src/share/vm/opto/node.cpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 6198
55fb97c4c58d
child 6313
de95063c0e34
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/node.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/type.hpp"
    36 #include "utilities/copy.hpp"
    38 class RegMask;
    39 // #include "phase.hpp"
    40 class PhaseTransform;
    41 class PhaseGVN;
    43 // Arena we are currently building Nodes in
    44 const uint Node::NotAMachineReg = 0xffff0000;
    46 #ifndef PRODUCT
    47 extern int nodes_created;
    48 #endif
    50 #ifdef ASSERT
    52 //-------------------------- construct_node------------------------------------
    53 // Set a breakpoint here to identify where a particular node index is built.
    54 void Node::verify_construction() {
    55   _debug_orig = NULL;
    56   int old_debug_idx = Compile::debug_idx();
    57   int new_debug_idx = old_debug_idx+1;
    58   if (new_debug_idx > 0) {
    59     // Arrange that the lowest five decimal digits of _debug_idx
    60     // will repeat those of _idx. In case this is somehow pathological,
    61     // we continue to assign negative numbers (!) consecutively.
    62     const int mod = 100000;
    63     int bump = (int)(_idx - new_debug_idx) % mod;
    64     if (bump < 0)  bump += mod;
    65     assert(bump >= 0 && bump < mod, "");
    66     new_debug_idx += bump;
    67   }
    68   Compile::set_debug_idx(new_debug_idx);
    69   set_debug_idx( new_debug_idx );
    70   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
    71   assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
    72   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    73     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    74     BREAKPOINT;
    75   }
    76 #if OPTO_DU_ITERATOR_ASSERT
    77   _last_del = NULL;
    78   _del_tick = 0;
    79 #endif
    80   _hash_lock = 0;
    81 }
    84 // #ifdef ASSERT ...
    86 #if OPTO_DU_ITERATOR_ASSERT
    87 void DUIterator_Common::sample(const Node* node) {
    88   _vdui     = VerifyDUIterators;
    89   _node     = node;
    90   _outcnt   = node->_outcnt;
    91   _del_tick = node->_del_tick;
    92   _last     = NULL;
    93 }
    95 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    96   assert(_node     == node, "consistent iterator source");
    97   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    98 }
   100 void DUIterator_Common::verify_resync() {
   101   // Ensure that the loop body has just deleted the last guy produced.
   102   const Node* node = _node;
   103   // Ensure that at least one copy of the last-seen edge was deleted.
   104   // Note:  It is OK to delete multiple copies of the last-seen edge.
   105   // Unfortunately, we have no way to verify that all the deletions delete
   106   // that same edge.  On this point we must use the Honor System.
   107   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   108   assert(node->_last_del == _last, "must have deleted the edge just produced");
   109   // We liked this deletion, so accept the resulting outcnt and tick.
   110   _outcnt   = node->_outcnt;
   111   _del_tick = node->_del_tick;
   112 }
   114 void DUIterator_Common::reset(const DUIterator_Common& that) {
   115   if (this == &that)  return;  // ignore assignment to self
   116   if (!_vdui) {
   117     // We need to initialize everything, overwriting garbage values.
   118     _last = that._last;
   119     _vdui = that._vdui;
   120   }
   121   // Note:  It is legal (though odd) for an iterator over some node x
   122   // to be reassigned to iterate over another node y.  Some doubly-nested
   123   // progress loops depend on being able to do this.
   124   const Node* node = that._node;
   125   // Re-initialize everything, except _last.
   126   _node     = node;
   127   _outcnt   = node->_outcnt;
   128   _del_tick = node->_del_tick;
   129 }
   131 void DUIterator::sample(const Node* node) {
   132   DUIterator_Common::sample(node);      // Initialize the assertion data.
   133   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   134 }
   136 void DUIterator::verify(const Node* node, bool at_end_ok) {
   137   DUIterator_Common::verify(node, at_end_ok);
   138   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   139 }
   141 void DUIterator::verify_increment() {
   142   if (_refresh_tick & 1) {
   143     // We have refreshed the index during this loop.
   144     // Fix up _idx to meet asserts.
   145     if (_idx > _outcnt)  _idx = _outcnt;
   146   }
   147   verify(_node, true);
   148 }
   150 void DUIterator::verify_resync() {
   151   // Note:  We do not assert on _outcnt, because insertions are OK here.
   152   DUIterator_Common::verify_resync();
   153   // Make sure we are still in sync, possibly with no more out-edges:
   154   verify(_node, true);
   155 }
   157 void DUIterator::reset(const DUIterator& that) {
   158   if (this == &that)  return;  // self assignment is always a no-op
   159   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   160   assert(that._idx          == 0, "assign only the result of Node::outs()");
   161   assert(_idx               == that._idx, "already assigned _idx");
   162   if (!_vdui) {
   163     // We need to initialize everything, overwriting garbage values.
   164     sample(that._node);
   165   } else {
   166     DUIterator_Common::reset(that);
   167     if (_refresh_tick & 1) {
   168       _refresh_tick++;                  // Clear the "was refreshed" flag.
   169     }
   170     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   171   }
   172 }
   174 void DUIterator::refresh() {
   175   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   176   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   177 }
   179 void DUIterator::verify_finish() {
   180   // If the loop has killed the node, do not require it to re-run.
   181   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   182   // If this assert triggers, it means that a loop used refresh_out_pos
   183   // to re-synch an iteration index, but the loop did not correctly
   184   // re-run itself, using a "while (progress)" construct.
   185   // This iterator enforces the rule that you must keep trying the loop
   186   // until it "runs clean" without any need for refreshing.
   187   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   188 }
   191 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   192   DUIterator_Common::verify(node, at_end_ok);
   193   Node** out    = node->_out;
   194   uint   cnt    = node->_outcnt;
   195   assert(cnt == _outcnt, "no insertions allowed");
   196   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   197   // This last check is carefully designed to work for NO_OUT_ARRAY.
   198 }
   200 void DUIterator_Fast::verify_limit() {
   201   const Node* node = _node;
   202   verify(node, true);
   203   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   204 }
   206 void DUIterator_Fast::verify_resync() {
   207   const Node* node = _node;
   208   if (_outp == node->_out + _outcnt) {
   209     // Note that the limit imax, not the pointer i, gets updated with the
   210     // exact count of deletions.  (For the pointer it's always "--i".)
   211     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   212     // This is a limit pointer, with a name like "imax".
   213     // Fudge the _last field so that the common assert will be happy.
   214     _last = (Node*) node->_last_del;
   215     DUIterator_Common::verify_resync();
   216   } else {
   217     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   218     // A normal internal pointer.
   219     DUIterator_Common::verify_resync();
   220     // Make sure we are still in sync, possibly with no more out-edges:
   221     verify(node, true);
   222   }
   223 }
   225 void DUIterator_Fast::verify_relimit(uint n) {
   226   const Node* node = _node;
   227   assert((int)n > 0, "use imax -= n only with a positive count");
   228   // This must be a limit pointer, with a name like "imax".
   229   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   230   // The reported number of deletions must match what the node saw.
   231   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   232   // Fudge the _last field so that the common assert will be happy.
   233   _last = (Node*) node->_last_del;
   234   DUIterator_Common::verify_resync();
   235 }
   237 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   238   assert(_outp              == that._outp, "already assigned _outp");
   239   DUIterator_Common::reset(that);
   240 }
   242 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   243   // at_end_ok means the _outp is allowed to underflow by 1
   244   _outp += at_end_ok;
   245   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   246   _outp -= at_end_ok;
   247   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   248 }
   250 void DUIterator_Last::verify_limit() {
   251   // Do not require the limit address to be resynched.
   252   //verify(node, true);
   253   assert(_outp == _node->_out, "limit still correct");
   254 }
   256 void DUIterator_Last::verify_step(uint num_edges) {
   257   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   258   _outcnt   -= num_edges;
   259   _del_tick += num_edges;
   260   // Make sure we are still in sync, possibly with no more out-edges:
   261   const Node* node = _node;
   262   verify(node, true);
   263   assert(node->_last_del == _last, "must have deleted the edge just produced");
   264 }
   266 #endif //OPTO_DU_ITERATOR_ASSERT
   269 #endif //ASSERT
   272 // This constant used to initialize _out may be any non-null value.
   273 // The value NULL is reserved for the top node only.
   274 #define NO_OUT_ARRAY ((Node**)-1)
   276 // This funny expression handshakes with Node::operator new
   277 // to pull Compile::current out of the new node's _out field,
   278 // and then calls a subroutine which manages most field
   279 // initializations.  The only one which is tricky is the
   280 // _idx field, which is const, and so must be initialized
   281 // by a return value, not an assignment.
   282 //
   283 // (Aren't you thankful that Java finals don't require so many tricks?)
