src/share/vm/opto/block.hpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 6198
55fb97c4c58d
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
    26 #define SHARE_VM_OPTO_BLOCK_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phase.hpp"
    32 // Optimization - Graph Style
    34 class Block;
    35 class CFGLoop;
    36 class MachCallNode;
    37 class Matcher;
    38 class RootNode;
    39 class VectorSet;
    40 struct Tarjan;
    42 //------------------------------Block_Array------------------------------------
    43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    45 // Note that the constructor just zeros things, and since I use Arena
    46 // allocation I do not need a destructor to reclaim storage.
    47 class Block_Array : public ResourceObj {
    48   friend class VMStructs;
    49   uint _size;                   // allocated size, as opposed to formal limit
    50   debug_only(uint _limit;)      // limit to formal domain
    51   Arena *_arena;                // Arena to allocate in
    52 protected:
    53   Block **_blocks;
    54   void grow( uint i );          // Grow array node to fit
    56 public:
    57   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    58     debug_only(_limit=0);
    59     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    60     for( int i = 0; i < OptoBlockListSize; i++ ) {
    61       _blocks[i] = NULL;
    62     }
    63   }
    64   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    65   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    66   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    67   { assert( i < Max(), "oob" ); return _blocks[i]; }
    68   // Extend the mapping: index i maps to Block *n.
    69   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    70   uint Max() const { debug_only(return _limit); return _size; }
    71 };
    74 class Block_List : public Block_Array {
    75   friend class VMStructs;
    76 public:
    77   uint _cnt;
    78   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    79   void push( Block *b ) {  map(_cnt++,b); }
    80   Block *pop() { return _blocks[--_cnt]; }
    81   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    82   void remove( uint i );
    83   void insert( uint i, Block *n );
    84   uint size() const { return _cnt; }
    85   void reset() { _cnt = 0; }
    86   void print();
    87 };
    90 class CFGElement : public ResourceObj {
    91   friend class VMStructs;
    92  public:
    93   float _freq; // Execution frequency (estimate)
    95   CFGElement() : _freq(0.0f) {}
    96   virtual bool is_block() { return false; }
    97   virtual bool is_loop()  { return false; }
    98   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
    99   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
   100 };
   102 //------------------------------Block------------------------------------------
   103 // This class defines a Basic Block.
   104 // Basic blocks are used during the output routines, and are not used during
   105 // any optimization pass.  They are created late in the game.
   106 class Block : public CFGElement {
   107   friend class VMStructs;
   109 private:
   110   // Nodes in this block, in order
   111   Node_List _nodes;
   113 public:
   115   // Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
   116   Node* get_node(uint at_index) const {
   117     return _nodes[at_index];
   118   }
   120   // Get the number of nodes in this block
   121   uint number_of_nodes() const {
   122     return _nodes.size();
   123   }
   125   // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
   126   void map_node(Node* node, uint to_index) {
   127     _nodes.map(to_index, node);
   128   }
   130   // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
   131   void insert_node(Node* node, uint at_index) {
   132     _nodes.insert(at_index, node);
   133   }
   135   // Remove a node at index 'at_index'
   136   void remove_node(uint at_index) {
   137     _nodes.remove(at_index);
   138   }
   140   // Push a node 'node' onto the node list
   141   void push_node(Node* node) {
   142     _nodes.push(node);
   143   }
   145   // Pop the last node off the node list
   146   Node* pop_node() {
   147     return _nodes.pop();
   148   }
   150   // Basic blocks have a Node which defines Control for all Nodes pinned in
   151   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   152   // (division, subroutines) and Phi functions are always pinned.  Later,
   153   // every Node will get pinned to some block.
   154   Node *head() const { return get_node(0); }
   156   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   157   // input edges to Regions and Phis.
   158   uint num_preds() const { return head()->req(); }
   159   Node *pred(uint i) const { return head()->in(i); }
   161   // Array of successor blocks, same size as projs array
   162   Block_Array _succs;
   164   // Basic blocks have some number of Nodes which split control to all
   165   // following blocks.  These Nodes are always Projections.  The field in
   166   // the Projection and the block-ending Node determine which Block follows.
   167   uint _num_succs;
   169   // Basic blocks also carry all sorts of good old fashioned DFS information
   170   // used to find loops, loop nesting depth, dominators, etc.
