src/share/vm/opto/runtime.cpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 5919
469216acdb28
child 6429
606acabe7b5c
child 6507
752ba2e5f6d0
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc
    87 # include "adfiles/ad_ppc.hpp"
    88 #endif
    91 // For debugging purposes:
    92 //  To force FullGCALot inside a runtime function, add the following two lines
    93 //
    94 //  Universe::release_fullgc_alot_dummy();
    95 //  MarkSweep::invoke(0, "Debugging");
    96 //
    97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   102 // Compiled code entry points
   103 address OptoRuntime::_new_instance_Java                           = NULL;
   104 address OptoRuntime::_new_array_Java                              = NULL;
   105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   106 address OptoRuntime::_multianewarray2_Java                        = NULL;
   107 address OptoRuntime::_multianewarray3_Java                        = NULL;
   108 address OptoRuntime::_multianewarray4_Java                        = NULL;
   109 address OptoRuntime::_multianewarray5_Java                        = NULL;
   110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   115 address OptoRuntime::_rethrow_Java                                = NULL;
   117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   118 address OptoRuntime::_register_finalizer_Java                     = NULL;
   120 # ifdef ENABLE_ZAP_DEAD_LOCALS
   121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   123 # endif
   125 ExceptionBlob* OptoRuntime::_exception_blob;
   127 // This should be called in an assertion at the start of OptoRuntime routines
   128 // which are entered from compiled code (all of them)
   129 #ifdef ASSERT
   130 static bool check_compiled_frame(JavaThread* thread) {
   131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   132   RegisterMap map(thread, false);
   133   frame caller = thread->last_frame().sender(&map);
   134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   135   return true;
   136 }
   137 #endif // ASSERT
   140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   141   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   142   if (var == NULL) { return false; }
   144 bool OptoRuntime::generate(ciEnv* env) {
   146   generate_exception_blob();
   148   // Note: tls: Means fetching the return oop out of the thread-local storage
   149   //
   150   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   151   // -------------------------------------------------------------------------------------------------------------------------------
   152   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   153   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   154   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   155   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   156   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   157   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   158   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   159   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   160   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   161   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   162   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   163   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   165   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   166   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   168 # ifdef ENABLE_ZAP_DEAD_LOCALS
   169   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   170   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   171 # endif
   172   return true;
   173 }
   175 #undef gen
   178 // Helper method to do generation of RunTimeStub's
   179 address OptoRuntime::generate_stub( ciEnv* env,
   180                                     TypeFunc_generator gen, address C_function,
   181                                     const char *name, int is_fancy_jump,
   182                                     bool pass_tls,
   183                                     bool save_argument_registers,
   184                                     bool return_pc ) {
   185   ResourceMark rm;
   186   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   187   return  C.stub_entry_point();
   188 }
   190 const char* OptoRuntime::stub_name(address entry) {
   191 #ifndef PRODUCT
   192   CodeBlob* cb = CodeCache::find_blob(entry);
   193   RuntimeStub* rs =(RuntimeStub *)cb;
   194   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   195   return rs->name();
   196 #else
   197   // Fast implementation for product mode (maybe it should be inlined too)
   198   return "runtime stub";
   199 #endif
   200 }
   203 //=============================================================================
   204 // Opto compiler runtime routines
   205 //=============================================================================
   208 //=============================allocation======================================
   209 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   210 // and try allocation again.
   212 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   213   // After any safepoint, just before going back to compiled code,
   214   // we inform the GC that we will be doing initializing writes to
   215   // this object in the future without emitting card-marks, so
   216   // GC may take any compensating steps.
   217   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   219   oop new_obj = thread->vm_result();
   220   if (new_obj == NULL)  return;
   222   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   223          "compiler must check this first");
   224   // GC may decide to give back a safer copy of new_obj.
   225   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   226   thread->set_vm_result(new_obj);
   227 }
   229 // object allocation
   230 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   231   JRT_BLOCK;
   232 #ifndef PRODUCT
   233   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   234 #endif
   235   assert(check_compiled_frame(thread), "incorrect caller");
   237   // These checks are cheap to make and support reflective allocation.
   238   int lh = klass->layout_helper();
   239   if (Klass::layout_helper_needs_slow_path(lh)
   240       || !InstanceKlass::cast(klass)->is_initialized()) {
   241     KlassHandle kh(THREAD, klass);
   242     kh->check_valid_for_instantiation(false, THREAD);
   243     if (!HAS_PENDING_EXCEPTION) {
   244       InstanceKlass::cast(kh())->initialize(THREAD);
   245     }
   246     if (!HAS_PENDING_EXCEPTION) {
   247       klass = kh();
   248     } else {
   249       klass = NULL;
   250     }
   251   }
   253   if (klass != NULL) {
   254     // Scavenge and allocate an instance.
