             // Convert the xmm register to an int and store it in the reserved
  3049             // location for the eventual c register arg
  3050             XMMRegister f = src.first()->as_XMMRegister();
  3051             if (in_sig_bt[j_arg] == T_FLOAT) {
  3052               __ movflt(src_tmp, f);
  3053             } else {
  3054               __ movdbl(src_tmp, f);
  3056           } else {
  3057             // If the arg is an oop type we don't support don't bother to store
  3058             // it remember string was handled above.
  3059             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3060                             (in_sig_bt[j_arg] == T_OBJECT &&
  3061                              out_sig_bt[c_arg] != T_INT &&
  3062                              out_sig_bt[c_arg] != T_LONG);
  3064             if (!useless) {
  3065               __ movq(src_tmp, src.first()->as_Register());
  3070       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3071         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3072         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3076     // Now that the volatile registers are safe, convert all the strings
  3077     sid = 0;
  3079     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3080          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3081       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3082         // It's a string
  3083         Address utf8_addr = Address(
  3084             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3085         // The first string we find might still be in the original java arg
  3086         // register
  3088         VMReg src = in_regs[j_arg].first();
  3090         // We will need to eventually save the final argument to the trap
  3091         // in the von-volatile location dedicated to src. This is the offset
  3092         // from fp we will use.
  3093         int src_off = src->is_reg() ?
  3094             fp_offset[src->value()] : reg2offset_in(src);
  3096         // This is where the argument will eventually reside
  3097         VMRegPair dst = out_regs[c_arg];
  3099         if (src->is_reg()) {
  3100           if (sid == 1) {
  3101             __ movq(c_rarg0, src->as_Register());
  3102           } else {
  3103             __ movq(c_rarg0, utf8_addr);
  3105         } else {
  3106           // arg is still in the original location
  3107           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  3109         Label done, convert;
  3111         // see if the oop is NULL
  3112         __ testq(c_rarg0, c_rarg0);
  3113         __ jcc(Assembler::notEqual, convert);
  3115         if (dst.first()->is_reg()) {
  3116           // Save the ptr to utf string in the origina src loc or the tmp
  3117           // dedicated to it
  3118           __ movq(Address(rbp, src_off), c_rarg0);
  3119         } else {
  3120           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  3122         __ jmp(done);
  3124         __ bind(convert);
  3126         __ lea(c_rarg1, utf8_addr);
  3127         if (dst.first()->is_reg()) {
  3128           __ movq(Address(rbp, src_off), c_rarg1);
  3129         } else {
  3130           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  3132         // And do the conversion
  3133         __ call(RuntimeAddress(
  3134                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  3136         __ bind(done);
  3138       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3139         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3140         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3143     // The get_utf call killed all the c_arg registers
  3144     live[c_rarg0->as_VMReg()->value()] = false;
  3145     live[c_rarg1->as_VMReg()->value()] = false;
  3146     live[c_rarg2->as_VMReg()->value()] = false;
  3147     live[c_rarg3->as_VMReg()->value()] = false;
  3148     live[c_rarg4->as_VMReg()->value()] = false;
  3149     live[c_rarg5->as_VMReg()->value()] = false;
  3151     live[c_farg0->as_VMReg()->value()] = false;
  3152     live[c_farg1->as_VMReg()->value()] = false;
  3153     live[c_farg2->as_VMReg()->value()] = false;
  3154     live[c_farg3->as_VMReg()->value()] = false;
  3155     live[c_farg4->as_VMReg()->value()] = false;
  3156     live[c_farg5->as_VMReg()->value()] = false;
  3157     live[c_farg6->as_VMReg()->value()] = false;
  3158     live[c_farg7->as_VMReg()->value()] = false;
  3161   // Now we can finally move the register args to their desired locations
  3163   rax_is_zero = false;
  3165   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3166        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3168     VMRegPair src = in_regs[j_arg];
  3169     VMRegPair dst = out_regs[c_arg];
  3171     // Only need to look for args destined for the interger registers (since we
  3172     // convert float/double args to look like int/long outbound)
  3173     if (dst.first()->is_reg()) {
  3174       Register r =  dst.first()->as_Register();
  3176       // Check if the java arg is unsupported and thereofre useless
  3177       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3178                       (in_sig_bt[j_arg] == T_OBJECT &&
  3179                        out_sig_bt[c_arg] != T_INT &&
  3180                        out_sig_bt[c_arg] != T_ADDRESS &&
  3181                        out_sig_bt[c_arg] != T_LONG);
  3184       // If we're going to kill an existing arg save it first
  3185       if (live[dst.first()->value()]) {
  3186         // you can't kill yourself
  3187         if (src.first() != dst.first()) {
  3188           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  3191       if (src.first()->is_reg()) {
  3192         if (live[src.first()->value()] ) {
  3193           if (in_sig_bt[j_arg] == T_FLOAT) {
  3194             __ movdl(r, src.first()->as_XMMRegister());
  3195           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  3196             __ movdq(r, src.first()->as_XMMRegister());
  3197           } else if (r != src.first()->as_Register()) {
  3198             if (!useless) {
  3199               __ movq(r, src.first()->as_Register());
  3202         } else {