   171   uint _pre_order;              // Pre-order DFS number
   173   // Dominator tree
   174   uint _dom_depth;              // Depth in dominator tree for fast LCA
   175   Block* _idom;                 // Immediate dominator block
   177   CFGLoop *_loop;               // Loop to which this block belongs
   178   uint _rpo;                    // Number in reverse post order walk
   180   virtual bool is_block() { return true; }
   181   float succ_prob(uint i);      // return probability of i'th successor
   182   int num_fall_throughs();      // How many fall-through candidate this block has
   183   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
   184   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
   185   Block* lone_fall_through();   // Return lone fall-through Block or null
   187   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   188 #ifdef ASSERT
   189   bool dominates(Block* that) {
   190     int dom_diff = this->_dom_depth - that->_dom_depth;
   191     if (dom_diff > 0)  return false;
   192     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   193     return this == that;
   194   }
   195 #endif
   197   // Report the alignment required by this block.  Must be a power of 2.
   198   // The previous block will insert nops to get this alignment.
   199   uint code_alignment();
   200   uint compute_loop_alignment();
   202   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   203   // It is currently also used to scale such frequencies relative to
   204   // FreqCountInvocations relative to the old value of 1500.
   205 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   207   // Register Pressure (estimate) for Splitting heuristic
   208   uint _reg_pressure;
   209   uint _ihrp_index;
   210   uint _freg_pressure;
   211   uint _fhrp_index;
   213   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   214   // Since they hold unique node indexes, they do not need reinitialization.
   215   node_idx_t _raise_LCA_mark;
   216   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   217   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   218   node_idx_t _raise_LCA_visited;
   219   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   220   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   222   // Estimated size in bytes of first instructions in a loop.
   223   uint _first_inst_size;
   224   uint first_inst_size() const     { return _first_inst_size; }
   225   void set_first_inst_size(uint s) { _first_inst_size = s; }
   227   // Compute the size of first instructions in this block.
   228   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   230   // Compute alignment padding if the block needs it.
   231   // Align a loop if loop's padding is less or equal to padding limit
   232   // or the size of first instructions in the loop > padding.
   233   uint alignment_padding(int current_offset) {
   234     int block_alignment = code_alignment();
   235     int max_pad = block_alignment-relocInfo::addr_unit();
   236     if( max_pad > 0 ) {
   237       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   238       int current_alignment = current_offset & max_pad;
   239       if( current_alignment != 0 ) {
   240         uint padding = (block_alignment-current_alignment) & max_pad;
   241         if( has_loop_alignment() &&
   242             padding > (uint)MaxLoopPad &&
   243             first_inst_size() <= padding ) {
   244           return 0;
   245         }
   246         return padding;
   247       }
   248     }
   249     return 0;
   250   }
   252   // Connector blocks. Connector blocks are basic blocks devoid of
   253   // instructions, but may have relevant non-instruction Nodes, such as
   254   // Phis or MergeMems. Such blocks are discovered and marked during the
   255   // RemoveEmpty phase, and elided during Output.
   256   bool _connector;
   257   void set_connector() { _connector = true; }
   258   bool is_connector() const { return _connector; };
   260   // Loop_alignment will be set for blocks which are at the top of loops.
   261   // The block layout pass may rotate loops such that the loop head may not
   262   // be the sequentially first block of the loop encountered in the linear
   263   // list of blocks.  If the layout pass is not run, loop alignment is set
   264   // for each block which is the head of a loop.
   265   uint _loop_alignment;
   266   void set_loop_alignment(Block *loop_top) {
   267     uint new_alignment = loop_top->compute_loop_alignment();
   268     if (new_alignment > _loop_alignment) {
   269       _loop_alignment = new_alignment;
   270     }
   271   }
   272   uint loop_alignment() const { return _loop_alignment; }
   273   bool has_loop_alignment() const { return loop_alignment() > 0; }
   275   // Create a new Block with given head Node.
   276   // Creates the (empty) predecessor arrays.
   277   Block( Arena *a, Node *headnode )
   278     : CFGElement(),
   279       _nodes(a),
   280       _succs(a),
   281       _num_succs(0),
   282       _pre_order(0),
   283       _idom(0),
   284       _loop(NULL),
   285       _reg_pressure(0),
   286       _ihrp_index(1),
   287       _freg_pressure(0),
   288       _fhrp_index(1),
   289       _raise_LCA_mark(0),
   290       _raise_LCA_visited(0),
   291       _first_inst_size(999999),
   292       _connector(false),
   293       _loop_alignment(0) {
   294     _nodes.push(headnode);
   295   }
   297   // Index of 'end' Node
   298   uint end_idx() const {
   299     // %%%%% add a proj after every goto
   300     // so (last->is_block_proj() != last) always, then simplify this code
   301     // This will not give correct end_idx for block 0 when it only contains root.