   255     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   256     thread->set_vm_result(result);
   258     // Pass oops back through thread local storage.  Our apparent type to Java
   259     // is that we return an oop, but we can block on exit from this routine and
   260     // a GC can trash the oop in C's return register.  The generated stub will
   261     // fetch the oop from TLS after any possible GC.
   262   }
   264   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   265   JRT_BLOCK_END;
   267   if (GraphKit::use_ReduceInitialCardMarks()) {
   268     // inform GC that we won't do card marks for initializing writes.
   269     new_store_pre_barrier(thread);
   270   }
   271 JRT_END
   274 // array allocation
   275 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   276   JRT_BLOCK;
   277 #ifndef PRODUCT
   278   SharedRuntime::_new_array_ctr++;            // new array requires GC
   279 #endif
   280   assert(check_compiled_frame(thread), "incorrect caller");
   282   // Scavenge and allocate an instance.
   283   oop result;
   285   if (array_type->oop_is_typeArray()) {
   286     // The oopFactory likes to work with the element type.
   287     // (We could bypass the oopFactory, since it doesn't add much value.)
   288     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   289     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   290   } else {
   291     // Although the oopFactory likes to work with the elem_type,
   292     // the compiler prefers the array_type, since it must already have
   293     // that latter value in hand for the fast path.
   294     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   295     result = oopFactory::new_objArray(elem_type, len, THREAD);
   296   }
   298   // Pass oops back through thread local storage.  Our apparent type to Java
   299   // is that we return an oop, but we can block on exit from this routine and
   300   // a GC can trash the oop in C's return register.  The generated stub will
   301   // fetch the oop from TLS after any possible GC.
   302   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   303   thread->set_vm_result(result);
   304   JRT_BLOCK_END;
   306   if (GraphKit::use_ReduceInitialCardMarks()) {
   307     // inform GC that we won't do card marks for initializing writes.
   308     new_store_pre_barrier(thread);
   309   }
   310 JRT_END
   312 // array allocation without zeroing
   313 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   314   JRT_BLOCK;
   315 #ifndef PRODUCT
   316   SharedRuntime::_new_array_ctr++;            // new array requires GC
   317 #endif
   318   assert(check_compiled_frame(thread), "incorrect caller");
   320   // Scavenge and allocate an instance.
   321   oop result;
   323   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   324   // The oopFactory likes to work with the element type.
   325   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   326   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   328   // Pass oops back through thread local storage.  Our apparent type to Java
   329   // is that we return an oop, but we can block on exit from this routine and
   330   // a GC can trash the oop in C's return register.  The generated stub will
   331   // fetch the oop from TLS after any possible GC.
   332   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   333   thread->set_vm_result(result);
   334   JRT_BLOCK_END;
   336   if (GraphKit::use_ReduceInitialCardMarks()) {
   337     // inform GC that we won't do card marks for initializing writes.
   338     new_store_pre_barrier(thread);
   339   }
   341   oop result = thread->vm_result();
   342   if ((len > 0) && (result != NULL) &&
   343       is_deoptimized_caller_frame(thread)) {
   344     // Zero array here if the caller is deoptimized.
   345     int size = ((typeArrayOop)result)->object_size();
   346     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   347     const size_t hs = arrayOopDesc::header_size(elem_type);
   348     // Align to next 8 bytes to avoid trashing arrays's length.
   349     const size_t aligned_hs = align_object_offset(hs);
   350     HeapWord* obj = (HeapWord*)result;
   351     if (aligned_hs > hs) {
   352       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   353     }
   354     // Optimized zeroing.