  3203           // If the arg is an oop type we don't support don't bother to store
  3204           // it
  3205           if (!useless) {
  3206             if (in_sig_bt[j_arg] == T_DOUBLE ||
  3207                 in_sig_bt[j_arg] == T_LONG  ||
  3208                 in_sig_bt[j_arg] == T_OBJECT ) {
  3209               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  3210             } else {
  3211               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  3215         live[src.first()->value()] = false;
  3216       } else if (!useless) {
  3217         // full sized move even for int should be ok
  3218         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  3221       // At this point r has the original java arg in the final location
  3222       // (assuming it wasn't useless). If the java arg was an oop
  3223       // we have a bit more to do
  3225       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  3226         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3227           // need to unbox a one-word value
  3228           Label skip;
  3229           __ testq(r, r);
  3230           __ jcc(Assembler::equal, skip);
  3231           BasicType bt = out_sig_bt[c_arg];
  3232           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3233           Address src1(r, box_offset);
  3234           if ( bt == T_LONG ) {
  3235             __ movq(r, src1);
  3236           } else {
  3237             __ movl(r, src1);
  3239           __ bind(skip);
  3241         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  3242           // Convert the arg to NULL
  3243           __ xorq(r, r);
  3247       // dst can longer be holding an input value
  3248       live[dst.first()->value()] = false;
  3250     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3251       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3252       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3257   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3258   // patch in the trap
  3259   int patch_offset = ((intptr_t)__ pc()) - start;
  3261   __ nop();
  3264   // Return
  3266   __ leave();
  3267   __ ret(0);
  3269   __ flush();
  3271   nmethod *nm = nmethod::new_dtrace_nmethod(
  3272       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3273       stack_slots / VMRegImpl::slots_per_word);
  3274   return nm;
  3278 #endif // HAVE_DTRACE_H
  3280 // this function returns the adjust size (in number of words) to a c2i adapter
  3281 // activation for use during deoptimization
  3282 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  3283   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3287 uint SharedRuntime::out_preserve_stack_slots() {
  3288   return 0;
  3291 //------------------------------generate_deopt_blob----------------------------
  3292 void SharedRuntime::generate_deopt_blob() {
  3293   // Allocate space for the code
  3294   ResourceMark rm;
  3295   // Setup code generation tools
  3296   CodeBuffer buffer("deopt_blob", 2048, 1024);
  3297   MacroAssembler* masm = new MacroAssembler(&buffer);
  3298   int frame_size_in_words;
  3299   OopMap* map = NULL;
  3300   OopMapSet *oop_maps = new OopMapSet();
  3302   // -------------
  3303   // This code enters when returning to a de-optimized nmethod.  A return
  3304   // address has been pushed on the the stack, and return values are in
  3305   // registers.
  3306   // If we are doing a normal deopt then we were called from the patched
  3307   // nmethod from the point we returned to the nmethod. So the return
  3308   // address on the stack is wrong by NativeCall::instruction_size
  3309   // We will adjust the value so it looks like we have the original return
  3310   // address on the stack (like when we eagerly deoptimized).
  3311   // In the case of an exception pending when deoptimizing, we enter
  3312   // with a return address on the stack that points after the call we patched
  3313   // into the exception handler. We have the following register state from,
  3314   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  3315   //    rax: exception oop
  3316   //    rbx: exception handler
  3317   //    rdx: throwing pc
  3318   // So in this case we simply jam rdx into the useless return address and
  3319   // the stack looks just like we want.
  3320   //
  3321   // At this point we need to de-opt.  We save the argument return
  3322   // registers.  We call the first C routine, fetch_unroll_info().  This
  3323   // routine captures the return values and returns a structure which
  3324   // describes the current frame size and the sizes of all replacement frames.
  3325   // The current frame is compiled code and may contain many inlined
  3326   // functions, each with their own JVM state.  We pop the current frame, then
  3327   // push all the new frames.  Then we call the C routine unpack_frames() to
  3328   // populate these frames.  Finally unpack_frames() returns us the new target
  3329   // address.  Notice that callee-save registers are BLOWN here; they have
  3330   // already been captured in the vframeArray at the time the return PC was
  3331   // patched.
  3332   address start = __ pc();
  3333   Label cont;
  3335   // Prolog for non exception case!
  3337   // Save everything in sight.
  3338   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3340   // Normal deoptimization.  Save exec mode for unpack_frames.
  3341   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  3342   __ jmp(cont);
  3344   int reexecute_offset = __ pc() - start;
  3346   // Reexecute case
  3347   // return address is the pc describes what bci to do re-execute at
  3349   // No need to update map as each call to save_live_registers will produce identical oopmap
  3350   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3352   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  3353   __ jmp(cont);
  3355   int exception_offset = __ pc() - start;
  3357   // Prolog for exception case
  3359   // all registers are dead at this entry point, except for rax, and
  3360   // rdx which contain the exception oop and exception pc
  3361   // respectively.  Set them in TLS and fall thru to the
  3362   // unpack_with_exception_in_tls entry point.