   302     int last_idx = _nodes.size() - 1;
   303     Node *last  = _nodes[last_idx];
   304     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   305     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   306   }
   308   // Basic blocks have a Node which ends them.  This Node determines which
   309   // basic block follows this one in the program flow.  This Node is either an
   310   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   311   Node *end() const { return _nodes[end_idx()]; }
   313   // Add an instruction to an existing block.  It must go after the head
   314   // instruction and before the end instruction.
   315   void add_inst( Node *n ) { insert_node(n, end_idx()); }
   316   // Find node in block
   317   uint find_node( const Node *n ) const;
   318   // Find and remove n from block list
   319   void find_remove( const Node *n );
   321   // Return the empty status of a block
   322   enum { not_empty, empty_with_goto, completely_empty };
   323   int is_Empty() const;
   325   // Forward through connectors
   326   Block* non_connector() {
   327     Block* s = this;
   328     while (s->is_connector()) {
   329       s = s->_succs[0];
   330     }
   331     return s;
   332   }
   334   // Return true if b is a successor of this block
   335   bool has_successor(Block* b) const {
   336     for (uint i = 0; i < _num_succs; i++ ) {
   337       if (non_connector_successor(i) == b) {
   338         return true;
   339       }
   340     }
   341     return false;
   342   }
   344   // Successor block, after forwarding through connectors
   345   Block* non_connector_successor(int i) const {
   346     return _succs[i]->non_connector();
   347   }
   349   // Examine block's code shape to predict if it is not commonly executed.
   350   bool has_uncommon_code() const;
   352 #ifndef PRODUCT
   353   // Debugging print of basic block
   354   void dump_bidx(const Block* orig, outputStream* st = tty) const;
   355   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
   356   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
   357   void dump() const;
   358   void dump(const PhaseCFG* cfg) const;
   359 #endif
   360 };
   363 //------------------------------PhaseCFG---------------------------------------
   364 // Build an array of Basic Block pointers, one per Node.
   365 class PhaseCFG : public Phase {
   366   friend class VMStructs;
   367  private:
   369   // Root of whole program
   370   RootNode* _root;
   372   // The block containing the root node
   373   Block* _root_block;
   375   // List of basic blocks that are created during CFG creation
   376   Block_List _blocks;
   378   // Count of basic blocks
   379   uint _number_of_blocks;
   381   // Arena for the blocks to be stored in
   382   Arena* _block_arena;
   384   // The matcher for this compilation
   385   Matcher& _matcher;
   387   // Map nodes to owning basic block
   388   Block_Array _node_to_block_mapping;
   390   // Loop from the root
   391   CFGLoop* _root_loop;
   393   // Outmost loop frequency
   394   float _outer_loop_frequency;
   396   // Per node latency estimation, valid only during GCM
   397   GrowableArray<uint>* _node_latency;
   399   // Build a proper looking cfg.  Return count of basic blocks
   400   uint build_cfg();
   402   // Build the dominator tree so that we know where we can move instructions
   403   void build_dominator_tree();
   405   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
   406   void estimate_block_frequency();
   408   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   409   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
   410   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
   411   void global_code_motion();
   413   // Schedule Nodes early in their basic blocks.
   414   bool schedule_early(VectorSet &visited, Node_List &roots);
   416   // For each node, find the latest block it can be scheduled into
   417   // and then select the cheapest block between the latest and earliest
   418   // block to place the node.
   419   void schedule_late(VectorSet &visited, Node_List &stack);
   421   // Compute the (backwards) latency of a node from a single use
   422   int latency_from_use(Node *n, const Node *def, Node *use);
   424   // Compute the (backwards) latency of a node from the uses of this instruction
   425   void partial_latency_of_defs(Node *n);
   427   // Compute the instruction global latency with a backwards walk
   428   void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
   430   // Pick a block between early and late that is a cheaper alternative
   431   // to late. Helper for schedule_late.
   432   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   434   bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call);
   435   void set_next_call(Block* block, Node* n, VectorSet& next_call);
   436   void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
   438   // Perform basic-block local scheduling
   439   Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot);
   441   // Schedule a call next in the block
   442   uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
   444   // Cleanup if any code lands between a Call and his Catch
   445   void call_catch_cleanup(Block* block);
   447   Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
   448   void  catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
   450   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   451   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   452   // I can generate a memory op if there is not one nearby.