   355     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   356   }
   358 JRT_END
   360 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   362 // multianewarray for 2 dimensions
   363 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   364 #ifndef PRODUCT
   365   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   366 #endif
   367   assert(check_compiled_frame(thread), "incorrect caller");
   368   assert(elem_type->is_klass(), "not a class");
   369   jint dims[2];
   370   dims[0] = len1;
   371   dims[1] = len2;
   372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   374   thread->set_vm_result(obj);
   375 JRT_END
   377 // multianewarray for 3 dimensions
   378 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   379 #ifndef PRODUCT
   380   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   381 #endif
   382   assert(check_compiled_frame(thread), "incorrect caller");
   383   assert(elem_type->is_klass(), "not a class");
   384   jint dims[3];
   385   dims[0] = len1;
   386   dims[1] = len2;
   387   dims[2] = len3;
   388   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   389   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   390   thread->set_vm_result(obj);
   391 JRT_END
   393 // multianewarray for 4 dimensions
   394 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   395 #ifndef PRODUCT
   396   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   397 #endif
   398   assert(check_compiled_frame(thread), "incorrect caller");
   399   assert(elem_type->is_klass(), "not a class");
   400   jint dims[4];
   401   dims[0] = len1;
   402   dims[1] = len2;
   403   dims[2] = len3;
   404   dims[3] = len4;
   405   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   406   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   407   thread->set_vm_result(obj);
   408 JRT_END
   410 // multianewarray for 5 dimensions
   411 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   412 #ifndef PRODUCT
   413   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   414 #endif
   415   assert(check_compiled_frame(thread), "incorrect caller");
   416   assert(elem_type->is_klass(), "not a class");
   417   jint dims[5];
   418   dims[0] = len1;
   419   dims[1] = len2;
   420   dims[2] = len3;
   421   dims[3] = len4;
   422   dims[4] = len5;
   423   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   424   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   425   thread->set_vm_result(obj);
   426 JRT_END
   428 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   429   assert(check_compiled_frame(thread), "incorrect caller");
   430   assert(elem_type->is_klass(), "not a class");
   431   assert(oop(dims)->is_typeArray(), "not an array");
   433   ResourceMark rm;
   434   jint len = dims->length();
   435   assert(len > 0, "Dimensions array should contain data");
   436   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   437   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   438   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   440   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   441   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   442   thread->set_vm_result(obj);
   443 JRT_END
   446 const TypeFunc *OptoRuntime::new_instance_Type() {
   447   // create input type (domain)
   448   const Type **fields = TypeTuple::fields(1);
   449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   452   // create result type (range)
   453   fields = TypeTuple::fields(1);
   454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   458   return TypeFunc::make(domain, range);
   459 }
   462 const TypeFunc *OptoRuntime::athrow_Type() {
   463   // create input type (domain)
   464   const Type **fields = TypeTuple::fields(1);
   465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   468   // create result type (range)
   469   fields = TypeTuple::fields(0);
   471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   473   return TypeFunc::make(domain, range);
   474 }
   477 const TypeFunc *OptoRuntime::new_array_Type() {
   478   // create input type (domain)
   479   const Type **fields = TypeTuple::fields(2);
   480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   484   // create result type (range)
   485   fields = TypeTuple::fields(1);
   486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   490   return TypeFunc::make(domain, range);
   491 }
   493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   494   // create input type (domain)
   495   const int nargs = ndim + 1;
   496   const Type **fields = TypeTuple::fields(nargs);
   497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   498   for( int i = 1; i < nargs; i++ )
   499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   502   // create result type (range)
   503   fields = TypeTuple::fields(1);
   504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   507   return TypeFunc::make(domain, range);
   508 }
   510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   511   return multianewarray_Type(2);
   512 }
   514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   515   return multianewarray_Type(3);
   516 }
   518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   519   return multianewarray_Type(4);
   520 }
   522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   523   return multianewarray_Type(5);
   524 }
   526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   527   // create input type (domain)
   528   const Type **fields = TypeTuple::fields(2);
   529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   533   // create result type (range)
   534   fields = TypeTuple::fields(1);
   535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   538   return TypeFunc::make(domain, range);
   539 }
   541 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   542   const Type **fields = TypeTuple::fields(2);
   543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   544   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   547   // create result type (range)
   548   fields = TypeTuple::fields(0);
   549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   551   return TypeFunc::make(domain, range);
   552 }
   554 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   556   const Type **fields = TypeTuple::fields(2);
   557   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   558   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   561   // create result type (range)
   562   fields = TypeTuple::fields(0);
   563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   565   return TypeFunc::make(domain, range);
   566 }
   568 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   569   // create input type (domain)
   570   const Type **fields = TypeTuple::fields(1);
   571   // Symbol* name of class to be loaded
   572   fields[TypeFunc::Parms+0] = TypeInt::INT;
   573   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   575   // create result type (range)
   576   fields = TypeTuple::fields(0);
   577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   579   return TypeFunc::make(domain, range);
   580 }
   582 # ifdef ENABLE_ZAP_DEAD_LOCALS
   583 // Type used for stub generation for zap_dead_locals.