   284 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   285 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   286 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   287 #endif
   289 // Out-of-line code from node constructors.
   290 // Executed only when extra debug info. is being passed around.
   291 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   292   C->set_node_notes_at(idx, nn);
   293 }
   295 // Shared initialization code.
   296 inline int Node::Init(int req, Compile* C) {
   297   assert(Compile::current() == C, "must use operator new(Compile*)");
   298   int idx = C->next_unique();
   300   // Allocate memory for the necessary number of edges.
   301   if (req > 0) {
   302     // Allocate space for _in array to have double alignment.
   303     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
   304 #ifdef ASSERT
   305     _in[req-1] = this; // magic cookie for assertion check
   306 #endif
   307   }
   308   // If there are default notes floating around, capture them:
   309   Node_Notes* nn = C->default_node_notes();
   310   if (nn != NULL)  init_node_notes(C, idx, nn);
   312   // Note:  At this point, C is dead,
   313   // and we begin to initialize the new Node.
   315   _cnt = _max = req;
   316   _outcnt = _outmax = 0;
   317   _class_id = Class_Node;
   318   _flags = 0;
   319   _out = NO_OUT_ARRAY;
   320   return idx;
   321 }
   323 //------------------------------Node-------------------------------------------
   324 // Create a Node, with a given number of required edges.
   325 Node::Node(uint req)
   326   : _idx(IDX_INIT(req))
   327 {
   328   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
   329   debug_only( verify_construction() );
   330   NOT_PRODUCT(nodes_created++);
   331   if (req == 0) {
   332     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   333     _in = NULL;
   334   } else {
   335     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   336     Node** to = _in;
   337     for(uint i = 0; i < req; i++) {
   338       to[i] = NULL;
   339     }
   340   }
   341 }
   343 //------------------------------Node-------------------------------------------
   344 Node::Node(Node *n0)
   345   : _idx(IDX_INIT(1))
   346 {
   347   debug_only( verify_construction() );
   348   NOT_PRODUCT(nodes_created++);
   349   // Assert we allocated space for input array already
   350   assert( _in[0] == this, "Must pass arg count to 'new'" );
   351   assert( is_not_dead(n0), "can not use dead node");
   352   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   353 }
   355 //------------------------------Node-------------------------------------------
   356 Node::Node(Node *n0, Node *n1)
   357   : _idx(IDX_INIT(2))
   358 {
   359   debug_only( verify_construction() );
   360   NOT_PRODUCT(nodes_created++);
   361   // Assert we allocated space for input array already
   362   assert( _in[1] == this, "Must pass arg count to 'new'" );
   363   assert( is_not_dead(n0), "can not use dead node");
   364   assert( is_not_dead(n1), "can not use dead node");
   365   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   366   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   367 }
   369 //------------------------------Node-------------------------------------------
   370 Node::Node(Node *n0, Node *n1, Node *n2)
   371   : _idx(IDX_INIT(3))
   372 {
   373   debug_only( verify_construction() );
   374   NOT_PRODUCT(nodes_created++);
   375   // Assert we allocated space for input array already
   376   assert( _in[2] == this, "Must pass arg count to 'new'" );
   377   assert( is_not_dead(n0), "can not use dead node");
   378   assert( is_not_dead(n1), "can not use dead node");
   379   assert( is_not_dead(n2), "can not use dead node");
   380   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   381   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   382   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   383 }
   385 //------------------------------Node-------------------------------------------
   386 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   387   : _idx(IDX_INIT(4))
   388 {
   389   debug_only( verify_construction() );
   390   NOT_PRODUCT(nodes_created++);
   391   // Assert we allocated space for input array already
   392   assert( _in[3] == this, "Must pass arg count to 'new'" );
   393   assert( is_not_dead(n0), "can not use dead node");
   394   assert( is_not_dead(n1), "can not use dead node");
   395   assert( is_not_dead(n2), "can not use dead node");
   396   assert( is_not_dead(n3), "can not use dead node");
   397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   401 }
   403 //------------------------------Node-------------------------------------------
   404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   405   : _idx(IDX_INIT(5))
   406 {
   407   debug_only( verify_construction() );
   408   NOT_PRODUCT(nodes_created++);
   409   // Assert we allocated space for input array already
   410   assert( _in[4] == this, "Must pass arg count to 'new'" );
   411   assert( is_not_dead(n0), "can not use dead node");
   412   assert( is_not_dead(n1), "can not use dead node");
   413   assert( is_not_dead(n2), "can not use dead node");
   414   assert( is_not_dead(n3), "can not use dead node");
   415   assert( is_not_dead(n4), "can not use dead node");
   416   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   417   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   418   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   419   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   420   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   421 }
   423 //------------------------------Node-------------------------------------------
   424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   425                      Node *n4, Node *n5)
   426   : _idx(IDX_INIT(6))
   427 {
   428   debug_only( verify_construction() );
   429   NOT_PRODUCT(nodes_created++);
   430   // Assert we allocated space for input array already
   431   assert( _in[5] == this, "Must pass arg count to 'new'" );
   432   assert( is_not_dead(n0), "can not use dead node");
   433   assert( is_not_dead(n1), "can not use dead node");
   434   assert( is_not_dead(n2), "can not use dead node");
   435   assert( is_not_dead(n3), "can not use dead node");
   436   assert( is_not_dead(n4), "can not use dead node");
   437   assert( is_not_dead(n5), "can not use dead node");
   438   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   439   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   440   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   441   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   442   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   443   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   444 }
   446 //------------------------------Node-------------------------------------------
   447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   448                      Node *n4, Node *n5, Node *n6)
   449   : _idx(IDX_INIT(7))
   450 {
   451   debug_only( verify_construction() );
   452   NOT_PRODUCT(nodes_created++);
   453   // Assert we allocated space for input array already
   454   assert( _in[6] == this, "Must pass arg count to 'new'" );
   455   assert( is_not_dead(n0), "can not use dead node");
   456   assert( is_not_dead(n1), "can not use dead node");
   457   assert( is_not_dead(n2), "can not use dead node");
   458   assert( is_not_dead(n3), "can not use dead node");
   459   assert( is_not_dead(n4), "can not use dead node");
   460   assert( is_not_dead(n5), "can not use dead node");
   461   assert( is_not_dead(n6), "can not use dead node");
   462   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   463   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   464   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   465   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   466   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   467   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   468   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   469 }
   472 //------------------------------clone------------------------------------------
   473 // Clone a Node.
   474 Node *Node::clone() const {
   475   Compile* C = Compile::current();
   476   uint s = size_of();           // Size of inherited Node
   477   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   478   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   479   // Set the new input pointer array
   480   n->_in = (Node**)(((char*)n)+s);
   481   // Cannot share the old output pointer array, so kill it
   482   n->_out = NO_OUT_ARRAY;
   483   // And reset the counters to 0
   484   n->_outcnt = 0;
   485   n->_outmax = 0;
   486   // Unlock this guy, since he is not in any hash table.
   487   debug_only(n->_hash_lock = 0);
   488   // Walk the old node's input list to duplicate its edges
   489   uint i;
   490   for( i = 0; i < len(); i++ ) {
   491     Node *x = in(i);
   492     n->_in[i] = x;
   493     if (x != NULL) x->add_out(n);
   494   }
   495   if (is_macro())
   496     C->add_macro_node(n);
   497   if (is_expensive())
   498     C->add_expensive_node(n);
   500   n->set_idx(C->next_unique()); // Get new unique index as well
   501   debug_only( n->verify_construction() );
   502   NOT_PRODUCT(nodes_created++);
   503   // Do not patch over the debug_idx of a clone, because it makes it
   504   // impossible to break on the clone's moment of creation.
   505   //debug_only( n->set_debug_idx( debug_idx() ) );
   507   C->copy_node_notes_to(n, (Node*) this);
   509   // MachNode clone
   510   uint nopnds;
   511   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   512     MachNode *mach  = n->as_Mach();
   513     MachNode *mthis = this->as_Mach();
   514     // Get address of _opnd_array.
   515     // It should be the same offset since it is the clone of this node.
   516     MachOper **from = mthis->_opnds;
   517     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   518                     pointer_delta((const void*)from,
   519                                   (const void*)(&mthis->_opnds), 1));
   520     mach->_opnds = to;
   521     for ( uint i = 0; i < nopnds; ++i ) {
   522       to[i] = from[i]->clone(C);
   523     }
   524   }
   525   // cloning CallNode may need to clone JVMState
   526   if (n->is_Call()) {
   527     n->as_Call()->clone_jvms(C);
   528   }
   529   return n;                     // Return the clone
   530 }
   532 //---------------------------setup_is_top--------------------------------------
   533 // Call this when changing the top node, to reassert the invariants
   534 // required by Node::is_top.  See Compile::set_cached_top_node.
