src/share/vm/opto/mathexactnode.cpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 5997
59e8ad757e19
child 6375
085b304a1cc5
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

     1 /*
     2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/machnode.hpp"
    30 #include "opto/matcher.hpp"
    31 #include "opto/mathexactnode.hpp"
    32 #include "opto/subnode.hpp"
    34 MathExactNode::MathExactNode(Node* ctrl, Node* in1) : MultiNode(2) {
    35   init_class_id(Class_MathExact);
    36   init_req(0, ctrl);
    37   init_req(1, in1);
    38 }
    40 MathExactNode::MathExactNode(Node* ctrl, Node* in1, Node* in2) : MultiNode(3) {
    41   init_class_id(Class_MathExact);
    42   init_req(0, ctrl);
    43   init_req(1, in1);
    44   init_req(2, in2);
    45 }
    47 BoolNode* MathExactNode::bool_node() const {
    48   Node* flags = flags_node();
    49   BoolNode* boolnode = flags->unique_out()->as_Bool();
    50   assert(boolnode != NULL, "must have BoolNode");
    51   return boolnode;
    52 }
    54 IfNode* MathExactNode::if_node() const {
    55   BoolNode* boolnode = bool_node();
    56   IfNode* ifnode = boolnode->unique_out()->as_If();
    57   assert(ifnode != NULL, "must have IfNode");
    58   return ifnode;
    59 }
    61 Node* MathExactNode::control_node() const {
    62   IfNode* ifnode = if_node();
    63   return ifnode->in(0);
    64 }
    66 Node* MathExactNode::non_throwing_branch() const {
    67   IfNode* ifnode = if_node();
    68   if (bool_node()->_test._test == BoolTest::overflow) {
    69     return ifnode->proj_out(0);
    70   }
    71   return ifnode->proj_out(1);
    72 }
    74 // If the MathExactNode won't overflow we have to replace the
    75 // FlagsProjNode and ProjNode that is generated by the MathExactNode
    76 Node* MathExactNode::no_overflow(PhaseGVN* phase, Node* new_result) {
    77   PhaseIterGVN* igvn = phase->is_IterGVN();
    78   if (igvn) {
    79     ProjNode* result = result_node();
    80     ProjNode* flags = flags_node();
    82     if (result != NULL) {
    83       igvn->replace_node(result, new_result);
    84     }
    86     if (flags != NULL) {
    87       BoolNode* boolnode = bool_node();
    88       switch (boolnode->_test._test) {
    89         case BoolTest::overflow:
    90           // if the check is for overflow - never taken
    91           igvn->replace_node(boolnode, phase->intcon(0));
    92           break;
    93         case BoolTest::no_overflow:
    94           // if the check is for no overflow - always taken
    95           igvn->replace_node(boolnode, phase->intcon(1));
    96           break;
    97         default:
    98           fatal("Unexpected value of BoolTest");
    99           break;
   100       }
   101       flags->del_req(0);
   102     }
   103   }
   104   return new_result;
   105 }
   107 Node* MathExactINode::match(const ProjNode* proj, const Matcher* m) {
   108   uint ideal_reg = proj->ideal_reg();
   109   RegMask rm;
   110   if (proj->_con == result_proj_node) {
   111     rm = m->mathExactI_result_proj_mask();
   112   } else {
   113     assert(proj->_con == flags_proj_node, "must be result or flags");
   114     assert(ideal_reg == Op_RegFlags, "sanity");
   115     rm = m->mathExactI_flags_proj_mask();
   116   }
   117   return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
   118 }
   120 Node* MathExactLNode::match(const ProjNode* proj, const Matcher* m) {
   121   uint ideal_reg = proj->ideal_reg();
   122   RegMask rm;
   123   if (proj->_con == result_proj_node) {
   124     rm = m->mathExactL_result_proj_mask();
   125   } else {
   126     assert(proj->_con == flags_proj_node, "must be result or flags");
   127     assert(ideal_reg == Op_RegFlags, "sanity");
   128     rm = m->mathExactI_flags_proj_mask();
   129   }
   130   return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
   131 }
   133 Node* AddExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
   134   Node* arg1 = in(1);
   135   Node* arg2 = in(2);
   137   const Type* type1 = phase->type(arg1);
   138   const Type* type2 = phase->type(arg2);
   140   if (type1 != Type::TOP && type1->singleton() &&
   141       type2 != Type::TOP && type2->singleton()) {
   142     jint val1 = arg1->get_int();
   143     jint val2 = arg2->get_int();
   144     jint result = val1 + val2;
   145     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
   146     if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
   147       Node* con_result = ConINode::make(phase->C, result);
   148       return no_overflow(phase, con_result);
   149     }
   150     return NULL;
   151   }
   153   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) { // (Add 0 x) == x
   154     Node* add_result = new (phase->C) AddINode(arg1, arg2);
   155     return no_overflow(phase, add_result);
   156   }
   158   if (type2->singleton()) {
   159     return NULL; // no change - keep constant on the right
   160   }
   162   if (type1->singleton()) {
   163     // Make it x + Constant - move constant to the right
   164     swap_edges(1, 2);
   165     return this;
   166   }
   168   if (arg2->is_Load()) {
   169     return NULL; // no change - keep load on the right
   170   }
   172   if (arg1->is_Load()) {
   173     // Make it x + Load - move load to the right
   174     swap_edges(1, 2);
   175     return this;
   176   }
   178   if (arg1->_idx > arg2->_idx) {
   179     // Sort the edges
   180     swap_edges(1, 2);
   181     return this;
   182   }
   184   return NULL;
   185 }
   187 Node* AddExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
   188   Node* arg1 = in(1);
   189   Node* arg2 = in(2);
   191   const Type* type1 = phase->type(arg1);
   192   const Type* type2 = phase->type(arg2);
   194   if (type1 != Type::TOP && type1->singleton() &&
   195       type2 != Type::TOP && type2->singleton()) {
   196     jlong val1 = arg1->get_long();
   197     jlong val2 = arg2->get_long();
   198     jlong result = val1 + val2;
   199     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
   200     if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
   201       Node* con_result = ConLNode::make(phase->C, result);
   202       return no_overflow(phase, con_result);
   203     }
   204     return NULL;
   205   }
   207   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) { // (Add 0 x) == x
   208     Node* add_result = new (phase->C) AddLNode(arg1, arg2);
   209     return no_overflow(phase, add_result);
   210   }
   212   if (type2->singleton()) {
   213     return NULL; // no change - keep constant on the right
   214   }
   216   if (type1->singleton()) {
   217     // Make it x + Constant - move constant to the right
   218     swap_edges(1, 2);
   219     return this;
   220   }
   222   if (arg2->is_Load()) {
   223     return NULL; // no change - keep load on the right
   224   }
   226   if (arg1->is_Load()) {
   227     // Make it x + Load - move load to the right
   228     swap_edges(1, 2);
   229     return this;
   230   }
   232   if (arg1->_idx > arg2->_idx) {
   233     // Sort the edges
   234     swap_edges(1, 2);
   235     return this;
   236   }
   238   return NULL;
   239 }
   241 Node* SubExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
   242   Node* arg1 = in(1);
   243   Node* arg2 = in(2);
   245   const Type* type1 = phase->type(arg1);
   246   const Type* type2 = phase->type(arg2);
   248   if (type1 != Type::TOP && type1->singleton() &&
   249       type2 != Type::TOP && type2->singleton()) {
   250     jint val1 = arg1->get_int();
   251     jint val2 = arg2->get_int();
   252     jint result = val1 - val2;
   254     // Hacker's Delight 2-12 Overflow iff the arguments have different signs and
   255     // the sign of the result is different than the sign of arg1
   256     if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
   257       Node* con_result = ConINode::make(phase->C, result);
   258       return no_overflow(phase, con_result);
   259     }
   260     return NULL;
   261   }
   263   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
   264     // Sub with zero is the same as add with zero
   265     Node* add_result = new (phase->C) AddINode(arg1, arg2);
   266     return no_overflow(phase, add_result);
   267   }
   269   return NULL;
   270 }
   272 Node* SubExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
   273   Node* arg1 = in(1);
   274   Node* arg2 = in(2);
   276   const Type* type1 = phase->type(arg1);
   277   const Type* type2 = phase->type(arg2);
   279   if (type1 != Type::TOP && type1->singleton() &&
   280       type2 != Type::TOP && type2->singleton()) {
   281     jlong val1 = arg1->get_long();
   282     jlong val2 = arg2->get_long();
   283     jlong result = val1 - val2;
   285     // Hacker's Delight 2-12 Overflow iff the arguments have different signs and
   286     // the sign of the result is different than the sign of arg1
   287     if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
   288       Node* con_result = ConLNode::make(phase->C, result);
   289       return no_overflow(phase, con_result);
   290     }