  3364   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3365   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  3367   int exception_in_tls_offset = __ pc() - start;
  3369   // new implementation because exception oop is now passed in JavaThread
  3371   // Prolog for exception case
  3372   // All registers must be preserved because they might be used by LinearScan
  3373   // Exceptiop oop and throwing PC are passed in JavaThread
  3374   // tos: stack at point of call to method that threw the exception (i.e. only
  3375   // args are on the stack, no return address)
  3377   // make room on stack for the return address
  3378   // It will be patched later with the throwing pc. The correct value is not
  3379   // available now because loading it from memory would destroy registers.
  3380   __ push(0);
  3382   // Save everything in sight.
  3383   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3385   // Now it is safe to overwrite any register
  3387   // Deopt during an exception.  Save exec mode for unpack_frames.
  3388   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  3390   // load throwing pc from JavaThread and patch it as the return address
  3391   // of the current frame. Then clear the field in JavaThread
  3393   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3394   __ movptr(Address(rbp, wordSize), rdx);
  3395   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3397 #ifdef ASSERT
  3398   // verify that there is really an exception oop in JavaThread
  3399   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3400   __ verify_oop(rax);
  3402   // verify that there is no pending exception
  3403   Label no_pending_exception;
  3404   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3405   __ testptr(rax, rax);
  3406   __ jcc(Assembler::zero, no_pending_exception);
  3407   __ stop("must not have pending exception here");
  3408   __ bind(no_pending_exception);
  3409 #endif
  3411   __ bind(cont);
  3413   // Call C code.  Need thread and this frame, but NOT official VM entry
  3414   // crud.  We cannot block on this call, no GC can happen.
  3415   //
  3416   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  3418   // fetch_unroll_info needs to call last_java_frame().
  3420   __ set_last_Java_frame(noreg, noreg, NULL);
  3421 #ifdef ASSERT
  3422   { Label L;
  3423     __ cmpptr(Address(r15_thread,
  3424                     JavaThread::last_Java_fp_offset()),
  3425             (int32_t)0);
  3426     __ jcc(Assembler::equal, L);
  3427     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  3428     __ bind(L);
  3430 #endif // ASSERT
  3431   __ mov(c_rarg0, r15_thread);
  3432   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  3434   // Need to have an oopmap that tells fetch_unroll_info where to
  3435   // find any register it might need.
  3436   oop_maps->add_gc_map(__ pc() - start, map);
  3438   __ reset_last_Java_frame(false, false);
  3440   // Load UnrollBlock* into rdi
  3441   __ mov(rdi, rax);
  3443    Label noException;
  3444   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  3445   __ jcc(Assembler::notEqual, noException);
  3446   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3447   // QQQ this is useless it was NULL above
  3448   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3449   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  3450   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3452   __ verify_oop(rax);
  3454   // Overwrite the result registers with the exception results.
  3455   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3456   // I think this is useless
  3457   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  3459   __ bind(noException);
  3461   // Only register save data is on the stack.
  3462   // Now restore the result registers.  Everything else is either dead
  3463   // or captured in the vframeArray.
  3464   RegisterSaver::restore_result_registers(masm);
  3466   // All of the register save area has been popped of the stack. Only the
  3467   // return address remains.
  3469   // Pop all the frames we must move/replace.
  3470   //
  3471   // Frame picture (youngest to oldest)
  3472   // 1: self-frame (no frame link)
  3473   // 2: deopting frame  (no frame link)
  3474   // 3: caller of deopting frame (could be compiled/interpreted).
  3475   //
  3476   // Note: by leaving the return address of self-frame on the stack
  3477   // and using the size of frame 2 to adjust the stack
  3478   // when we are done the return to frame 3 will still be on the stack.
  3480   // Pop deoptimized frame
  3481   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3482   __ addptr(rsp, rcx);
  3484   // rsp should be pointing at the return address to the caller (3)
  3486   // Pick up the initial fp we should save
  3487   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3488   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3490 #ifdef ASSERT
  3491   // Compilers generate code that bang the stack by as much as the
  3492   // interpreter would need. So this stack banging should never
  3493   // trigger a fault. Verify that it does not on non product builds.
  3494   if (UseStackBanging) {
  3495     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3496     __ bang_stack_size(rbx, rcx);
  3498 #endif
  3500   // Load address of array of frame pcs into rcx
  3501   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3503   // Trash the old pc
  3504   __ addptr(rsp, wordSize);
  3506   // Load address of array of frame sizes into rsi
  3507   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3509   // Load counter into rdx
  3510   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3512   // Now adjust the caller's stack to make up for the extra locals
  3513   // but record the original sp so that we can save it in the skeletal interpreter
  3514   // frame and the stack walking of interpreter_sender will get the unextended sp
  3515   // value and not the "real" sp value.