   535 void Node::setup_is_top() {
   536   if (this == (Node*)Compile::current()->top()) {
   537     // This node has just become top.  Kill its out array.
   538     _outcnt = _outmax = 0;
   539     _out = NULL;                           // marker value for top
   540     assert(is_top(), "must be top");
   541   } else {
   542     if (_out == NULL)  _out = NO_OUT_ARRAY;
   543     assert(!is_top(), "must not be top");
   544   }
   545 }
   548 //------------------------------~Node------------------------------------------
   549 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   550 extern int reclaim_idx ;
   551 extern int reclaim_in  ;
   552 extern int reclaim_node;
   553 void Node::destruct() {
   554   // Eagerly reclaim unique Node numberings
   555   Compile* compile = Compile::current();
   556   if ((uint)_idx+1 == compile->unique()) {
   557     compile->set_unique(compile->unique()-1);
   558 #ifdef ASSERT
   559     reclaim_idx++;
   560 #endif
   561   }
   562   // Clear debug info:
   563   Node_Notes* nn = compile->node_notes_at(_idx);
   564   if (nn != NULL)  nn->clear();
   565   // Walk the input array, freeing the corresponding output edges
   566   _cnt = _max;  // forget req/prec distinction
   567   uint i;
   568   for( i = 0; i < _max; i++ ) {
   569     set_req(i, NULL);
   570     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   571   }
   572   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   573   // See if the input array was allocated just prior to the object
   574   int edge_size = _max*sizeof(void*);
   575   int out_edge_size = _outmax*sizeof(void*);
   576   char *edge_end = ((char*)_in) + edge_size;
   577   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   578   char *out_edge_end = out_array + out_edge_size;
   579   int node_size = size_of();
   581   // Free the output edge array
   582   if (out_edge_size > 0) {
   583 #ifdef ASSERT
   584     if( out_edge_end == compile->node_arena()->hwm() )
   585       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   586 #endif
   587     compile->node_arena()->Afree(out_array, out_edge_size);
   588   }
   590   // Free the input edge array and the node itself
   591   if( edge_end == (char*)this ) {
   592 #ifdef ASSERT
   593     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   594       reclaim_in  += edge_size;
   595       reclaim_node+= node_size;
   596     }
   597 #else
   598     // It was; free the input array and object all in one hit
   599     compile->node_arena()->Afree(_in,edge_size+node_size);
   600 #endif
   601   } else {
   603     // Free just the input array
   604 #ifdef ASSERT
   605     if( edge_end == compile->node_arena()->hwm() )
   606       reclaim_in  += edge_size;
   607 #endif
   608     compile->node_arena()->Afree(_in,edge_size);
   610     // Free just the object
   611 #ifdef ASSERT
   612     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   613       reclaim_node+= node_size;
   614 #else
   615     compile->node_arena()->Afree(this,node_size);
   616 #endif
   617   }
   618   if (is_macro()) {
   619     compile->remove_macro_node(this);
   620   }
   621   if (is_expensive()) {
   622     compile->remove_expensive_node(this);
   623   }
   624 #ifdef ASSERT
   625   // We will not actually delete the storage, but we'll make the node unusable.
   626   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   627   _in = _out = (Node**) badAddress;
   628   _max = _cnt = _outmax = _outcnt = 0;
   629 #endif
   630 }
   632 //------------------------------grow-------------------------------------------
   633 // Grow the input array, making space for more edges
   634 void Node::grow( uint len ) {
   635   Arena* arena = Compile::current()->node_arena();
   636   uint new_max = _max;
   637   if( new_max == 0 ) {
   638     _max = 4;
   639     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   640     Node** to = _in;
   641     to[0] = NULL;
   642     to[1] = NULL;
   643     to[2] = NULL;
   644     to[3] = NULL;
   645     return;
   646   }
   647   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   648   // Trimming to limit allows a uint8 to handle up to 255 edges.
   649   // Previously I was using only powers-of-2 which peaked at 128 edges.
   650   //if( new_max >= limit ) new_max = limit-1;
   651   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   652   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   653   _max = new_max;               // Record new max length
   654   // This assertion makes sure that Node::_max is wide enough to
   655   // represent the numerical value of new_max.
   656   assert(_max == new_max && _max > len, "int width of _max is too small");
   657 }
   659 //-----------------------------out_grow----------------------------------------
   660 // Grow the input array, making space for more edges
   661 void Node::out_grow( uint len ) {
   662   assert(!is_top(), "cannot grow a top node's out array");
   663   Arena* arena = Compile::current()->node_arena();
   664   uint new_max = _outmax;
   665   if( new_max == 0 ) {
   666     _outmax = 4;
   667     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   668     return;
   669   }
   670   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   671   // Trimming to limit allows a uint8 to handle up to 255 edges.
   672   // Previously I was using only powers-of-2 which peaked at 128 edges.
   673   //if( new_max >= limit ) new_max = limit-1;
   674   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   675   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   676   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   677   _outmax = new_max;               // Record new max length
   678   // This assertion makes sure that Node::_max is wide enough to
   679   // represent the numerical value of new_max.
   680   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   681 }
   683 #ifdef ASSERT
   684 //------------------------------is_dead----------------------------------------
   685 bool Node::is_dead() const {
   686   // Mach and pinch point nodes may look like dead.
   687   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   688     return false;
   689   for( uint i = 0; i < _max; i++ )
   690     if( _in[i] != NULL )
   691       return false;
   692   dump();
   693   return true;
   694 }
   695 #endif
   698 //------------------------------is_unreachable---------------------------------
   699 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
   700   assert(!is_Mach(), "doesn't work with MachNodes");
   701   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
   702 }
   704 //------------------------------add_req----------------------------------------
   705 // Add a new required input at the end
   706 void Node::add_req( Node *n ) {
   707   assert( is_not_dead(n), "can not use dead node");
   709   // Look to see if I can move precedence down one without reallocating
   710   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   711     grow( _max+1 );
   713   // Find a precedence edge to move
   714   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   715     uint i;
   716     for( i=_cnt; i<_max; i++ )
   717       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   718         break;                  // There must be one, since we grew the array
   719     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   720   }
   721   _in[_cnt++] = n;            // Stuff over old prec edge
   722   if (n != NULL) n->add_out((Node *)this);
   723 }
   725 //---------------------------add_req_batch-------------------------------------
   726 // Add a new required input at the end
   727 void Node::add_req_batch( Node *n, uint m ) {
   728   assert( is_not_dead(n), "can not use dead node");
   729   // check various edge cases
   730   if ((int)m <= 1) {
   731     assert((int)m >= 0, "oob");
   732     if (m != 0)  add_req(n);
   733     return;
   734   }
   736   // Look to see if I can move precedence down one without reallocating
   737   if( (_cnt+m) > _max || _in[_max-m] )
   738     grow( _max+m );
   740   // Find a precedence edge to move
   741   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   742     uint i;
   743     for( i=_cnt; i<_max; i++ )
   744       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   745         break;                  // There must be one, since we grew the array
   746     // Slide all the precs over by m positions (assume #prec << m).
   747     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   748   }
   750   // Stuff over the old prec edges
   751   for(uint i=0; i<m; i++ ) {
   752     _in[_cnt++] = n;
   753   }
   755   // Insert multiple out edges on the node.
   756   if (n != NULL && !n->is_top()) {
   757     for(uint i=0; i<m; i++ ) {
   758       n->add_out((Node *)this);
   759     }
   760   }
   761 }
   763 //------------------------------del_req----------------------------------------
   764 // Delete the required edge and compact the edge array
   765 void Node::del_req( uint idx ) {
   766   assert( idx < _cnt, "oob");
   767   assert( !VerifyHashTableKeys || _hash_lock == 0,
   768           "remove node from hash table before modifying it");
   769   // First remove corresponding def-use edge
   770   Node *n = in(idx);
   771   if (n != NULL) n->del_out((Node *)this);
   772   _in[idx] = in(--_cnt);  // Compact the array
   773   _in[_cnt] = NULL;       // NULL out emptied slot
   774 }
   776 //------------------------------del_req_ordered--------------------------------
   777 // Delete the required edge and compact the edge array with preserved order
   778 void Node::del_req_ordered( uint idx ) {
   779   assert( idx < _cnt, "oob");
   780   assert( !VerifyHashTableKeys || _hash_lock == 0,
   781           "remove node from hash table before modifying it");
   782   // First remove corresponding def-use edge
   783   Node *n = in(idx);
   784   if (n != NULL) n->del_out((Node *)this);
   785   if (idx < _cnt - 1) { // Not last edge ?