   453   void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
   455   // Perform a Depth First Search (DFS).
   456   // Setup 'vertex' as DFS to vertex mapping.
   457   // Setup 'semi' as vertex to DFS mapping.
   458   // Set 'parent' to DFS parent.
   459   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
   461   // Helper function to insert a node into a block
   462   void schedule_node_into_block( Node *n, Block *b );
   464   void replace_block_proj_ctrl( Node *n );
   466   // Set the basic block for pinned Nodes
   467   void schedule_pinned_nodes( VectorSet &visited );
   469   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   470   // Used when building the CFG and creating end nodes for blocks.
   471   MachNode* _goto;
   473   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   474   void verify_anti_dependences(Block* LCA, Node* load) {
   475     assert(LCA == get_block_for_node(load), "should already be scheduled");
   476     insert_anti_dependences(LCA, load, true);
   477   }
   479   bool move_to_next(Block* bx, uint b_index);
   480   void move_to_end(Block* bx, uint b_index);
   482   void insert_goto_at(uint block_no, uint succ_no);
   484   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   485   // true target.  NeverBranch are treated as a conditional branch that always
   486   // goes the same direction for most of the optimizer and are used to give a
   487   // fake exit path to infinite loops.  At this late stage they need to turn
   488   // into Goto's so that when you enter the infinite loop you indeed hang.
   489   void convert_NeverBranch_to_Goto(Block *b);
   491   CFGLoop* create_loop_tree();
   493   #ifndef PRODUCT
   494   bool _trace_opto_pipelining;  // tracing flag
   495   #endif
   497  public:
   498   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
   500   void set_latency_for_node(Node* node, int latency) {
   501     _node_latency->at_put_grow(node->_idx, latency);
   502   }
   504   uint get_latency_for_node(Node* node) {
   505     return _node_latency->at_grow(node->_idx);
   506   }
   508   // Get the outer most frequency
   509   float get_outer_loop_frequency() const {
   510     return _outer_loop_frequency;
   511   }
   513   // Get the root node of the CFG
   514   RootNode* get_root_node() const {
   515     return _root;
   516   }
   518   // Get the block of the root node
   519   Block* get_root_block() const {
   520     return _root_block;
   521   }
   523   // Add a block at a position and moves the later ones one step
   524   void add_block_at(uint pos, Block* block) {
   525     _blocks.insert(pos, block);
   526     _number_of_blocks++;
   527   }
   529   // Adds a block to the top of the block list
   530   void add_block(Block* block) {
   531     _blocks.push(block);
   532     _number_of_blocks++;
   533   }
   535   // Clear the list of blocks
   536   void clear_blocks() {
   537     _blocks.reset();
   538     _number_of_blocks = 0;
   539   }
   541   // Get the block at position pos in _blocks
   542   Block* get_block(uint pos) const {
   543     return _blocks[pos];
   544   }
   546   // Number of blocks
   547   uint number_of_blocks() const {
   548     return _number_of_blocks;
   549   }
   551   // set which block this node should reside in
   552   void map_node_to_block(const Node* node, Block* block) {
   553     _node_to_block_mapping.map(node->_idx, block);
   554   }
   556   // removes the mapping from a node to a block
   557   void unmap_node_from_block(const Node* node) {
   558     _node_to_block_mapping.map(node->_idx, NULL);
   559   }
   561   // get the block in which this node resides
   562   Block* get_block_for_node(const Node* node) const {
   563     return _node_to_block_mapping[node->_idx];
   564   }
   566   // does this node reside in a block; return true
   567   bool has_block(const Node* node) const {
   568     return (_node_to_block_mapping.lookup(node->_idx) != NULL);
   569   }
   571   // Use frequency calculations and code shape to predict if the block
   572   // is uncommon.