  3517   const Register sender_sp = r8;
  3519   __ mov(sender_sp, rsp);
  3520   __ movl(rbx, Address(rdi,
  3521                        Deoptimization::UnrollBlock::
  3522                        caller_adjustment_offset_in_bytes()));
  3523   __ subptr(rsp, rbx);
  3525   // Push interpreter frames in a loop
  3526   Label loop;
  3527   __ bind(loop);
  3528   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3529 #ifdef CC_INTERP
  3530   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3531 #ifdef ASSERT
  3532   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3533   __ push(0xDEADDEAD);
  3534 #else /* ASSERT */
  3535   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3536 #endif /* ASSERT */
  3537 #else
  3538   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  3539 #endif // CC_INTERP
  3540   __ pushptr(Address(rcx, 0));          // Save return address
  3541   __ enter();                           // Save old & set new ebp
  3542   __ subptr(rsp, rbx);                  // Prolog
  3543 #ifdef CC_INTERP
  3544   __ movptr(Address(rbp,
  3545                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3546             sender_sp); // Make it walkable
  3547 #else /* CC_INTERP */
  3548   // This value is corrected by layout_activation_impl
  3549   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3550   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  3551 #endif /* CC_INTERP */
  3552   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  3553   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3554   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3555   __ decrementl(rdx);                   // Decrement counter
  3556   __ jcc(Assembler::notZero, loop);
  3557   __ pushptr(Address(rcx, 0));          // Save final return address
  3559   // Re-push self-frame
  3560   __ enter();                           // Save old & set new ebp
  3562   // Allocate a full sized register save area.
  3563   // Return address and rbp are in place, so we allocate two less words.
  3564   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  3566   // Restore frame locals after moving the frame
  3567   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  3568   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3570   // Call C code.  Need thread but NOT official VM entry
  3571   // crud.  We cannot block on this call, no GC can happen.  Call should
  3572   // restore return values to their stack-slots with the new SP.
  3573   //
  3574   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  3576   // Use rbp because the frames look interpreted now
  3577   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3578   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3579   address the_pc = __ pc();
  3580   __ set_last_Java_frame(noreg, rbp, the_pc);
  3582   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  3583   __ mov(c_rarg0, r15_thread);
  3584   __ movl(c_rarg1, r14); // second arg: exec_mode
  3585   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3586   // Revert SP alignment after call since we're going to do some SP relative addressing below
  3587   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
  3589   // Set an oopmap for the call site
  3590   // Use the same PC we used for the last java frame
  3591   oop_maps->add_gc_map(the_pc - start,
  3592                        new OopMap( frame_size_in_words, 0 ));
  3594   // Clear fp AND pc
  3595   __ reset_last_Java_frame(true, true);
  3597   // Collect return values
  3598   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  3599   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  3600   // I think this is useless (throwing pc?)
  3601   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  3603   // Pop self-frame.
  3604   __ leave();                           // Epilog
  3606   // Jump to interpreter
  3607   __ ret(0);
  3609   // Make sure all code is generated
  3610   masm->flush();
  3612   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3613   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3616 #ifdef COMPILER2
  3617 //------------------------------generate_uncommon_trap_blob--------------------
  3618 void SharedRuntime::generate_uncommon_trap_blob() {
  3619   // Allocate space for the code
  3620   ResourceMark rm;
  3621   // Setup code generation tools
  3622   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  3623   MacroAssembler* masm = new MacroAssembler(&buffer);
  3625   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3627   address start = __ pc();
  3629   if (UseRTMLocking) {
  3630     // Abort RTM transaction before possible nmethod deoptimization.
  3631     __ xabort(0);
  3634   // Push self-frame.  We get here with a return address on the
  3635   // stack, so rsp is 8-byte aligned until we allocate our frame.
  3636   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  3638   // No callee saved registers. rbp is assumed implicitly saved
  3639   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3641   // compiler left unloaded_class_index in j_rarg0 move to where the
  3642   // runtime expects it.
  3643   __ movl(c_rarg1, j_rarg0);
  3645   __ set_last_Java_frame(noreg, noreg, NULL);
  3647   // Call C code.  Need thread but NOT official VM entry
  3648   // crud.  We cannot block on this call, no GC can happen.  Call should
  3649   // capture callee-saved registers as well as return values.
  3650   // Thread is in rdi already.
  3651   //
  3652   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  3654   __ mov(c_rarg0, r15_thread);
  3655   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3657   // Set an oopmap for the call site
  3658   OopMapSet* oop_maps = new OopMapSet();
  3659   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  3661   // location of rbp is known implicitly by the frame sender code
  3663   oop_maps->add_gc_map(__ pc() - start, map);
  3665   __ reset_last_Java_frame(false, false);
  3667   // Load UnrollBlock* into rdi
  3668   __ mov(rdi, rax);
  3670   // Pop all the frames we must move/replace.
  3671   //
  3672   // Frame picture (youngest to oldest)
  3673   // 1: self-frame (no frame link)
  3674   // 2: deopting frame  (no frame link)
  3675   // 3: caller of deopting frame (could be compiled/interpreted).
  3677   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  3678   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  3680   // Pop deoptimized frame (int)
  3681   __ movl(rcx, Address(rdi,
  3682                        Deoptimization::UnrollBlock::
  3683                        size_of_deoptimized_frame_offset_in_bytes()));
  3684   __ addptr(rsp, rcx);
  3686   // rsp should be pointing at the return address to the caller (3)
  3688   // Pick up the initial fp we should save
  3689   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3690   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3692 #ifdef ASSERT
  3693   // Compilers generate code that bang the stack by as much as the
  3694   // interpreter would need. So this stack banging should never
  3695   // trigger a fault. Verify that it does not on non product builds.
  3696   if (UseStackBanging) {
  3697     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3698     __ bang_stack_size(rbx, rcx);
  3700 #endif
  3702   // Load address of array of frame pcs into rcx (address*)
  3703   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3705   // Trash the return pc
  3706   __ addptr(rsp, wordSize);
  3708   // Load address of array of frame sizes into rsi (intptr_t*)
  3709   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
  3711   // Counter
  3712   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
  3714   // Now adjust the caller's stack to make up for the extra locals but
  3715   // record the original sp so that we can save it in the skeletal
  3716   // interpreter frame and the stack walking of interpreter_sender
  3717   // will get the unextended sp value and not the "real" sp value.
  3719   const Register sender_sp = r8;
  3721   __ mov(sender_sp, rsp);
  3722   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
  3723   __ subptr(rsp, rbx);
  3725   // Push interpreter frames in a loop
  3726   Label loop;
  3727   __ bind(loop);
  3728   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  3729   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  3730   __ pushptr(Address(rcx, 0));     // Save return address
  3731   __ enter();                      // Save old & set new rbp
  3732   __ subptr(rsp, rbx);             // Prolog
  3733 #ifdef CC_INTERP
  3734   __ movptr(Address(rbp,
  3735                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3736             sender_sp); // Make it walkable
  3737 #else // CC_INTERP
  3738   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  3739             sender_sp);            // Make it walkable
  3740   // This value is corrected by layout_activation_impl
  3741   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3742 #endif // CC_INTERP
  3743   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  3744   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3745   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3746   __ decrementl(rdx);              // Decrement counter
  3747   __ jcc(Assembler::notZero, loop);
  3748   __ pushptr(Address(rcx, 0));     // Save final return address
  3750   // Re-push self-frame
  3751   __ enter();                 // Save old & set new rbp
  3752   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3753                               // Prolog
  3755   // Use rbp because the frames look interpreted now
  3756   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3757   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3758   address the_pc = __ pc();
  3759   __ set_last_Java_frame(noreg, rbp, the_pc);
  3761   // Call C code.  Need thread but NOT official VM entry
  3762   // crud.  We cannot block on this call, no GC can happen.  Call should
  3763   // restore return values to their stack-slots with the new SP.
  3764   // Thread is in rdi already.
  3765   //
  3766   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3768   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  3769   __ mov(c_rarg0, r15_thread);
  3770   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3771   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3773   // Set an oopmap for the call site
  3774   // Use the same PC we used for the last java frame
  3775   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3777   // Clear fp AND pc
  3778   __ reset_last_Java_frame(true, true);
  3780   // Pop self-frame.
  3781   __ leave();                 // Epilog
  3783   // Jump to interpreter
  3784   __ ret(0);
  3786   // Make sure all code is generated
  3787   masm->flush();
  3789   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3790                                                  SimpleRuntimeFrame::framesize >> 1);
  3792 #endif // COMPILER2
  3795 //------------------------------generate_handler_blob------
  3796 //
  3797 // Generate a special Compile2Runtime blob that saves all registers,
  3798 // and setup oopmap.
  3799 //
  3800 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3801   assert(StubRoutines::forward_exception_entry() != NULL,
  3802          "must be generated before");
  3804   ResourceMark rm;
  3805   OopMapSet *oop_maps = new OopMapSet();
  3806   OopMap* map;
  3808   // Allocate space for the code.  Setup code generation tools.
  3809   CodeBuffer buffer("handler_blob", 2048, 1024);
  3810   MacroAssembler* masm = new MacroAssembler(&buffer);
  3812   address start   = __ pc();
  3813   address call_pc = NULL;
  3814   int frame_size_in_words;
  3815   bool cause_return = (poll_type == POLL_AT_RETURN);
  3816   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
  3818   if (UseRTMLocking) {
  3819     // Abort RTM transaction before calling runtime
  3820     // because critical section will be large and will be
  3821     // aborted anyway. Also nmethod could be deoptimized.
  3822     __ xabort(0);
  3825   // Make room for return address (or push it again)
  3826   if (!cause_return) {
  3827     __ push(rbx);
  3830   // Save registers, fpu state, and flags
  3831   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
  3833   // The following is basically a call_VM.  However, we need the precise
  3834   // address of the call in order to generate an oopmap. Hence, we do all the
  3835   // work outselves.
  3837   __ set_last_Java_frame(noreg, noreg, NULL);
  3839   // The return address must always be correct so that frame constructor never
  3840   // sees an invalid pc.
  3842   if (!cause_return) {
  3843     // overwrite the dummy value we pushed on entry
  3844     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3845     __ movptr(Address(rbp, wordSize), c_rarg0);
  3848   // Do the call
  3849   __ mov(c_rarg0, r15_thread);
  3850   __ call(RuntimeAddress(call_ptr));
  3852   // Set an oopmap for the call site.  This oopmap will map all
  3853   // oop-registers and debug-info registers as callee-saved.  This
  3854   // will allow deoptimization at this safepoint to find all possible
  3855   // debug-info recordings, as well as let GC find all oops.
  3857   oop_maps->add_gc_map( __ pc() - start, map);
  3859   Label noException;
  3861   __ reset_last_Java_frame(false, false);
  3863   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3864   __ jcc(Assembler::equal, noException);
  3866   // Exception pending
  3868   RegisterSaver::restore_live_registers(masm, save_vectors);
  3870   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3872   // No exception case
  3873   __ bind(noException);
  3875   // Normal exit, restore registers and exit.
  3876   RegisterSaver::restore_live_registers(masm, save_vectors);
  3878   __ ret(0);
  3880   // Make sure all code is generated
  3881   masm->flush();
  3883   // Fill-out other meta info
  3884   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3887 //
  3888 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3889 //
  3890 // Generate a stub that calls into vm to find out the proper destination
  3891 // of a java call. All the argument registers are live at this point
  3892 // but since this is generic code we don't know what they are and the caller
  3893 // must do any gc of the args.
  3894 //
  3895 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3896   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3898   // allocate space for the code
  3899   ResourceMark rm;
  3901   CodeBuffer buffer(name, 1000, 512);
  3902   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3904   int frame_size_in_words;
  3906   OopMapSet *oop_maps = new OopMapSet();
  3907   OopMap* map = NULL;
  3909   int start = __ offset();
  3911   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3913   int frame_complete = __ offset();
  3915   __ set_last_Java_frame(noreg, noreg, NULL);
  3917   __ mov(c_rarg0, r15_thread);
  3919   __ call(RuntimeAddress(destination));
  3922   // Set an oopmap for the call site.
  3923   // We need this not only for callee-saved registers, but also for volatile
  3924   // registers that the compiler might be keeping live across a safepoint.
  3926   oop_maps->add_gc_map( __ offset() - start, map);
  3928   // rax contains the address we are going to jump to assuming no exception got installed
  3930   // clear last_Java_sp
  3931   __ reset_last_Java_frame(false, false);
  3932   // check for pending exceptions
  3933   Label pending;
  3934   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3935   __ jcc(Assembler::notEqual, pending);
  3937   // get the returned Method*
  3938   __ get_vm_result_2(rbx, r15_thread);
  3939   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3941   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3943   RegisterSaver::restore_live_registers(masm);
  3945   // We are back the the original state on entry and ready to go.
  3947   __ jmp(rax);
  3949   // Pending exception after the safepoint
  3951   __ bind(pending);
  3953   RegisterSaver::restore_live_registers(masm);
  3955   // exception pending => remove activation and forward to exception handler
  3957   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3959   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3960   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3962   // -------------
  3963   // make sure all code is generated
  3964   masm->flush();
  3966   // return the  blob
  3967   // frame_size_words or bytes??
  3968   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3972 //------------------------------Montgomery multiplication------------------------
  3973 //
  3975 #ifndef _WINDOWS
  3977 #define ASM_SUBTRACT
  3979 #ifdef ASM_SUBTRACT
  3980 // Subtract 0:b from carry:a.  Return carry.
  3981 static unsigned long
  3982 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
  3983   long i = 0, cnt = len;
  3984   unsigned long tmp;
  3985   asm volatile("clc; "
  3986                "0: ; "
  3987                "mov (%[b], %[i], 8), %[tmp]; "
  3988                "sbb %[tmp], (%[a], %[i], 8); "
  3989                "inc %[i]; dec %[cnt]; "
  3990                "jne 0b; "
  3991                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
  3992                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
  3993                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
  3994                : "memory");
  3995   return tmp;
  3997 #else // ASM_SUBTRACT
  3998 typedef int __attribute__((mode(TI))) int128;
  4000 // Subtract 0:b from carry:a.  Return carry.
  4001 static unsigned long
  4002 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
  4003   int128 tmp = 0;
  4004   int i;
  4005   for (i = 0; i < len; i++) {
  4006     tmp += a[i];
  4007     tmp -= b[i];
  4008     a[i] = tmp;
  4009     tmp >>= 64;
  4010     assert(-1 <= tmp && tmp <= 0, "invariant");
  4012   return tmp + carry;
  4014 #endif // ! ASM_SUBTRACT
  4016 // Multiply (unsigned) Long A by Long B, accumulating the double-
  4017 // length result into the accumulator formed of T0, T1, and T2.
  4018 #define MACC(A, B, T0, T1, T2)                                      \
  4019 do {                                                                \
  4020   unsigned long hi, lo;                                             \
  4021   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
  4022            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
  4023            : "r"(A), "a"(B) : "cc");                                \
  4024  } while(0)
  4026 // As above, but add twice the double-length result into the
  4027 // accumulator.