   786     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
   787   }
   788   _in[--_cnt] = NULL;   // NULL out emptied slot
   789 }
   791 //------------------------------ins_req----------------------------------------
   792 // Insert a new required input at the end
   793 void Node::ins_req( uint idx, Node *n ) {
   794   assert( is_not_dead(n), "can not use dead node");
   795   add_req(NULL);                // Make space
   796   assert( idx < _max, "Must have allocated enough space");
   797   // Slide over
   798   if(_cnt-idx-1 > 0) {
   799     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   800   }
   801   _in[idx] = n;                            // Stuff over old required edge
   802   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   803 }
   805 //-----------------------------find_edge---------------------------------------
   806 int Node::find_edge(Node* n) {
   807   for (uint i = 0; i < len(); i++) {
   808     if (_in[i] == n)  return i;
   809   }
   810   return -1;
   811 }
   813 //----------------------------replace_edge-------------------------------------
   814 int Node::replace_edge(Node* old, Node* neww) {
   815   if (old == neww)  return 0;  // nothing to do
   816   uint nrep = 0;
   817   for (uint i = 0; i < len(); i++) {
   818     if (in(i) == old) {
   819       if (i < req())
   820         set_req(i, neww);
   821       else
   822         set_prec(i, neww);
   823       nrep++;
   824     }
   825   }
   826   return nrep;
   827 }
   829 /**
   830  * Replace input edges in the range pointing to 'old' node.
   831  */
   832 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
   833   if (old == neww)  return 0;  // nothing to do
   834   uint nrep = 0;
   835   for (int i = start; i < end; i++) {
   836     if (in(i) == old) {
   837       set_req(i, neww);
   838       nrep++;
   839     }
   840   }
   841   return nrep;
   842 }
   844 //-------------------------disconnect_inputs-----------------------------------
   845 // NULL out all inputs to eliminate incoming Def-Use edges.
   846 // Return the number of edges between 'n' and 'this'
   847 int Node::disconnect_inputs(Node *n, Compile* C) {
   848   int edges_to_n = 0;
   850   uint cnt = req();
   851   for( uint i = 0; i < cnt; ++i ) {
   852     if( in(i) == 0 ) continue;
   853     if( in(i) == n ) ++edges_to_n;
   854     set_req(i, NULL);
   855   }
   856   // Remove precedence edges if any exist
   857   // Note: Safepoints may have precedence edges, even during parsing
   858   if( (req() != len()) && (in(req()) != NULL) ) {
   859     uint max = len();
   860     for( uint i = 0; i < max; ++i ) {
   861       if( in(i) == 0 ) continue;
   862       if( in(i) == n ) ++edges_to_n;
   863       set_prec(i, NULL);
   864     }
   865   }
   867   // Node::destruct requires all out edges be deleted first
   868   // debug_only(destruct();)   // no reuse benefit expected
   869   if (edges_to_n == 0) {
   870     C->record_dead_node(_idx);
   871   }
   872   return edges_to_n;
   873 }
   875 //-----------------------------uncast---------------------------------------
   876 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   877 // Strip away casting.  (It is depth-limited.)
   878 Node* Node::uncast() const {
   879   // Should be inline:
   880   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   881   if (is_ConstraintCast() || is_CheckCastPP())
   882     return uncast_helper(this);
   883   else
   884     return (Node*) this;
   885 }
   887 //---------------------------uncast_helper-------------------------------------
   888 Node* Node::uncast_helper(const Node* p) {
   889 #ifdef ASSERT
   890   uint depth_count = 0;
   891   const Node* orig_p = p;
   892 #endif
   894   while (true) {
   895 #ifdef ASSERT
   896     if (depth_count >= K) {
   897       orig_p->dump(4);
   898       if (p != orig_p)
   899         p->dump(1);
   900     }
   901     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   902 #endif
   903     if (p == NULL || p->req() != 2) {
   904       break;
   905     } else if (p->is_ConstraintCast()) {
   906       p = p->in(1);
   907     } else if (p->is_CheckCastPP()) {
   908       p = p->in(1);
   909     } else {
   910       break;
   911     }
   912   }
   913   return (Node*) p;
   914 }
   916 //------------------------------add_prec---------------------------------------
   917 // Add a new precedence input.  Precedence inputs are unordered, with
   918 // duplicates removed and NULLs packed down at the end.
   919 void Node::add_prec( Node *n ) {
   920   assert( is_not_dead(n), "can not use dead node");
   922   // Check for NULL at end
   923   if( _cnt >= _max || in(_max-1) )
   924     grow( _max+1 );
   926   // Find a precedence edge to move
   927   uint i = _cnt;
   928   while( in(i) != NULL ) i++;
   929   _in[i] = n;                                // Stuff prec edge over NULL
   930   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   931 }
   933 //------------------------------rm_prec----------------------------------------
   934 // Remove a precedence input.  Precedence inputs are unordered, with
   935 // duplicates removed and NULLs packed down at the end.
   936 void Node::rm_prec( uint j ) {
   938   // Find end of precedence list to pack NULLs
   939   uint i;
   940   for( i=j; i<_max; i++ )
   941     if( !_in[i] )               // Find the NULL at end of prec edge list
   942       break;
   943   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   944   _in[j] = _in[--i];            // Move last element over removed guy
   945   _in[i] = NULL;                // NULL out last element
   946 }
   948 //------------------------------size_of----------------------------------------
   949 uint Node::size_of() const { return sizeof(*this); }
   951 //------------------------------ideal_reg--------------------------------------
   952 uint Node::ideal_reg() const { return 0; }
   954 //------------------------------jvms-------------------------------------------
   955 JVMState* Node::jvms() const { return NULL; }
   957 #ifdef ASSERT
   958 //------------------------------jvms-------------------------------------------
   959 bool Node::verify_jvms(const JVMState* using_jvms) const {
   960   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   961     if (jvms == using_jvms)  return true;
   962   }
   963   return false;
   964 }
   966 //------------------------------init_NodeProperty------------------------------
   967 void Node::init_NodeProperty() {
   968   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
   969   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
   970 }
   971 #endif
   973 //------------------------------format-----------------------------------------
   974 // Print as assembly
   975 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
   976 //------------------------------emit-------------------------------------------
   977 // Emit bytes starting at parameter 'ptr'.
   978 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
   979 //------------------------------size-------------------------------------------
   980 // Size of instruction in bytes
   981 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
   983 //------------------------------CFG Construction-------------------------------
   984 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
   985 // Goto and Return.
   986 const Node *Node::is_block_proj() const { return 0; }
   988 // Minimum guaranteed type
   989 const Type *Node::bottom_type() const { return Type::BOTTOM; }
   992 //------------------------------raise_bottom_type------------------------------
   993 // Get the worst-case Type output for this Node.
   994 void Node::raise_bottom_type(const Type* new_type) {
   995   if (is_Type()) {
   996     TypeNode *n = this->as_Type();
   997     if (VerifyAliases) {
   998       assert(new_type->higher_equal(n->type()), "new type must refine old type");
   999     }
  1000     n->set_type(new_type);
  1001   } else if (is_Load()) {
  1002     LoadNode *n = this->as_Load();
  1003     if (VerifyAliases) {
  1004       assert(new_type->higher_equal(n->type()), "new type must refine old type");
  1006     n->set_type(new_type);
  1010 //------------------------------Identity---------------------------------------
  1011 // Return a node that the given node is equivalent to.
  1012 Node *Node::Identity( PhaseTransform * ) {
  1013   return this;                  // Default to no identities
  1016 //------------------------------Value------------------------------------------
  1017 // Compute a new Type for a node using the Type of the inputs.
  1018 const Type *Node::Value( PhaseTransform * ) const {
  1019   return bottom_type();         // Default to worst-case Type
  1022 //------------------------------Ideal------------------------------------------
  1023 //
  1024 // 'Idealize' the graph rooted at this Node.
  1025 //
  1026 // In order to be efficient and flexible there are some subtle invariants
  1027 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
  1028 // these invariants, although its too slow to have on by default.  If you are
  1029 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
  1030 //
  1031 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
  1032 // pointer.  If ANY change is made, it must return the root of the reshaped
  1033 // graph - even if the root is the same Node.  Example: swapping the inputs
  1034 // to an AddINode gives the same answer and same root, but you still have to
  1035 // return the 'this' pointer instead of NULL.
  1036 //
  1037 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
  1038 // Identity call to return an old Node; basically if Identity can find
  1039 // another Node have the Ideal call make no change and return NULL.
  1040 // Example: AddINode::Ideal must check for add of zero; in this case it
  1041 // returns NULL instead of doing any graph reshaping.
  1042 //
  1043 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
  1044 // sharing there may be other users of the old Nodes relying on their current
  1045 // semantics.  Modifying them will break the other users.
  1046 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
  1047 // "X+3" unchanged in case it is shared.
  1048 //
  1049 // If you modify the 'this' pointer's inputs, you should use
  1050 // 'set_req'.  If you are making a new Node (either as the new root or
  1051 // some new internal piece) you may use 'init_req' to set the initial
  1052 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1053 // either case, def-use info is correctly maintained.