   291     return NULL;
   292   }
   294   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
   295     // Sub with zero is the same as add with zero
   296     Node* add_result = new (phase->C) AddLNode(arg1, arg2);
   297     return no_overflow(phase, add_result);
   298   }
   300   return NULL;
   301 }
   303 Node* NegExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
   304   Node *arg = in(1);
   306   const Type* type = phase->type(arg);
   307   if (type != Type::TOP && type->singleton()) {
   308     jint value = arg->get_int();
   309     if (value != min_jint) {
   310       Node* neg_result = ConINode::make(phase->C, -value);
   311       return no_overflow(phase, neg_result);
   312     }
   313   }
   314   return NULL;
   315 }
   317 Node* NegExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
   318   Node *arg = in(1);
   320   const Type* type = phase->type(arg);
   321   if (type != Type::TOP && type->singleton()) {
   322     jlong value = arg->get_long();
   323     if (value != min_jlong) {
   324       Node* neg_result = ConLNode::make(phase->C, -value);
   325       return no_overflow(phase, neg_result);
   326     }
   327   }
   328   return NULL;
   329 }
   331 Node* MulExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
   332   Node* arg1 = in(1);
   333   Node* arg2 = in(2);
   335   const Type* type1 = phase->type(arg1);
   336   const Type* type2 = phase->type(arg2);
   338   if (type1 != Type::TOP && type1->singleton() &&
   339       type2 != Type::TOP && type2->singleton()) {
   340     jint val1 = arg1->get_int();
   341     jint val2 = arg2->get_int();
   342     jlong result = (jlong) val1 * (jlong) val2;
   343     if ((jint) result == result) {
   344       // no overflow
   345       Node* mul_result = ConINode::make(phase->C, result);
   346       return no_overflow(phase, mul_result);
   347     }
   348   }
   350   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
   351     return no_overflow(phase, ConINode::make(phase->C, 0));
   352   }
   354   if (type1 == TypeInt::ONE) {
   355     Node* mul_result = new (phase->C) AddINode(arg2, phase->intcon(0));
   356     return no_overflow(phase, mul_result);
   357   }
   358   if (type2 == TypeInt::ONE) {
   359     Node* mul_result = new (phase->C) AddINode(arg1, phase->intcon(0));
   360     return no_overflow(phase, mul_result);
   361   }
   363   if (type1 == TypeInt::MINUS_1) {
   364     return new (phase->C) NegExactINode(NULL, arg2);
   365   }
   367   if (type2 == TypeInt::MINUS_1) {
   368     return new (phase->C) NegExactINode(NULL, arg1);
   369   }
   371   return NULL;
   372 }
   374 Node* MulExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
   375   Node* arg1 = in(1);
   376   Node* arg2 = in(2);
   378   const Type* type1 = phase->type(arg1);
   379   const Type* type2 = phase->type(arg2);
   381   if (type1 != Type::TOP && type1->singleton() &&
   382       type2 != Type::TOP && type2->singleton()) {
   383     jlong val1 = arg1->get_long();
   384     jlong val2 = arg2->get_long();
   386     jlong result = val1 * val2;
   387     jlong ax = (val1 < 0 ? -val1 : val1);
   388     jlong ay = (val2 < 0 ? -val2 : val2);
   390     bool overflow = false;
   391     if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
   392       // potential overflow if any bit in upper 32 bits are set
   393       if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
   394         // -1 * Long.MIN_VALUE will overflow
   395         overflow = true;
   396       } else if (val2 != 0 && (result / val2 != val1)) {
   397         overflow = true;
   398       }
   399     }
   401     if (!overflow) {
   402       Node* mul_result = ConLNode::make(phase->C, result);
   403       return no_overflow(phase, mul_result);
   404     }
   405   }
   407   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
   408     return no_overflow(phase, ConLNode::make(phase->C, 0));
   409   }
   411   if (type1 == TypeLong::ONE) {
   412     Node* mul_result = new (phase->C) AddLNode(arg2, phase->longcon(0));
   413     return no_overflow(phase, mul_result);
   414   }
   415   if (type2 == TypeLong::ONE) {
   416     Node* mul_result = new (phase->C) AddLNode(arg1, phase->longcon(0));
   417     return no_overflow(phase, mul_result);
   418   }
   420   if (type1 == TypeLong::MINUS_1) {
   421     return new (phase->C) NegExactLNode(NULL, arg2);
   422   }
   424   if (type2 == TypeLong::MINUS_1) {
   425     return new (phase->C) NegExactLNode(NULL, arg1);
   426   }
   428   return NULL;
   429 }

mercurial