  4028 #define MACC2(A, B, T0, T1, T2)                                     \
  4029 do {                                                                \
  4030   unsigned long hi, lo;                                             \
  4031   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;"  \
  4032            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"               \
  4033            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
  4034            : "r"(A), "a"(B) : "cc");                                \
  4035  } while(0)
  4037 // Fast Montgomery multiplication.  The derivation of the algorithm is
  4038 // in  A Cryptographic Library for the Motorola DSP56000,
  4039 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
  4041 static void __attribute__((noinline))
  4042 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
  4043                     unsigned long m[], unsigned long inv, int len) {
  4044   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
  4045   int i;
  4047   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
  4049   for (i = 0; i < len; i++) {
  4050     int j;
  4051     for (j = 0; j < i; j++) {
  4052       MACC(a[j], b[i-j], t0, t1, t2);
  4053       MACC(m[j], n[i-j], t0, t1, t2);
  4055     MACC(a[i], b[0], t0, t1, t2);
  4056     m[i] = t0 * inv;
  4057     MACC(m[i], n[0], t0, t1, t2);
  4059     assert(t0 == 0, "broken Montgomery multiply");
  4061     t0 = t1; t1 = t2; t2 = 0;
  4064   for (i = len; i < 2*len; i++) {
  4065     int j;
  4066     for (j = i-len+1; j < len; j++) {
  4067       MACC(a[j], b[i-j], t0, t1, t2);
  4068       MACC(m[j], n[i-j], t0, t1, t2);
  4070     m[i-len] = t0;
  4071     t0 = t1; t1 = t2; t2 = 0;
  4074   while (t0)
  4075     t0 = sub(m, n, t0, len);
  4078 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
  4079 // multiplies so it should be up to 25% faster than Montgomery
  4080 // multiplication.  However, its loop control is more complex and it
  4081 // may actually run slower on some machines.
  4083 static void __attribute__((noinline))
  4084 montgomery_square(unsigned long a[], unsigned long n[],
  4085                   unsigned long m[], unsigned long inv, int len) {
  4086   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
  4087   int i;
  4089   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
  4091   for (i = 0; i < len; i++) {
  4092     int j;
  4093     int end = (i+1)/2;
  4094     for (j = 0; j < end; j++) {
  4095       MACC2(a[j], a[i-j], t0, t1, t2);
  4096       MACC(m[j], n[i-j], t0, t1, t2);
  4098     if ((i & 1) == 0) {
  4099       MACC(a[j], a[j], t0, t1, t2);
  4101     for (; j < i; j++) {
  4102       MACC(m[j], n[i-j], t0, t1, t2);
  4104     m[i] = t0 * inv;
  4105     MACC(m[i], n[0], t0, t1, t2);
  4107     assert(t0 == 0, "broken Montgomery square");
  4109     t0 = t1; t1 = t2; t2 = 0;
  4112   for (i = len; i < 2*len; i++) {
  4113     int start = i-len+1;
  4114     int end = start + (len - start)/2;
  4115     int j;
  4116     for (j = start; j < end; j++) {
  4117       MACC2(a[j], a[i-j], t0, t1, t2);
  4118       MACC(m[j], n[i-j], t0, t1, t2);
  4120     if ((i & 1) == 0) {
  4121       MACC(a[j], a[j], t0, t1, t2);
  4123     for (; j < len; j++) {
  4124       MACC(m[j], n[i-j], t0, t1, t2);
  4126     m[i-len] = t0;
  4127     t0 = t1; t1 = t2; t2 = 0;
  4130   while (t0)
  4131     t0 = sub(m, n, t0, len);
  4134 // Swap words in a longword.
  4135 static unsigned long swap(unsigned long x) {
  4136   return (x << 32) | (x >> 32);
  4139 // Copy len longwords from s to d, word-swapping as we go.  The
  4140 // destination array is reversed.
  4141 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
  4142   d += len;
  4143   while(len-- > 0) {
  4144     d--;
  4145     *d = swap(*s);
  4146     s++;
  4150 // The threshold at which squaring is advantageous was determined
  4151 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
  4152 #define MONTGOMERY_SQUARING_THRESHOLD 64
  4154 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
  4155                                         jint len, jlong inv,
  4156                                         jint *m_ints) {
  4157   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
  4158   int longwords = len/2;
  4160   // Make very sure we don't use so much space that the stack might
  4161   // overflow.  512 jints corresponds to an 16384-bit integer and
  4162   // will use here a total of 8k bytes of stack space.
  4163   int total_allocation = longwords * sizeof (unsigned long) * 4;
  4164   guarantee(total_allocation <= 8192, "must be");
  4165   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
  4167   // Local scratch arrays
  4168   unsigned long
  4169     *a = scratch + 0 * longwords,
  4170     *b = scratch + 1 * longwords,
  4171     *n = scratch + 2 * longwords,
  4172     *m = scratch + 3 * longwords;
  4174   reverse_words((unsigned long *)a_ints, a, longwords);
  4175   reverse_words((unsigned long *)b_ints, b, longwords);
  4176   reverse_words((unsigned long *)n_ints, n, longwords);
  4178   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
  4180   reverse_words(m, (unsigned long *)m_ints, longwords);
  4183 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
  4184                                       jint len, jlong inv,
  4185                                       jint *m_ints) {
  4186   assert(len % 2 == 0, "array length in montgomery_square must be even");
  4187   int longwords = len/2;
  4189   // Make very sure we don't use so much space that the stack might
  4190   // overflow.  512 jints corresponds to an 16384-bit integer and
  4191   // will use here a total of 6k bytes of stack space.
  4192   int total_allocation = longwords * sizeof (unsigned long) * 3;
  4193   guarantee(total_allocation <= 8192, "must be");
  4194   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
  4196   // Local scratch arrays
  4197   unsigned long
  4198     *a = scratch + 0 * longwords,
  4199     *n = scratch + 1 * longwords,
  4200     *m = scratch + 2 * longwords;
  4202   reverse_words((unsigned long *)a_ints, a, longwords);
  4203   reverse_words((unsigned long *)n_ints, n, longwords);
  4205   //montgomery_square fails to pass BigIntegerTest on solaris amd64
  4206   //on jdk7 and jdk8.
  4207 #ifndef SOLARIS
  4208   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
  4209 #else
  4210   if (0) {
  4211 #endif
  4212     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
  4213   } else {
  4214     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
  4217   reverse_words(m, (unsigned long *)m_ints, longwords);
  4220 #endif // WINDOWS
  4222 #ifdef COMPILER2
  4223 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  4224 //
  4225 //------------------------------generate_exception_blob---------------------------
  4226 // creates exception blob at the end
  4227 // Using exception blob, this code is jumped from a compiled method.
  4228 // (see emit_exception_handler in x86_64.ad file)
  4229 //
  4230 // Given an exception pc at a call we call into the runtime for the
  4231 // handler in this method. This handler might merely restore state
  4232 // (i.e. callee save registers) unwind the frame and jump to the
  4233 // exception handler for the nmethod if there is no Java level handler
  4234 // for the nmethod.
  4235 //
  4236 // This code is entered with a jmp.
  4237 //
  4238 // Arguments:
  4239 //   rax: exception oop
  4240 //   rdx: exception pc
  4241 //
  4242 // Results:
  4243 //   rax: exception oop
  4244 //   rdx: exception pc in caller or ???
  4245 //   destination: exception handler of caller
  4246 //
  4247 // Note: the exception pc MUST be at a call (precise debug information)
  4248 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  4249 //
  4251 void OptoRuntime::generate_exception_blob() {
  4252   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  4253   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  4254   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  4256   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  4258   // Allocate space for the code
  4259   ResourceMark rm;
  4260   // Setup code generation tools
  4261   CodeBuffer buffer("exception_blob", 2048, 1024);
  4262   MacroAssembler* masm = new MacroAssembler(&buffer);
  4265   address start = __ pc();
  4267   // Exception pc is 'return address' for stack walker
  4268   __ push(rdx);
  4269   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  4271   // Save callee-saved registers.  See x86_64.ad.
  4273   // rbp is an implicitly saved callee saved register (i.e., the calling
  4274   // convention will save/restore it in the prolog/epilog). Other than that
  4275   // there are no callee save registers now that adapter frames are gone.
  4277   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  4279   // Store exception in Thread object. We cannot pass any arguments to the
  4280   // handle_exception call, since we do not want to make any assumption
  4281   // about the size of the frame where the exception happened in.
  4282   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  4283   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  4284   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  4286   // This call does all the hard work.  It checks if an exception handler
  4287   // exists in the method.
  4288   // If so, it returns the handler address.
  4289   // If not, it prepares for stack-unwinding, restoring the callee-save
  4290   // registers of the frame being removed.
  4291   //
  4292   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  4294   // At a method handle call, the stack may not be properly aligned
  4295   // when returning with an exception.
  4296   address the_pc = __ pc();
  4297   __ set_last_Java_frame(noreg, noreg, the_pc);
  4298   __ mov(c_rarg0, r15_thread);
  4299   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  4300   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  4302   // Set an oopmap for the call site.  This oopmap will only be used if we
  4303   // are unwinding the stack.  Hence, all locations will be dead.
  4304   // Callee-saved registers will be the same as the frame above (i.e.,
  4305   // handle_exception_stub), since they were restored when we got the
  4306   // exception.
  4308   OopMapSet* oop_maps = new OopMapSet();
  4310   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  4312   __ reset_last_Java_frame(false, true);
  4314   // Restore callee-saved registers
  4316   // rbp is an implicitly saved callee-saved register (i.e., the calling
  4317   // convention will save restore it in prolog/epilog) Other than that
  4318   // there are no callee save registers now that adapter frames are gone.
  4320   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  4322   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  4323   __ pop(rdx);                  // No need for exception pc anymore
  4325   // rax: exception handler
  4327   // We have a handler in rax (could be deopt blob).
  4328   __ mov(r8, rax);
  4330   // Get the exception oop
  4331   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  4332   // Get the exception pc in case we are deoptimized
  4333   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  4334 #ifdef ASSERT
  4335   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  4336   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  4337 #endif
  4338   // Clear the exception oop so GC no longer processes it as a root.
  4339   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  4341   // rax: exception oop
  4342   // r8:  exception handler
  4343   // rdx: exception pc
  4344   // Jump to handler
  4346   __ jmp(r8);
  4348   // Make sure all code is generated
  4349   masm->flush();
  4351   // Set exception blob
  4352   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  4354 #endif // COMPILER2

mercurial