  1054 //
  1055 // Example: reshape "(X+3)+4" into "X+7":
  1056 //    set_req(1, in(1)->in(1));
  1057 //    set_req(2, phase->intcon(7));
  1058 //    return this;
  1059 // Example: reshape "X*4" into "X<<2"
  1060 //    return new (C) LShiftINode(in(1), phase->intcon(2));
  1061 //
  1062 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1063 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1064 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
  1065 //    return new (C) AddINode(shift, in(1));
  1066 //
  1067 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1068 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
  1069 // The Right Thing with def-use info.
  1070 //
  1071 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1072 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1073 // the same Opcode as the 'this' pointer use 'clone'.
  1074 //
  1075 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1076   return NULL;                  // Default to being Ideal already
  1079 // Some nodes have specific Ideal subgraph transformations only if they are
  1080 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1081 // for the transformations to happen.
  1082 bool Node::has_special_unique_user() const {
  1083   assert(outcnt() == 1, "match only for unique out");
  1084   Node* n = unique_out();
  1085   int op  = Opcode();
  1086   if( this->is_Store() ) {
  1087     // Condition for back-to-back stores folding.
  1088     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1089   } else if( op == Op_AddL ) {
  1090     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1091     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1092   } else if( op == Op_SubI || op == Op_SubL ) {
  1093     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1094     return n->Opcode() == op && n->in(2) == this;
  1096   return false;
  1097 };
  1099 //--------------------------find_exact_control---------------------------------
  1100 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1101 Node* Node::find_exact_control(Node* ctrl) {
  1102   if (ctrl == NULL && this->is_Region())
  1103     ctrl = this->as_Region()->is_copy();
  1105   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1106     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1107       ctrl = ctrl->in(0);
  1108     if (ctrl != NULL && !ctrl->is_top())
  1109       ctrl = ctrl->in(0);
  1112   if (ctrl != NULL && ctrl->is_Proj())
  1113     ctrl = ctrl->in(0);
  1115   return ctrl;
  1118 //--------------------------dominates------------------------------------------
  1119 // Helper function for MemNode::all_controls_dominate().
  1120 // Check if 'this' control node dominates or equal to 'sub' control node.
  1121 // We already know that if any path back to Root or Start reaches 'this',
  1122 // then all paths so, so this is a simple search for one example,
  1123 // not an exhaustive search for a counterexample.
  1124 bool Node::dominates(Node* sub, Node_List &nlist) {
  1125   assert(this->is_CFG(), "expecting control");
  1126   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1128   // detect dead cycle without regions
  1129   int iterations_without_region_limit = DominatorSearchLimit;
  1131   Node* orig_sub = sub;
  1132   Node* dom      = this;
  1133   bool  met_dom  = false;
  1134   nlist.clear();
  1136   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1137   // After seeing 'dom', continue up to Root or Start.
  1138   // If we hit a region (backward split point), it may be a loop head.
  1139   // Keep going through one of the region's inputs.  If we reach the
  1140   // same region again, go through a different input.  Eventually we
  1141   // will either exit through the loop head, or give up.
  1142   // (If we get confused, break out and return a conservative 'false'.)
  1143   while (sub != NULL) {
  1144     if (sub->is_top())  break; // Conservative answer for dead code.
  1145     if (sub == dom) {
  1146       if (nlist.size() == 0) {
  1147         // No Region nodes except loops were visited before and the EntryControl
  1148         // path was taken for loops: it did not walk in a cycle.
  1149         return true;
  1150       } else if (met_dom) {
  1151         break;          // already met before: walk in a cycle
  1152       } else {
  1153         // Region nodes were visited. Continue walk up to Start or Root
  1154         // to make sure that it did not walk in a cycle.
  1155         met_dom = true; // first time meet
  1156         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1159     if (sub->is_Start() || sub->is_Root()) {
  1160       // Success if we met 'dom' along a path to Start or Root.
  1161       // We assume there are no alternative paths that avoid 'dom'.
  1162       // (This assumption is up to the caller to ensure!)
  1163       return met_dom;
  1165     Node* up = sub->in(0);
  1166     // Normalize simple pass-through regions and projections:
  1167     up = sub->find_exact_control(up);
  1168     // If sub == up, we found a self-loop.  Try to push past it.
  1169     if (sub == up && sub->is_Loop()) {
  1170       // Take loop entry path on the way up to 'dom'.
  1171       up = sub->in(1); // in(LoopNode::EntryControl);
  1172     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1173       // Always take in(1) path on the way up to 'dom' for clone regions
  1174       // (with only one input) or regions which merge > 2 paths
  1175       // (usually used to merge fast/slow paths).
  1176       up = sub->in(1);
  1177     } else if (sub == up && sub->is_Region()) {
  1178       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1179       // It could give conservative 'false' answer without information
  1180       // which region's input is the entry path.
  1181       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1183       bool region_was_visited_before = false;
  1184       // Was this Region node visited before?
  1185       // If so, we have reached it because we accidentally took a
  1186       // loop-back edge from 'sub' back into the body of the loop,
  1187       // and worked our way up again to the loop header 'sub'.
  1188       // So, take the first unexplored path on the way up to 'dom'.
  1189       for (int j = nlist.size() - 1; j >= 0; j--) {
  1190         intptr_t ni = (intptr_t)nlist.at(j);
  1191         Node* visited = (Node*)(ni & ~1);
  1192         bool  visited_twice_already = ((ni & 1) != 0);
  1193         if (visited == sub) {
  1194           if (visited_twice_already) {
  1195             // Visited 2 paths, but still stuck in loop body.  Give up.
  1196             return false;
  1198           // The Region node was visited before only once.
  1199           // (We will repush with the low bit set, below.)
  1200           nlist.remove(j);
  1201           // We will find a new edge and re-insert.
  1202           region_was_visited_before = true;
  1203           break;
  1207       // Find an incoming edge which has not been seen yet; walk through it.
  1208       assert(up == sub, "");
  1209       uint skip = region_was_visited_before ? 1 : 0;
  1210       for (uint i = 1; i < sub->req(); i++) {
  1211         Node* in = sub->in(i);
  1212         if (in != NULL && !in->is_top() && in != sub) {
  1213           if (skip == 0) {
  1214             up = in;
  1215             break;
  1217           --skip;               // skip this nontrivial input
  1221       // Set 0 bit to indicate that both paths were taken.
  1222       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1225     if (up == sub) {
  1226       break;    // some kind of tight cycle
  1228     if (up == orig_sub && met_dom) {
  1229       // returned back after visiting 'dom'
  1230       break;    // some kind of cycle
  1232     if (--iterations_without_region_limit < 0) {
  1233       break;    // dead cycle
  1235     sub = up;
  1238   // Did not meet Root or Start node in pred. chain.
  1239   // Conservative answer for dead code.
  1240   return false;
  1243 //------------------------------remove_dead_region-----------------------------
  1244 // This control node is dead.  Follow the subgraph below it making everything
  1245 // using it dead as well.  This will happen normally via the usual IterGVN
  1246 // worklist but this call is more efficient.  Do not update use-def info
  1247 // inside the dead region, just at the borders.
  1248 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1249   // Con's are a popular node to re-hit in the hash table again.
  1250   if( dead->is_Con() ) return;
  1252   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1253   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1254   Node_List  nstack(Thread::current()->resource_area());
  1256   Node *top = igvn->C->top();
  1257   nstack.push(dead);
  1259   while (nstack.size() > 0) {
  1260     dead = nstack.pop();
  1261     if (dead->outcnt() > 0) {
  1262       // Keep dead node on stack until all uses are processed.
  1263       nstack.push(dead);
  1264       // For all Users of the Dead...    ;-)
  1265       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1266         Node* use = dead->last_out(k);
  1267         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1268         if (use->in(0) == dead) {     // Found another dead node
  1269           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1270           use->set_req(0, top);       // Cut dead edge to prevent processing
  1271           nstack.push(use);           // the dead node again.
  1272         } else {                      // Else found a not-dead user
  1273           for (uint j = 1; j < use->req(); j++) {
  1274             if (use->in(j) == dead) { // Turn all dead inputs into TOP
  1275               use->set_req(j, top);
  1278           igvn->_worklist.push(use);
  1280         // Refresh the iterator, since any number of kills might have happened.
  1281         k = dead->last_outs(kmin);
  1283     } else { // (dead->outcnt() == 0)
  1284       // Done with outputs.
  1285       igvn->hash_delete(dead);
  1286       igvn->_worklist.remove(dead);
  1287       igvn->set_type(dead, Type::TOP);
  1288       if (dead->is_macro()) {
  1289         igvn->C->remove_macro_node(dead);
  1291       if (dead->is_expensive()) {
  1292         igvn->C->remove_expensive_node(dead);
  1294       igvn->C->record_dead_node(dead->_idx);
  1295       // Kill all inputs to the dead guy
  1296       for (uint i=0; i < dead->req(); i++) {
  1297         Node *n = dead->in(i);      // Get input to dead guy
  1298         if (n != NULL && !n->is_top()) { // Input is valid?
  1299           dead->set_req(i, top);    // Smash input away
  1300           if (n->outcnt() == 0) {   // Input also goes dead?
  1301             if (!n->is_Con())
  1302               nstack.push(n);       // Clear it out as well
  1303           } else if (n->outcnt() == 1 &&
  1304                      n->has_special_unique_user()) {
  1305             igvn->add_users_to_worklist( n );
  1306           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1307             // Push store's uses on worklist to enable folding optimization for
  1308             // store/store and store/load to the same address.
  1309             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1310             // and remove_globally_dead_node().
  1311             igvn->add_users_to_worklist( n );
  1315     } // (dead->outcnt() == 0)
  1316   }   // while (nstack.size() > 0) for outputs
  1317   return;
  1320 //------------------------------remove_dead_region-----------------------------
  1321 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1322   Node *n = in(0);
  1323   if( !n ) return false;
  1324   // Lost control into this guy?  I.e., it became unreachable?
  1325   // Aggressively kill all unreachable code.
  1326   if (can_reshape && n->is_top()) {
  1327     kill_dead_code(this, phase->is_IterGVN());
  1328     return false; // Node is dead.
  1331   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1332     Node *m = n->nonnull_req();
  1333     set_req(0, m);
  1334     return true;
  1336   return false;
  1339 //------------------------------Ideal_DU_postCCP-------------------------------
  1340 // Idealize graph, using DU info.  Must clone result into new-space
  1341 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1342   return NULL;                 // Default to no change
  1345 //------------------------------hash-------------------------------------------
  1346 // Hash function over Nodes.
  1347 uint Node::hash() const {
  1348   uint sum = 0;
  1349   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1350     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1351   return (sum>>2) + _cnt + Opcode();
  1354 //------------------------------cmp--------------------------------------------
  1355 // Compare special parts of simple Nodes
  1356 uint Node::cmp( const Node &n ) const {
  1357   return 1;                     // Must be same
  1360 //------------------------------rematerialize-----------------------------------
  1361 // Should we clone rather than spill this instruction?
  1362 bool Node::rematerialize() const {
  1363   if ( is_Mach() )
  1364     return this->as_Mach()->rematerialize();
  1365   else
  1366     return (_flags & Flag_rematerialize) != 0;
  1369 //------------------------------needs_anti_dependence_check---------------------
  1370 // Nodes which use memory without consuming it, hence need antidependences.
  1371 bool Node::needs_anti_dependence_check() const {
  1372   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1373     return false;
  1374   else
  1375     return in(1)->bottom_type()->has_memory();
  1379 // Get an integer constant from a ConNode (or CastIINode).
  1380 // Return a default value if there is no apparent constant here.
  1381 const TypeInt* Node::find_int_type() const {
  1382   if (this->is_Type()) {
  1383     return this->as_Type()->type()->isa_int();
  1384   } else if (this->is_Con()) {
  1385     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1386     return this->bottom_type()->isa_int();
  1388   return NULL;
  1391 // Get a pointer constant from a ConstNode.
  1392 // Returns the constant if it is a pointer ConstNode
  1393 intptr_t Node::get_ptr() const {
  1394   assert( Opcode() == Op_ConP, "" );
  1395   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1398 // Get a narrow oop constant from a ConNNode.
  1399 intptr_t Node::get_narrowcon() const {
  1400   assert( Opcode() == Op_ConN, "" );
  1401   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1404 // Get a long constant from a ConNode.
  1405 // Return a default value if there is no apparent constant here.
  1406 const TypeLong* Node::find_long_type() const {
  1407   if (this->is_Type()) {
  1408     return this->as_Type()->type()->isa_long();
  1409   } else if (this->is_Con()) {
  1410     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1411     return this->bottom_type()->isa_long();
  1413   return NULL;
  1417 /**
  1418  * Return a ptr type for nodes which should have it.
  1419  */
  1420 const TypePtr* Node::get_ptr_type() const {
  1421   const TypePtr* tp = this->bottom_type()->make_ptr();
  1422 #ifdef ASSERT
  1423   if (tp == NULL) {
  1424     this->dump(1);
  1425     assert((tp != NULL), "unexpected node type");
  1427 #endif
  1428   return tp;
  1431 // Get a double constant from a ConstNode.
  1432 // Returns the constant if it is a double ConstNode
  1433 jdouble Node::getd() const {
  1434   assert( Opcode() == Op_ConD, "" );
  1435   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1438 // Get a float constant from a ConstNode.
  1439 // Returns the constant if it is a float ConstNode
  1440 jfloat Node::getf() const {
  1441   assert( Opcode() == Op_ConF, "" );
  1442   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1445 #ifndef PRODUCT
  1447 //----------------------------NotANode----------------------------------------
  1448 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1449 static inline bool NotANode(const Node* n) {
  1450   if (n == NULL)                   return true;
  1451   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1452   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1453   return false;
  1457 //------------------------------find------------------------------------------
  1458 // Find a neighbor of this Node with the given _idx
  1459 // If idx is negative, find its absolute value, following both _in and _out.
  1460 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1461                         VectorSet* old_space, VectorSet* new_space ) {
  1462   int node_idx = (idx >= 0) ? idx : -idx;
  1463   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1464   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1465   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1466   if( v->test(n->_idx) ) return;
  1467   if( (int)n->_idx == node_idx
  1468       debug_only(|| n->debug_idx() == node_idx) ) {
  1469     if (result != NULL)
  1470       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1471                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1472     result = n;
  1474   v->set(n->_idx);
  1475   for( uint i=0; i<n->len(); i++ ) {
  1476     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1477     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1479   // Search along forward edges also:
  1480   if (idx < 0 && !only_ctrl) {
  1481     for( uint j=0; j<n->outcnt(); j++ ) {
  1482       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1485 #ifdef ASSERT
  1486   // Search along debug_orig edges last, checking for cycles
  1487   Node* orig = n->debug_orig();
  1488   if (orig != NULL) {
  1489     do {
  1490       if (NotANode(orig))  break;
  1491       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1492       orig = orig->debug_orig();
  1493     } while (orig != NULL && orig != n->debug_orig());
  1495 #endif //ASSERT
  1498 // call this from debugger:
  1499 Node* find_node(Node* n, int idx) {
  1500   return n->find(idx);
  1503 //------------------------------find-------------------------------------------
  1504 Node* Node::find(int idx) const {
  1505   ResourceArea *area = Thread::current()->resource_area();
  1506   VectorSet old_space(area), new_space(area);
  1507   Node* result = NULL;
  1508   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1509   return result;
  1512 //------------------------------find_ctrl--------------------------------------
  1513 // Find an ancestor to this node in the control history with given _idx
  1514 Node* Node::find_ctrl(int idx) const {
  1515   ResourceArea *area = Thread::current()->resource_area();
  1516   VectorSet old_space(area), new_space(area);
  1517   Node* result = NULL;
  1518   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1519   return result;
  1521 #endif
  1525 #ifndef PRODUCT
  1526 int Node::_in_dump_cnt = 0;
  1528 // -----------------------------Name-------------------------------------------
  1529 extern const char *NodeClassNames[];
  1530 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1532 static bool is_disconnected(const Node* n) {
  1533   for (uint i = 0; i < n->req(); i++) {
  1534     if (n->in(i) != NULL)  return false;
  1536   return true;
  1539 #ifdef ASSERT
  1540 static void dump_orig(Node* orig, outputStream *st) {
  1541   Compile* C = Compile::current();
  1542   if (NotANode(orig)) orig = NULL;
  1543   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1544   if (orig == NULL) return;
  1545   st->print(" !orig=");
  1546   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1547   if (NotANode(fast)) fast = NULL;
  1548   while (orig != NULL) {
  1549     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1550     if (discon) st->print("[");
  1551     if (!Compile::current()->node_arena()->contains(orig))
  1552       st->print("o");
  1553     st->print("%d", orig->_idx);
  1554     if (discon) st->print("]");
  1555     orig = orig->debug_orig();
  1556     if (NotANode(orig)) orig = NULL;
  1557     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1558     if (orig != NULL) st->print(",");
  1559     if (fast != NULL) {
  1560       // Step fast twice for each single step of orig:
  1561       fast = fast->debug_orig();
  1562       if (NotANode(fast)) fast = NULL;
  1563       if (fast != NULL && fast != orig) {
  1564         fast = fast->debug_orig();
  1565         if (NotANode(fast)) fast = NULL;
  1567       if (fast == orig) {
  1568         st->print("...");
  1569         break;
  1575 void Node::set_debug_orig(Node* orig) {
  1576   _debug_orig = orig;
  1577   if (BreakAtNode == 0)  return;
  1578   if (NotANode(orig))  orig = NULL;
  1579   int trip = 10;
  1580   while (orig != NULL) {
  1581     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1582       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1583                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1584       BREAKPOINT;
  1586     orig = orig->debug_orig();
  1587     if (NotANode(orig))  orig = NULL;
  1588     if (trip-- <= 0)  break;
  1591 #endif //ASSERT
  1593 //------------------------------dump------------------------------------------
  1594 // Dump a Node
  1595 void Node::dump(const char* suffix, outputStream *st) const {
  1596   Compile* C = Compile::current();
  1597   bool is_new = C->node_arena()->contains(this);
  1598   _in_dump_cnt++;
  1599   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
  1601   // Dump the required and precedence inputs
  1602   dump_req(st);
  1603   dump_prec(st);
  1604   // Dump the outputs
  1605   dump_out(st);
  1607   if (is_disconnected(this)) {
  1608 #ifdef ASSERT
  1609     st->print("  [%d]",debug_idx());
  1610     dump_orig(debug_orig(), st);
  1611 #endif
  1612     st->cr();
  1613     _in_dump_cnt--;
  1614     return;                     // don't process dead nodes
  1617   // Dump node-specific info
  1618   dump_spec(st);
  1619 #ifdef ASSERT
  1620   // Dump the non-reset _debug_idx
  1621   if (Verbose && WizardMode) {
  1622     st->print("  [%d]",debug_idx());
  1624 #endif
  1626   const Type *t = bottom_type();
  1628   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1629     const TypeInstPtr  *toop = t->isa_instptr();
  1630     const TypeKlassPtr *tkls = t->isa_klassptr();
  1631     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1632     if (klass && klass->is_loaded() && klass->is_interface()) {
  1633       st->print("  Interface:");
  1634     } else if (toop) {
  1635       st->print("  Oop:");
  1636     } else if (tkls) {
  1637       st->print("  Klass:");
  1639     t->dump_on(st);
  1640   } else if (t == Type::MEMORY) {
  1641     st->print("  Memory:");
  1642     MemNode::dump_adr_type(this, adr_type(), st);
  1643   } else if (Verbose || WizardMode) {
  1644     st->print("  Type:");
  1645     if (t) {
  1646       t->dump_on(st);
  1647     } else {
  1648       st->print("no type");
  1650   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1651     // Dump MachSpillcopy vector type.