   573   bool is_uncommon(const Block* block);
   575 #ifdef ASSERT
   576   Unique_Node_List _raw_oops;
   577 #endif
   579   // Do global code motion by first building dominator tree and estimate block frequency
   580   // Returns true on success
   581   bool do_global_code_motion();
   583   // Compute the (backwards) latency of a node from the uses
   584   void latency_from_uses(Node *n);
   586   // Set loop alignment
   587   void set_loop_alignment();
   589   // Remove empty basic blocks
   590   void remove_empty_blocks();
   591   void fixup_flow();
   593   // Insert a node into a block at index and map the node to the block
   594   void insert(Block *b, uint idx, Node *n) {
   595     b->insert_node(n , idx);
   596     map_node_to_block(n, b);
   597   }
   599 #ifndef PRODUCT
   600   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   602   // Debugging print of CFG
   603   void dump( ) const;           // CFG only
   604   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   605   void verify() const;
   606   void dump_headers();
   607 #else
   608   bool trace_opto_pipelining() const { return false; }
   609 #endif
   610 };
   613 //------------------------------UnionFind--------------------------------------
   614 // Map Block indices to a block-index for a cfg-cover.
   615 // Array lookup in the optimized case.
   616 class UnionFind : public ResourceObj {
   617   uint _cnt, _max;
   618   uint* _indices;
   619   ReallocMark _nesting;  // assertion check for reallocations
   620 public:
   621   UnionFind( uint max );
   622   void reset( uint max );  // Reset to identity map for [0..max]
   624   uint lookup( uint nidx ) const {
   625     return _indices[nidx];
   626   }
   627   uint operator[] (uint nidx) const { return lookup(nidx); }
   629   void map( uint from_idx, uint to_idx ) {
   630     assert( from_idx < _cnt, "oob" );
   631     _indices[from_idx] = to_idx;
   632   }
   633   void extend( uint from_idx, uint to_idx );
   635   uint Size() const { return _cnt; }
   637   uint Find( uint idx ) {
   638     assert( idx < 65536, "Must fit into uint");
   639     uint uf_idx = lookup(idx);
   640     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   641   }
   642   uint Find_compress( uint idx );
   643   uint Find_const( uint idx ) const;
   644   void Union( uint idx1, uint idx2 );
   646 };
   648 //----------------------------BlockProbPair---------------------------
   649 // Ordered pair of Node*.
   650 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   651 protected:
   652   Block* _target;      // block target
   653   float  _prob;        // probability of edge to block
   654 public:
   655   BlockProbPair() : _target(NULL), _prob(0.0) {}
   656   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   658   Block* get_target() const { return _target; }
   659   float get_prob() const { return _prob; }
   660 };
   662 //------------------------------CFGLoop-------------------------------------------
   663 class CFGLoop : public CFGElement {
   664   friend class VMStructs;
   665   int _id;
   666   int _depth;
   667   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   668   CFGLoop *_sibling;     // null terminated list
   669   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   670   GrowableArray<CFGElement*> _members; // list of members of loop
   671   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   672   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   673   void update_succ_freq(Block* b, float freq);
   675  public:
   676   CFGLoop(int id) :
   677     CFGElement(),
   678     _id(id),
   679     _depth(0),
   680     _parent(NULL),
   681     _sibling(NULL),
   682     _child(NULL),
   683     _exit_prob(1.0f) {}
   684   CFGLoop* parent() { return _parent; }
   685   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
   686   void add_member(CFGElement *s) { _members.push(s); }
   687   void add_nested_loop(CFGLoop* cl);
   688   Block* head() {
   689     assert(_members.at(0)->is_block(), "head must be a block");
   690     Block* hd = _members.at(0)->as_Block();
   691     assert(hd->_loop == this, "just checking");
   692     assert(hd->head()->is_Loop(), "must begin with loop head node");
   693     return hd;
   694   }
   695   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   696   void compute_loop_depth(int depth);
   697   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   698   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   699   float outer_loop_freq() const; // frequency of outer loop
   700   bool in_loop_nest(Block* b);
   701   float trip_count() const { return 1.0f / _exit_prob; }
   702   virtual bool is_loop()  { return true; }
   703   int id() { return _id; }
   705 #ifndef PRODUCT
   706   void dump( ) const;
   707   void dump_tree() const;
   708 #endif
   709 };
   712 //----------------------------------CFGEdge------------------------------------
   713 // A edge between two basic blocks that will be embodied by a branch or a
   714 // fall-through.