   584 // No inputs or outputs
   585 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   586   // create input type (domain)
   587   const Type **fields = TypeTuple::fields(0);
   588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   590   // create result type (range)
   591   fields = TypeTuple::fields(0);
   592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   594   return TypeFunc::make(domain,range);
   595 }
   596 # endif
   599 //-----------------------------------------------------------------------------
   600 // Monitor Handling
   601 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   602   // create input type (domain)
   603   const Type **fields = TypeTuple::fields(2);
   604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   606   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   608   // create result type (range)
   609   fields = TypeTuple::fields(0);
   611   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   613   return TypeFunc::make(domain,range);
   614 }
   617 //-----------------------------------------------------------------------------
   618 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   619   // create input type (domain)
   620   const Type **fields = TypeTuple::fields(2);
   621   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   622   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   623   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   625   // create result type (range)
   626   fields = TypeTuple::fields(0);
   628   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   630   return TypeFunc::make(domain,range);
   631 }
   633 const TypeFunc* OptoRuntime::flush_windows_Type() {
   634   // create input type (domain)
   635   const Type** fields = TypeTuple::fields(1);
   636   fields[TypeFunc::Parms+0] = NULL; // void
   637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   639   // create result type
   640   fields = TypeTuple::fields(1);
   641   fields[TypeFunc::Parms+0] = NULL; // void
   642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   644   return TypeFunc::make(domain, range);
   645 }
   647 const TypeFunc* OptoRuntime::l2f_Type() {
   648   // create input type (domain)
   649   const Type **fields = TypeTuple::fields(2);
   650   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   651   fields[TypeFunc::Parms+1] = Type::HALF;
   652   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   654   // create result type (range)
   655   fields = TypeTuple::fields(1);
   656   fields[TypeFunc::Parms+0] = Type::FLOAT;
   657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   659   return TypeFunc::make(domain, range);
   660 }
   662 const TypeFunc* OptoRuntime::modf_Type() {
   663   const Type **fields = TypeTuple::fields(2);
   664   fields[TypeFunc::Parms+0] = Type::FLOAT;
   665   fields[TypeFunc::Parms+1] = Type::FLOAT;
   666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   668   // create result type (range)
   669   fields = TypeTuple::fields(1);
   670   fields[TypeFunc::Parms+0] = Type::FLOAT;
   672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   674   return TypeFunc::make(domain, range);
   675 }
   677 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   678   // create input type (domain)
   679   const Type **fields = TypeTuple::fields(2);
   680   // Symbol* name of class to be loaded
   681   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   682   fields[TypeFunc::Parms+1] = Type::HALF;
   683   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   685   // create result type (range)
   686   fields = TypeTuple::fields(2);
   687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   688   fields[TypeFunc::Parms+1] = Type::HALF;
   689   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   691   return TypeFunc::make(domain, range);
   692 }
   694 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   695   const Type **fields = TypeTuple::fields(4);
   696   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   697   fields[TypeFunc::Parms+1] = Type::HALF;
   698   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   699   fields[TypeFunc::Parms+3] = Type::HALF;
   700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   702   // create result type (range)
   703   fields = TypeTuple::fields(2);
   704   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   705   fields[TypeFunc::Parms+1] = Type::HALF;
   706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   708   return TypeFunc::make(domain, range);
   709 }
   711 //-------------- currentTimeMillis, currentTimeNanos, etc
   713 const TypeFunc* OptoRuntime::void_long_Type() {
   714   // create input type (domain)
   715   const Type **fields = TypeTuple::fields(0);
   716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   718   // create result type (range)
   719   fields = TypeTuple::fields(2);
   720   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   721   fields[TypeFunc::Parms+1] = Type::HALF;
   722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   724   return TypeFunc::make(domain, range);
   725 }
   727 // arraycopy stub variations:
   728 enum ArrayCopyType {
   729   ac_fast,                      // void(ptr, ptr, size_t)
   730   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   731   ac_slow,                      // void(ptr, int, ptr, int, int)
   732   ac_generic                    //  int(ptr, int, ptr, int, int)
   733 };
   735 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   736   // create input type (domain)
   737   int num_args      = (act == ac_fast ? 3 : 5);
   738   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   739   int argcnt = num_args;
   740   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   741   const Type** fields = TypeTuple::fields(argcnt);
   742   int argp = TypeFunc::Parms;
   743   fields[argp++] = TypePtr::NOTNULL;    // src
   744   if (num_size_args == 0) {
   745     fields[argp++] = TypeInt::INT;      // src_pos
   746   }
   747   fields[argp++] = TypePtr::NOTNULL;    // dest
   748   if (num_size_args == 0) {
   749     fields[argp++] = TypeInt::INT;      // dest_pos
   750     fields[argp++] = TypeInt::INT;      // length
   751   }
   752   while (num_size_args-- > 0) {
   753     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   754     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   755   }
   756   if (act == ac_checkcast) {
   757     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   758   }
   759   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   760   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   762   // create result type if needed
   763   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   764   fields = TypeTuple::fields(1);
   765   if (retcnt == 0)
   766     fields[TypeFunc::Parms+0] = NULL; // void
   767   else
   768     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   769   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   770   return TypeFunc::make(domain, range);
   771 }
   773 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   774   // This signature is simple:  Two base pointers and a size_t.
   775   return make_arraycopy_Type(ac_fast);
   776 }
   778 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   779   // An extension of fast_arraycopy_Type which adds type checking.
   780   return make_arraycopy_Type(ac_checkcast);
   781 }
   783 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   784   // This signature is exactly the same as System.arraycopy.
   785   // There are no intptr_t (int/long) arguments.
   786   return make_arraycopy_Type(ac_slow);
   787 }
   789 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   790   // This signature is like System.arraycopy, except that it returns status.
   791   return make_arraycopy_Type(ac_generic);
   792 }
   795 const TypeFunc* OptoRuntime::array_fill_Type() {
   796   // create input type (domain): pointer, int, size_t
   797   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   798   int argp = TypeFunc::Parms;
   799   fields[argp++] = TypePtr::NOTNULL;
   800   fields[argp++] = TypeInt::INT;
   801   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   802   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   803   const TypeTuple *domain = TypeTuple::make(argp, fields);
   805   // create result type
   806   fields = TypeTuple::fields(1);
   807   fields[TypeFunc::Parms+0] = NULL; // void
   808   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   810   return TypeFunc::make(domain, range);
   811 }
   813 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   814 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   815   // create input type (domain)
   816   int num_args      = 3;
   817   if (Matcher::pass_original_key_for_aes()) {
   818     num_args = 4;
   819   }
   820   int argcnt = num_args;
   821   const Type** fields = TypeTuple::fields(argcnt);
   822   int argp = TypeFunc::Parms;
   823   fields[argp++] = TypePtr::NOTNULL;    // src
   824   fields[argp++] = TypePtr::NOTNULL;    // dest
   825   fields[argp++] = TypePtr::NOTNULL;    // k array
   826   if (Matcher::pass_original_key_for_aes()) {
   827     fields[argp++] = TypePtr::NOTNULL;    // original k array
   828   }
   829   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   830   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   832   // no result type needed
   833   fields = TypeTuple::fields(1);
   834   fields[TypeFunc::Parms+0] = NULL; // void
   835   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   836   return TypeFunc::make(domain, range);
   837 }
   839 /**
   840  * int updateBytesCRC32(int crc, byte* b, int len)
   841  */
   842 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   843   // create input type (domain)
   844   int num_args      = 3;
   845   int argcnt = num_args;
   846   const Type** fields = TypeTuple::fields(argcnt);
   847   int argp = TypeFunc::Parms;
   848   fields[argp++] = TypeInt::INT;        // crc
   849   fields[argp++] = TypePtr::NOTNULL;    // src
   850   fields[argp++] = TypeInt::INT;        // len
   851   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   852   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   854   // result type needed
   855   fields = TypeTuple::fields(1);
   856   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   857   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   858   return TypeFunc::make(domain, range);
   859 }
   861 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
   862 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   863   // create input type (domain)
   864   int num_args      = 5;
   865   if (Matcher::pass_original_key_for_aes()) {
   866     num_args = 6;
   867   }
   868   int argcnt = num_args;
   869   const Type** fields = TypeTuple::fields(argcnt);
   870   int argp = TypeFunc::Parms;
   871   fields[argp++] = TypePtr::NOTNULL;    // src
   872   fields[argp++] = TypePtr::NOTNULL;    // dest
   873   fields[argp++] = TypePtr::NOTNULL;    // k array
   874   fields[argp++] = TypePtr::NOTNULL;    // r array
   875   fields[argp++] = TypeInt::INT;        // src len
   876   if (Matcher::pass_original_key_for_aes()) {
   877     fields[argp++] = TypePtr::NOTNULL;    // original k array
   878   }
   879   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   880   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   882   // returning cipher len (int)
   883   fields = TypeTuple::fields(1);
   884   fields[TypeFunc::Parms+0] = TypeInt::INT;
   885   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   886   return TypeFunc::make(domain, range);
   887 }
   889 //------------- Interpreter state access for on stack replacement
   890 const TypeFunc* OptoRuntime::osr_end_Type() {
   891   // create input type (domain)
   892   const Type **fields = TypeTuple::fields(1);
   893   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   894   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   896   // create result type
   897   fields = TypeTuple::fields(1);
   898   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   899   fields[TypeFunc::Parms+0] = NULL; // void
   900   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   901   return TypeFunc::make(domain, range);
   902 }
   904 //-------------- methodData update helpers
   906 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   907   // create input type (domain)
   908   const Type **fields = TypeTuple::fields(2);
   909   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   910   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   911   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   913   // create result type
   914   fields = TypeTuple::fields(1);
   915   fields[TypeFunc::Parms+0] = NULL; // void
   916   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   917   return TypeFunc::make(domain,range);
   918 }
   920 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   921   if (receiver == NULL) return;
   922   Klass* receiver_klass = receiver->klass();
   924   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   925   int empty_row = -1;           // free row, if any is encountered
   927   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   928   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   929     // if (vc->receiver(row) == receiver_klass)
   930     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   931     intptr_t row_recv = *(mdp + receiver_off);
   932     if (row_recv == (intptr_t) receiver_klass) {
   933       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   934       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   935       *(mdp + count_off) += DataLayout::counter_increment;
   936       return;
   937     } else if (row_recv == 0) {
   938       // else if (vc->receiver(row) == NULL)
   939       empty_row = (int) row;
   940     }
   941   }
   943   if (empty_row != -1) {
   944     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   945     // vc->set_receiver(empty_row, receiver_klass);
   946     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   947     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   948     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   949     *(mdp + count_off) = DataLayout::counter_increment;
   950   } else {
   951     // Receiver did not match any saved receiver and there is no empty row for it.
   952     // Increment total counter to indicate polymorphic case.
   953     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   954     *count_p += DataLayout::counter_increment;
   955   }
   956 JRT_END
   958 //-------------------------------------------------------------------------------------
   959 // register policy
   961 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   962   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   963   switch (register_save_policy[reg]) {
   964     case 'C': return false; //SOC
   965     case 'E': return true ; //SOE
   966     case 'N': return false; //NS
   967     case 'A': return false; //AS
   968   }
   969   ShouldNotReachHere();
   970   return false;
   971 }
   973 //-----------------------------------------------------------------------
   974 // Exceptions
   975 //
   977 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   979 // The method is an entry that is always called by a C++ method not
   980 // directly from compiled code. Compiled code will call the C++ method following.
   981 // We can't allow async exception to be installed during  exception processing.
   982 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   984   // Do not confuse exception_oop with pending_exception. The exception_oop
   985   // is only used to pass arguments into the method. Not for general
   986   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   987   // the runtime stubs checks this on exit.
   988   assert(thread->exception_oop() != NULL, "exception oop is found");
   989   address handler_address = NULL;
   991   Handle exception(thread, thread->exception_oop());
   992   address pc = thread->exception_pc();
   994   // Clear out the exception oop and pc since looking up an
   995   // exception handler can cause class loading, which might throw an
   996   // exception and those fields are expected to be clear during
   997   // normal bytecode execution.
   998   thread->clear_exception_oop_and_pc();
  1000   if (TraceExceptions) {
  1001     trace_exception(exception(), pc, "");
  1004   // for AbortVMOnException flag
  1005   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1007 #ifdef ASSERT
  1008   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1009     // should throw an exception here
  1010     ShouldNotReachHere();
  1012 #endif
  1014   // new exception handling: this method is entered only from adapters
  1015   // exceptions from compiled java methods are handled in compiled code
  1016   // using rethrow node
  1018   nm = CodeCache::find_nmethod(pc);
  1019   assert(nm != NULL, "No NMethod found");
  1020   if (nm->is_native_method()) {
  1021     fatal("Native method should not have path to exception handling");
  1022   } else {
  1023     // we are switching to old paradigm: search for exception handler in caller_frame
  1024     // instead in exception handler of caller_frame.sender()
  1026     if (JvmtiExport::can_post_on_exceptions()) {
  1027       // "Full-speed catching" is not necessary here,
  1028       // since we're notifying the VM on every catch.
  1029       // Force deoptimization and the rest of the lookup
  1030       // will be fine.
  1031       deoptimize_caller_frame(thread);
  1034     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1035     // otherwise, forcibly unwind the frame.
  1036     //
  1037     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1038     bool force_unwind = !thread->reguard_stack();
  1039     bool deopting = false;
  1040     if (nm->is_deopt_pc(pc)) {
  1041       deopting = true;
  1042       RegisterMap map(thread, false);
  1043       frame deoptee = thread->last_frame().sender(&map);
  1044       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1045       // Adjust the pc back to the original throwing pc
  1046       pc = deoptee.pc();
  1049     // If we are forcing an unwind because of stack overflow then deopt is
  1050     // irrelevant sice we are throwing the frame away anyway.
  1052     if (deopting && !force_unwind) {
  1053       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1054     } else {
  1056       handler_address =
  1057         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1059       if (handler_address == NULL) {
  1060         Handle original_exception(thread, exception());
  1061         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1062         assert (handler_address != NULL, "must have compiled handler");
  1063         // Update the exception cache only when the unwind was not forced
  1064         // and there didn't happen another exception during the computation of the
  1065         // compiled exception handler.
  1066         if (!force_unwind && original_exception() == exception()) {
  1067           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1069       } else {
  1070         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1074     thread->set_exception_pc(pc);
  1075     thread->set_exception_handler_pc(handler_address);
  1077     // Check if the exception PC is a MethodHandle call site.
  1078     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1081   // Restore correct return pc.  Was saved above.
  1082   thread->set_exception_oop(exception());
  1083   return handler_address;
  1085 JRT_END
  1087 // We are entering here from exception_blob
  1088 // If there is a compiled exception handler in this method, we will continue there;
  1089 // otherwise we will unwind the stack and continue at the caller of top frame method
  1090 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1091 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1092 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1093 // we must not use the handler and instread return the deopt blob.
  1094 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1095 //
  1096 // We are in Java not VM and in debug mode we have a NoHandleMark
  1097 //
  1098 #ifndef PRODUCT
  1099   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1100 #endif
  1101   debug_only(NoHandleMark __hm;)
  1102   nmethod* nm = NULL;
  1103   address handler_address = NULL;
  1105     // Enter the VM
  1107     ResetNoHandleMark rnhm;
  1108     handler_address = handle_exception_C_helper(thread, nm);
  1111   // Back in java: Use no oops, DON'T safepoint
  1113   // Now check to see if the handler we are returning is in a now
  1114   // deoptimized frame
  1116   if (nm != NULL) {
  1117     RegisterMap map(thread, false);
  1118     frame caller = thread->last_frame().sender(&map);
  1119 #ifdef ASSERT
  1120     assert(caller.is_compiled_frame(), "must be");
  1121 #endif // ASSERT
  1122     if (caller.is_deoptimized_frame()) {
  1123       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1126   return handler_address;
  1129 //------------------------------rethrow----------------------------------------
  1130 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1131 // is either throwing or rethrowing an exception.  The callee-save registers
  1132 // have been restored, synchronized objects have been unlocked and the callee
  1133 // stack frame has been removed.  The return address was passed in.
  1134 // Exception oop is passed as the 1st argument.  This routine is then called
  1135 // from the stub.  On exit, we know where to jump in the caller's code.
  1136 // After this C code exits, the stub will pop his frame and end in a jump
  1137 // (instead of a return).  We enter the caller's default handler.
  1138 //
  1139 // This must be JRT_LEAF:
  1140 //     - caller will not change its state as we cannot block on exit,
  1141 //       therefore raw_exception_handler_for_return_address is all it takes
  1142 //       to handle deoptimized blobs
  1143 //
  1144 // However, there needs to be a safepoint check in the middle!  So compiled
  1145 // safepoints are completely watertight.
  1146 //
  1147 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1148 //
  1149 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1150 //
  1151 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1152 #ifndef PRODUCT
  1153   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1154 #endif
  1155   assert (exception != NULL, "should have thrown a NULLPointerException");
  1156 #ifdef ASSERT
  1157   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1158     // should throw an exception here
  1159     ShouldNotReachHere();
  1161 #endif
  1163   thread->set_vm_result(exception);
  1164   // Frame not compiled (handles deoptimization blob)
  1165   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1169 const TypeFunc *OptoRuntime::rethrow_Type() {
  1170   // create input type (domain)
  1171   const Type **fields = TypeTuple::fields(1);
  1172   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1173   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1175   // create result type (range)
  1176   fields = TypeTuple::fields(1);
  1177   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1178   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1180   return TypeFunc::make(domain, range);
  1184 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1185   // Deoptimize the caller before continuing, as the compiled
  1186   // exception handler table may not be valid.
  1187   if (!StressCompiledExceptionHandlers && doit) {
  1188     deoptimize_caller_frame(thread);
  1192 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1193   // Called from within the owner thread, so no need for safepoint
  1194   RegisterMap reg_map(thread);
  1195   frame stub_frame = thread->last_frame();
  1196   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1197   frame caller_frame = stub_frame.sender(&reg_map);
  1199   // Deoptimize the caller frame.
  1200   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1204 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1205   // Called from within the owner thread, so no need for safepoint
  1206   RegisterMap reg_map(thread);
  1207   frame stub_frame = thread->last_frame();
  1208   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1209   frame caller_frame = stub_frame.sender(&reg_map);
  1210   return caller_frame.is_deoptimized_frame();
  1214 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1215   // create input type (domain)
  1216   const Type **fields = TypeTuple::fields(1);
  1217   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1218   // // The JavaThread* is passed to each routine as the last argument
  1219   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1220   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1222   // create result type (range)
  1223   fields = TypeTuple::fields(0);
  1225   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1227   return TypeFunc::make(domain,range);
  1231 //-----------------------------------------------------------------------------
  1232 // Dtrace support.  entry and exit probes have the same signature
  1233 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1234   // create input type (domain)
  1235   const Type **fields = TypeTuple::fields(2);
  1236   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1237   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1238   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1240   // create result type (range)
  1241   fields = TypeTuple::fields(0);
  1243   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1245   return TypeFunc::make(domain,range);
  1248 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1249   // create input type (domain)
  1250   const Type **fields = TypeTuple::fields(2);
  1251   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1252   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1254   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1256   // create result type (range)
  1257   fields = TypeTuple::fields(0);
  1259   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1261   return TypeFunc::make(domain,range);
  1265 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1266   assert(obj->is_oop(), "must be a valid oop");
  1267   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1268   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1269 JRT_END
  1271 //-----------------------------------------------------------------------------
  1273 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1275 //
  1276 // dump the collected NamedCounters.
  1277 //
  1278 void OptoRuntime::print_named_counters() {
  1279   int total_lock_count = 0;
  1280   int eliminated_lock_count = 0;
  1282   NamedCounter* c = _named_counters;
  1283   while (c) {
  1284     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1285       int count = c->count();
  1286       if (count > 0) {
  1287         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1288         if (Verbose) {
  1289           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1291         total_lock_count += count;
  1292         if (eliminated) {
  1293           eliminated_lock_count += count;
  1296     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1297       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1298       if (blc->nonzero()) {
  1299         tty->print_cr("%s", c->name());
  1300         blc->print_on(tty);
  1303     c = c->next();
  1305   if (total_lock_count > 0) {
  1306     tty->print_cr("dynamic locks: %d", total_lock_count);
  1307     if (eliminated_lock_count) {
  1308       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1309                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1314 //
  1315 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1316 //  name which consists of method@line for the inlining tree.
  1317 //
  1319 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1320   int max_depth = youngest_jvms->depth();
  1322   // Visit scopes from youngest to oldest.
  1323   bool first = true;
  1324   stringStream st;
  1325   for (int depth = max_depth; depth >= 1; depth--) {
  1326     JVMState* jvms = youngest_jvms->of_depth(depth);
  1327     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1328     if (!first) {
  1329       st.print(" ");
  1330     } else {
  1331       first = false;
  1333     int bci = jvms->bci();
  1334     if (bci < 0) bci = 0;
  1335     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1336     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1338   NamedCounter* c;
  1339   if (tag == NamedCounter::BiasedLockingCounter) {
  1340     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1341   } else {
  1342     c = new NamedCounter(strdup(st.as_string()), tag);
  1345   // atomically add the new counter to the head of the list.  We only
  1346   // add counters so this is safe.
  1347   NamedCounter* head;
  1348   do {
  1349     head = _named_counters;
  1350     c->set_next(head);
  1351   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1352   return c;
  1355 //-----------------------------------------------------------------------------
  1356 // Non-product code
  1357 #ifndef PRODUCT
  1359 int trace_exception_counter = 0;
  1360 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1361   ttyLocker ttyl;
  1362   trace_exception_counter++;
  1363   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1364   exception_oop->print_value();
  1365   tty->print(" in ");
  1366   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1367   if (blob->is_nmethod()) {
  1368     nmethod* nm = blob->as_nmethod_or_null();
  1369     nm->method()->print_value();
  1370   } else if (blob->is_runtime_stub()) {
  1371     tty->print("<runtime-stub>");
  1372   } else {
  1373     tty->print("<unknown>");
  1375   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1376   tty->print_cr("]");
  1379 #endif  // PRODUCT
  1382 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1383 // Called from call sites in compiled code with oop maps (actually safepoints)
  1384 // Zaps dead locals in first java frame.
  1385 // Is entry because may need to lock to generate oop maps
  1386 // Currently, only used for compiler frames, but someday may be used
  1387 // for interpreter frames, too.
  1389 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1391 // avoid pointers to member funcs with these helpers
  1392 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1393 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1396 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1397                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1398   assert(JavaThread::current() == thread, "is this needed?");
  1400   if ( !ZapDeadCompiledLocals )  return;
  1402   bool skip = false;
  1404        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1405   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1406   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1407     warning("starting zapping after skipping");
  1409        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1410   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1411   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1412     warning("about to zap last zap");
  1414   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1416   if ( skip )  return;
  1418   // find java frame and zap it
  1420   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1421     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1422       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1423       return;
  1426   warning("no frame found to zap in zap_dead_Java_locals_C");
  1429 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1430   zap_dead_java_or_native_locals(thread, is_java_frame);
  1431 JRT_END
  1433 // The following does not work because for one thing, the
  1434 // thread state is wrong; it expects java, but it is native.
  1435 // Also, the invariants in a native stub are different and
  1436 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1437 // in there.
  1438 // So for now, we do not zap in native stubs.
  1440 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1441   zap_dead_java_or_native_locals(thread, is_native_frame);
  1442 JRT_END
  1444 # endif

mercurial