  1652     t->dump_on(st);
  1654   if (is_new) {
  1655     debug_only(dump_orig(debug_orig(), st));
  1656     Node_Notes* nn = C->node_notes_at(_idx);
  1657     if (nn != NULL && !nn->is_clear()) {
  1658       if (nn->jvms() != NULL) {
  1659         st->print(" !jvms:");
  1660         nn->jvms()->dump_spec(st);
  1664   if (suffix) st->print(suffix);
  1665   _in_dump_cnt--;
  1668 //------------------------------dump_req--------------------------------------
  1669 void Node::dump_req(outputStream *st) const {
  1670   // Dump the required input edges
  1671   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1672     Node* d = in(i);
  1673     if (d == NULL) {
  1674       st->print("_ ");
  1675     } else if (NotANode(d)) {
  1676       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1677     } else {
  1678       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1684 //------------------------------dump_prec-------------------------------------
  1685 void Node::dump_prec(outputStream *st) const {
  1686   // Dump the precedence edges
  1687   int any_prec = 0;
  1688   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1689     Node* p = in(i);
  1690     if (p != NULL) {
  1691       if (!any_prec++) st->print(" |");
  1692       if (NotANode(p)) { st->print("NotANode "); continue; }
  1693       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1698 //------------------------------dump_out--------------------------------------
  1699 void Node::dump_out(outputStream *st) const {
  1700   // Delimit the output edges
  1701   st->print(" [[");
  1702   // Dump the output edges
  1703   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1704     Node* u = _out[i];
  1705     if (u == NULL) {
  1706       st->print("_ ");
  1707     } else if (NotANode(u)) {
  1708       st->print("NotANode ");
  1709     } else {
  1710       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1713   st->print("]] ");
  1716 //------------------------------dump_nodes-------------------------------------
  1717 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1718   Node* s = (Node*)start; // remove const
  1719   if (NotANode(s)) return;
  1721   uint depth = (uint)ABS(d);
  1722   int direction = d;
  1723   Compile* C = Compile::current();
  1724   GrowableArray <Node *> nstack(C->unique());
  1726   nstack.append(s);
  1727   int begin = 0;
  1728   int end = 0;
  1729   for(uint i = 0; i < depth; i++) {
  1730     end = nstack.length();
  1731     for(int j = begin; j < end; j++) {
  1732       Node* tp  = nstack.at(j);
  1733       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1734       for(uint k = 0; k < limit; k++) {
  1735         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1737         if (NotANode(n))  continue;
  1738         // do not recurse through top or the root (would reach unrelated stuff)
  1739         if (n->is_Root() || n->is_top())  continue;
  1740         if (only_ctrl && !n->is_CFG()) continue;
  1742         bool on_stack = nstack.contains(n);
  1743         if (!on_stack) {
  1744           nstack.append(n);
  1748     begin = end;
  1750   end = nstack.length();
  1751   if (direction > 0) {
  1752     for(int j = end-1; j >= 0; j--) {
  1753       nstack.at(j)->dump();
  1755   } else {
  1756     for(int j = 0; j < end; j++) {
  1757       nstack.at(j)->dump();
  1762 //------------------------------dump-------------------------------------------
  1763 void Node::dump(int d) const {
  1764   dump_nodes(this, d, false);
  1767 //------------------------------dump_ctrl--------------------------------------
  1768 // Dump a Node's control history to depth
  1769 void Node::dump_ctrl(int d) const {
  1770   dump_nodes(this, d, true);
  1773 // VERIFICATION CODE
  1774 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1775 // there is a corresponding Def-Use edge.
  1776 //------------------------------verify_edges-----------------------------------
  1777 void Node::verify_edges(Unique_Node_List &visited) {
  1778   uint i, j, idx;
  1779   int  cnt;
  1780   Node *n;
  1782   // Recursive termination test
  1783   if (visited.member(this))  return;
  1784   visited.push(this);
  1786   // Walk over all input edges, checking for correspondence
  1787   for( i = 0; i < len(); i++ ) {
  1788     n = in(i);
  1789     if (n != NULL && !n->is_top()) {
  1790       // Count instances of (Node *)this
  1791       cnt = 0;
  1792       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1793         if (n->_out[idx] == (Node *)this)  cnt++;
  1795       assert( cnt > 0,"Failed to find Def-Use edge." );
  1796       // Check for duplicate edges
  1797       // walk the input array downcounting the input edges to n
  1798       for( j = 0; j < len(); j++ ) {
  1799         if( in(j) == n ) cnt--;
  1801       assert( cnt == 0,"Mismatched edge count.");
  1802     } else if (n == NULL) {
  1803       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1804     } else {
  1805       assert(n->is_top(), "sanity");
  1806       // Nothing to check.
  1809   // Recursive walk over all input edges
  1810   for( i = 0; i < len(); i++ ) {
  1811     n = in(i);
  1812     if( n != NULL )
  1813       in(i)->verify_edges(visited);
  1817 //------------------------------verify_recur-----------------------------------
  1818 static const Node *unique_top = NULL;
  1820 void Node::verify_recur(const Node *n, int verify_depth,
  1821                         VectorSet &old_space, VectorSet &new_space) {
  1822   if ( verify_depth == 0 )  return;
  1823   if (verify_depth > 0)  --verify_depth;
  1825   Compile* C = Compile::current();
  1827   // Contained in new_space or old_space?
  1828   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1829   // Check for visited in the proper space.  Numberings are not unique
  1830   // across spaces so we need a separate VectorSet for each space.
  1831   if( v->test_set(n->_idx) ) return;
  1833   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1834     if (C->cached_top_node() == NULL)
  1835       C->set_cached_top_node((Node*)n);
  1836     assert(C->cached_top_node() == n, "TOP node must be unique");
  1839   for( uint i = 0; i < n->len(); i++ ) {
  1840     Node *x = n->in(i);
  1841     if (!x || x->is_top()) continue;
  1843     // Verify my input has a def-use edge to me
  1844     if (true /*VerifyDefUse*/) {
  1845       // Count use-def edges from n to x
  1846       int cnt = 0;
  1847       for( uint j = 0; j < n->len(); j++ )
  1848         if( n->in(j) == x )
  1849           cnt++;
  1850       // Count def-use edges from x to n
  1851       uint max = x->_outcnt;
  1852       for( uint k = 0; k < max; k++ )
  1853         if (x->_out[k] == n)
  1854           cnt--;
  1855       assert( cnt == 0, "mismatched def-use edge counts" );
  1858     verify_recur(x, verify_depth, old_space, new_space);
  1863 //------------------------------verify-----------------------------------------
  1864 // Check Def-Use info for my subgraph
  1865 void Node::verify() const {
  1866   Compile* C = Compile::current();
  1867   Node* old_top = C->cached_top_node();
  1868   ResourceMark rm;
  1869   ResourceArea *area = Thread::current()->resource_area();
  1870   VectorSet old_space(area), new_space(area);
  1871   verify_recur(this, -1, old_space, new_space);
  1872   C->set_cached_top_node(old_top);
  1874 #endif
  1877 //------------------------------walk-------------------------------------------
  1878 // Graph walk, with both pre-order and post-order functions
  1879 void Node::walk(NFunc pre, NFunc post, void *env) {
  1880   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1881   walk_(pre, post, env, visited);
  1884 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1885   if( visited.test_set(_idx) ) return;
  1886   pre(*this,env);               // Call the pre-order walk function
  1887   for( uint i=0; i<_max; i++ )
  1888     if( in(i) )                 // Input exists and is not walked?
  1889       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1890   post(*this,env);              // Call the post-order walk function
  1893 void Node::nop(Node &, void*) {}
  1895 //------------------------------Registers--------------------------------------
  1896 // Do we Match on this edge index or not?  Generally false for Control
  1897 // and true for everything else.  Weird for calls & returns.
  1898 uint Node::match_edge(uint idx) const {
  1899   return idx;                   // True for other than index 0 (control)
  1902 static RegMask _not_used_at_all;
  1903 // Register classes are defined for specific machines
  1904 const RegMask &Node::out_RegMask() const {
  1905   ShouldNotCallThis();
  1906   return _not_used_at_all;
  1909 const RegMask &Node::in_RegMask(uint) const {
  1910   ShouldNotCallThis();
  1911   return _not_used_at_all;
  1914 //=============================================================================
  1915 //-----------------------------------------------------------------------------
  1916 void Node_Array::reset( Arena *new_arena ) {
  1917   _a->Afree(_nodes,_max*sizeof(Node*));
  1918   _max   = 0;
  1919   _nodes = NULL;
  1920   _a     = new_arena;
  1923 //------------------------------clear------------------------------------------
  1924 // Clear all entries in _nodes to NULL but keep storage
  1925 void Node_Array::clear() {
  1926   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1929 //-----------------------------------------------------------------------------
  1930 void Node_Array::grow( uint i ) {
  1931   if( !_max ) {
  1932     _max = 1;
  1933     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  1934     _nodes[0] = NULL;
  1936   uint old = _max;
  1937   while( i >= _max ) _max <<= 1;        // Double to fit
  1938   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  1939   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  1942 //-----------------------------------------------------------------------------
  1943 void Node_Array::insert( uint i, Node *n ) {
  1944   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  1945   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  1946   _nodes[i] = n;
  1949 //-----------------------------------------------------------------------------
  1950 void Node_Array::remove( uint i ) {
  1951   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  1952   _nodes[_max-1] = NULL;
  1955 //-----------------------------------------------------------------------------
  1956 void Node_Array::sort( C_sort_func_t func) {
  1957   qsort( _nodes, _max, sizeof( Node* ), func );
  1960 //-----------------------------------------------------------------------------
  1961 void Node_Array::dump() const {
  1962 #ifndef PRODUCT
  1963   for( uint i = 0; i < _max; i++ ) {
  1964     Node *nn = _nodes[i];
  1965     if( nn != NULL ) {
  1966       tty->print("%5d--> ",i); nn->dump();
  1969 #endif
  1972 //--------------------------is_iteratively_computed------------------------------
  1973 // Operation appears to be iteratively computed (such as an induction variable)
  1974 // It is possible for this operation to return false for a loop-varying
  1975 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  1976 bool Node::is_iteratively_computed() {
  1977   if (ideal_reg()) { // does operation have a result register?
  1978     for (uint i = 1; i < req(); i++) {
  1979       Node* n = in(i);
  1980       if (n != NULL && n->is_Phi()) {
  1981         for (uint j = 1; j < n->req(); j++) {
  1982           if (n->in(j) == this) {
  1983             return true;
  1989   return false;
  1992 //--------------------------find_similar------------------------------
  1993 // Return a node with opcode "opc" and same inputs as "this" if one can
  1994 // be found; Otherwise return NULL;
  1995 Node* Node::find_similar(int opc) {
  1996   if (req() >= 2) {
  1997     Node* def = in(1);
  1998     if (def && def->outcnt() >= 2) {
  1999       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  2000         Node* use = def->fast_out(i);
  2001         if (use->Opcode() == opc &&
  2002             use->req() == req()) {
  2003           uint j;
  2004           for (j = 0; j < use->req(); j++) {
  2005             if (use->in(j) != in(j)) {
  2006               break;
  2009           if (j == use->req()) {
  2010             return use;
  2016   return NULL;
  2020 //--------------------------unique_ctrl_out------------------------------
  2021 // Return the unique control out if only one. Null if none or more than one.
  2022 Node* Node::unique_ctrl_out() {
  2023   Node* found = NULL;
  2024   for (uint i = 0; i < outcnt(); i++) {
  2025     Node* use = raw_out(i);
  2026     if (use->is_CFG() && use != this) {
  2027       if (found != NULL) return NULL;
  2028       found = use;
  2031   return found;
  2034 //=============================================================================
  2035 //------------------------------yank-------------------------------------------
  2036 // Find and remove
  2037 void Node_List::yank( Node *n ) {
  2038   uint i;
  2039   for( i = 0; i < _cnt; i++ )
  2040     if( _nodes[i] == n )
  2041       break;
  2043   if( i < _cnt )
  2044     _nodes[i] = _nodes[--_cnt];
  2047 //------------------------------dump-------------------------------------------
  2048 void Node_List::dump() const {
  2049 #ifndef PRODUCT
  2050   for( uint i = 0; i < _cnt; i++ )
  2051     if( _nodes[i] ) {
  2052       tty->print("%5d--> ",i);
  2053       _nodes[i]->dump();
  2055 #endif
  2058 //=============================================================================
  2059 //------------------------------remove-----------------------------------------
  2060 void Unique_Node_List::remove( Node *n ) {
  2061   if( _in_worklist[n->_idx] ) {
  2062     for( uint i = 0; i < size(); i++ )
  2063       if( _nodes[i] == n ) {
  2064         map(i,Node_List::pop());
  2065         _in_worklist >>= n->_idx;
  2066         return;
  2068     ShouldNotReachHere();
  2072 //-----------------------remove_useless_nodes----------------------------------
  2073 // Remove useless nodes from worklist
  2074 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2076   for( uint i = 0; i < size(); ++i ) {
  2077     Node *n = at(i);
  2078     assert( n != NULL, "Did not expect null entries in worklist");
  2079     if( ! useful.test(n->_idx) ) {
  2080       _in_worklist >>= n->_idx;
  2081       map(i,Node_List::pop());
  2082       // Node *replacement = Node_List::pop();
  2083       // if( i != size() ) { // Check if removing last entry
  2084       //   _nodes[i] = replacement;
  2085       // }
  2086       --i;  // Visit popped node
  2087       // If it was last entry, loop terminates since size() was also reduced
  2092 //=============================================================================
  2093 void Node_Stack::grow() {
  2094   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2095   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2096   size_t max = old_max << 1;             // max * 2
  2097   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2098   _inode_max = _inodes + max;
  2099   _inode_top = _inodes + old_top;        // restore _top
  2102 // Node_Stack is used to map nodes.
  2103 Node* Node_Stack::find(uint idx) const {
  2104   uint sz = size();
  2105   for (uint i=0; i < sz; i++) {
  2106     if (idx == index_at(i) )
  2107       return node_at(i);
  2109   return NULL;
  2112 //=============================================================================
  2113 uint TypeNode::size_of() const { return sizeof(*this); }
  2114 #ifndef PRODUCT
  2115 void TypeNode::dump_spec(outputStream *st) const {
  2116   if( !Verbose && !WizardMode ) {
  2117     // standard dump does this in Verbose and WizardMode
  2118     st->print(" #"); _type->dump_on(st);
  2121 #endif
  2122 uint TypeNode::hash() const {
  2123   return Node::hash() + _type->hash();
  2125 uint TypeNode::cmp( const Node &n ) const
  2126 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2127 const Type *TypeNode::bottom_type() const { return _type; }
  2128 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2130 //------------------------------ideal_reg--------------------------------------
  2131 uint TypeNode::ideal_reg() const {
  2132   return _type->ideal_reg();

mercurial