   715 class CFGEdge : public ResourceObj {
   716   friend class VMStructs;
   717  private:
   718   Block * _from;        // Source basic block
   719   Block * _to;          // Destination basic block
   720   float _freq;          // Execution frequency (estimate)
   721   int   _state;
   722   bool  _infrequent;
   723   int   _from_pct;
   724   int   _to_pct;
   726   // Private accessors
   727   int  from_pct() const { return _from_pct; }
   728   int  to_pct()   const { return _to_pct;   }
   729   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
   730   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
   732  public:
   733   enum {
   734     open,               // initial edge state; unprocessed
   735     connected,          // edge used to connect two traces together
   736     interior            // edge is interior to trace (could be backedge)
   737   };
   739   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
   740     _from(from), _to(to), _freq(freq),
   741     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
   742     _infrequent = from_infrequent() || to_infrequent();
   743   }
   745   float  freq() const { return _freq; }
   746   Block* from() const { return _from; }
   747   Block* to  () const { return _to;   }
   748   int  infrequent() const { return _infrequent; }
   749   int state() const { return _state; }
   751   void set_state(int state) { _state = state; }
   753 #ifndef PRODUCT
   754   void dump( ) const;
   755 #endif
   756 };
   759 //-----------------------------------Trace-------------------------------------
   760 // An ordered list of basic blocks.
   761 class Trace : public ResourceObj {
   762  private:
   763   uint _id;             // Unique Trace id (derived from initial block)
   764   Block ** _next_list;  // Array mapping index to next block
   765   Block ** _prev_list;  // Array mapping index to previous block
   766   Block * _first;       // First block in the trace
   767   Block * _last;        // Last block in the trace
   769   // Return the block that follows "b" in the trace.
   770   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
   771   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
   773   // Return the block that precedes "b" in the trace.
   774   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
   775   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
   777   // We've discovered a loop in this trace. Reset last to be "b", and first as
   778   // the block following "b
   779   void break_loop_after(Block *b) {
   780     _last = b;
   781     _first = next(b);
   782     set_prev(_first, NULL);
   783     set_next(_last, NULL);
   784   }
   786  public:
   788   Trace(Block *b, Block **next_list, Block **prev_list) :
   789     _first(b),
   790     _last(b),
   791     _next_list(next_list),
   792     _prev_list(prev_list),
   793     _id(b->_pre_order) {
   794     set_next(b, NULL);
   795     set_prev(b, NULL);
   796   };
   798   // Return the id number
   799   uint id() const { return _id; }
   800   void set_id(uint id) { _id = id; }
   802   // Return the first block in the trace
   803   Block * first_block() const { return _first; }
   805   // Return the last block in the trace
   806   Block * last_block() const { return _last; }
   808   // Insert a trace in the middle of this one after b
   809   void insert_after(Block *b, Trace *tr) {
   810     set_next(tr->last_block(), next(b));
   811     if (next(b) != NULL) {
   812       set_prev(next(b), tr->last_block());
   813     }
   815     set_next(b, tr->first_block());
   816     set_prev(tr->first_block(), b);
   818     if (b == _last) {
   819       _last = tr->last_block();
   820     }
   821   }
   823   void insert_before(Block *b, Trace *tr) {
   824     Block *p = prev(b);
   825     assert(p != NULL, "use append instead");
   826     insert_after(p, tr);
   827   }
   829   // Append another trace to this one.
   830   void append(Trace *tr) {
   831     insert_after(_last, tr);
   832   }
   834   // Append a block at the end of this trace
   835   void append(Block *b) {
   836     set_next(_last, b);
   837     set_prev(b, _last);
   838     _last = b;
   839   }
   841   // Adjust the the blocks in this trace
   842   void fixup_blocks(PhaseCFG &cfg);
   843   bool backedge(CFGEdge *e);
   845 #ifndef PRODUCT
   846   void dump( ) const;
   847 #endif
   848 };
   850 //------------------------------PhaseBlockLayout-------------------------------
   851 // Rearrange blocks into some canonical order, based on edges and their frequencies
   852 class PhaseBlockLayout : public Phase {
   853   friend class VMStructs;
   854   PhaseCFG &_cfg;               // Control flow graph
   856   GrowableArray<CFGEdge *> *edges;
   857   Trace **traces;
   858   Block **next;
   859   Block **prev;
   860   UnionFind *uf;
   862   // Given a block, find its encompassing Trace
   863   Trace * trace(Block *b) {
   864     return traces[uf->Find_compress(b->_pre_order)];
   865   }
   866  public:
   867   PhaseBlockLayout(PhaseCFG &cfg);
   869   void find_edges();
   870   void grow_traces();
   871   void merge_traces(bool loose_connections);
   872   void reorder_traces(int count);
   873   void union_traces(Trace* from, Trace* to);
   874 };
   876 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial