src/cpu/mips/vm/mips_64.ad

Mon, 13 Mar 2017 21:54:36 +0800

author
fujie
date
Mon, 13 Mar 2017 21:54:36 +0800
changeset 376
030cb2764106
parent 375
fb7da68ac0c3
child 377
ce48f85bff34
permissions
-rw-r--r--

load_klass(AT, receiver) --> load_klass(T9, receiver)

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   cbuf.set_insts_mark();
   574   __ relocate(relocInfo::runtime_call_type);
   576   __ patchable_set48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   577   __ jr(T9);
   578   __ delayed()->nop();
   579   __ align(16);
   580   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   581   __ end_a_stub();
   582   return offset;
   583 }
   585 // Emit deopt handler code.
   586 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   587   // Note that the code buffer's insts_mark is always relative to insts.
   588   // That's why we must use the macroassembler to generate a handler.
   589   MacroAssembler _masm(&cbuf);
   590   address base =
   591   __ start_a_stub(size_deopt_handler());
   593   // FIXME
   594   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   595   int offset = __ offset();
   597   __ block_comment("; emit_deopt_handler");
   599   cbuf.set_insts_mark();
   600   __ relocate(relocInfo::runtime_call_type);
   602   __ patchable_set48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   603   __ jalr(T9);
   604   __ delayed()->nop();
   605   __ align(16);
   606   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   607   __ end_a_stub();
   608   return offset;
   609 }
   612 const bool Matcher::match_rule_supported(int opcode) {
   613   if (!has_match_rule(opcode))
   614     return false;
   616   switch (opcode) {
   617     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   618     case Op_CountLeadingZerosI:
   619     case Op_CountLeadingZerosL:
   620       if (!UseCountLeadingZerosInstruction)
   621         return false;
   622       break;
   623     case Op_CountTrailingZerosI:
   624     case Op_CountTrailingZerosL:
   625       if (!UseCountTrailingZerosInstruction)
   626         return false;
   627       break;
   628   }
   630   return true;  // Per default match rules are supported.
   631 }
   633 //FIXME
   634 // emit call stub, compiled java to interpreter
   635 void emit_java_to_interp(CodeBuffer &cbuf ) {
   636   // Stub is fixed up when the corresponding call is converted from calling
   637   // compiled code to calling interpreted code.
   638   // mov rbx,0
   639   // jmp -1
   641   address mark = cbuf.insts_mark();  // get mark within main instrs section
   643   // Note that the code buffer's insts_mark is always relative to insts.
   644   // That's why we must use the macroassembler to generate a stub.
   645   MacroAssembler _masm(&cbuf);
   647   address base =
   648   __ start_a_stub(Compile::MAX_stubs_size);
   649   if (base == NULL)  return;  // CodeBuffer::expand failed
   650   // static stub relocation stores the instruction address of the call
   652   __ relocate(static_stub_Relocation::spec(mark), 0);
   654   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   655 /*
   656   int oop_index = __ oop_recorder()->allocate_index(NULL);
   657   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   658   __ relocate(rspec);
   659 */
   661   // static stub relocation also tags the methodOop in the code-stream.
   662   __ patchable_set48(S3, (long)0);
   663   // This is recognized as unresolved by relocs/nativeInst/ic code
   665   __ relocate(relocInfo::runtime_call_type);
   667   cbuf.set_insts_mark();
   668   address call_pc = (address)-1;
   669   __ patchable_set48(AT, (long)call_pc);
   670   __ jr(AT);
   671   __ nop();
   672   __ align(16);
   673   __ end_a_stub();
   674   // Update current stubs pointer and restore code_end.
   675 }
   677 // size of call stub, compiled java to interpretor
   678 uint size_java_to_interp() {
   679   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   680   return round_to(size, 16);
   681 }
   683 // relocation entries for call stub, compiled java to interpreter
   684 uint reloc_java_to_interp() {
   685   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   686 }
   688 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   689   if( Assembler::is_simm16(offset) ) return true;
   690   else {
   691      assert(false, "Not implemented yet !" );
   692      Unimplemented();
   693   }
   694 }
   697 // No additional cost for CMOVL.
   698 const int Matcher::long_cmove_cost() { return 0; }
   700 // No CMOVF/CMOVD with SSE2
   701 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   703 // Does the CPU require late expand (see block.cpp for description of late expand)?
   704 const bool Matcher::require_postalloc_expand = false;
   706 // Should the Matcher clone shifts on addressing modes, expecting them
   707 // to be subsumed into complex addressing expressions or compute them
   708 // into registers?  True for Intel but false for most RISCs
   709 const bool Matcher::clone_shift_expressions = false;
   711 // Do we need to mask the count passed to shift instructions or does
   712 // the cpu only look at the lower 5/6 bits anyway?
   713 const bool Matcher::need_masked_shift_count = false;
   715 bool Matcher::narrow_oop_use_complex_address() {
   716   NOT_LP64(ShouldNotCallThis());
   717   assert(UseCompressedOops, "only for compressed oops code");
   718   return false;
   719 }
   721 bool Matcher::narrow_klass_use_complex_address() {
   722   NOT_LP64(ShouldNotCallThis());
   723   assert(UseCompressedClassPointers, "only for compressed klass code");
   724   return false;
   725 }
   727 // This is UltraSparc specific, true just means we have fast l2f conversion
   728 const bool Matcher::convL2FSupported(void) {
   729   return true;
   730 }
   732 // Max vector size in bytes. 0 if not supported.
   733 const int Matcher::vector_width_in_bytes(BasicType bt) {
   734   assert(MaxVectorSize == 8, "");
   735   return 8;
   736 }
   738 // Vector ideal reg
   739 const int Matcher::vector_ideal_reg(int size) {
   740   assert(MaxVectorSize == 8, "");
   741   switch(size) {
   742     case  8: return Op_VecD;
   743   }
   744   ShouldNotReachHere();
   745   return 0;
   746 }
   748 // Only lowest bits of xmm reg are used for vector shift count.
   749 const int Matcher::vector_shift_count_ideal_reg(int size) {
   750   fatal("vector shift is not supported");
   751   return Node::NotAMachineReg;
   752 }
   754 // Limits on vector size (number of elements) loaded into vector.
   755 const int Matcher::max_vector_size(const BasicType bt) {
   756   assert(is_java_primitive(bt), "only primitive type vectors");
   757   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   758 }
   760 const int Matcher::min_vector_size(const BasicType bt) {
   761   return max_vector_size(bt); // Same as max.
   762 }
   764 // MIPS supports misaligned vectors store/load? FIXME
   765 const bool Matcher::misaligned_vectors_ok() {
   766   return false;
   767   //return !AlignVector; // can be changed by flag
   768 }
   770 // Register for DIVI projection of divmodI
   771 RegMask Matcher::divI_proj_mask() {
   772   ShouldNotReachHere();
   773   return RegMask();
   774 }
   776 // Register for MODI projection of divmodI
   777 RegMask Matcher::modI_proj_mask() {
   778   ShouldNotReachHere();
   779   return RegMask();
   780 }
   782 // Register for DIVL projection of divmodL
   783 RegMask Matcher::divL_proj_mask() {
   784   ShouldNotReachHere();
   785   return RegMask();
   786 }
   788 int Matcher::regnum_to_fpu_offset(int regnum) {
   789   return regnum - 32; // The FP registers are in the second chunk
   790 }
   793 const bool Matcher::isSimpleConstant64(jlong value) {
   794   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   795   return true;
   796 }
   799 // Return whether or not this register is ever used as an argument.  This
   800 // function is used on startup to build the trampoline stubs in generateOptoStub.
   801 // Registers not mentioned will be killed by the VM call in the trampoline, and
   802 // arguments in those registers not be available to the callee.
   803 bool Matcher::can_be_java_arg( int reg ) {
   804   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   805   if (    reg == T0_num || reg == T0_H_num
   806 	   || reg == A0_num || reg == A0_H_num 
   807        || reg == A1_num || reg == A1_H_num 
   808        || reg == A2_num || reg == A2_H_num 
   809        || reg == A3_num || reg == A3_H_num 
   810        || reg == A4_num || reg == A4_H_num 
   811        || reg == A5_num || reg == A5_H_num 
   812        || reg == A6_num || reg == A6_H_num 
   813        || reg == A7_num || reg == A7_H_num )
   814     return true;
   816   if (    reg == F12_num || reg == F12_H_num
   817        || reg == F13_num || reg == F13_H_num 
   818        || reg == F14_num || reg == F14_H_num 
   819        || reg == F15_num || reg == F15_H_num 
   820        || reg == F16_num || reg == F16_H_num 
   821        || reg == F17_num || reg == F17_H_num 
   822        || reg == F18_num || reg == F18_H_num 
   823        || reg == F19_num || reg == F19_H_num )
   824     return true;
   826   return false;
   827 }
   829 bool Matcher::is_spillable_arg( int reg ) {
   830   return can_be_java_arg(reg);
   831 }
   833 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   834   return false;
   835 }
   837 // Register for MODL projection of divmodL
   838 RegMask Matcher::modL_proj_mask() {
   839   ShouldNotReachHere();
   840   return RegMask();
   841 }
   843 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   844   return FP_REG_mask();
   845 }
   847 // MIPS doesn't support AES intrinsics
   848 const bool Matcher::pass_original_key_for_aes() {
   849   return false;
   850 }
   852 // The address of the call instruction needs to be 16-byte aligned to
   853 // ensure that it does not span a cache line so that it can be patched.
   855 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   856   //lui
   857   //ori
   858   //dsll
   859   //ori
   861   //jalr
   862   //nop
   864   return round_to(current_offset, alignment_required()) - current_offset;
   865 }
   867 // The address of the call instruction needs to be 16-byte aligned to
   868 // ensure that it does not span a cache line so that it can be patched.
   869 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   870   //loadIC   <--- skip
   872   //lui
   873   //ori
   874   //nop
   875   //nop
   877   //jalr
   878   //nop
   880   current_offset += 4 * 4;
   881   return round_to(current_offset, alignment_required()) - current_offset;
   882 }
   884 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   885   //lui
   886   //ori
   887   //dsll
   888   //ori
   890   //jalr
   891   //nop
   893   return round_to(current_offset, alignment_required()) - current_offset;
   894 }
   896 int CallLeafDirectNode::compute_padding(int current_offset) const {
   897   //lui
   898   //ori
   899   //dsll
   900   //ori
   902   //jalr
   903   //nop
   905   return round_to(current_offset, alignment_required()) - current_offset;
   906 }
   908 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   909   //lui
   910   //ori
   911   //dsll
   912   //ori
   914   //jalr
   915   //nop
   917   return round_to(current_offset, alignment_required()) - current_offset;
   918 }
   920 // If CPU can load and store mis-aligned doubles directly then no fixup is
   921 // needed.  Else we split the double into 2 integer pieces and move it
   922 // piece-by-piece.  Only happens when passing doubles into C code as the
   923 // Java calling convention forces doubles to be aligned.
   924 const bool Matcher::misaligned_doubles_ok = false;
   925 // Do floats take an entire double register or just half?
   926 //const bool Matcher::float_in_double = true;
   927 bool Matcher::float_in_double() { return false; }
   928 // Threshold size for cleararray.
   929 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   930 // Do ints take an entire long register or just half?
   931 const bool Matcher::int_in_long = true;
   932 // Is it better to copy float constants, or load them directly from memory?
   933 // Intel can load a float constant from a direct address, requiring no
   934 // extra registers.  Most RISCs will have to materialize an address into a
   935 // register first, so they would do better to copy the constant from stack.
   936 const bool Matcher::rematerialize_float_constants = false;
   937 // Advertise here if the CPU requires explicit rounding operations
   938 // to implement the UseStrictFP mode.
   939 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   940 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   941 const bool Matcher::init_array_count_is_in_bytes = false;
   944 // Indicate if the safepoint node needs the polling page as an input.
   945 // Since MIPS doesn't have absolute addressing, it needs.
   946 bool SafePointNode::needs_polling_address_input() {
   947   return false;
   948 }
   950 // !!!!! Special hack to get all type of calls to specify the byte offset
   951 //       from the start of the call to the point where the return address
   952 //       will point.
   953 int MachCallStaticJavaNode::ret_addr_offset() {
   954   //lui
   955   //ori
   956   //nop
   957   //nop
   958   //jalr
   959   //nop
   960   return 24; 
   961 }
   963 int MachCallDynamicJavaNode::ret_addr_offset() {
   964   //lui IC_Klass,
   965   //ori IC_Klass,
   966   //dsll IC_Klass
   967   //ori IC_Klass
   969   //lui T9
   970   //ori T9
   971   //nop
   972   //nop
   973   //jalr T9
   974   //nop
   975   return 4 * 4 + 4 * 6; 
   976 }
   978 //=============================================================================
   980 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
   981 enum RC { rc_bad, rc_int, rc_float, rc_stack };
   982 static enum RC rc_class( OptoReg::Name reg ) {
   983   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   984   if (OptoReg::is_stack(reg)) return rc_stack;
   985   VMReg r = OptoReg::as_VMReg(reg);
   986   if (r->is_Register()) return rc_int;
   987   assert(r->is_FloatRegister(), "must be");
   988   return rc_float;
   989 }
   991 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   992   // Get registers to move
   993   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   994   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   995   OptoReg::Name dst_second = ra_->get_reg_second(this );
   996   OptoReg::Name dst_first = ra_->get_reg_first(this );
   998   enum RC src_second_rc = rc_class(src_second);
   999   enum RC src_first_rc = rc_class(src_first);
  1000   enum RC dst_second_rc = rc_class(dst_second);
  1001   enum RC dst_first_rc = rc_class(dst_first);
  1003   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1005   // Generate spill code!
  1006   int size = 0;
  1008   if( src_first == dst_first && src_second == dst_second )
  1009     return 0;            // Self copy, no move
  1011   if (src_first_rc == rc_stack) {
  1012     // mem ->
  1013     if (dst_first_rc == rc_stack) {
  1014       // mem -> mem
  1015       assert(src_second != dst_first, "overlap");
  1016       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1017           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1018         // 64-bit
  1019         int src_offset = ra_->reg2offset(src_first);
  1020         int dst_offset = ra_->reg2offset(dst_first);
  1021         if (cbuf) {
  1022           MacroAssembler _masm(cbuf);
  1023           __ ld(AT, Address(SP, src_offset));
  1024           __ sd(AT, Address(SP, dst_offset));
  1025 #ifndef PRODUCT
  1026         } else {
  1027 			if(!do_size){
  1028 				if (size != 0) st->print("\n\t");
  1029 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
  1030 						  "sd    AT, [SP + #%d]",
  1031 						  src_offset, dst_offset);
  1033 #endif
  1035 		size += 8;
  1036       } else {
  1037         // 32-bit
  1038         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1039         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1040         // No pushl/popl, so:
  1041         int src_offset = ra_->reg2offset(src_first);
  1042         int dst_offset = ra_->reg2offset(dst_first);
  1043         if (cbuf) {
  1044           MacroAssembler _masm(cbuf);
  1045           __ lw(AT, Address(SP, src_offset));
  1046           __ sw(AT, Address(SP, dst_offset));
  1047 #ifndef PRODUCT
  1048         } else {
  1049 			if(!do_size){
  1050 				if (size != 0) st->print("\n\t");
  1051 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1052 						  "sw    AT, [SP + #%d]\n\t",
  1053 						  src_offset, dst_offset);
  1055 #endif
  1057 		size += 8;
  1059       return size;
  1060     } else if (dst_first_rc == rc_int) {
  1061       // mem -> gpr
  1062       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1063           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1064         // 64-bit
  1065         int offset = ra_->reg2offset(src_first);
  1066         if (cbuf) {
  1067           MacroAssembler _masm(cbuf);
  1068           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1069 #ifndef PRODUCT
  1070         } else {
  1071 			if(!do_size){
  1072 				if (size != 0) st->print("\n\t");
  1073 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1074 						  Matcher::regName[dst_first],
  1075 						  offset);
  1077 #endif
  1079 		size += 4;
  1080       } else {
  1081         // 32-bit
  1082         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1083         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1084         int offset = ra_->reg2offset(src_first);
  1085         if (cbuf) {
  1086           MacroAssembler _masm(cbuf);
  1087           if (this->ideal_reg() == Op_RegI)
  1088             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1089           else
  1090             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1091 #ifndef PRODUCT
  1092         } else {
  1093 			if(!do_size){
  1094 				if (size != 0) st->print("\n\t");
  1095           if (this->ideal_reg() == Op_RegI)
  1096 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1097 						   Matcher::regName[dst_first],
  1098 						   offset);
  1099 		  else
  1100 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1101 						   Matcher::regName[dst_first],
  1102 						   offset);
  1104 #endif
  1106 		size += 4;
  1108       return size;
  1109     } else if (dst_first_rc == rc_float) {
  1110       // mem-> xmm
  1111       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1112           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1113         // 64-bit
  1114         int offset = ra_->reg2offset(src_first);
  1115         if (cbuf) {
  1116           MacroAssembler _masm(cbuf);
  1117           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1118 #ifndef PRODUCT
  1119         } else {
  1120 			if(!do_size){
  1121 				if (size != 0) st->print("\n\t");
  1122 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1123 						  Matcher::regName[dst_first],
  1124 						  offset);
  1126 #endif
  1128 		size += 4;
  1129       } else {
  1130         // 32-bit
  1131         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1132         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1133         int offset = ra_->reg2offset(src_first);
  1134         if (cbuf) {
  1135           MacroAssembler _masm(cbuf);
  1136           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1137 #ifndef PRODUCT
  1138         } else {
  1139 			if(!do_size){
  1140 				if (size != 0) st->print("\n\t");
  1141 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1142 						  Matcher::regName[dst_first],
  1143 						  offset);
  1145 #endif
  1147 		size += 4;
  1149       return size;
  1151   } else if (src_first_rc == rc_int) {
  1152     // gpr ->
  1153     if (dst_first_rc == rc_stack) {
  1154       // gpr -> mem
  1155       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1156           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1157         // 64-bit
  1158         int offset = ra_->reg2offset(dst_first);
  1159         if (cbuf) {
  1160           MacroAssembler _masm(cbuf);
  1161           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1162 #ifndef PRODUCT
  1163         } else {
  1164 			if(!do_size){
  1165 				if (size != 0) st->print("\n\t");
  1166 				st->print("sd    %s, [SP + #%d] # spill 8",
  1167 						  Matcher::regName[src_first],
  1168 						  offset);
  1170 #endif
  1172 		size += 4;
  1173       } else {
  1174         // 32-bit
  1175         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1176         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1177         int offset = ra_->reg2offset(dst_first);
  1178         if (cbuf) {
  1179           MacroAssembler _masm(cbuf);
  1180           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1181 #ifndef PRODUCT
  1182         } else {
  1183 			if(!do_size){
  1184 				if (size != 0) st->print("\n\t");
  1185 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1186 						Matcher::regName[src_first], offset);
  1188 #endif
  1190 		size += 4;
  1192       return size;
  1193     } else if (dst_first_rc == rc_int) {
  1194       // gpr -> gpr
  1195       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1196           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1197         // 64-bit
  1198         if (cbuf) {
  1199           MacroAssembler _masm(cbuf);
  1200           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1201                   as_Register(Matcher::_regEncode[src_first]));
  1202 #ifndef PRODUCT
  1203         } else {
  1204 			if(!do_size){
  1205 				if (size != 0) st->print("\n\t");
  1206 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1207 						  Matcher::regName[dst_first],
  1208 						  Matcher::regName[src_first]);
  1210 #endif
  1212 		size += 4;
  1213         return size;
  1214       } else {
  1215         // 32-bit
  1216         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1217         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1218         if (cbuf) {
  1219           MacroAssembler _masm(cbuf);
  1220           if (this->ideal_reg() == Op_RegI)
  1221               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1222           else
  1223               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1225 #ifndef PRODUCT
  1226         } else {
  1227 			if(!do_size){
  1228 				if (size != 0) st->print("\n\t");
  1229 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1230 						  Matcher::regName[dst_first],
  1231 						  Matcher::regName[src_first]);
  1233 #endif
  1235 		size += 4;	
  1236         return size;
  1238     } else if (dst_first_rc == rc_float) {
  1239       // gpr -> xmm
  1240       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1241           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1242         // 64-bit
  1243         if (cbuf) {
  1244           MacroAssembler _masm(cbuf);
  1245           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1246 #ifndef PRODUCT
  1247         } else {
  1248 			if(!do_size){
  1249 				if (size != 0) st->print("\n\t");
  1250 				st->print("dmtc1   %s, %s\t# spill 12",
  1251 						  Matcher::regName[dst_first],
  1252 						  Matcher::regName[src_first]);
  1254 #endif
  1256 		size += 4;
  1257       } else {
  1258         // 32-bit
  1259         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1260         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1261         if (cbuf) {
  1262           MacroAssembler _masm(cbuf);
  1263           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1264 #ifndef PRODUCT
  1265         } else {
  1266 			if(!do_size){
  1267 				if (size != 0) st->print("\n\t");
  1268 				st->print("mtc1   %s, %s\t# spill 13",
  1269 						  Matcher::regName[dst_first],
  1270 						  Matcher::regName[src_first]);
  1272 #endif
  1274 		size += 4;
  1276       return size;
  1278   } else if (src_first_rc == rc_float) {
  1279     // xmm ->
  1280     if (dst_first_rc == rc_stack) {
  1281       // xmm -> mem
  1282       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1283           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1284         // 64-bit
  1285         int offset = ra_->reg2offset(dst_first);
  1286         if (cbuf) {
  1287           MacroAssembler _masm(cbuf);
  1288           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1289 #ifndef PRODUCT
  1290         } else {
  1291 			if(!do_size){
  1292 				if (size != 0) st->print("\n\t");
  1293 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1294 						  Matcher::regName[src_first],
  1295 						  offset);
  1297 #endif
  1299 		size += 4;
  1300       } else {
  1301         // 32-bit
  1302         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1303         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1304         int offset = ra_->reg2offset(dst_first);
  1305         if (cbuf) {
  1306           MacroAssembler _masm(cbuf);
  1307           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1308 #ifndef PRODUCT
  1309         } else {
  1310 			if(!do_size){
  1311 				if (size != 0) st->print("\n\t");
  1312 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1313 						Matcher::regName[src_first],
  1314 						offset);
  1316 #endif
  1318 		size += 4;
  1320       return size;
  1321     } else if (dst_first_rc == rc_int) {
  1322       // xmm -> gpr
  1323       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1324           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1325         // 64-bit
  1326         if (cbuf) {
  1327           MacroAssembler _masm(cbuf);
  1328           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1329 #ifndef PRODUCT
  1330         } else {
  1331 			if(!do_size){
  1332 				if (size != 0) st->print("\n\t");
  1333 				st->print("dmfc1   %s, %s\t# spill 16",
  1334 						  Matcher::regName[dst_first],
  1335 						  Matcher::regName[src_first]);
  1337 #endif
  1339 		size += 4;
  1340       } else {
  1341         // 32-bit
  1342         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1343         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1344         if (cbuf) {
  1345           MacroAssembler _masm(cbuf);
  1346           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1347 #ifndef PRODUCT
  1348         } else {
  1349 			if(!do_size){
  1350 				if (size != 0) st->print("\n\t");
  1351 				st->print("mfc1   %s, %s\t# spill 17",
  1352 						  Matcher::regName[dst_first],
  1353 						  Matcher::regName[src_first]);
  1355 #endif
  1357 		size += 4;
  1359       return size;
  1360     } else if (dst_first_rc == rc_float) {
  1361       // xmm -> xmm
  1362       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1363           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1364         // 64-bit
  1365         if (cbuf) {
  1366           MacroAssembler _masm(cbuf);
  1367           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1368 #ifndef PRODUCT
  1369         } else {
  1370 			if(!do_size){
  1371 				if (size != 0) st->print("\n\t");
  1372 				st->print("mov_d  %s <-- %s\t# spill 18",
  1373 						  Matcher::regName[dst_first],
  1374 						  Matcher::regName[src_first]);
  1376 #endif
  1378 		size += 4;
  1379       } else {
  1380         // 32-bit
  1381         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1382         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1383         if (cbuf) {
  1384           MacroAssembler _masm(cbuf);
  1385           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1386 #ifndef PRODUCT
  1387         } else {
  1388 			if(!do_size){
  1389 				if (size != 0) st->print("\n\t");
  1390 				st->print("mov_s  %s <-- %s\t# spill 19",
  1391 						  Matcher::regName[dst_first],
  1392 						  Matcher::regName[src_first]);
  1394 #endif
  1396 		size += 4;
  1398       return size;
  1402   assert(0," foo ");
  1403   Unimplemented();
  1404   return size;
  1408 #ifndef PRODUCT
  1409 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1410   implementation( NULL, ra_, false, st );
  1412 #endif
  1414 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1415   implementation( &cbuf, ra_, false, NULL );
  1418 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1419   return implementation( NULL, ra_, true, NULL );
  1422 //=============================================================================
  1425 #ifndef PRODUCT
  1426 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1427   st->print("INT3");
  1429 #endif
  1431 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1432   MacroAssembler _masm(&cbuf);
  1433   __ int3();
  1436 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1437   return MachNode::size(ra_);
  1441 //=============================================================================
  1442 #ifndef PRODUCT
  1443 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1444   Compile *C = ra_->C;
  1445   int framesize = C->frame_size_in_bytes();
  1447   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1449   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1450   st->cr(); st->print("\t");
  1451   if (UseLoongsonISA) {
  1452      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1453   } else {
  1454      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1455      st->cr(); st->print("\t");
  1456      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1459   if( do_polling() && C->is_method_compilation() ) {
  1460     st->print("Poll Safepoint # MachEpilogNode");
  1463 #endif
  1465 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1466   Compile *C = ra_->C;
  1467   MacroAssembler _masm(&cbuf);
  1468   int framesize = C->frame_size_in_bytes();
  1470   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1472   __ daddiu(SP, SP, framesize);
  1474   if (UseLoongsonISA) {
  1475     __ gslq(RA, FP, SP, -wordSize*2);
  1476   } else {
  1477     __ ld(RA, SP, -wordSize );
  1478     __ ld(FP, SP, -wordSize*2 );
  1481   if( do_polling() && C->is_method_compilation() ) {
  1482     __ set64(AT, (long)os::get_polling_page());
  1483     __ relocate(relocInfo::poll_return_type);
  1484     __ lw(AT, AT, 0);
  1488 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1489   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1492 int MachEpilogNode::reloc() const {
  1493   return 0; // a large enough number
  1496 const Pipeline * MachEpilogNode::pipeline() const {
  1497   return MachNode::pipeline_class();
  1500 int MachEpilogNode::safepoint_offset() const { return 0; }
  1502 //=============================================================================
  1504 #ifndef PRODUCT
  1505 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1506   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1507   int reg = ra_->get_reg_first(this);
  1508   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1510 #endif
  1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1514   return 4;
  1517 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1518   MacroAssembler _masm(&cbuf);
  1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1520   int reg = ra_->get_encode(this);
  1522   __ addi(as_Register(reg), SP, offset);
  1523 /*
  1524   if( offset >= 128 ) {
  1525     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1526     emit_rm(cbuf, 0x2, reg, 0x04);
  1527     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1528     emit_d32(cbuf, offset);
  1530   else {
  1531     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1532     emit_rm(cbuf, 0x1, reg, 0x04);
  1533     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1534     emit_d8(cbuf, offset);
  1536 */
  1540 //static int sizeof_FFree_Float_Stack_All = -1;
  1542 int MachCallRuntimeNode::ret_addr_offset() {
  1543   //lui
  1544   //ori
  1545   //dsll
  1546   //ori
  1547   //jalr
  1548   //nop
  1549   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1550   return NativeCall::instruction_size;
  1551 //  return 16;
  1558 //=============================================================================
  1559 #ifndef PRODUCT
  1560 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1561   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1563 #endif
  1565 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1566   MacroAssembler _masm(&cbuf);
  1567   int i = 0;
  1568   for(i = 0; i < _count; i++)
  1569      __ nop();
  1572 uint MachNopNode::size(PhaseRegAlloc *) const {
  1573   return 4 * _count; 
  1575 const Pipeline* MachNopNode::pipeline() const {
  1576   return MachNode::pipeline_class();
  1579 //=============================================================================
  1581 //=============================================================================
  1582 #ifndef PRODUCT
  1583 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1584   st->print_cr("load_klass(AT, T0)");
  1585   st->print_cr("\tbeq(AT, iCache, L)");
  1586   st->print_cr("\tnop");
  1587   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1588   st->print_cr("\tnop");
  1589   st->print_cr("\tnop");
  1590   st->print_cr("    L:");
  1592 #endif
  1595 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1596   MacroAssembler _masm(&cbuf);
  1597 #ifdef ASSERT
  1598   //uint code_size = cbuf.code_size();
  1599 #endif
  1600   int  ic_reg = Matcher::inline_cache_reg_encode();
  1601   Label L;
  1602   Register receiver = T0;
  1603   Register   iCache = as_Register(ic_reg);
  1604   __ load_klass(T9, receiver);
  1605   __ beq(T9, iCache, L);
  1606   __ nop();
  1608   __ relocate(relocInfo::runtime_call_type);
  1609   __ patchable_set48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1610   __ jr(T9);
  1611   __ nop();
  1613   /* WARNING these NOPs are critical so that verified entry point is properly
  1614    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1615   __ align(CodeEntryAlignment);
  1616   __ bind(L);
  1619 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1620   return MachNode::size(ra_); 
  1625 //=============================================================================
  1627 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1629 int Compile::ConstantTable::calculate_table_base_offset() const {
  1630   return 0;  // absolute addressing, no offset
  1633 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1634 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1635   ShouldNotReachHere();
  1638 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1639   Compile* C = ra_->C;
  1640   Compile::ConstantTable& constant_table = C->constant_table();
  1641   MacroAssembler _masm(&cbuf);
  1643   Register Rtoc = as_Register(ra_->get_encode(this));
  1644   CodeSection* consts_section = __ code()->consts();
  1645   int consts_size = consts_section->align_at_start(consts_section->size());
  1646   assert(constant_table.size() == consts_size, "must be equal");
  1648   if (consts_section->size()) {
  1649     // Materialize the constant table base.
  1650     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1651     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1652     __ relocate(relocInfo::internal_pc_type);
  1653     __ patchable_set48(Rtoc, (long)baseaddr);
  1657 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1658   // patchable_set48 (4 insts)
  1659   return 4 * 4;
  1662 #ifndef PRODUCT
  1663 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1664   Register r = as_Register(ra_->get_encode(this));
  1665   st->print("patchable_set48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1667 #endif
  1670 //=============================================================================
  1671 #ifndef PRODUCT
  1672 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1673   Compile* C = ra_->C;
  1675   int framesize = C->frame_size_in_bytes();
  1676   int bangsize = C->bang_size_in_bytes();
  1677   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1679   // Calls to C2R adapters often do not accept exceptional returns.
  1680   // We require that their callers must bang for them.  But be careful, because
  1681   // some VM calls (such as call site linkage) can use several kilobytes of
  1682   // stack.  But the stack safety zone should account for that.
  1683   // See bugs 4446381, 4468289, 4497237.
  1684   if (C->need_stack_bang(bangsize)) {
  1685     st->print_cr("# stack bang"); st->print("\t");
  1687     if (UseLoongsonISA) {
  1688        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1689     } else {
  1690        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1691        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1693     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1694     st->print("daddiu   SP, SP, -%d \t",framesize);
  1696 #endif
  1699 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1700   Compile* C = ra_->C;
  1701   MacroAssembler _masm(&cbuf);
  1703   int framesize = C->frame_size_in_bytes();
  1704   int bangsize = C->bang_size_in_bytes();
  1706 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1708   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1710   if (C->need_stack_bang(framesize)) {
  1711     __ generate_stack_overflow_check(framesize);
  1714   if (UseLoongsonISA) {
  1715      __ gssq(RA, FP, SP, -wordSize*2); 
  1716   } else {
  1717      __ sd(RA, SP, -wordSize);
  1718      __ sd(FP, SP, -wordSize*2);
  1720   __ daddiu(FP, SP, -wordSize*2);
  1721   __ daddiu(SP, SP, -framesize);
  1722   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1723   __ nop();
  1725   C->set_frame_complete(cbuf.insts_size());
  1726   if (C->has_mach_constant_base_node()) {
  1727 	  // NOTE: We set the table base offset here because users might be
  1728 	  // emitted before MachConstantBaseNode.
  1729 	  Compile::ConstantTable& constant_table = C->constant_table();
  1730 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1736 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1737 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1738   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1741 int MachPrologNode::reloc() const {
  1742   return 0; // a large enough number
  1745 %}
  1747 //----------ENCODING BLOCK-----------------------------------------------------
  1748 // This block specifies the encoding classes used by the compiler to output
  1749 // byte streams.  Encoding classes generate functions which are called by
  1750 // Machine Instruction Nodes in order to generate the bit encoding of the
  1751 // instruction.  Operands specify their base encoding interface with the
  1752 // interface keyword.  There are currently supported four interfaces,
  1753 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1754 // operand to generate a function which returns its register number when
  1755 // queried.   CONST_INTER causes an operand to generate a function which
  1756 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1757 // operand to generate four functions which return the Base Register, the
  1758 // Index Register, the Scale Value, and the Offset Value of the operand when
  1759 // queried.  COND_INTER causes an operand to generate six functions which
  1760 // return the encoding code (ie - encoding bits for the instruction)
  1761 // associated with each basic boolean condition for a conditional instruction.
  1762 // Instructions specify two basic values for encoding.  They use the
  1763 // ins_encode keyword to specify their encoding class (which must be one of
  1764 // the class names specified in the encoding block), and they use the
  1765 // opcode keyword to specify, in order, their primary, secondary, and
  1766 // tertiary opcode.  Only the opcode sections which a particular instruction
  1767 // needs for encoding need to be specified.
  1768 encode %{
  1769 /*
  1770 Alias:
  1771 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1772     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1773     118     add    S1, S2, V0 #@addP_reg_reg
  1774     11c     lb   S0, [S1 + #-8257524] #@loadB
  1775     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1776 */
  1777   //Load byte signed
  1778   enc_class load_B_enc (mRegI dst, memory mem) %{
  1779      MacroAssembler _masm(&cbuf);
  1780      int  dst = $dst$$reg;
  1781      int  base = $mem$$base;
  1782      int  index = $mem$$index;
  1783      int  scale = $mem$$scale;
  1784      int  disp = $mem$$disp;
  1786      if( index != 0 ) {
  1787         if( Assembler::is_simm16(disp) ) { 
  1788            if( UseLoongsonISA ) {
  1789               if (scale == 0) {
  1790                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1791               } else {
  1792                  __ dsll(AT, as_Register(index), scale);
  1793                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1795            } else {
  1796               if (scale == 0) {
  1797                  __ addu(AT, as_Register(base), as_Register(index));
  1798               } else {
  1799                  __ dsll(AT, as_Register(index), scale);
  1800                  __ addu(AT, as_Register(base), AT);
  1802               __ lb(as_Register(dst), AT, disp);
  1804         } else {
  1805            if (scale == 0) {
  1806               __ addu(AT, as_Register(base), as_Register(index));
  1807            } else {
  1808               __ dsll(AT, as_Register(index), scale);
  1809               __ addu(AT, as_Register(base), AT);
  1811            __ move(T9, disp);
  1812            if( UseLoongsonISA ) {
  1813               __ gslbx(as_Register(dst), AT, T9, 0);
  1814            } else {
  1815               __ addu(AT, AT, T9); 
  1816               __ lb(as_Register(dst), AT, 0);
  1819      } else {
  1820         if( Assembler::is_simm16(disp) ) { 
  1821            __ lb(as_Register(dst), as_Register(base), disp);
  1822         } else {
  1823            __ move(T9, disp);   
  1824            if( UseLoongsonISA ) {
  1825               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1826            } else {
  1827               __ addu(AT, as_Register(base), T9); 
  1828               __ lb(as_Register(dst), AT, 0);
  1832   %}
  1834   //Load byte unsigned
  1835   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1836      MacroAssembler _masm(&cbuf);
  1837      int  dst = $dst$$reg;
  1838      int  base = $mem$$base;
  1839      int  index = $mem$$index;
  1840      int  scale = $mem$$scale;
  1841      int  disp = $mem$$disp;
  1843      if( index != 0 ) {
  1844         if (scale == 0) {
  1845            __ daddu(AT, as_Register(base), as_Register(index));
  1846         } else {
  1847            __ dsll(AT, as_Register(index), scale);
  1848            __ daddu(AT, as_Register(base), AT);
  1850         if( Assembler::is_simm16(disp) ) { 
  1851            __ lbu(as_Register(dst), AT, disp);
  1852         } else {
  1853            __ move(T9, disp);
  1854            __ daddu(AT, AT, T9); 
  1855            __ lbu(as_Register(dst), AT, 0);
  1857      } else {
  1858         if( Assembler::is_simm16(disp) ) { 
  1859            __ lbu(as_Register(dst), as_Register(base), disp);
  1860         } else {
  1861            __ move(T9, disp);   
  1862            __ daddu(AT, as_Register(base), T9); 
  1863            __ lbu(as_Register(dst), AT, 0);
  1866   %}
  1868   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1869      MacroAssembler _masm(&cbuf);
  1870      int  src = $src$$reg;
  1871      int  base = $mem$$base;
  1872      int  index = $mem$$index;
  1873      int  scale = $mem$$scale;
  1874      int  disp = $mem$$disp;
  1876      if( index != 0 ) {
  1877         if (scale == 0) {
  1878            if( Assembler::is_simm(disp, 8) ) { 
  1879               if (UseLoongsonISA) {
  1880                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1881               } else {
  1882                  __ addu(AT, as_Register(base), as_Register(index));
  1883                  __ sb(as_Register(src), AT, disp);
  1885            } else if( Assembler::is_simm16(disp) ) { 
  1886               __ addu(AT, as_Register(base), as_Register(index));
  1887               __ sb(as_Register(src), AT, disp);
  1888            } else {
  1889               __ addu(AT, as_Register(base), as_Register(index));
  1890               __ move(T9, disp);
  1891               if (UseLoongsonISA) {
  1892                  __ gssbx(as_Register(src), AT, T9, 0);
  1893               } else {
  1894                  __ addu(AT, AT, T9); 
  1895                  __ sb(as_Register(src), AT, 0);
  1898         } else {
  1899            __ dsll(AT, as_Register(index), scale);
  1900            if( Assembler::is_simm(disp, 8) ) { 
  1901               if (UseLoongsonISA) {
  1902                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1903               } else {
  1904                  __ addu(AT, as_Register(base), AT);
  1905                  __ sb(as_Register(src), AT, disp);
  1907            } else if( Assembler::is_simm16(disp) ) { 
  1908               __ addu(AT, as_Register(base), AT);
  1909               __ sb(as_Register(src), AT, disp);
  1910            } else {
  1911               __ addu(AT, as_Register(base), AT);
  1912               __ move(T9, disp);
  1913               if (UseLoongsonISA) {
  1914                  __ gssbx(as_Register(src), AT, T9, 0);
  1915               } else {
  1916                  __ addu(AT, AT, T9); 
  1917                  __ sb(as_Register(src), AT, 0);
  1921      } else {
  1922         if( Assembler::is_simm16(disp) ) { 
  1923            __ sb(as_Register(src), as_Register(base), disp);
  1924         } else {
  1925            __ move(T9, disp);   
  1926            if (UseLoongsonISA) {
  1927               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1928            } else {
  1929               __ addu(AT, as_Register(base), T9); 
  1930               __ sb(as_Register(src), AT, 0);
  1934   %}
  1936   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1937      MacroAssembler _masm(&cbuf);
  1938      int  base = $mem$$base;
  1939      int  index = $mem$$index;
  1940      int  scale = $mem$$scale;
  1941      int  disp = $mem$$disp;
  1942      int value = $src$$constant;
  1944      if( index != 0 ) {
  1945         if (!UseLoongsonISA) {
  1946            if (scale == 0) {
  1947               __ daddu(AT, as_Register(base), as_Register(index));
  1948            } else {
  1949               __ dsll(AT, as_Register(index), scale);
  1950               __ daddu(AT, as_Register(base), AT);
  1952            if( Assembler::is_simm16(disp) ) { 
  1953               if (value == 0) {
  1954                  __ sb(R0, AT, disp);
  1955               } else {
  1956                  __ move(T9, value);
  1957                  __ sb(T9, AT, disp);
  1959            } else {
  1960               if (value == 0) {
  1961                  __ move(T9, disp);
  1962                  __ daddu(AT, AT, T9); 
  1963                  __ sb(R0, AT, 0);
  1964               } else {
  1965                  __ move(T9, disp);
  1966                  __ daddu(AT, AT, T9); 
  1967                  __ move(T9, value);
  1968                  __ sb(T9, AT, 0);
  1971         } else {
  1973            if (scale == 0) {
  1974               if( Assembler::is_simm(disp, 8) ) { 
  1975                  if (value == 0) {
  1976                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  1977                  } else {
  1978                     __ move(T9, value);
  1979                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  1981               } else if( Assembler::is_simm16(disp) ) { 
  1982                  __ daddu(AT, as_Register(base), as_Register(index));
  1983                  if (value == 0) {
  1984                     __ sb(R0, AT, disp);
  1985                  } else {
  1986                     __ move(T9, value);
  1987                     __ sb(T9, AT, disp);
  1989               } else {
  1990                  if (value == 0) {
  1991                     __ daddu(AT, as_Register(base), as_Register(index));
  1992                     __ move(T9, disp);
  1993                     __ gssbx(R0, AT, T9, 0);
  1994                  } else {
  1995                     __ move(AT, disp);
  1996                     __ move(T9, value);
  1997                     __ daddu(AT, as_Register(base), AT);
  1998                     __ gssbx(T9, AT, as_Register(index), 0);
  2002            } else {
  2004               if( Assembler::is_simm(disp, 8) ) { 
  2005                  __ dsll(AT, as_Register(index), scale);
  2006                  if (value == 0) {
  2007                     __ gssbx(R0, as_Register(base), AT, disp);
  2008                  } else {
  2009                     __ move(T9, value);
  2010                     __ gssbx(T9, as_Register(base), AT, disp);
  2012               } else if( Assembler::is_simm16(disp) ) { 
  2013                  __ dsll(AT, as_Register(index), scale);
  2014                  __ daddu(AT, as_Register(base), AT);
  2015                  if (value == 0) {
  2016                     __ sb(R0, AT, disp);
  2017                  } else {
  2018                     __ move(T9, value);
  2019                     __ sb(T9, AT, disp);
  2021               } else {
  2022                  __ dsll(AT, as_Register(index), scale);
  2023                  if (value == 0) {
  2024                     __ daddu(AT, as_Register(base), AT);
  2025                     __ move(T9, disp);
  2026                     __ gssbx(R0, AT, T9, 0);
  2027                  } else {
  2028                     __ move(T9, disp);
  2029                     __ daddu(AT, AT, T9); 
  2030                     __ move(T9, value);
  2031                     __ gssbx(T9, as_Register(base), AT, 0);
  2036      } else {
  2037         if( Assembler::is_simm16(disp) ) { 
  2038            if (value == 0) {
  2039               __ sb(R0, as_Register(base), disp);
  2040            } else {
  2041               __ move(AT, value);
  2042               __ sb(AT, as_Register(base), disp);
  2044         } else {
  2045            if (value == 0) {
  2046               __ move(T9, disp);   
  2047               if (UseLoongsonISA) {
  2048                 __ gssbx(R0, as_Register(base), T9, 0);
  2049               } else {
  2050                 __ daddu(AT, as_Register(base), T9); 
  2051                 __ sb(R0, AT, 0);
  2053            } else {
  2054               __ move(T9, disp);   
  2055               if (UseLoongsonISA) {
  2056                 __ move(AT, value);
  2057                 __ gssbx(AT, as_Register(base), T9, 0);
  2058               } else {
  2059                 __ daddu(AT, as_Register(base), T9); 
  2060                 __ move(T9, value);
  2061                 __ sb(T9, AT, 0);
  2066   %}
  2069   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2070      MacroAssembler _masm(&cbuf);
  2071      int  base = $mem$$base;
  2072      int  index = $mem$$index;
  2073      int  scale = $mem$$scale;
  2074      int  disp = $mem$$disp;
  2075      int value = $src$$constant;
  2077      if( index != 0 ) {
  2078 		 if ( UseLoongsonISA ) {
  2079 			if ( Assembler::is_simm(disp,8) ) {
  2080 				if ( scale == 0 ) {
  2081 					if ( value == 0 ) {
  2082 						__ gssbx(R0, as_Register(base), as_Register(index), disp);
  2083 					} else {
  2084 						__ move(AT, value);
  2085 						__ gssbx(AT, as_Register(base), as_Register(index), disp);
  2087 				} else {
  2088 					__ dsll(AT, as_Register(index), scale);
  2089 					if ( value == 0 ) {
  2090 						__ gssbx(R0, as_Register(base), AT, disp);
  2091 					} else {
  2092 						__ move(T9, value);
  2093 						__ gssbx(T9, as_Register(base), AT, disp);
  2096 			} else if ( Assembler::is_simm16(disp) ) {
  2097 				if ( scale == 0 ) {
  2098 					__ daddu(AT, as_Register(base), as_Register(index));
  2099 					if ( value == 0 ){
  2100 						__ sb(R0, AT, disp);
  2101 					} else {
  2102 						__ move(T9, value);
  2103 						__ sb(T9, AT, disp);
  2105 				} else {
  2106 					__ dsll(AT, as_Register(index), scale);
  2107 					__ daddu(AT, as_Register(base), AT);
  2108 					if ( value == 0 ) {
  2109 						__ sb(R0, AT, disp);
  2110 					} else {
  2111 						__ move(T9, value);
  2112 						__ sb(T9, AT, disp);
  2115 			} else {
  2116 				if ( scale == 0 ) {
  2117 					__ move(AT, disp);
  2118 					__ daddu(AT, as_Register(index), AT);
  2119 					if ( value == 0 ) {
  2120 						__ gssbx(R0, as_Register(base), AT, 0);
  2121 					} else {
  2122 						__ move(T9, value);
  2123 						__ gssbx(T9, as_Register(base), AT, 0);
  2125 				} else {
  2126 					__ dsll(AT, as_Register(index), scale);
  2127 					__ move(T9, disp);
  2128 					__ daddu(AT, AT, T9);
  2129 					if ( value == 0 ) {
  2130 						__ gssbx(R0, as_Register(base), AT, 0);
  2131 					} else {
  2132 						__ move(T9, value);
  2133 						__ gssbx(T9, as_Register(base), AT, 0);
  2137 		 } else { //not use loongson isa
  2138 		    if (scale == 0) {
  2139 			   __ daddu(AT, as_Register(base), as_Register(index));
  2140 		    } else {
  2141 			   __ dsll(AT, as_Register(index), scale);
  2142 			   __ daddu(AT, as_Register(base), AT);
  2144 		    if( Assembler::is_simm16(disp) ) { 
  2145 			   if (value == 0) {
  2146 			      __ sb(R0, AT, disp);
  2147 			   } else {
  2148 		          __ move(T9, value);
  2149 				  __ sb(T9, AT, disp);
  2151 			} else {
  2152 		       if (value == 0) {
  2153 	              __ move(T9, disp);
  2154 				  __ daddu(AT, AT, T9); 
  2155 			      __ sb(R0, AT, 0);
  2156 		       } else {
  2157 	              __ move(T9, disp);
  2158 				  __ daddu(AT, AT, T9); 
  2159 			      __ move(T9, value);
  2160 		          __ sb(T9, AT, 0);
  2164      } else {
  2165 		 if ( UseLoongsonISA ){
  2166 			if ( Assembler::is_simm16(disp) ){
  2167 				if ( value == 0 ) {
  2168 					__ sb(R0, as_Register(base), disp);
  2169 				} else {
  2170 					__ move(AT, value);
  2171 					__ sb(AT, as_Register(base), disp);
  2173 			} else {
  2174 				__ move(AT, disp);
  2175 				if ( value == 0 ) {
  2176 					__ gssbx(R0, as_Register(base), AT, 0);
  2177 				} else {
  2178 					__ move(T9, value);
  2179 					__ gssbx(T9, as_Register(base), AT, 0);
  2182 		 } else {
  2183 		    if( Assembler::is_simm16(disp) ) { 
  2184 	           if (value == 0) {
  2185 			      __ sb(R0, as_Register(base), disp);
  2186 		       } else {
  2187 	              __ move(AT, value);
  2188 				  __ sb(AT, as_Register(base), disp);
  2190 		    } else {
  2191 	           if (value == 0) {
  2192 				  __ move(T9, disp);   
  2193 			      __ daddu(AT, as_Register(base), T9); 
  2194 		          __ sb(R0, AT, 0);
  2195 	           } else {
  2196 				  __ move(T9, disp);   
  2197 			      __ daddu(AT, as_Register(base), T9); 
  2198 		          __ move(T9, value);
  2199 	              __ sb(T9, AT, 0);
  2205      __ sync();
  2206   %}
  2208   // Load Short (16bit signed)
  2209   enc_class load_S_enc (mRegI dst, memory mem) %{
  2210      MacroAssembler _masm(&cbuf);
  2211      int  dst = $dst$$reg;
  2212      int  base = $mem$$base;
  2213      int  index = $mem$$index;
  2214      int  scale = $mem$$scale;
  2215      int  disp = $mem$$disp;
  2217      if( index != 0 ) {
  2218 		 if ( UseLoongsonISA ) {
  2219 			if ( Assembler::is_simm(disp, 8) ) {
  2220 				if (scale == 0) {
  2221 					__ gslhx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2222 				} else {
  2223 					__ dsll(AT, as_Register(index), scale);
  2224 					__ gslhx(as_Register(dst), as_Register(base), AT, disp);
  2226 			} else if ( Assembler::is_simm16(disp) ) {
  2227 				if (scale == 0) {
  2228 					__ daddu(AT, as_Register(base), as_Register(index));
  2229 					__ lh(as_Register(dst), AT, disp);
  2230 				} else {
  2231 					__ dsll(AT, as_Register(index), scale);
  2232 					__ daddu(AT, as_Register(base), AT);
  2233 					__ lh(as_Register(dst), AT, disp);
  2235 			} else {
  2236 				if (scale == 0) {
  2237 					__ move(AT, disp);
  2238 					__ daddu(AT, as_Register(index), AT);
  2239 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2240 				} else {
  2241 					__ dsll(AT, as_Register(index), scale);
  2242 					__ move(T9, disp);
  2243 					__ daddu(AT, AT, T9);
  2244 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2247 		 } else { // not use loongson isa
  2248 		    if (scale == 0) {
  2249 			   __ daddu(AT, as_Register(base), as_Register(index));
  2250 		    } else {
  2251 			   __ dsll(AT, as_Register(index), scale);
  2252 		       __ daddu(AT, as_Register(base), AT);
  2254 		    if( Assembler::is_simm16(disp) ) { 
  2255 		       __ lh(as_Register(dst), AT, disp);
  2256 	        } else {
  2257 	           __ move(T9, disp);
  2258 			   __ daddu(AT, AT, T9); 
  2259 		       __ lh(as_Register(dst), AT, 0);
  2262      } else { // index is 0
  2263 		 if ( UseLoongsonISA ) {
  2264 			if ( Assembler::is_simm16(disp) ) {
  2265 				__ lh(as_Register(dst), as_Register(base), disp);
  2266 			} else {
  2267 				__ move(T9, disp);
  2268 				__ gslhx(as_Register(dst), as_Register(base), T9, 0);
  2270 		 } else { //not use loongson isa
  2271 		    if( Assembler::is_simm16(disp) ) { 
  2272 			   __ lh(as_Register(dst), as_Register(base), disp);
  2273 		    } else {
  2274 	           __ move(T9, disp);   
  2275 			   __ daddu(AT, as_Register(base), T9); 
  2276 		       __ lh(as_Register(dst), AT, 0);
  2280   %}
  2282   // Load Char (16bit unsigned)
  2283   enc_class load_C_enc (mRegI dst, memory mem) %{
  2284      MacroAssembler _masm(&cbuf);
  2285      int  dst = $dst$$reg;
  2286      int  base = $mem$$base;
  2287      int  index = $mem$$index;
  2288      int  scale = $mem$$scale;
  2289      int  disp = $mem$$disp;
  2291      if( index != 0 ) {
  2292         if (scale == 0) {
  2293            __ daddu(AT, as_Register(base), as_Register(index));
  2294         } else {
  2295            __ dsll(AT, as_Register(index), scale);
  2296            __ daddu(AT, as_Register(base), AT);
  2298         if( Assembler::is_simm16(disp) ) { 
  2299            __ lhu(as_Register(dst), AT, disp);
  2300         } else {
  2301            __ move(T9, disp);
  2302            __ addu(AT, AT, T9); 
  2303            __ lhu(as_Register(dst), AT, 0);
  2305      } else {
  2306         if( Assembler::is_simm16(disp) ) { 
  2307            __ lhu(as_Register(dst), as_Register(base), disp);
  2308         } else {
  2309            __ move(T9, disp);   
  2310            __ daddu(AT, as_Register(base), T9); 
  2311            __ lhu(as_Register(dst), AT, 0);
  2314   %}
  2316   // Store Char (16bit unsigned)
  2317   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2318      MacroAssembler _masm(&cbuf);
  2319      int  src = $src$$reg;
  2320      int  base = $mem$$base;
  2321      int  index = $mem$$index;
  2322      int  scale = $mem$$scale;
  2323      int  disp = $mem$$disp;
  2325      if( index != 0 ) {
  2326         if( Assembler::is_simm16(disp) ) { 
  2327            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2328               if (scale == 0) {
  2329                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2330               } else {
  2331                  __ dsll(AT, as_Register(index), scale);
  2332                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2334            } else {
  2335               if (scale == 0) {
  2336                  __ addu(AT, as_Register(base), as_Register(index));
  2337               } else {
  2338                  __ dsll(AT, as_Register(index), scale);
  2339                  __ addu(AT, as_Register(base), AT);
  2341               __ sh(as_Register(src), AT, disp);
  2343         } else {
  2344            if (scale == 0) {
  2345               __ addu(AT, as_Register(base), as_Register(index));
  2346            } else {
  2347               __ dsll(AT, as_Register(index), scale);
  2348               __ addu(AT, as_Register(base), AT);
  2350            __ move(T9, disp);
  2351            if( UseLoongsonISA ) {
  2352               __ gsshx(as_Register(src), AT, T9, 0);
  2353            } else {
  2354               __ addu(AT, AT, T9); 
  2355               __ sh(as_Register(src), AT, 0);
  2358      } else {
  2359         if( Assembler::is_simm16(disp) ) { 
  2360            __ sh(as_Register(src), as_Register(base), disp);
  2361         } else {
  2362            __ move(T9, disp);   
  2363            if( UseLoongsonISA ) {
  2364               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2365            } else {
  2366               __ addu(AT, as_Register(base), T9); 
  2367               __ sh(as_Register(src), AT, 0);
  2371   %}
  2373   enc_class store_C0_enc (memory mem) %{
  2374      MacroAssembler _masm(&cbuf);
  2375      int  base = $mem$$base;
  2376      int  index = $mem$$index;
  2377      int  scale = $mem$$scale;
  2378      int  disp = $mem$$disp;
  2380      if( index != 0 ) {
  2381         if( Assembler::is_simm16(disp) ) { 
  2382            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2383               if (scale == 0) {
  2384                  __ gsshx(R0, as_Register(base), as_Register(index), disp);
  2385               } else {
  2386                  __ dsll(AT, as_Register(index), scale);
  2387                  __ gsshx(R0, as_Register(base), AT, disp);
  2389            } else {
  2390               if (scale == 0) {
  2391                  __ addu(AT, as_Register(base), as_Register(index));
  2392               } else {
  2393                  __ dsll(AT, as_Register(index), scale);
  2394                  __ addu(AT, as_Register(base), AT);
  2396               __ sh(R0, AT, disp);
  2398         } else {
  2399            if (scale == 0) {
  2400               __ addu(AT, as_Register(base), as_Register(index));
  2401            } else {
  2402               __ dsll(AT, as_Register(index), scale);
  2403               __ addu(AT, as_Register(base), AT);
  2405            __ move(T9, disp);
  2406            if( UseLoongsonISA ) {
  2407               __ gsshx(R0, AT, T9, 0);
  2408            } else {
  2409               __ addu(AT, AT, T9); 
  2410               __ sh(R0, AT, 0);
  2413      } else {
  2414         if( Assembler::is_simm16(disp) ) { 
  2415            __ sh(R0, as_Register(base), disp);
  2416         } else {
  2417            __ move(T9, disp);   
  2418            if( UseLoongsonISA ) {
  2419               __ gsshx(R0, as_Register(base), T9, 0);
  2420            } else {
  2421               __ addu(AT, as_Register(base), T9); 
  2422               __ sh(R0, AT, 0);
  2426   %}
  2428   enc_class load_I_enc (mRegI dst, memory mem) %{
  2429      MacroAssembler _masm(&cbuf);
  2430      int  dst = $dst$$reg;
  2431      int  base = $mem$$base;
  2432      int  index = $mem$$index;
  2433      int  scale = $mem$$scale;
  2434      int  disp = $mem$$disp;
  2436      if( index != 0 ) {
  2437         if( Assembler::is_simm16(disp) ) { 
  2438            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2439               if (scale == 0) {
  2440                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2441               } else {
  2442                  __ dsll(AT, as_Register(index), scale);
  2443                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2445            } else {
  2446               if (scale == 0) {
  2447                  __ addu(AT, as_Register(base), as_Register(index));
  2448               } else {
  2449                  __ dsll(AT, as_Register(index), scale);
  2450                  __ addu(AT, as_Register(base), AT);
  2452               __ lw(as_Register(dst), AT, disp);
  2454         } else {
  2455            if (scale == 0) {
  2456               __ addu(AT, as_Register(base), as_Register(index));
  2457            } else {
  2458               __ dsll(AT, as_Register(index), scale);
  2459               __ addu(AT, as_Register(base), AT);
  2461            __ move(T9, disp);
  2462            if( UseLoongsonISA ) {
  2463               __ gslwx(as_Register(dst), AT, T9, 0);
  2464            } else {
  2465               __ addu(AT, AT, T9); 
  2466               __ lw(as_Register(dst), AT, 0);
  2469      } else {
  2470         if( Assembler::is_simm16(disp) ) { 
  2471            __ lw(as_Register(dst), as_Register(base), disp);
  2472         } else {
  2473            __ move(T9, disp);   
  2474            if( UseLoongsonISA ) {
  2475               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2476            } else {
  2477               __ addu(AT, as_Register(base), T9); 
  2478               __ lw(as_Register(dst), AT, 0);
  2482   %}
  2484   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2485      MacroAssembler _masm(&cbuf);
  2486      int  src = $src$$reg;
  2487      int  base = $mem$$base;
  2488      int  index = $mem$$index;
  2489      int  scale = $mem$$scale;
  2490      int  disp = $mem$$disp;
  2492      if( index != 0 ) {
  2493         if( Assembler::is_simm16(disp) ) { 
  2494            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2495               if (scale == 0) {
  2496                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2497               } else {
  2498                  __ dsll(AT, as_Register(index), scale);
  2499                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2501            } else {
  2502               if (scale == 0) {
  2503                  __ addu(AT, as_Register(base), as_Register(index));
  2504               } else {
  2505                  __ dsll(AT, as_Register(index), scale);
  2506                  __ addu(AT, as_Register(base), AT);
  2508               __ sw(as_Register(src), AT, disp);
  2510         } else {
  2511            if (scale == 0) {
  2512               __ addu(AT, as_Register(base), as_Register(index));
  2513            } else {
  2514               __ dsll(AT, as_Register(index), scale);
  2515               __ addu(AT, as_Register(base), AT);
  2517            __ move(T9, disp);
  2518            if( UseLoongsonISA ) {
  2519               __ gsswx(as_Register(src), AT, T9, 0);
  2520            } else {
  2521               __ addu(AT, AT, T9); 
  2522               __ sw(as_Register(src), AT, 0);
  2525      } else {
  2526         if( Assembler::is_simm16(disp) ) { 
  2527            __ sw(as_Register(src), as_Register(base), disp);
  2528         } else {
  2529            __ move(T9, disp);   
  2530            if( UseLoongsonISA ) {
  2531               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2532            } else {
  2533               __ addu(AT, as_Register(base), T9); 
  2534               __ sw(as_Register(src), AT, 0);
  2538   %}
  2540   enc_class store_I_immI_enc (memory mem, immI src) %{
  2541      MacroAssembler _masm(&cbuf);
  2542      int  base = $mem$$base;
  2543      int  index = $mem$$index;
  2544      int  scale = $mem$$scale;
  2545      int  disp = $mem$$disp;
  2546      int value = $src$$constant;
  2548      if( index != 0 ) {
  2549         if ( UseLoongsonISA ) {
  2550            if ( Assembler::is_simm(disp, 8) ) {
  2551               if ( scale == 0 ) {
  2552                  if ( value == 0 ) {
  2553                     __ gsswx(R0, as_Register(base), as_Register(index), disp);
  2554                  } else {
  2555                     __ move(T9, value);
  2556                     __ gsswx(T9, as_Register(base), as_Register(index), disp);
  2558               } else {
  2559                  __ dsll(AT, as_Register(index), scale);
  2560                  if ( value == 0 ) {
  2561                     __ gsswx(R0, as_Register(base), AT, disp);
  2562                  } else {
  2563                     __ move(T9, value);
  2564                     __ gsswx(T9, as_Register(base), AT, disp);
  2567            } else if ( Assembler::is_simm16(disp) ) {
  2568                 if ( scale == 0 ) {
  2569                    __ daddu(AT, as_Register(base), as_Register(index));
  2570                    if ( value == 0 ) {
  2571                       __ sw(R0, AT, disp);
  2572                    } else {
  2573                       __ move(T9, value);
  2574 					  __ sw(T9, AT, disp);
  2576                 } else {
  2577 				   __ dsll(AT, as_Register(index), scale);
  2578                    __ daddu(AT, as_Register(base), AT);
  2579                    if ( value == 0 ) {
  2580                       __ sw(R0, AT, disp);
  2581                    } else {
  2582                       __ move(T9, value);
  2583                       __ sw(T9, AT, disp);
  2586 			} else {
  2587                  if ( scale == 0 ) {
  2588                     __ move(T9, disp);
  2589                     __ daddu(AT, as_Register(index), T9);
  2590                     if ( value ==0 ) {
  2591                        __ gsswx(R0, as_Register(base), AT, 0);
  2592                     } else {
  2593                        __ move(T9, value);
  2594                        __ gsswx(T9, as_Register(base), AT, 0);
  2596                  } else {
  2597                       __ dsll(AT, as_Register(index), scale);
  2598 					  __ move(T9, disp);
  2599 					  __ daddu(AT, AT, T9);
  2600                       if ( value == 0 ) {
  2601                          __ gsswx(R0, as_Register(base), AT, 0);
  2602 					  } else {
  2603 						 __ move(T9, value);
  2604 						 __ gsswx(T9, as_Register(base), AT, 0);
  2608 		} else { //not use loongson isa
  2609              if (scale == 0) {
  2610                 __ daddu(AT, as_Register(base), as_Register(index));
  2611              } else {
  2612                 __ dsll(AT, as_Register(index), scale);
  2613 			    __ daddu(AT, as_Register(base), AT);
  2615 	         if( Assembler::is_simm16(disp) ) { 
  2616                 if (value == 0) {
  2617                    __ sw(R0, AT, disp);
  2618                 } else {
  2619 		           __ move(T9, value);
  2620 			       __ sw(T9, AT, disp);
  2622 		     } else {
  2623                 if (value == 0) {
  2624 				   __ move(T9, disp);
  2625 			       __ daddu(AT, AT, T9); 
  2626 			       __ sw(R0, AT, 0);
  2627 			    } else {
  2628 			       __ move(T9, disp);
  2629 			       __ daddu(AT, AT, T9); 
  2630 			       __ move(T9, value);
  2631 			       __ sw(T9, AT, 0);
  2635      } else {
  2636 		 if ( UseLoongsonISA ) {
  2637 			if ( Assembler::is_simm16(disp) ) {
  2638 				if ( value == 0 ) {
  2639 					__ sw(R0, as_Register(base), disp);
  2640 				} else {
  2641 					__ move(AT, value);
  2642 					__ sw(AT, as_Register(base), disp);
  2644 			} else {
  2645 				__ move(T9, disp);
  2646 				if ( value == 0 ) {
  2647 					__ gsswx(R0, as_Register(base), T9, 0);
  2648 				} else {
  2649 					__ move(AT, value);
  2650 					__ gsswx(AT, as_Register(base), T9, 0);
  2653 		 } else {
  2654 		    if( Assembler::is_simm16(disp) ) { 
  2655 			   if (value == 0) {
  2656 		          __ sw(R0, as_Register(base), disp);
  2657 	           } else {
  2658 	              __ move(AT, value);
  2659 				  __ sw(AT, as_Register(base), disp);
  2661 		    } else {
  2662 	           if (value == 0) {
  2663 	              __ move(T9, disp);   
  2664 				  __ daddu(AT, as_Register(base), T9); 
  2665 			      __ sw(R0, AT, 0);
  2666 		      } else {
  2667 			      __ move(T9, disp);   
  2668 		          __ daddu(AT, as_Register(base), T9); 
  2669 				  __ move(T9, value);
  2670 			      __ sw(T9, AT, 0);
  2675   %}
  2677   enc_class load_N_enc (mRegN dst, memory mem) %{
  2678      MacroAssembler _masm(&cbuf);
  2679      int  dst = $dst$$reg;
  2680      int  base = $mem$$base;
  2681      int  index = $mem$$index;
  2682      int  scale = $mem$$scale;
  2683      int  disp = $mem$$disp;
  2684 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2685 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2687      if( index != 0 ) {
  2688         if (scale == 0) {
  2689            __ daddu(AT, as_Register(base), as_Register(index));
  2690         } else {
  2691            __ dsll(AT, as_Register(index), scale);
  2692            __ daddu(AT, as_Register(base), AT);
  2694         if( Assembler::is_simm16(disp) ) { 
  2695            __ lwu(as_Register(dst), AT, disp);
  2696         } else {
  2697            __ set64(T9, disp);
  2698            __ daddu(AT, AT, T9);
  2699            __ lwu(as_Register(dst), AT, 0);
  2701      } else {
  2702         if( Assembler::is_simm16(disp) ) { 
  2703            __ lwu(as_Register(dst), as_Register(base), disp);
  2704         } else {
  2705            __ set64(T9, disp);   
  2706            __ daddu(AT, as_Register(base), T9);
  2707            __ lwu(as_Register(dst), AT, 0);
  2711   %}
  2714   enc_class load_P_enc (mRegP dst, memory mem) %{
  2715      MacroAssembler _masm(&cbuf);
  2716      int  dst = $dst$$reg;
  2717      int  base = $mem$$base;
  2718      int  index = $mem$$index;
  2719      int  scale = $mem$$scale;
  2720      int  disp = $mem$$disp;
  2721 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2722 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2724      if( index != 0 ) {
  2725         if ( UseLoongsonISA ) {
  2726            if ( Assembler::is_simm(disp, 8) ) {
  2727               if ( scale != 0 ) {
  2728                  __ dsll(AT, as_Register(index), scale);
  2729                  __ gsldx(as_Register(dst), as_Register(base), AT, disp);
  2730               } else {
  2731                  __ gsldx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2733            } else if ( Assembler::is_simm16(disp) ){
  2734               if ( scale != 0 ) {
  2735                  __ dsll(AT, as_Register(index), scale);
  2736                  __ daddu(AT, AT, as_Register(base));
  2737               } else {
  2738                  __ daddu(AT, as_Register(index), as_Register(base));
  2740               __ ld(as_Register(dst), AT, disp);
  2741            } else {
  2742                 if ( scale != 0 ) {
  2743                    __ dsll(AT, as_Register(index), scale);
  2744                    __ move(T9, disp);
  2745                    __ daddu(AT, AT, T9);
  2746                 } else {
  2747                    __ move(T9, disp);
  2748                    __ daddu(AT, as_Register(index), T9);
  2750                 __ gsldx(as_Register(dst), as_Register(base), AT, 0);
  2752 	    } else { //not use loongson isa
  2753              if (scale == 0) {
  2754                 __ daddu(AT, as_Register(base), as_Register(index));
  2755              } else {
  2756                 __ dsll(AT, as_Register(index), scale);
  2757                 __ daddu(AT, as_Register(base), AT);
  2759              if( Assembler::is_simm16(disp) ) { 
  2760                 __ ld(as_Register(dst), AT, disp);
  2761              } else {
  2762                 __ set64(T9, disp);
  2763                 __ daddu(AT, AT, T9);
  2764                 __ ld(as_Register(dst), AT, 0);
  2767      } else {
  2768 	      if ( UseLoongsonISA ) {
  2769 	         if ( Assembler::is_simm16(disp) ){
  2770 	            __ ld(as_Register(dst), as_Register(base), disp);
  2771 	         } else {
  2772 	            __ set64(T9, disp);
  2773  	            __ gsldx(as_Register(dst), as_Register(base), T9, 0);
  2775 	      } else { //not use loongson isa
  2776 	         if( Assembler::is_simm16(disp) ) { 
  2777                 __ ld(as_Register(dst), as_Register(base), disp);
  2778              } else {
  2779                 __ set64(T9, disp);   
  2780                 __ daddu(AT, as_Register(base), T9);
  2781                 __ ld(as_Register(dst), AT, 0);
  2785 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2786   %}
  2788   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2789      MacroAssembler _masm(&cbuf);
  2790      int  src = $src$$reg;
  2791      int  base = $mem$$base;
  2792      int  index = $mem$$index;
  2793      int  scale = $mem$$scale;
  2794      int  disp = $mem$$disp;
  2796      if( index != 0 ) {
  2797 	    if ( UseLoongsonISA ){
  2798 	       if ( Assembler::is_simm(disp, 8) ) {
  2799 	          if ( scale == 0 ) {
  2800 		         __ gssdx(as_Register(src), as_Register(base), as_Register(index), disp);
  2801 	          } else {
  2802 		         __ dsll(AT, as_Register(index), scale);
  2803         	     __ gssdx(as_Register(src), as_Register(base), AT, disp);
  2805 	       } else if ( Assembler::is_simm16(disp) ) {
  2806 	          if ( scale == 0 ) {
  2807 		         __ daddu(AT, as_Register(base), as_Register(index));
  2808 	          } else {
  2809                  __ dsll(AT, as_Register(index), scale);
  2810                  __ daddu(AT, as_Register(base), AT);
  2812               __ sd(as_Register(src), AT, disp);
  2813 	       } else {
  2814 	          if ( scale == 0 ) { 
  2815                  __ move(T9, disp);
  2816                  __ daddu(AT, as_Register(index), T9);
  2817               } else {
  2818                  __ dsll(AT, as_Register(index), scale);
  2819                  __ move(T9, disp);
  2820                  __ daddu(AT, AT, T9);
  2822               __ gssdx(as_Register(src), as_Register(base), AT, 0); 
  2824 	    } else { //not use loongson isa
  2825            if (scale == 0) {
  2826               __ daddu(AT, as_Register(base), as_Register(index));
  2827            } else {
  2828               __ dsll(AT, as_Register(index), scale);
  2829               __ daddu(AT, as_Register(base), AT);
  2831            if( Assembler::is_simm16(disp) ) { 
  2832               __ sd(as_Register(src), AT, disp);
  2833            } else {
  2834               __ move(T9, disp);
  2835               __ daddu(AT, AT, T9); 
  2836               __ sd(as_Register(src), AT, 0);
  2839      } else {
  2840           if ( UseLoongsonISA ) {
  2841              if ( Assembler::is_simm16(disp) ) {
  2842 	            __ sd(as_Register(src), as_Register(base), disp);
  2843 	         } else {
  2844 	            __ move(T9, disp);
  2845                 __ gssdx(as_Register(src), as_Register(base), T9, 0);
  2847 	      } else {
  2848              if( Assembler::is_simm16(disp) ) { 
  2849                  __ sd(as_Register(src), as_Register(base), disp);
  2850              } else {
  2851                  __ move(T9, disp);   
  2852                  __ daddu(AT, as_Register(base), T9); 
  2853                  __ sd(as_Register(src), AT, 0);
  2857   %}
  2859   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2860      MacroAssembler _masm(&cbuf);
  2861      int  src = $src$$reg;
  2862      int  base = $mem$$base;
  2863      int  index = $mem$$index;
  2864      int  scale = $mem$$scale;
  2865      int  disp = $mem$$disp;
  2867      if( index != 0 ) {
  2868         if ( UseLoongsonISA ){
  2869 	       if ( Assembler::is_simm(disp, 8) ) {
  2870               if ( scale == 0 ) {
  2871 	             __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2872 	          } else {
  2873                  __ dsll(AT, as_Register(index), scale);
  2874                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2876 	       } else if ( Assembler::is_simm16(disp) ) {
  2877               if ( scale == 0 ) {
  2878                  __ daddu(AT, as_Register(base), as_Register(index));
  2879 	          } else {
  2880 		         __ dsll(AT, as_Register(index), scale);
  2881 		         __ daddu(AT, as_Register(base), AT);
  2883  	          __ sw(as_Register(src), AT, disp);
  2884 	       } else {
  2885 	          if ( scale == 0 ) {
  2886 	             __ move(T9, disp);
  2887                  __ daddu(AT, as_Register(index), T9);
  2888 	          } else {
  2889                  __ dsll(AT, as_Register(index), scale);
  2890 	 	         __ move(T9, disp);
  2891                  __ daddu(AT, AT, T9);
  2893 	          __ gsswx(as_Register(src), as_Register(base), AT, 0);
  2895 	    } else { //not use loongson isa
  2896 	       if (scale == 0) {
  2897               __ daddu(AT, as_Register(base), as_Register(index));
  2898            } else {
  2899               __ dsll(AT, as_Register(index), scale);
  2900               __ daddu(AT, as_Register(base), AT);
  2902            if( Assembler::is_simm16(disp) ) { 
  2903               __ sw(as_Register(src), AT, disp);
  2904            } else {
  2905               __ move(T9, disp);
  2906               __ daddu(AT, AT, T9);
  2907               __ sw(as_Register(src), AT, 0);
  2910      } else {
  2911         if ( UseLoongsonISA ) {
  2912            if ( Assembler::is_simm16(disp) ) {
  2913 	          __ sw(as_Register(src), as_Register(base), disp);
  2914 	       } else {
  2915 	          __ move(T9, disp);
  2916 	          __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2918  	    } else {
  2919            if( Assembler::is_simm16(disp) ) { 
  2920               __ sw(as_Register(src), as_Register(base), disp);
  2921            } else {
  2922               __ move(T9, disp);   
  2923               __ daddu(AT, as_Register(base), T9); 
  2924               __ sw(as_Register(src), AT, 0);
  2928   %}
  2930   enc_class store_P_immP0_enc (memory mem) %{
  2931      MacroAssembler _masm(&cbuf);
  2932      int  base = $mem$$base;
  2933      int  index = $mem$$index;
  2934      int  scale = $mem$$scale;
  2935      int  disp = $mem$$disp;
  2937      if( index != 0 ) {
  2938         if (scale == 0) {
  2939            if( Assembler::is_simm16(disp) ) { 
  2940               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2941                 __ gssdx(R0, as_Register(base), as_Register(index), disp);
  2942               } else {
  2943                 __ daddu(AT, as_Register(base), as_Register(index));
  2944                 __ sd(R0, AT, disp);
  2946            } else {
  2947               __ daddu(AT, as_Register(base), as_Register(index));
  2948               __ move(T9, disp);
  2949               if(UseLoongsonISA) {
  2950                 __ gssdx(R0, AT, T9, 0);
  2951               } else {
  2952                 __ daddu(AT, AT, T9); 
  2953                 __ sd(R0, AT, 0);
  2956         } else {
  2957            __ dsll(AT, as_Register(index), scale);
  2958            if( Assembler::is_simm16(disp) ) { 
  2959               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2960                 __ gssdx(R0, as_Register(base), AT, disp);
  2961               } else {
  2962                 __ daddu(AT, as_Register(base), AT);
  2963                 __ sd(R0, AT, disp);
  2965            } else {
  2966               __ daddu(AT, as_Register(base), AT);
  2967               __ move(T9, disp);
  2968               if (UseLoongsonISA) {
  2969                 __ gssdx(R0, AT, T9, 0);
  2970               } else {
  2971                 __ daddu(AT, AT, T9); 
  2972                 __ sd(R0, AT, 0);
  2976      } else {
  2977         if( Assembler::is_simm16(disp) ) { 
  2978            __ sd(R0, as_Register(base), disp);
  2979         } else {
  2980            __ move(T9, disp);   
  2981            if (UseLoongsonISA) {
  2982              __ gssdx(R0, as_Register(base), T9, 0);
  2983            } else {
  2984              __ daddu(AT, as_Register(base), T9); 
  2985              __ sd(R0, AT, 0);
  2989   %}
  2992   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2993      MacroAssembler _masm(&cbuf);
  2994      int  base = $mem$$base;
  2995      int  index = $mem$$index;
  2996      int  scale = $mem$$scale;
  2997      int  disp = $mem$$disp;
  2999 	 if(index!=0){
  3000                  if (scale == 0) {
  3001                     __ daddu(AT, as_Register(base), as_Register(index));
  3002                  } else {
  3003                     __ dsll(AT, as_Register(index), scale);
  3004                     __ daddu(AT, as_Register(base), AT);
  3007 		 if( Assembler::is_simm16(disp) ) { 
  3008 			 __ sw(R0, AT, disp);
  3009 		 } else {
  3010 			 __ move(T9, disp);
  3011 			 __ daddu(AT, AT, T9); 
  3012 			 __ sw(R0, AT, 0);
  3015      else {
  3016 		 if( Assembler::is_simm16(disp) ) { 
  3017 			 __ sw(R0, as_Register(base), disp);
  3018 		 } else {
  3019 			 __ move(T9, disp);
  3020 			 __ daddu(AT, as_Register(base), T9); 
  3021 			 __ sw(R0, AT, 0);
  3024   %} 
  3026   enc_class load_L_enc (mRegL dst, memory mem) %{
  3027      MacroAssembler _masm(&cbuf);
  3028      int  base = $mem$$base;
  3029      int  index = $mem$$index;
  3030      int  scale = $mem$$scale;
  3031      int  disp = $mem$$disp;
  3032      Register  dst_reg = as_Register($dst$$reg);
  3034      /*********************2013/03/27**************************
  3035       * Jin: $base may contain a null object.
  3036       * Server JIT force the exception_offset to be the pos of 
  3037       * the first instruction.
  3038       * I insert such a 'null_check' at the beginning.
  3039       *******************************************************/
  3041      __ lw(AT, as_Register(base), 0);
  3043      /*********************2012/10/04**************************
  3044       * Error case found in SortTest
  3045       * 337   b   java.util.Arrays::sort1 (401 bytes)
  3046       * B73:
  3047       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  3048       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  3050       * The original instructions generated here are :
  3051       *       __ lw(dst_lo, as_Register(base), disp);
  3052       *       __ lw(dst_hi, as_Register(base), disp + 4);
  3053       *******************************************************/
  3055      if( index != 0 ) {
  3056         if (scale == 0) {
  3057            __ daddu(AT, as_Register(base), as_Register(index));
  3058         } else {
  3059            __ dsll(AT, as_Register(index), scale);
  3060            __ daddu(AT, as_Register(base), AT);
  3062         if( Assembler::is_simm16(disp) ) { 
  3063            __ ld(dst_reg, AT, disp);
  3064         } else {
  3065            __ move(T9, disp);
  3066            __ daddu(AT, AT, T9); 
  3067            __ ld(dst_reg, AT, 0);
  3069      } else {
  3070         if( Assembler::is_simm16(disp) ) { 
  3071            __ move(AT, as_Register(base));
  3072            __ ld(dst_reg, AT, disp);
  3073         } else {
  3074            __ move(T9, disp);   
  3075            __ daddu(AT, as_Register(base), T9); 
  3076            __ ld(dst_reg, AT, 0);
  3079   %}
  3081   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  3082      MacroAssembler _masm(&cbuf);
  3083      int  base = $mem$$base;
  3084      int  index = $mem$$index;
  3085      int  scale = $mem$$scale;
  3086      int  disp = $mem$$disp;
  3087      Register  src_reg = as_Register($src$$reg);
  3089      if( index != 0 ) {
  3090         if (scale == 0) {
  3091            __ daddu(AT, as_Register(base), as_Register(index));
  3092         } else {
  3093            __ dsll(AT, as_Register(index), scale);
  3094            __ daddu(AT, as_Register(base), AT);
  3096         if( Assembler::is_simm16(disp) ) { 
  3097            __ sd(src_reg, AT, disp);
  3098         } else {
  3099            __ move(T9, disp);
  3100            __ daddu(AT, AT, T9); 
  3101            __ sd(src_reg, AT, 0);
  3103      } else {
  3104         if( Assembler::is_simm16(disp) ) { 
  3105            __ move(AT, as_Register(base));
  3106            __ sd(src_reg, AT, disp);
  3107         } else {
  3108            __ move(T9, disp);   
  3109            __ daddu(AT, as_Register(base), T9); 
  3110            __ sd(src_reg, AT, 0);
  3113   %}
  3115   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  3116      MacroAssembler _masm(&cbuf);
  3117      int  base = $mem$$base;
  3118      int  index = $mem$$index;
  3119      int  scale = $mem$$scale;
  3120      int  disp = $mem$$disp;
  3122      if( index != 0 ) {
  3123         if (scale == 0) {
  3124            __ daddu(AT, as_Register(base), as_Register(index));
  3125         } else {
  3126            __ dsll(AT, as_Register(index), scale);
  3127            __ daddu(AT, as_Register(base), AT);
  3129         if( Assembler::is_simm16(disp) ) { 
  3130            __ sd(R0, AT, disp);
  3131         } else {
  3132            __ move(T9, disp);
  3133            __ addu(AT, AT, T9); 
  3134            __ sd(R0, AT, 0);
  3136      } else {
  3137         if( Assembler::is_simm16(disp) ) { 
  3138            __ move(AT, as_Register(base));
  3139            __ sd(R0, AT, disp);
  3140         } else {
  3141            __ move(T9, disp);   
  3142            __ addu(AT, as_Register(base), T9); 
  3143            __ sd(R0, AT, 0);
  3146   %}
  3148   enc_class load_F_enc (regF dst, memory mem) %{
  3149      MacroAssembler _masm(&cbuf);
  3150      int  base = $mem$$base;
  3151      int  index = $mem$$index;
  3152      int  scale = $mem$$scale;
  3153      int  disp = $mem$$disp;
  3154      FloatRegister dst = $dst$$FloatRegister;
  3156      if( index != 0 ) {
  3157         if( Assembler::is_simm16(disp) ) { 
  3158            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3159               if (scale == 0) {
  3160                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3161               } else {
  3162                  __ dsll(AT, as_Register(index), scale);
  3163                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3165            } else {
  3166               if (scale == 0) {
  3167                  __ daddu(AT, as_Register(base), as_Register(index));
  3168               } else {
  3169                  __ dsll(AT, as_Register(index), scale);
  3170                  __ daddu(AT, as_Register(base), AT);
  3172               __ lwc1(dst, AT, disp);
  3174         } else {
  3175            if (scale == 0) {
  3176               __ daddu(AT, as_Register(base), as_Register(index));
  3177            } else {
  3178               __ dsll(AT, as_Register(index), scale);
  3179               __ daddu(AT, as_Register(base), AT);
  3181            __ move(T9, disp);
  3182            if( UseLoongsonISA ) {
  3183               __ gslwxc1(dst, AT, T9, 0);
  3184            } else {
  3185               __ daddu(AT, AT, T9); 
  3186               __ lwc1(dst, AT, 0);
  3189      } else {
  3190         if( Assembler::is_simm16(disp) ) { 
  3191            __ lwc1(dst, as_Register(base), disp);
  3192         } else {
  3193            __ move(T9, disp);   
  3194            if( UseLoongsonISA ) {
  3195               __ gslwxc1(dst, as_Register(base), T9, 0);
  3196            } else {
  3197               __ daddu(AT, as_Register(base), T9); 
  3198               __ lwc1(dst, AT, 0);
  3202   %}
  3204   enc_class store_F_reg_enc (memory mem, regF src) %{
  3205      MacroAssembler _masm(&cbuf);
  3206      int  base = $mem$$base;
  3207      int  index = $mem$$index;
  3208      int  scale = $mem$$scale;
  3209      int  disp = $mem$$disp;
  3210      FloatRegister src = $src$$FloatRegister;
  3212      if( index != 0 ) {
  3213         if( Assembler::is_simm16(disp) ) { 
  3214            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3215               if (scale == 0) {
  3216                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3217               } else {
  3218                  __ dsll(AT, as_Register(index), scale);
  3219                  __ gsswxc1(src, as_Register(base), AT, disp);
  3221            } else {
  3222               if (scale == 0) {
  3223                  __ daddu(AT, as_Register(base), as_Register(index));
  3224               } else {
  3225                  __ dsll(AT, as_Register(index), scale);
  3226                  __ daddu(AT, as_Register(base), AT);
  3228               __ swc1(src, AT, disp);
  3230         } else {
  3231            if (scale == 0) {
  3232               __ daddu(AT, as_Register(base), as_Register(index));
  3233            } else {
  3234               __ dsll(AT, as_Register(index), scale);
  3235               __ daddu(AT, as_Register(base), AT);
  3237            __ move(T9, disp);
  3238            if( UseLoongsonISA ) {
  3239               __ gsswxc1(src, AT, T9, 0);
  3240            } else {
  3241               __ daddu(AT, AT, T9); 
  3242               __ swc1(src, AT, 0);
  3245      } else {
  3246         if( Assembler::is_simm16(disp) ) { 
  3247            __ swc1(src, as_Register(base), disp);
  3248         } else {
  3249            __ move(T9, disp);   
  3250            if( UseLoongsonISA ) {
  3251               __ gslwxc1(src, as_Register(base), T9, 0);
  3252            } else {
  3253               __ daddu(AT, as_Register(base), T9); 
  3254               __ swc1(src, AT, 0);
  3258   %}
  3260   enc_class load_D_enc (regD dst, memory mem) %{
  3261      MacroAssembler _masm(&cbuf);
  3262      int  base = $mem$$base;
  3263      int  index = $mem$$index;
  3264      int  scale = $mem$$scale;
  3265      int  disp = $mem$$disp;
  3266      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3268      if( index != 0 ) {
  3269         if( Assembler::is_simm16(disp) ) { 
  3270            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3271               if (scale == 0) {
  3272                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3273               } else {
  3274                  __ dsll(AT, as_Register(index), scale);
  3275                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3277            } else {
  3278               if (scale == 0) {
  3279                  __ daddu(AT, as_Register(base), as_Register(index));
  3280               } else {
  3281                  __ dsll(AT, as_Register(index), scale);
  3282                  __ daddu(AT, as_Register(base), AT);
  3284               __ ldc1(dst_reg, AT, disp);
  3286         } else {
  3287            if (scale == 0) {
  3288               __ daddu(AT, as_Register(base), as_Register(index));
  3289            } else {
  3290               __ dsll(AT, as_Register(index), scale);
  3291               __ daddu(AT, as_Register(base), AT);
  3293            __ move(T9, disp);
  3294            if( UseLoongsonISA ) {
  3295               __ gsldxc1(dst_reg, AT, T9, 0);
  3296            } else {
  3297               __ addu(AT, AT, T9); 
  3298               __ ldc1(dst_reg, AT, 0);
  3301      } else {
  3302         if( Assembler::is_simm16(disp) ) { 
  3303            __ ldc1(dst_reg, as_Register(base), disp);
  3304         } else {
  3305            __ move(T9, disp);   
  3306            if( UseLoongsonISA ) {
  3307               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3308            } else {
  3309               __ addu(AT, as_Register(base), T9); 
  3310               __ ldc1(dst_reg, AT, 0);
  3314   %}
  3316   enc_class store_D_reg_enc (memory mem, regD src) %{
  3317      MacroAssembler _masm(&cbuf);
  3318      int  base = $mem$$base;
  3319      int  index = $mem$$index;
  3320      int  scale = $mem$$scale;
  3321      int  disp = $mem$$disp;
  3322      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3324      if( index != 0 ) {
  3325         if( Assembler::is_simm16(disp) ) { 
  3326            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3327               if (scale == 0) {
  3328                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3329               } else {
  3330                  __ dsll(AT, as_Register(index), scale);
  3331                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3333            } else {
  3334               if (scale == 0) {
  3335                  __ daddu(AT, as_Register(base), as_Register(index));
  3336               } else {
  3337                  __ dsll(AT, as_Register(index), scale);
  3338                  __ daddu(AT, as_Register(base), AT);
  3340               __ sdc1(src_reg, AT, disp);
  3342         } else {
  3343            if (scale == 0) {
  3344               __ daddu(AT, as_Register(base), as_Register(index));
  3345            } else {
  3346               __ dsll(AT, as_Register(index), scale);
  3347               __ daddu(AT, as_Register(base), AT);
  3349            __ move(T9, disp);
  3350            if( UseLoongsonISA ) {
  3351               __ gssdxc1(src_reg, AT, T9, 0);
  3352            } else {
  3353               __ addu(AT, AT, T9); 
  3354               __ sdc1(src_reg, AT, 0);
  3357      } else {
  3358         if( Assembler::is_simm16(disp) ) { 
  3359            __ sdc1(src_reg, as_Register(base), disp);
  3360         } else {
  3361            __ move(T9, disp);   
  3362            if( UseLoongsonISA ) {
  3363               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3364            } else {
  3365               __ addu(AT, as_Register(base), T9); 
  3366               __ sdc1(src_reg, AT, 0);
  3370   %}
  3372   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3373       MacroAssembler _masm(&cbuf);
  3374     // This is the instruction starting address for relocation info.
  3375     __ block_comment("Java_To_Runtime");
  3376     cbuf.set_insts_mark();
  3377     __ relocate(relocInfo::runtime_call_type);
  3379     __ patchable_set48(T9, (long)$meth$$method);
  3380     __ jalr(T9);
  3381     __ nop();
  3382     %}
  3384   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3385     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3386     // who we intended to call.
  3387     MacroAssembler _masm(&cbuf);
  3388     cbuf.set_insts_mark();
  3390     if ( !_method ) {
  3391       __ relocate(relocInfo::runtime_call_type);
  3392     } else if(_optimized_virtual) {
  3393       __ relocate(relocInfo::opt_virtual_call_type);
  3394     } else {
  3395       __ relocate(relocInfo::static_call_type);
  3398     __ patchable_set48(T9, $meth$$method);
  3399     __ jalr(T9);
  3400     __ nop();
  3401     if( _method ) {  // Emit stub for static call
  3402       emit_java_to_interp(cbuf);
  3404   %}
  3407 /*
  3408  * [Ref: LIR_Assembler::ic_call() ]
  3409  */
  3410 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3411     MacroAssembler _masm(&cbuf);
  3412 	__ block_comment("Java_Dynamic_Call");
  3413 	__ ic_call((address)$meth$$method);
  3414   %}
  3417   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3418     Register flags = $cr$$Register;
  3419     Label  L;
  3421     MacroAssembler _masm(&cbuf);
  3423     __ addu(flags, R0, R0);    
  3424     __ beq(AT, R0, L);
  3425     __ delayed()->nop();
  3426     __ move(flags, 0xFFFFFFFF);
  3427     __ bind(L);
  3428   %}
  3430   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3431     Register result = $result$$Register;
  3432     Register sub    = $sub$$Register;
  3433     Register super  = $super$$Register;
  3434     Register length = $tmp$$Register;
  3435     Register tmp    = T9;
  3436     Label miss;
  3438     /* 2012/9/28 Jin: result may be the same as sub
  3439      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3440      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3441      *    4bc     mov   S2, NULL #@loadConP
  3442      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3443     */
  3444     MacroAssembler _masm(&cbuf);
  3445     Label done;
  3446     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3447                                      NULL, &miss,
  3448                                      /*set_cond_codes:*/ true);
  3449     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3450     __ move(result, 0);
  3451     __ b(done);
  3452     __ nop();
  3454     __ bind(miss);
  3455     __ move(result, 1);
  3456     __ bind(done);
  3457   %}
  3459 %}
  3462 //---------MIPS FRAME--------------------------------------------------------------
  3463 // Definition of frame structure and management information.
  3464 //
  3465 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3466 //                             |   (to get allocators register number
  3467 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3468 //  r   CALLER     |        |
  3469 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3470 //  w     V        |  pad0  |        numbers; owned by CALLER
  3471 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3472 //  h     ^        |   in   |  5   
  3473 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3474 //  |     |    old |        |  3
  3475 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3476 //  v     |        |  ret   |  3   return address
  3477 //     Owned by    +--------+
  3478 //      Self       |  pad2  |  2   pad to align old SP
  3479 //        |        +--------+  1
  3480 //        |        | locks  |  0
  3481 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3482 //        |        |  pad1  | 11   pad to align new SP
  3483 //        |        +--------+
  3484 //        |        |        | 10
  3485 //        |        | spills |  9   spills
  3486 //        V        |        |  8   (pad0 slot for callee)
  3487 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3488 //        ^        |  out   |  7   
  3489 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3490 //   Owned by  new |				|
  3491 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3492 //           			 |        |
  3493 //
  3494 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3495 //         known from SELF's arguments and the Java calling convention.
  3496 //         Region 6-7 is determined per call site.
  3497 // Note 2: If the calling convention leaves holes in the incoming argument 
  3498 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3499 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3500 //         incoming area, as the Java calling convention is completely under
  3501 //         the control of the AD file.  Doubles can be sorted and packed to
  3502 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3503 //         varargs C calling conventions.
  3504 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3505 //         even aligned with pad0 as needed.
  3506 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3507 //         region 6-11 is even aligned; it may be padded out more so that
  3508 //         the region from SP to FP meets the minimum stack alignment.
  3509 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3510 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3511 //         SP meets the minimum alignment.
  3514 frame %{
  3516   stack_direction(TOWARDS_LOW);
  3518   // These two registers define part of the calling convention 
  3519   // between compiled code and the interpreter.
  3520 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3521 	// for more information. by yjl 3/16/2006
  3523   inline_cache_reg(T1);                // Inline Cache Register
  3524   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3525  /*
  3526   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3527   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3528 */
  3530   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3531   cisc_spilling_operand_name(indOffset32);  
  3533   // Number of stack slots consumed by locking an object
  3534 	// generate Compile::sync_stack_slots
  3535 #ifdef _LP64
  3536   sync_stack_slots(2);
  3537 #else
  3538   sync_stack_slots(1);
  3539 #endif
  3541   frame_pointer(SP);
  3543   // Interpreter stores its frame pointer in a register which is 
  3544   // stored to the stack by I2CAdaptors.
  3545   // I2CAdaptors convert from interpreted java to compiled java.
  3547   interpreter_frame_pointer(FP);
  3549 	// generate Matcher::stack_alignment
  3550   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3552   // Number of stack slots between incoming argument block and the start of 
  3553   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3554   // EPILOG must remove this many slots.  Intel needs one slot for
  3555   // return address.
  3556 	// generate Matcher::in_preserve_stack_slots
  3557   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3558   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3560   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3561   // for calls to C.  Supports the var-args backing area for register parms.
  3562   varargs_C_out_slots_killed(0);
  3564   // The after-PROLOG location of the return address.  Location of
  3565   // return address specifies a type (REG or STACK) and a number
  3566   // representing the register number (i.e. - use a register name) or
  3567   // stack slot.
  3568   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3569   // Otherwise, it is above the locks and verification slot and alignment word
  3570   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3571   return_addr(REG RA);
  3573   // Body of function which returns an integer array locating
  3574   // arguments either in registers or in stack slots.  Passed an array
  3575   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3576   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3577   // arguments for a CALLEE.  Incoming stack arguments are
  3578   // automatically biased by the preserve_stack_slots field above.
  3581 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3582 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3583   calling_convention %{           
  3584     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3585   %}
  3590   // Body of function which returns an integer array locating
  3591   // arguments either in registers or in stack slots.  Passed an array
  3592   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3593   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3594   // arguments for a CALLEE.  Incoming stack arguments are
  3595   // automatically biased by the preserve_stack_slots field above.
  3598 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3599   c_calling_convention %{          
  3600    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3601   %}
  3604   // Location of C & interpreter return values
  3605 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3606 	// SEE Matcher::match. by yjl 3/16/2006
  3607   c_return_value %{
  3608     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3609                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3610     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3611     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3612     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3613   %}
  3615   // Location of return values
  3616 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3617 	// SEE Matcher::match. by yjl 3/16/2006
  3619   return_value %{
  3620     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3621                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3622     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3623     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3624     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3625   %}
  3627 %}
  3629 //----------ATTRIBUTES---------------------------------------------------------
  3630 //----------Operand Attributes-------------------------------------------------
  3631 op_attrib op_cost(0);        // Required cost attribute
  3633 //----------Instruction Attributes---------------------------------------------
  3634 ins_attrib ins_cost(100);       // Required cost attribute
  3635 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3636 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3637 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3638                                 // non-matching short branch variant of some
  3639                                                             // long branch?
  3640 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3641                                 // specifies the alignment that some part of the instruction (not
  3642                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3643                                 // function must be provided for the instruction
  3645 //----------OPERANDS-----------------------------------------------------------
  3646 // Operand definitions must precede instruction definitions for correct parsing
  3647 // in the ADLC because operands constitute user defined types which are used in
  3648 // instruction definitions.
  3650 // Vectors
  3651 operand vecD() %{
  3652   constraint(ALLOC_IN_RC(dbl_reg));
  3653   match(VecD);
  3655   format %{ %}
  3656   interface(REG_INTER);
  3657 %}
  3659 // Flags register, used as output of compare instructions
  3660 operand FlagsReg() %{
  3661   constraint(ALLOC_IN_RC(mips_flags));
  3662   match(RegFlags);
  3664   format %{ "EFLAGS" %}
  3665   interface(REG_INTER);
  3666 %}
  3668 //----------Simple Operands----------------------------------------------------
  3669 //TODO: Should we need to define some more special immediate number ?
  3670 // Immediate Operands
  3671 // Integer Immediate
  3672 operand immI() %{
  3673   match(ConI);
  3674   //TODO: should not match immI8 here LEE
  3675   match(immI8);
  3677   op_cost(20);
  3678   format %{ %}
  3679   interface(CONST_INTER);
  3680 %}
  3682 // Long Immediate 8-bit
  3683 operand immL8()
  3684 %{
  3685   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3686   match(ConL);
  3688   op_cost(5);
  3689   format %{ %}
  3690   interface(CONST_INTER);
  3691 %}
  3693 // Constant for test vs zero
  3694 operand immI0() %{
  3695   predicate(n->get_int() == 0);
  3696   match(ConI);
  3698   op_cost(0);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 // Constant for increment
  3704 operand immI1() %{
  3705   predicate(n->get_int() == 1);
  3706   match(ConI);
  3708   op_cost(0);
  3709   format %{ %}
  3710   interface(CONST_INTER);
  3711 %}
  3713 // Constant for decrement
  3714 operand immI_M1() %{
  3715   predicate(n->get_int() == -1);
  3716   match(ConI);
  3718   op_cost(0);
  3719   format %{ %}
  3720   interface(CONST_INTER);
  3721 %}
  3723 operand immI_MaxI() %{
  3724   predicate(n->get_int() == 2147483647);
  3725   match(ConI);
  3727   op_cost(0);
  3728   format %{ %}
  3729   interface(CONST_INTER);
  3730 %}
  3732 // Valid scale values for addressing modes
  3733 operand immI2() %{
  3734   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3735   match(ConI);
  3737   format %{ %}
  3738   interface(CONST_INTER);
  3739 %}
  3741 operand immI8() %{
  3742   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3743   match(ConI);
  3745   op_cost(5);
  3746   format %{ %}
  3747   interface(CONST_INTER);
  3748 %}
  3750 operand immI16() %{
  3751   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3752   match(ConI);
  3754   op_cost(10);
  3755   format %{ %}
  3756   interface(CONST_INTER);
  3757 %}
  3759 // Constant for long shifts
  3760 operand immI_32() %{
  3761   predicate( n->get_int() == 32 );
  3762   match(ConI);
  3764   op_cost(0);
  3765   format %{ %}
  3766   interface(CONST_INTER);
  3767 %}
  3769 operand immI_63() %{
  3770   predicate( n->get_int() == 63 );
  3771   match(ConI);
  3773   op_cost(0);
  3774   format %{ %}
  3775   interface(CONST_INTER);
  3776 %}
  3778 operand immI_0_31() %{
  3779   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3780   match(ConI);
  3782   op_cost(0);
  3783   format %{ %}
  3784   interface(CONST_INTER);
  3785 %}
  3787 // Operand for non-negtive integer mask
  3788 operand immI_nonneg_mask() %{
  3789   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3790   match(ConI);
  3792   op_cost(0);
  3793   format %{ %}
  3794   interface(CONST_INTER);
  3795 %}
  3797 operand immI_32_63() %{
  3798   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3799   match(ConI);
  3800   op_cost(0);
  3802   format %{ %}
  3803   interface(CONST_INTER);
  3804 %}
  3806 operand immI16_sub() %{
  3807   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3808   match(ConI);
  3810   op_cost(10);
  3811   format %{ %}
  3812   interface(CONST_INTER);
  3813 %}
  3815 operand immI_0_32767() %{
  3816   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3817   match(ConI);
  3818   op_cost(0);
  3820   format %{ %}
  3821   interface(CONST_INTER);
  3822 %}
  3824 operand immI_0_65535() %{
  3825   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3826   match(ConI);
  3827   op_cost(0);
  3829   format %{ %}
  3830   interface(CONST_INTER);
  3831 %}
  3833 operand immI_1() %{
  3834   predicate( n->get_int() == 1 );
  3835   match(ConI);
  3837   op_cost(0);
  3838   format %{ %}
  3839   interface(CONST_INTER);
  3840 %}
  3842 operand immI_2() %{
  3843   predicate( n->get_int() == 2 );
  3844   match(ConI);
  3846   op_cost(0);
  3847   format %{ %}
  3848   interface(CONST_INTER);
  3849 %}
  3851 operand immI_3() %{
  3852   predicate( n->get_int() == 3 );
  3853   match(ConI);
  3855   op_cost(0);
  3856   format %{ %}
  3857   interface(CONST_INTER);
  3858 %}
  3860 operand immI_7() %{
  3861   predicate( n->get_int() == 7 );
  3862   match(ConI);
  3864   format %{ %}
  3865   interface(CONST_INTER);
  3866 %}
  3868 // Immediates for special shifts (sign extend)
  3870 // Constants for increment
  3871 operand immI_16() %{
  3872   predicate( n->get_int() == 16 );
  3873   match(ConI);
  3875   format %{ %}
  3876   interface(CONST_INTER);
  3877 %}
  3879 operand immI_24() %{
  3880   predicate( n->get_int() == 24 );
  3881   match(ConI);
  3883   format %{ %}
  3884   interface(CONST_INTER);
  3885 %}
  3887 // Constant for byte-wide masking
  3888 operand immI_255() %{
  3889   predicate( n->get_int() == 255 );
  3890   match(ConI);
  3892   op_cost(0);
  3893   format %{ %}
  3894   interface(CONST_INTER);
  3895 %}
  3897 operand immI_65535() %{
  3898   predicate( n->get_int() == 65535 );
  3899   match(ConI);
  3901   op_cost(5);
  3902   format %{ %}
  3903   interface(CONST_INTER);
  3904 %}
  3906 operand immI_65536() %{
  3907   predicate( n->get_int() == 65536 );
  3908   match(ConI);
  3910   op_cost(5);
  3911   format %{ %}
  3912   interface(CONST_INTER);
  3913 %}
  3915 operand immI_M65536() %{
  3916   predicate( n->get_int() == -65536 );
  3917   match(ConI);
  3919   op_cost(5);
  3920   format %{ %}
  3921   interface(CONST_INTER);
  3922 %}
  3924 // Pointer Immediate
  3925 operand immP() %{
  3926   match(ConP);
  3928   op_cost(10);
  3929   format %{ %}
  3930   interface(CONST_INTER);
  3931 %}
  3933 // NULL Pointer Immediate
  3934 operand immP0() %{
  3935   predicate( n->get_ptr() == 0 );
  3936   match(ConP);
  3937   op_cost(0);
  3939   format %{ %}
  3940   interface(CONST_INTER);
  3941 %}
  3943 // Pointer Immediate: 64-bit
  3944 operand immP_set() %{
  3945   match(ConP);
  3947   op_cost(5);
  3948   // formats are generated automatically for constants and base registers
  3949   format %{ %}
  3950   interface(CONST_INTER);
  3951 %}
  3953 // Pointer Immediate: 64-bit
  3954 operand immP_load() %{
  3955   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3956   match(ConP);
  3958   op_cost(5);
  3959   // formats are generated automatically for constants and base registers
  3960   format %{ %}
  3961   interface(CONST_INTER);
  3962 %}
  3964 // Pointer Immediate: 64-bit
  3965 operand immP_no_oop_cheap() %{
  3966   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3967   match(ConP);
  3969   op_cost(5);
  3970   // formats are generated automatically for constants and base registers
  3971   format %{ %}
  3972   interface(CONST_INTER);
  3973 %}
  3975 // Pointer for polling page 
  3976 operand immP_poll() %{
  3977   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3978   match(ConP);
  3979   op_cost(5);
  3981   format %{ %}
  3982   interface(CONST_INTER);
  3983 %}
  3985 // Pointer Immediate
  3986 operand immN() %{
  3987   match(ConN);
  3989   op_cost(10);
  3990   format %{ %}
  3991   interface(CONST_INTER);
  3992 %}
  3994 operand immNKlass() %{
  3995   match(ConNKlass);
  3997   op_cost(10);
  3998   format %{ %}
  3999   interface(CONST_INTER);
  4000 %}
  4002 // NULL Pointer Immediate
  4003 operand immN0() %{
  4004   predicate(n->get_narrowcon() == 0);
  4005   match(ConN);
  4007   op_cost(5);
  4008   format %{ %}
  4009   interface(CONST_INTER);
  4010 %}
  4012 // Long Immediate
  4013 operand immL() %{
  4014   match(ConL);
  4016   op_cost(20);
  4017   format %{ %}
  4018   interface(CONST_INTER);
  4019 %}
  4021 // Long Immediate zero
  4022 operand immL0() %{
  4023   predicate( n->get_long() == 0L );
  4024   match(ConL);
  4025   op_cost(0);
  4027   format %{ %}
  4028   interface(CONST_INTER);
  4029 %}
  4031 operand immL7() %{
  4032   predicate( n->get_long() == 7L );
  4033   match(ConL);
  4034   op_cost(0);
  4036   format %{ %}
  4037   interface(CONST_INTER);
  4038 %}
  4040 operand immL_M1() %{
  4041   predicate( n->get_long() == -1L );
  4042   match(ConL);
  4043   op_cost(0);
  4045   format %{ %}
  4046   interface(CONST_INTER);
  4047 %}
  4049 // bit 0..2 zero
  4050 operand immL_M8() %{
  4051   predicate( n->get_long() == -8L );
  4052   match(ConL);
  4053   op_cost(0);
  4055   format %{ %}
  4056   interface(CONST_INTER);
  4057 %}
  4059 // bit 2 zero
  4060 operand immL_M5() %{
  4061   predicate( n->get_long() == -5L );
  4062   match(ConL);
  4063   op_cost(0);
  4065   format %{ %}
  4066   interface(CONST_INTER);
  4067 %}
  4069 // bit 1..2 zero
  4070 operand immL_M7() %{
  4071   predicate( n->get_long() == -7L );
  4072   match(ConL);
  4073   op_cost(0);
  4075   format %{ %}
  4076   interface(CONST_INTER);
  4077 %}
  4079 // bit 0..1 zero
  4080 operand immL_M4() %{
  4081   predicate( n->get_long() == -4L );
  4082   match(ConL);
  4083   op_cost(0);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 // bit 3..6 zero
  4090 operand immL_M121() %{
  4091   predicate( n->get_long() == -121L );
  4092   match(ConL);
  4093   op_cost(0);
  4095   format %{ %}
  4096   interface(CONST_INTER);
  4097 %}
  4099 // Long immediate from 0 to 127.
  4100 // Used for a shorter form of long mul by 10.
  4101 operand immL_127() %{
  4102   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4103   match(ConL);
  4104   op_cost(0);
  4106   format %{ %}
  4107   interface(CONST_INTER);
  4108 %}
  4110 // Operand for non-negtive long mask
  4111 operand immL_nonneg_mask() %{
  4112   predicate( (n->get_long() >= 0) && (Assembler::is_jlong_mask(n->get_long()) != -1) );
  4113   match(ConL);
  4115   op_cost(0);
  4116   format %{ %}
  4117   interface(CONST_INTER);
  4118 %}
  4120 operand immL_0_65535() %{
  4121   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  4122   match(ConL);
  4123   op_cost(0);
  4125   format %{ %}
  4126   interface(CONST_INTER);
  4127 %}
  4129 // Long Immediate: cheap (materialize in <= 3 instructions)
  4130 operand immL_cheap() %{
  4131   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4132   match(ConL);
  4133   op_cost(0);
  4135   format %{ %}
  4136   interface(CONST_INTER);
  4137 %}
  4139 // Long Immediate: expensive (materialize in > 3 instructions)
  4140 operand immL_expensive() %{
  4141   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4142   match(ConL);
  4143   op_cost(0);
  4145   format %{ %}
  4146   interface(CONST_INTER);
  4147 %}
  4149 operand immL16() %{
  4150   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4151   match(ConL);
  4153   op_cost(10);
  4154   format %{ %}
  4155   interface(CONST_INTER);
  4156 %}
  4158 operand immL16_sub() %{
  4159   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4160   match(ConL);
  4162   op_cost(10);
  4163   format %{ %}
  4164   interface(CONST_INTER);
  4165 %}
  4167 // Long Immediate: low 32-bit mask
  4168 operand immL_32bits() %{
  4169   predicate(n->get_long() == 0xFFFFFFFFL);
  4170   match(ConL);
  4171   op_cost(20);
  4173   format %{ %}
  4174   interface(CONST_INTER);
  4175 %}
  4177 // Long Immediate 32-bit signed
  4178 operand immL32()
  4179 %{
  4180   predicate(n->get_long() == (int) (n->get_long()));
  4181   match(ConL);
  4183   op_cost(15);
  4184   format %{ %}
  4185   interface(CONST_INTER);
  4186 %}
  4189 //single-precision floating-point zero
  4190 operand immF0() %{
  4191   predicate(jint_cast(n->getf()) == 0);
  4192   match(ConF);
  4194   op_cost(5);
  4195   format %{ %}
  4196   interface(CONST_INTER);
  4197 %}
  4199 //single-precision floating-point immediate
  4200 operand immF() %{
  4201   match(ConF);
  4203   op_cost(20);
  4204   format %{ %}
  4205   interface(CONST_INTER);
  4206 %}
  4208 //double-precision floating-point zero 
  4209 operand immD0() %{
  4210   predicate(jlong_cast(n->getd()) == 0);
  4211   match(ConD);
  4213   op_cost(5);
  4214   format %{ %}
  4215   interface(CONST_INTER);
  4216 %}
  4218 //double-precision floating-point immediate
  4219 operand immD() %{
  4220   match(ConD);
  4222   op_cost(20);
  4223   format %{ %}
  4224   interface(CONST_INTER);
  4225 %}
  4227 // Register Operands
  4228 // Integer Register
  4229 operand mRegI() %{
  4230   constraint(ALLOC_IN_RC(int_reg));
  4231   match(RegI);
  4233   format %{ %}
  4234   interface(REG_INTER);
  4235 %}
  4237 operand no_Ax_mRegI() %{
  4238   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4239   match(RegI);
  4240   match(mRegI);
  4242   format %{  %}
  4243   interface(REG_INTER);
  4244 %} 
  4246 operand mS0RegI() %{
  4247   constraint(ALLOC_IN_RC(s0_reg));
  4248   match(RegI);
  4249   match(mRegI);
  4251   format %{ "S0" %}
  4252   interface(REG_INTER);
  4253 %}
  4255 operand mS1RegI() %{
  4256   constraint(ALLOC_IN_RC(s1_reg));
  4257   match(RegI);
  4258   match(mRegI);
  4260   format %{ "S1" %}
  4261   interface(REG_INTER);
  4262 %}
  4264 operand mS2RegI() %{
  4265   constraint(ALLOC_IN_RC(s2_reg));
  4266   match(RegI);
  4267   match(mRegI);
  4269   format %{ "S2" %}
  4270   interface(REG_INTER);
  4271 %}
  4273 operand mS3RegI() %{
  4274   constraint(ALLOC_IN_RC(s3_reg));
  4275   match(RegI);
  4276   match(mRegI);
  4278   format %{ "S3" %}
  4279   interface(REG_INTER);
  4280 %}
  4282 operand mS4RegI() %{
  4283   constraint(ALLOC_IN_RC(s4_reg));
  4284   match(RegI);
  4285   match(mRegI);
  4287   format %{ "S4" %}
  4288   interface(REG_INTER);
  4289 %}
  4291 operand mS5RegI() %{
  4292   constraint(ALLOC_IN_RC(s5_reg));
  4293   match(RegI);
  4294   match(mRegI);
  4296   format %{ "S5" %}
  4297   interface(REG_INTER);
  4298 %}
  4300 operand mS6RegI() %{
  4301   constraint(ALLOC_IN_RC(s6_reg));
  4302   match(RegI);
  4303   match(mRegI);
  4305   format %{ "S6" %}
  4306   interface(REG_INTER);
  4307 %}
  4309 operand mS7RegI() %{
  4310   constraint(ALLOC_IN_RC(s7_reg));
  4311   match(RegI);
  4312   match(mRegI);
  4314   format %{ "S7" %}
  4315   interface(REG_INTER);
  4316 %}
  4319 operand mT0RegI() %{
  4320   constraint(ALLOC_IN_RC(t0_reg));
  4321   match(RegI);
  4322   match(mRegI);
  4324   format %{ "T0" %}
  4325   interface(REG_INTER);
  4326 %}
  4328 operand mT1RegI() %{
  4329   constraint(ALLOC_IN_RC(t1_reg));
  4330   match(RegI);
  4331   match(mRegI);
  4333   format %{ "T1" %}
  4334   interface(REG_INTER);
  4335 %}
  4337 operand mT2RegI() %{
  4338   constraint(ALLOC_IN_RC(t2_reg));
  4339   match(RegI);
  4340   match(mRegI);
  4342   format %{ "T2" %}
  4343   interface(REG_INTER);
  4344 %}
  4346 operand mT3RegI() %{
  4347   constraint(ALLOC_IN_RC(t3_reg));
  4348   match(RegI);
  4349   match(mRegI);
  4351   format %{ "T3" %}
  4352   interface(REG_INTER);
  4353 %}
  4355 operand mT8RegI() %{
  4356   constraint(ALLOC_IN_RC(t8_reg));
  4357   match(RegI);
  4358   match(mRegI);
  4360   format %{ "T8" %}
  4361   interface(REG_INTER);
  4362 %}
  4364 operand mT9RegI() %{
  4365   constraint(ALLOC_IN_RC(t9_reg));
  4366   match(RegI);
  4367   match(mRegI);
  4369   format %{ "T9" %}
  4370   interface(REG_INTER);
  4371 %}
  4373 operand mA0RegI() %{
  4374   constraint(ALLOC_IN_RC(a0_reg));
  4375   match(RegI);
  4376   match(mRegI);
  4378   format %{ "A0" %}
  4379   interface(REG_INTER);
  4380 %}
  4382 operand mA1RegI() %{
  4383   constraint(ALLOC_IN_RC(a1_reg));
  4384   match(RegI);
  4385   match(mRegI);
  4387   format %{ "A1" %}
  4388   interface(REG_INTER);
  4389 %}
  4391 operand mA2RegI() %{
  4392   constraint(ALLOC_IN_RC(a2_reg));
  4393   match(RegI);
  4394   match(mRegI);
  4396   format %{ "A2" %}
  4397   interface(REG_INTER);
  4398 %}
  4400 operand mA3RegI() %{
  4401   constraint(ALLOC_IN_RC(a3_reg));
  4402   match(RegI);
  4403   match(mRegI);
  4405   format %{ "A3" %}
  4406   interface(REG_INTER);
  4407 %}
  4409 operand mA4RegI() %{
  4410   constraint(ALLOC_IN_RC(a4_reg));
  4411   match(RegI);
  4412   match(mRegI);
  4414   format %{ "A4" %}
  4415   interface(REG_INTER);
  4416 %}
  4418 operand mA5RegI() %{
  4419   constraint(ALLOC_IN_RC(a5_reg));
  4420   match(RegI);
  4421   match(mRegI);
  4423   format %{ "A5" %}
  4424   interface(REG_INTER);
  4425 %}
  4427 operand mA6RegI() %{
  4428   constraint(ALLOC_IN_RC(a6_reg));
  4429   match(RegI);
  4430   match(mRegI);
  4432   format %{ "A6" %}
  4433   interface(REG_INTER);
  4434 %}
  4436 operand mA7RegI() %{
  4437   constraint(ALLOC_IN_RC(a7_reg));
  4438   match(RegI);
  4439   match(mRegI);
  4441   format %{ "A7" %}
  4442   interface(REG_INTER);
  4443 %}
  4445 operand mV0RegI() %{
  4446   constraint(ALLOC_IN_RC(v0_reg));
  4447   match(RegI);
  4448   match(mRegI);
  4450   format %{ "V0" %}
  4451   interface(REG_INTER);
  4452 %}
  4454 operand mV1RegI() %{
  4455   constraint(ALLOC_IN_RC(v1_reg));
  4456   match(RegI);
  4457   match(mRegI);
  4459   format %{ "V1" %}
  4460   interface(REG_INTER);
  4461 %}
  4463 operand mRegN() %{
  4464   constraint(ALLOC_IN_RC(int_reg));
  4465   match(RegN);
  4467   format %{ %}
  4468   interface(REG_INTER);
  4469 %}
  4471 operand t0_RegN() %{
  4472   constraint(ALLOC_IN_RC(t0_reg));
  4473   match(RegN);
  4474   match(mRegN);
  4476   format %{ %}
  4477   interface(REG_INTER);
  4478 %}
  4480 operand t1_RegN() %{
  4481   constraint(ALLOC_IN_RC(t1_reg));
  4482   match(RegN);
  4483   match(mRegN);
  4485   format %{ %}
  4486   interface(REG_INTER);
  4487 %}
  4489 operand t2_RegN() %{
  4490   constraint(ALLOC_IN_RC(t2_reg));
  4491   match(RegN);
  4492   match(mRegN);
  4494   format %{ %}
  4495   interface(REG_INTER);
  4496 %}
  4498 operand t3_RegN() %{
  4499   constraint(ALLOC_IN_RC(t3_reg));
  4500   match(RegN);
  4501   match(mRegN);
  4503   format %{ %}
  4504   interface(REG_INTER);
  4505 %}
  4507 operand t8_RegN() %{
  4508   constraint(ALLOC_IN_RC(t8_reg));
  4509   match(RegN);
  4510   match(mRegN);
  4512   format %{ %}
  4513   interface(REG_INTER);
  4514 %}
  4516 operand t9_RegN() %{
  4517   constraint(ALLOC_IN_RC(t9_reg));
  4518   match(RegN);
  4519   match(mRegN);
  4521   format %{ %}
  4522   interface(REG_INTER);
  4523 %}
  4525 operand a0_RegN() %{
  4526   constraint(ALLOC_IN_RC(a0_reg));
  4527   match(RegN);
  4528   match(mRegN);
  4530   format %{ %}
  4531   interface(REG_INTER);
  4532 %}
  4534 operand a1_RegN() %{
  4535   constraint(ALLOC_IN_RC(a1_reg));
  4536   match(RegN);
  4537   match(mRegN);
  4539   format %{ %}
  4540   interface(REG_INTER);
  4541 %}
  4543 operand a2_RegN() %{
  4544   constraint(ALLOC_IN_RC(a2_reg));
  4545   match(RegN);
  4546   match(mRegN);
  4548   format %{ %}
  4549   interface(REG_INTER);
  4550 %}
  4552 operand a3_RegN() %{
  4553   constraint(ALLOC_IN_RC(a3_reg));
  4554   match(RegN);
  4555   match(mRegN);
  4557   format %{ %}
  4558   interface(REG_INTER);
  4559 %}
  4561 operand a4_RegN() %{
  4562   constraint(ALLOC_IN_RC(a4_reg));
  4563   match(RegN);
  4564   match(mRegN);
  4566   format %{ %}
  4567   interface(REG_INTER);
  4568 %}
  4570 operand a5_RegN() %{
  4571   constraint(ALLOC_IN_RC(a5_reg));
  4572   match(RegN);
  4573   match(mRegN);
  4575   format %{ %}
  4576   interface(REG_INTER);
  4577 %}
  4579 operand a6_RegN() %{
  4580   constraint(ALLOC_IN_RC(a6_reg));
  4581   match(RegN);
  4582   match(mRegN);
  4584   format %{ %}
  4585   interface(REG_INTER);
  4586 %}
  4588 operand a7_RegN() %{
  4589   constraint(ALLOC_IN_RC(a7_reg));
  4590   match(RegN);
  4591   match(mRegN);
  4593   format %{ %}
  4594   interface(REG_INTER);
  4595 %}
  4597 operand s0_RegN() %{
  4598   constraint(ALLOC_IN_RC(s0_reg));
  4599   match(RegN);
  4600   match(mRegN);
  4602   format %{ %}
  4603   interface(REG_INTER);
  4604 %}
  4606 operand s1_RegN() %{
  4607   constraint(ALLOC_IN_RC(s1_reg));
  4608   match(RegN);
  4609   match(mRegN);
  4611   format %{ %}
  4612   interface(REG_INTER);
  4613 %}
  4615 operand s2_RegN() %{
  4616   constraint(ALLOC_IN_RC(s2_reg));
  4617   match(RegN);
  4618   match(mRegN);
  4620   format %{ %}
  4621   interface(REG_INTER);
  4622 %}
  4624 operand s3_RegN() %{
  4625   constraint(ALLOC_IN_RC(s3_reg));
  4626   match(RegN);
  4627   match(mRegN);
  4629   format %{ %}
  4630   interface(REG_INTER);
  4631 %}
  4633 operand s4_RegN() %{
  4634   constraint(ALLOC_IN_RC(s4_reg));
  4635   match(RegN);
  4636   match(mRegN);
  4638   format %{ %}
  4639   interface(REG_INTER);
  4640 %}
  4642 operand s5_RegN() %{
  4643   constraint(ALLOC_IN_RC(s5_reg));
  4644   match(RegN);
  4645   match(mRegN);
  4647   format %{ %}
  4648   interface(REG_INTER);
  4649 %}
  4651 operand s6_RegN() %{
  4652   constraint(ALLOC_IN_RC(s6_reg));
  4653   match(RegN);
  4654   match(mRegN);
  4656   format %{ %}
  4657   interface(REG_INTER);
  4658 %}
  4660 operand s7_RegN() %{
  4661   constraint(ALLOC_IN_RC(s7_reg));
  4662   match(RegN);
  4663   match(mRegN);
  4665   format %{ %}
  4666   interface(REG_INTER);
  4667 %}
  4669 operand v0_RegN() %{
  4670   constraint(ALLOC_IN_RC(v0_reg));
  4671   match(RegN);
  4672   match(mRegN);
  4674   format %{ %}
  4675   interface(REG_INTER);
  4676 %}
  4678 operand v1_RegN() %{
  4679   constraint(ALLOC_IN_RC(v1_reg));
  4680   match(RegN);
  4681   match(mRegN);
  4683   format %{ %}
  4684   interface(REG_INTER);
  4685 %}
  4687 // Pointer Register
  4688 operand mRegP() %{
  4689   constraint(ALLOC_IN_RC(p_reg));
  4690   match(RegP);
  4692   format %{  %}
  4693   interface(REG_INTER);
  4694 %} 
  4696 operand no_T8_mRegP() %{
  4697   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4698   match(RegP);
  4699   match(mRegP);
  4701   format %{  %}
  4702   interface(REG_INTER);
  4703 %} 
  4705 operand s0_RegP()
  4706 %{
  4707   constraint(ALLOC_IN_RC(s0_long_reg));
  4708   match(RegP);
  4709   match(mRegP);
  4710   match(no_T8_mRegP);
  4712   format %{ %}
  4713   interface(REG_INTER);
  4714 %}
  4716 operand s1_RegP()
  4717 %{
  4718   constraint(ALLOC_IN_RC(s1_long_reg));
  4719   match(RegP);
  4720   match(mRegP);
  4721   match(no_T8_mRegP);
  4723   format %{ %}
  4724   interface(REG_INTER);
  4725 %}
  4727 operand s2_RegP()
  4728 %{
  4729   constraint(ALLOC_IN_RC(s2_long_reg));
  4730   match(RegP);
  4731   match(mRegP);
  4732   match(no_T8_mRegP);
  4734   format %{ %}
  4735   interface(REG_INTER);
  4736 %}
  4738 operand s3_RegP()
  4739 %{
  4740   constraint(ALLOC_IN_RC(s3_long_reg));
  4741   match(RegP);
  4742   match(mRegP);
  4743   match(no_T8_mRegP);
  4745   format %{ %}
  4746   interface(REG_INTER);
  4747 %}
  4749 operand s4_RegP()
  4750 %{
  4751   constraint(ALLOC_IN_RC(s4_long_reg));
  4752   match(RegP);
  4753   match(mRegP);
  4754   match(no_T8_mRegP);
  4756   format %{ %}
  4757   interface(REG_INTER);
  4758 %}
  4760 operand s5_RegP()
  4761 %{
  4762   constraint(ALLOC_IN_RC(s5_long_reg));
  4763   match(RegP);
  4764   match(mRegP);
  4765   match(no_T8_mRegP);
  4767   format %{ %}
  4768   interface(REG_INTER);
  4769 %}
  4771 operand s6_RegP()
  4772 %{
  4773   constraint(ALLOC_IN_RC(s6_long_reg));
  4774   match(RegP);
  4775   match(mRegP);
  4776   match(no_T8_mRegP);
  4778   format %{ %}
  4779   interface(REG_INTER);
  4780 %}
  4782 operand s7_RegP()
  4783 %{
  4784   constraint(ALLOC_IN_RC(s7_long_reg));
  4785   match(RegP);
  4786   match(mRegP);
  4787   match(no_T8_mRegP);
  4789   format %{ %}
  4790   interface(REG_INTER);
  4791 %}
  4793 operand t0_RegP()
  4794 %{
  4795   constraint(ALLOC_IN_RC(t0_long_reg));
  4796   match(RegP);
  4797   match(mRegP);
  4798   match(no_T8_mRegP);
  4800   format %{ %}
  4801   interface(REG_INTER);
  4802 %}
  4804 operand t1_RegP()
  4805 %{
  4806   constraint(ALLOC_IN_RC(t1_long_reg));
  4807   match(RegP);
  4808   match(mRegP);
  4809   match(no_T8_mRegP);
  4811   format %{ %}
  4812   interface(REG_INTER);
  4813 %}
  4815 operand t2_RegP()
  4816 %{
  4817   constraint(ALLOC_IN_RC(t2_long_reg));
  4818   match(RegP);
  4819   match(mRegP);
  4820   match(no_T8_mRegP);
  4822   format %{ %}
  4823   interface(REG_INTER);
  4824 %}
  4826 operand t3_RegP()
  4827 %{
  4828   constraint(ALLOC_IN_RC(t3_long_reg));
  4829   match(RegP);
  4830   match(mRegP);
  4831   match(no_T8_mRegP);
  4833   format %{ %}
  4834   interface(REG_INTER);
  4835 %}
  4837 operand t8_RegP()
  4838 %{
  4839   constraint(ALLOC_IN_RC(t8_long_reg));
  4840   match(RegP);
  4841   match(mRegP);
  4843   format %{ %}
  4844   interface(REG_INTER);
  4845 %}
  4847 operand t9_RegP()
  4848 %{
  4849   constraint(ALLOC_IN_RC(t9_long_reg));
  4850   match(RegP);
  4851   match(mRegP);
  4852   match(no_T8_mRegP);
  4854   format %{ %}
  4855   interface(REG_INTER);
  4856 %}
  4858 operand a0_RegP()
  4859 %{
  4860   constraint(ALLOC_IN_RC(a0_long_reg));
  4861   match(RegP);
  4862   match(mRegP);
  4863   match(no_T8_mRegP);
  4865   format %{ %}
  4866   interface(REG_INTER);
  4867 %}
  4869 operand a1_RegP()
  4870 %{
  4871   constraint(ALLOC_IN_RC(a1_long_reg));
  4872   match(RegP);
  4873   match(mRegP);
  4874   match(no_T8_mRegP);
  4876   format %{ %}
  4877   interface(REG_INTER);
  4878 %}
  4880 operand a2_RegP()
  4881 %{
  4882   constraint(ALLOC_IN_RC(a2_long_reg));
  4883   match(RegP);
  4884   match(mRegP);
  4885   match(no_T8_mRegP);
  4887   format %{ %}
  4888   interface(REG_INTER);
  4889 %}
  4891 operand a3_RegP()
  4892 %{
  4893   constraint(ALLOC_IN_RC(a3_long_reg));
  4894   match(RegP);
  4895   match(mRegP);
  4896   match(no_T8_mRegP);
  4898   format %{ %}
  4899   interface(REG_INTER);
  4900 %}
  4902 operand a4_RegP()
  4903 %{
  4904   constraint(ALLOC_IN_RC(a4_long_reg));
  4905   match(RegP);
  4906   match(mRegP);
  4907   match(no_T8_mRegP);
  4909   format %{ %}
  4910   interface(REG_INTER);
  4911 %}
  4914 operand a5_RegP()
  4915 %{
  4916   constraint(ALLOC_IN_RC(a5_long_reg));
  4917   match(RegP);
  4918   match(mRegP);
  4919   match(no_T8_mRegP);
  4921   format %{ %}
  4922   interface(REG_INTER);
  4923 %}
  4925 operand a6_RegP()
  4926 %{
  4927   constraint(ALLOC_IN_RC(a6_long_reg));
  4928   match(RegP);
  4929   match(mRegP);
  4930   match(no_T8_mRegP);
  4932   format %{ %}
  4933   interface(REG_INTER);
  4934 %}
  4936 operand a7_RegP()
  4937 %{
  4938   constraint(ALLOC_IN_RC(a7_long_reg));
  4939   match(RegP);
  4940   match(mRegP);
  4941   match(no_T8_mRegP);
  4943   format %{ %}
  4944   interface(REG_INTER);
  4945 %}
  4947 operand v0_RegP()
  4948 %{
  4949   constraint(ALLOC_IN_RC(v0_long_reg));
  4950   match(RegP);
  4951   match(mRegP);
  4952   match(no_T8_mRegP);
  4954   format %{ %}
  4955   interface(REG_INTER);
  4956 %}
  4958 operand v1_RegP()
  4959 %{
  4960   constraint(ALLOC_IN_RC(v1_long_reg));
  4961   match(RegP);
  4962   match(mRegP);
  4963   match(no_T8_mRegP);
  4965   format %{ %}
  4966   interface(REG_INTER);
  4967 %}
  4969 /*
  4970 operand mSPRegP(mRegP reg) %{
  4971   constraint(ALLOC_IN_RC(sp_reg));
  4972   match(reg);
  4974   format %{ "SP"  %}
  4975   interface(REG_INTER);
  4976 %}
  4978 operand mFPRegP(mRegP reg) %{
  4979   constraint(ALLOC_IN_RC(fp_reg));
  4980   match(reg);
  4982   format %{ "FP"  %}
  4983   interface(REG_INTER);
  4984 %}
  4985 */
  4987 operand mRegL() %{
  4988   constraint(ALLOC_IN_RC(long_reg));
  4989   match(RegL);
  4991   format %{ %}
  4992   interface(REG_INTER);
  4993 %}
  4995 operand v0RegL() %{
  4996   constraint(ALLOC_IN_RC(v0_long_reg));
  4997   match(RegL);
  4998   match(mRegL);
  5000   format %{ %}
  5001   interface(REG_INTER);
  5002 %}
  5004 operand v1RegL() %{
  5005   constraint(ALLOC_IN_RC(v1_long_reg));
  5006   match(RegL);
  5007   match(mRegL);
  5009   format %{ %}
  5010   interface(REG_INTER);
  5011 %}
  5013 operand a0RegL() %{
  5014   constraint(ALLOC_IN_RC(a0_long_reg));
  5015   match(RegL);
  5016   match(mRegL);
  5018   format %{ "A0" %}
  5019   interface(REG_INTER);
  5020 %}
  5022 operand a1RegL() %{
  5023   constraint(ALLOC_IN_RC(a1_long_reg));
  5024   match(RegL);
  5025   match(mRegL);
  5027   format %{ %}
  5028   interface(REG_INTER);
  5029 %}
  5031 operand a2RegL() %{
  5032   constraint(ALLOC_IN_RC(a2_long_reg));
  5033   match(RegL);
  5034   match(mRegL);
  5036   format %{ %}
  5037   interface(REG_INTER);
  5038 %}
  5040 operand a3RegL() %{
  5041   constraint(ALLOC_IN_RC(a3_long_reg));
  5042   match(RegL);
  5043   match(mRegL);
  5045   format %{ %}
  5046   interface(REG_INTER);
  5047 %}
  5049 operand t0RegL() %{
  5050   constraint(ALLOC_IN_RC(t0_long_reg));
  5051   match(RegL);
  5052   match(mRegL);
  5054   format %{ %}
  5055   interface(REG_INTER);
  5056 %}
  5058 operand t1RegL() %{
  5059   constraint(ALLOC_IN_RC(t1_long_reg));
  5060   match(RegL);
  5061   match(mRegL);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 operand t2RegL() %{
  5068   constraint(ALLOC_IN_RC(t2_long_reg));
  5069   match(RegL);
  5070   match(mRegL);
  5072   format %{ %}
  5073   interface(REG_INTER);
  5074 %}
  5076 operand t3RegL() %{
  5077   constraint(ALLOC_IN_RC(t3_long_reg));
  5078   match(RegL);
  5079   match(mRegL);
  5081   format %{ %}
  5082   interface(REG_INTER);
  5083 %}
  5085 operand t8RegL() %{
  5086   constraint(ALLOC_IN_RC(t8_long_reg));
  5087   match(RegL);
  5088   match(mRegL);
  5090   format %{ %}
  5091   interface(REG_INTER);
  5092 %}
  5094 operand a4RegL() %{
  5095   constraint(ALLOC_IN_RC(a4_long_reg));
  5096   match(RegL);
  5097   match(mRegL);
  5099   format %{ %}
  5100   interface(REG_INTER);
  5101 %}
  5103 operand a5RegL() %{
  5104   constraint(ALLOC_IN_RC(a5_long_reg));
  5105   match(RegL);
  5106   match(mRegL);
  5108   format %{ %}
  5109   interface(REG_INTER);
  5110 %}
  5112 operand a6RegL() %{
  5113   constraint(ALLOC_IN_RC(a6_long_reg));
  5114   match(RegL);
  5115   match(mRegL);
  5117   format %{ %}
  5118   interface(REG_INTER);
  5119 %}
  5121 operand a7RegL() %{
  5122   constraint(ALLOC_IN_RC(a7_long_reg));
  5123   match(RegL);
  5124   match(mRegL);
  5126   format %{ %}
  5127   interface(REG_INTER);
  5128 %}
  5130 operand s0RegL() %{
  5131   constraint(ALLOC_IN_RC(s0_long_reg));
  5132   match(RegL);
  5133   match(mRegL);
  5135   format %{ %}
  5136   interface(REG_INTER);
  5137 %}
  5139 operand s1RegL() %{
  5140   constraint(ALLOC_IN_RC(s1_long_reg));
  5141   match(RegL);
  5142   match(mRegL);
  5144   format %{ %}
  5145   interface(REG_INTER);
  5146 %}
  5148 operand s2RegL() %{
  5149   constraint(ALLOC_IN_RC(s2_long_reg));
  5150   match(RegL);
  5151   match(mRegL);
  5153   format %{ %}
  5154   interface(REG_INTER);
  5155 %}
  5157 operand s3RegL() %{
  5158   constraint(ALLOC_IN_RC(s3_long_reg));
  5159   match(RegL);
  5160   match(mRegL);
  5162   format %{ %}
  5163   interface(REG_INTER);
  5164 %}
  5166 operand s4RegL() %{
  5167   constraint(ALLOC_IN_RC(s4_long_reg));
  5168   match(RegL);
  5169   match(mRegL);
  5171   format %{ %}
  5172   interface(REG_INTER);
  5173 %}
  5175 operand s7RegL() %{
  5176   constraint(ALLOC_IN_RC(s7_long_reg));
  5177   match(RegL);
  5178   match(mRegL);
  5180   format %{ %}
  5181   interface(REG_INTER);
  5182 %}
  5184 // Floating register operands
  5185 operand regF() %{
  5186   constraint(ALLOC_IN_RC(flt_reg));
  5187   match(RegF);
  5189   format %{ %}
  5190   interface(REG_INTER);
  5191 %}
  5193 //Double Precision Floating register operands
  5194 operand regD() %{
  5195   constraint(ALLOC_IN_RC(dbl_reg));
  5196   match(RegD);
  5198   format %{ %}
  5199   interface(REG_INTER);
  5200 %}
  5202 //----------Memory Operands----------------------------------------------------
  5203 // Indirect Memory Operand
  5204 operand indirect(mRegP reg) %{
  5205   constraint(ALLOC_IN_RC(p_reg));
  5206   match(reg);
  5208   format %{ "[$reg] @ indirect" %}
  5209   interface(MEMORY_INTER) %{
  5210     base($reg);
  5211     index(0x0);	/* NO_INDEX */
  5212     scale(0x0);
  5213     disp(0x0);
  5214   %}
  5215 %}
  5217 // Indirect Memory Plus Short Offset Operand
  5218 operand indOffset8(mRegP reg, immL8 off)
  5219 %{
  5220   constraint(ALLOC_IN_RC(p_reg));
  5221   match(AddP reg off);
  5223   format %{ "[$reg + $off (8-bit)] @ indOffset8" %}
  5224   interface(MEMORY_INTER) %{
  5225     base($reg);
  5226     index(0x0); /* NO_INDEX */
  5227     scale(0x0);
  5228     disp($off);
  5229   %}
  5230 %}
  5232 // Indirect Memory Times Scale Plus Index Register
  5233 operand indIndexScale(mRegP reg, mRegL lreg, immI2 scale)
  5234 %{
  5235   constraint(ALLOC_IN_RC(p_reg));
  5236   match(AddP reg (LShiftL lreg scale));
  5238   op_cost(10);
  5239   format %{"[$reg + $lreg << $scale] @ indIndexScale" %}
  5240   interface(MEMORY_INTER) %{
  5241     base($reg);
  5242     index($lreg);
  5243     scale($scale);
  5244     disp(0x0);
  5245   %}
  5246 %}
  5249 // [base + index + offset] 
  5250 operand baseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5251 %{
  5252   constraint(ALLOC_IN_RC(p_reg));
  5253   op_cost(5);
  5254   match(AddP (AddP base index) off);
  5256   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8" %}
  5257   interface(MEMORY_INTER) %{
  5258     base($base);
  5259     index($index);
  5260     scale(0x0);
  5261     disp($off);
  5262   %}
  5263 %}
  5265 // [base + index + offset] 
  5266 operand baseIndexOffset8_convI2L(mRegP base, mRegI index, immL8 off)
  5267 %{
  5268   constraint(ALLOC_IN_RC(p_reg));
  5269   op_cost(5);
  5270   match(AddP (AddP base (ConvI2L index)) off);
  5272   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8_convI2L" %}
  5273   interface(MEMORY_INTER) %{
  5274     base($base);
  5275     index($index);
  5276     scale(0x0);
  5277     disp($off);
  5278   %}
  5279 %}
  5281 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5282 operand indIndexScaleOffset8(mRegP reg, immL8 off, mRegL lreg, immI2 scale)
  5283 %{
  5284   constraint(ALLOC_IN_RC(p_reg));
  5285   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5287   op_cost(10);
  5288   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffset8" %}
  5289   interface(MEMORY_INTER) %{
  5290     base($reg);
  5291     index($lreg);
  5292     scale($scale);
  5293     disp($off);
  5294   %}
  5295 %}
  5297 operand indIndexScaleOffset8_convI2L(mRegP reg, immL8 off, mRegI ireg, immI2 scale)
  5298 %{
  5299   constraint(ALLOC_IN_RC(p_reg));
  5300   match(AddP (AddP reg (LShiftL (ConvI2L ireg) scale)) off);
  5302   op_cost(10);
  5303   format %{"[$reg + $off + $ireg << $scale] @ indIndexScaleOffset8_convI2L" %}
  5304   interface(MEMORY_INTER) %{
  5305     base($reg);
  5306     index($ireg);
  5307     scale($scale);
  5308     disp($off);
  5309   %}
  5310 %}
  5312 // [base + index<<scale + offset] 
  5313 operand basePosIndexScaleOffset8(mRegP base, mRegI index, immL8 off, immI_0_31 scale)
  5314 %{
  5315   constraint(ALLOC_IN_RC(p_reg));
  5316   //predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5317   op_cost(10);
  5318   match(AddP (AddP base (LShiftL (ConvI2L index) scale)) off);
  5320   format %{ "[$base + $index << $scale + $off (8-bit)] @ basePosIndexScaleOffset8" %}
  5321   interface(MEMORY_INTER) %{
  5322     base($base);
  5323     index($index);
  5324     scale($scale);
  5325     disp($off);
  5326   %}
  5327 %}
  5329 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5330 operand indIndexScaleOffsetNarrow(mRegN reg, immL8 off, mRegL lreg, immI2 scale)
  5331 %{
  5332   predicate(Universe::narrow_oop_shift() == 0);
  5333   constraint(ALLOC_IN_RC(p_reg));
  5334   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5336   op_cost(10);
  5337   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffsetNarrow" %}
  5338   interface(MEMORY_INTER) %{
  5339     base($reg);
  5340     index($lreg);
  5341     scale($scale);
  5342     disp($off);
  5343   %}
  5344 %}
  5346 // [base + index<<scale + offset] for compressd Oops
  5347 operand indPosIndexI2LScaleOffset8Narrow(mRegN base, mRegI index, immL8 off, immI_0_31 scale)
  5348 %{
  5349   constraint(ALLOC_IN_RC(p_reg));
  5350   //predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5351   predicate(Universe::narrow_oop_shift() == 0);
  5352   op_cost(10);
  5353   match(AddP (AddP (DecodeN base) (LShiftL (ConvI2L index) scale)) off);
  5355   format %{ "[$base + $index << $scale + $off (8-bit)] @ indPosIndexI2LScaleOffset8Narrow" %}
  5356   interface(MEMORY_INTER) %{
  5357     base($base);
  5358     index($index);
  5359     scale($scale);
  5360     disp($off);
  5361   %}
  5362 %}
  5364 //FIXME: I think it's better to limit the immI to be 16-bit at most!
  5365 // Indirect Memory Plus Long Offset Operand
  5366 operand indOffset32(mRegP reg, immL32 off) %{
  5367   constraint(ALLOC_IN_RC(p_reg));
  5368   op_cost(20);
  5369   match(AddP reg off);
  5371   format %{ "[$reg + $off (32-bit)] @ indOffset32" %}
  5372   interface(MEMORY_INTER) %{
  5373     base($reg);
  5374     index(0x0); 	/* NO_INDEX */
  5375     scale(0x0);
  5376     disp($off);
  5377   %}
  5378 %}
  5380 // Indirect Memory Plus Index Register 
  5381 operand indIndex(mRegP addr, mRegL index) %{
  5382   constraint(ALLOC_IN_RC(p_reg));
  5383   match(AddP addr index);
  5385   op_cost(20);
  5386   format %{"[$addr + $index] @ indIndex" %}
  5387   interface(MEMORY_INTER) %{
  5388     base($addr);
  5389     index($index);
  5390     scale(0x0);
  5391     disp(0x0);
  5392   %}
  5393 %}
  5395 operand indirectNarrowKlass(mRegN reg)
  5396 %{
  5397   predicate(Universe::narrow_klass_shift() == 0);
  5398   constraint(ALLOC_IN_RC(p_reg));
  5399   op_cost(10);
  5400   match(DecodeNKlass reg);
  5402   format %{ "[$reg] @ indirectNarrowKlass" %}
  5403   interface(MEMORY_INTER) %{
  5404     base($reg);
  5405     index(0x0);
  5406     scale(0x0);
  5407     disp(0x0);
  5408   %}
  5409 %}
  5411 operand indOffset8NarrowKlass(mRegN reg, immL8 off)
  5412 %{
  5413   predicate(Universe::narrow_klass_shift() == 0);
  5414   constraint(ALLOC_IN_RC(p_reg));
  5415   op_cost(10);
  5416   match(AddP (DecodeNKlass reg) off);
  5418   format %{ "[$reg + $off (8-bit)] @ indOffset8NarrowKlass" %}
  5419   interface(MEMORY_INTER) %{
  5420     base($reg);
  5421     index(0x0);
  5422     scale(0x0);
  5423     disp($off);
  5424   %}
  5425 %}
  5427 operand indOffset32NarrowKlass(mRegN reg, immL32 off)
  5428 %{
  5429   predicate(Universe::narrow_klass_shift() == 0);
  5430   constraint(ALLOC_IN_RC(p_reg));
  5431   op_cost(10);
  5432   match(AddP (DecodeNKlass reg) off);
  5434   format %{ "[$reg + $off (32-bit)] @ indOffset32NarrowKlass" %}
  5435   interface(MEMORY_INTER) %{
  5436     base($reg);
  5437     index(0x0);
  5438     scale(0x0);
  5439     disp($off);
  5440   %}
  5441 %}
  5443 operand indIndexOffsetNarrowKlass(mRegN reg, mRegL lreg, immL32 off)
  5444 %{
  5445   predicate(Universe::narrow_klass_shift() == 0);
  5446   constraint(ALLOC_IN_RC(p_reg));
  5447   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5449   op_cost(10);
  5450   format %{"[$reg + $off + $lreg] @ indIndexOffsetNarrowKlass" %}
  5451   interface(MEMORY_INTER) %{
  5452     base($reg);
  5453     index($lreg);
  5454     scale(0x0);
  5455     disp($off);
  5456   %}
  5457 %}
  5459 operand indIndexNarrowKlass(mRegN reg, mRegL lreg)
  5460 %{
  5461   predicate(Universe::narrow_klass_shift() == 0);
  5462   constraint(ALLOC_IN_RC(p_reg));
  5463   match(AddP (DecodeNKlass reg) lreg);
  5465   op_cost(10);
  5466   format %{"[$reg + $lreg] @ indIndexNarrowKlass" %}
  5467   interface(MEMORY_INTER) %{
  5468     base($reg);
  5469     index($lreg);
  5470     scale(0x0);
  5471     disp(0x0);
  5472   %}
  5473 %}
  5475 // Indirect Memory Operand
  5476 operand indirectNarrow(mRegN reg)
  5477 %{
  5478   predicate(Universe::narrow_oop_shift() == 0);
  5479   constraint(ALLOC_IN_RC(p_reg));
  5480   op_cost(10);
  5481   match(DecodeN reg);
  5483   format %{ "[$reg] @ indirectNarrow" %}
  5484   interface(MEMORY_INTER) %{
  5485     base($reg);
  5486     index(0x0);
  5487     scale(0x0);
  5488     disp(0x0);
  5489   %}
  5490 %}
  5492 // Indirect Memory Plus Short Offset Operand
  5493 operand indOffset8Narrow(mRegN reg, immL8 off)
  5494 %{
  5495   predicate(Universe::narrow_oop_shift() == 0);
  5496   constraint(ALLOC_IN_RC(p_reg));
  5497   op_cost(10);
  5498   match(AddP (DecodeN reg) off);
  5500   format %{ "[$reg + $off (8-bit)] @ indOffset8Narrow" %}
  5501   interface(MEMORY_INTER) %{
  5502     base($reg);
  5503     index(0x0);
  5504     scale(0x0);
  5505     disp($off);
  5506   %}
  5507 %}
  5509 // Indirect Memory Plus Index Register Plus Offset Operand
  5510 operand indIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5511 %{
  5512   predicate(Universe::narrow_oop_shift() == 0);
  5513   constraint(ALLOC_IN_RC(p_reg));
  5514   match(AddP (AddP (DecodeN reg) lreg) off);
  5516   op_cost(10);
  5517   format %{"[$reg + $off + $lreg] @ indIndexOffset8Narrow" %}
  5518   interface(MEMORY_INTER) %{
  5519     base($reg);
  5520     index($lreg);
  5521     scale(0x0);
  5522     disp($off);
  5523   %}
  5524 %}
  5526 //----------Load Long Memory Operands------------------------------------------
  5527 // The load-long idiom will use it's address expression again after loading
  5528 // the first word of the long.  If the load-long destination overlaps with
  5529 // registers used in the addressing expression, the 2nd half will be loaded
  5530 // from a clobbered address.  Fix this by requiring that load-long use
  5531 // address registers that do not overlap with the load-long target.
  5533 // load-long support
  5534 operand load_long_RegP() %{
  5535   constraint(ALLOC_IN_RC(p_reg));
  5536   match(RegP);
  5537   match(mRegP);
  5538   op_cost(100);
  5539   format %{  %}
  5540   interface(REG_INTER);
  5541 %}
  5543 // Indirect Memory Operand Long
  5544 operand load_long_indirect(load_long_RegP reg) %{
  5545   constraint(ALLOC_IN_RC(p_reg));
  5546   match(reg);
  5548   format %{ "[$reg]" %}
  5549   interface(MEMORY_INTER) %{
  5550     base($reg);
  5551     index(0x0);
  5552     scale(0x0);
  5553     disp(0x0);
  5554   %}
  5555 %}
  5557 // Indirect Memory Plus Long Offset Operand
  5558 operand load_long_indOffset32(load_long_RegP reg, immL32 off) %{
  5559   match(AddP reg off);
  5561   format %{ "[$reg + $off]" %}
  5562   interface(MEMORY_INTER) %{
  5563     base($reg);
  5564     index(0x0);
  5565     scale(0x0);
  5566     disp($off);
  5567   %}
  5568 %}
  5570 //----------Conditional Branch Operands----------------------------------------
  5571 // Comparison Op  - This is the operation of the comparison, and is limited to
  5572 //                  the following set of codes:
  5573 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5574 //
  5575 // Other attributes of the comparison, such as unsignedness, are specified
  5576 // by the comparison instruction that sets a condition code flags register.
  5577 // That result is represented by a flags operand whose subtype is appropriate
  5578 // to the unsignedness (etc.) of the comparison.
  5579 //
  5580 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5581 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5582 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5584 // Comparision Code
  5585 operand cmpOp() %{
  5586   match(Bool);
  5588   format %{ "" %}
  5589   interface(COND_INTER) %{
  5590     equal(0x01);
  5591     not_equal(0x02);
  5592     greater(0x03);
  5593     greater_equal(0x04);
  5594     less(0x05);
  5595     less_equal(0x06);
  5596     overflow(0x7);
  5597     no_overflow(0x8);
  5598   %}
  5599 %}
  5602 // Comparision Code
  5603 // Comparison Code, unsigned compare.  Used by FP also, with
  5604 // C2 (unordered) turned into GT or LT already.  The other bits
  5605 // C0 and C3 are turned into Carry & Zero flags.
  5606 operand cmpOpU() %{
  5607   match(Bool);
  5609   format %{ "" %}
  5610   interface(COND_INTER) %{
  5611     equal(0x01);
  5612     not_equal(0x02);
  5613     greater(0x03);
  5614     greater_equal(0x04);
  5615     less(0x05);
  5616     less_equal(0x06);
  5617     overflow(0x7);
  5618     no_overflow(0x8);
  5619   %}
  5620 %}
  5622 /*
  5623 // Comparison Code, unsigned compare.  Used by FP also, with
  5624 // C2 (unordered) turned into GT or LT already.  The other bits
  5625 // C0 and C3 are turned into Carry & Zero flags.
  5626 operand cmpOpU() %{
  5627   match(Bool);
  5629   format %{ "" %}
  5630   interface(COND_INTER) %{
  5631     equal(0x4);
  5632     not_equal(0x5);
  5633     less(0x2);
  5634     greater_equal(0x3);
  5635     less_equal(0x6);
  5636     greater(0x7);
  5637   %}
  5638 %}
  5639 */
  5640 /*
  5641 // Comparison Code for FP conditional move
  5642 operand cmpOp_fcmov() %{
  5643   match(Bool);
  5645   format %{ "" %}
  5646   interface(COND_INTER) %{
  5647     equal        (0x01);
  5648     not_equal    (0x02);
  5649     greater      (0x03);
  5650     greater_equal(0x04);
  5651     less         (0x05);
  5652     less_equal   (0x06);
  5653   %}
  5654 %}
  5656 // Comparision Code used in long compares
  5657 operand cmpOp_commute() %{
  5658   match(Bool);
  5660   format %{ "" %}
  5661   interface(COND_INTER) %{
  5662     equal(0x4);
  5663     not_equal(0x5);
  5664     less(0xF);
  5665     greater_equal(0xE);
  5666     less_equal(0xD);
  5667     greater(0xC);
  5668   %}
  5669 %}
  5670 */
  5672 //----------Special Memory Operands--------------------------------------------
  5673 // Stack Slot Operand - This operand is used for loading and storing temporary
  5674 //                      values on the stack where a match requires a value to
  5675 //                      flow through memory.
  5676 operand stackSlotP(sRegP reg) %{
  5677   constraint(ALLOC_IN_RC(stack_slots));
  5678   // No match rule because this operand is only generated in matching
  5679   op_cost(50);
  5680   format %{ "[$reg]" %}
  5681   interface(MEMORY_INTER) %{
  5682     base(0x1d);  // SP
  5683     index(0x0);  // No Index
  5684     scale(0x0);  // No Scale
  5685     disp($reg);  // Stack Offset
  5686   %}
  5687 %}
  5689 operand stackSlotI(sRegI reg) %{
  5690   constraint(ALLOC_IN_RC(stack_slots));
  5691   // No match rule because this operand is only generated in matching
  5692   op_cost(50);
  5693   format %{ "[$reg]" %}
  5694   interface(MEMORY_INTER) %{
  5695     base(0x1d);  // SP
  5696     index(0x0);  // No Index
  5697     scale(0x0);  // No Scale
  5698     disp($reg);  // Stack Offset
  5699   %}
  5700 %}
  5702 operand stackSlotF(sRegF reg) %{
  5703   constraint(ALLOC_IN_RC(stack_slots));
  5704   // No match rule because this operand is only generated in matching
  5705   op_cost(50);
  5706   format %{ "[$reg]" %}
  5707   interface(MEMORY_INTER) %{
  5708     base(0x1d);  // SP
  5709     index(0x0);  // No Index
  5710     scale(0x0);  // No Scale
  5711     disp($reg);  // Stack Offset
  5712   %}
  5713 %}
  5715 operand stackSlotD(sRegD reg) %{
  5716   constraint(ALLOC_IN_RC(stack_slots));
  5717   // No match rule because this operand is only generated in matching
  5718   op_cost(50);
  5719   format %{ "[$reg]" %}
  5720   interface(MEMORY_INTER) %{
  5721     base(0x1d);  // SP
  5722     index(0x0);  // No Index
  5723     scale(0x0);  // No Scale
  5724     disp($reg);  // Stack Offset
  5725   %}
  5726 %}
  5728 operand stackSlotL(sRegL reg) %{
  5729   constraint(ALLOC_IN_RC(stack_slots));
  5730   // No match rule because this operand is only generated in matching
  5731   op_cost(50);
  5732   format %{ "[$reg]" %}
  5733   interface(MEMORY_INTER) %{
  5734     base(0x1d);  // SP
  5735     index(0x0);  // No Index
  5736     scale(0x0);  // No Scale
  5737     disp($reg);  // Stack Offset
  5738   %}
  5739 %}
  5742 //------------------------OPERAND CLASSES--------------------------------------
  5743 //opclass memory( direct, indirect, indOffset16, indOffset32, indOffset32X, indIndexOffset );
  5744 opclass memory( indirect, indirectNarrow, indOffset8, indOffset32, indIndex, indIndexScale, load_long_indirect, load_long_indOffset32, baseIndexOffset8, baseIndexOffset8_convI2L, indIndexScaleOffset8, indIndexScaleOffset8_convI2L, basePosIndexScaleOffset8, indIndexScaleOffsetNarrow, indPosIndexI2LScaleOffset8Narrow, indOffset8Narrow, indIndexOffset8Narrow); 
  5747 //----------PIPELINE-----------------------------------------------------------
  5748 // Rules which define the behavior of the target architectures pipeline.
  5750 pipeline %{
  5752 //----------ATTRIBUTES---------------------------------------------------------
  5753 attributes %{
  5754  	fixed_size_instructions;        	// Fixed size instructions
  5755  	branch_has_delay_slot;			// branch have delay slot in gs2
  5756  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5757  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5758         bundle_unit_size=4;
  5759  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5760  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5761  	instruction_fetch_units = 1;       	// of 16 bytes
  5763  	// List of nop instructions
  5764  	nops( MachNop );
  5765  %}
  5767  //----------RESOURCES----------------------------------------------------------
  5768  // Resources are the functional units available to the machine
  5770  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5772  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5773  // Pipeline Description specifies the stages in the machine's pipeline
  5775  // IF: fetch
  5776  // ID: decode
  5777  // RD: read 
  5778  // CA: caculate 
  5779  // WB: write back 
  5780  // CM: commit 
  5782  pipe_desc(IF, ID, RD, CA, WB, CM);
  5785  //----------PIPELINE CLASSES---------------------------------------------------
  5786  // Pipeline Classes describe the stages in which input and output are
  5787  // referenced by the hardware pipeline.
  5789  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5790  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5791         single_instruction;
  5792  	src1   : RD(read);
  5793  	src2   : RD(read);
  5794         dst    : WB(write)+1;
  5795         DECODE : ID;
  5796  	ALU    : CA;
  5797  %}
  5799  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5800  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5801  	src1   : RD(read);
  5802  	src2   : RD(read);
  5803         dst    : WB(write)+5;
  5804         DECODE : ID;
  5805  	ALU2   : CA;
  5806  %}
  5808  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5809  	src1   : RD(read);
  5810  	src2   : RD(read);
  5811         dst    : WB(write)+10;
  5812         DECODE : ID;
  5813  	ALU2   : CA;
  5814  %}
  5816  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5817  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5818  	src1   : RD(read);
  5819  	src2   : RD(read);
  5820         dst    : WB(write)+10;
  5821         DECODE : ID;
  5822  	ALU2   : CA;
  5823  %}
  5825  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5826  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5827         instruction_count(2);
  5828  	src1   : RD(read);
  5829  	src2   : RD(read);
  5830         dst    : WB(write)+10;
  5831         DECODE : ID;
  5832  	ALU2   : CA;
  5833  %}
  5835  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5836  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5837         instruction_count(2);
  5838  	src1   : RD(read);
  5839  	src2   : RD(read);
  5840         dst    : WB(write);
  5841         DECODE : ID;
  5842  	ALU    : CA;
  5843  %}
  5845  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5846  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5847         instruction_count(2);
  5848  	src    : RD(read);
  5849         dst    : WB(write);
  5850         DECODE : ID;
  5851  	ALU    : CA;
  5852  %}
  5854  //no.16 load Long from memory :                     
  5855  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5856  	instruction_count(2);
  5857  	mem    : RD(read);
  5858  	dst    : WB(write)+5;
  5859         DECODE : ID;
  5860  	MEM    : RD;
  5861  %}
  5863  //No.17 Store Long to Memory :                     
  5864  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5865  	instruction_count(2);
  5866  	mem    : RD(read);
  5867  	src    : RD(read);
  5868         DECODE : ID;
  5869  	MEM    : RD;
  5870  %}
  5872  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5873  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5874         single_instruction;
  5875  	src    : RD(read);
  5876         dst    : WB(write);
  5877         DECODE : ID;
  5878  	ALU    : CA;
  5879  %}
  5881  //No.3 Integer move operation : dst <-- reg  
  5882  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5883  	src    : RD(read);
  5884         dst    : WB(write);
  5885         DECODE : ID;
  5886  	ALU    : CA;
  5887  %}
  5889  //No.4 No instructions : do nothing 
  5890  pipe_class empty( ) %{
  5891         instruction_count(0);
  5892  %}
  5894  //No.5 UnConditional branch :
  5895  pipe_class pipe_jump( label labl ) %{
  5896         multiple_bundles;
  5897         DECODE : ID;
  5898 	BR     : RD;
  5899  %}
  5901  //No.6 ALU Conditional branch :
  5902  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5903         multiple_bundles;
  5904         src1   : RD(read);
  5905         src2   : RD(read);
  5906         DECODE : ID;
  5907 	BR     : RD;
  5908  %}
  5910  //no.7 load integer from memory :                     
  5911  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5912  	mem    : RD(read);
  5913  	dst    : WB(write)+3;
  5914         DECODE : ID;
  5915  	MEM    : RD;
  5916  %}
  5918  //No.8 Store Integer to Memory :                     
  5919  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5920  	mem    : RD(read);
  5921  	src    : RD(read);
  5922         DECODE : ID;
  5923  	MEM    : RD;
  5924  %}
  5927  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5928  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5929  	src1   : RD(read);
  5930  	src2   : RD(read);
  5931         dst    : WB(write);
  5932         DECODE : ID;
  5933  	FPU    : CA;
  5934  %}
  5936  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5937  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5938  	src1   : RD(read);
  5939  	src2   : RD(read);
  5940         dst    : WB(write);
  5941         DECODE : ID;
  5942  	FPU2   : CA;
  5943  %}
  5945  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5946  	src    : RD(read);
  5947         dst    : WB(write);
  5948         DECODE : ID;
  5949  	FPU1   : CA;
  5950  %}
  5952  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5953  	src    : RD(read);
  5954         dst    : WB(write);
  5955         DECODE : ID;
  5956  	FPU1   : CA;
  5957  %}
  5959  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5960  	src    : RD(read);
  5961         dst    : WB(write);
  5962         DECODE : ID;
  5963  	MEM    : RD;
  5964  %}
  5966  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5967  	src    : RD(read);
  5968         dst    : WB(write);
  5969         DECODE : ID;
  5970  	MEM    : RD(5);
  5971  %}
  5973  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5974  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5975         multiple_bundles;
  5976  	src1   : RD(read);
  5977  	src2   : RD(read);
  5978         dst    : WB(write);
  5979         DECODE : ID;
  5980  	FPU2   : CA;
  5981  %}
  5983  //No.11 Load Floating from Memory :                     
  5984  pipe_class fpu_loadF(regF dst, memory mem) %{
  5985         instruction_count(1);
  5986  	mem    : RD(read);
  5987  	dst    : WB(write)+3;
  5988         DECODE : ID;
  5989  	MEM    : RD;
  5990  %}
  5992  //No.12 Store Floating to Memory :                     
  5993  pipe_class fpu_storeF(regF src, memory mem) %{
  5994         instruction_count(1);
  5995  	mem    : RD(read);
  5996  	src    : RD(read);
  5997         DECODE : ID;
  5998  	MEM    : RD;
  5999  %}
  6001  //No.13 FPU Conditional branch :
  6002  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  6003         multiple_bundles;
  6004         src1   : RD(read);
  6005         src2   : RD(read);
  6006         DECODE : ID;
  6007 	BR     : RD;
  6008  %}
  6010 //No.14 Floating FPU reg operation : dst <-- op reg  
  6011  pipe_class fpu1_regF(regF dst, regF src) %{
  6012  	src    : RD(read);
  6013         dst    : WB(write);
  6014         DECODE : ID;
  6015  	FPU    : CA;
  6016  %}
  6018  pipe_class long_memory_op() %{
  6019 	instruction_count(10); multiple_bundles; force_serialization;
  6020 	fixed_latency(30);
  6021  %}
  6023  pipe_class simple_call() %{
  6024 	instruction_count(10); multiple_bundles; force_serialization;
  6025 	fixed_latency(200);
  6026 	BR     : RD;
  6027  %}
  6029  pipe_class call() %{
  6030 	instruction_count(10); multiple_bundles; force_serialization;
  6031 	fixed_latency(200);
  6032  %}
  6034  //FIXME:
  6035  //No.9 Piple slow : for multi-instructions 
  6036  pipe_class pipe_slow(  ) %{
  6037 	instruction_count(20);
  6038         force_serialization;
  6039         multiple_bundles;
  6040 	fixed_latency(50);
  6041  %}
  6043 %}
  6047 //----------INSTRUCTIONS-------------------------------------------------------
  6048 // 
  6049 // match      -- States which machine-independent subtree may be replaced 
  6050 //               by this instruction.
  6051 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6052 //               selection to identify a minimum cost tree of machine 
  6053 //               instructions that matches a tree of machine-independent 
  6054 //               instructions.
  6055 // format     -- A string providing the disassembly for this instruction.
  6056 //               The value of an instruction's operand may be inserted 
  6057 //               by referring to it with a '$' prefix.
  6058 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  6059 //               to within an encode class as $primary, $secondary, and $tertiary
  6060 //               respectively.  The primary opcode is commonly used to 
  6061 //               indicate the type of machine instruction, while secondary 
  6062 //               and tertiary are often used for prefix options or addressing 
  6063 //               modes.
  6064 // ins_encode -- A list of encode classes with parameters. The encode class
  6065 //               name must have been defined in an 'enc_class' specification
  6066 //               in the encode section of the architecture description.
  6069 // Load Integer
  6070 instruct loadI(mRegI dst, memory mem) %{
  6071   match(Set dst (LoadI mem));
  6073   ins_cost(125);
  6074   format %{ "lw    $dst, $mem 	#@loadI" %}
  6075   ins_encode (load_I_enc(dst, mem));
  6076   ins_pipe( ialu_loadI );
  6077 %}
  6079 instruct loadI_convI2L(mRegL dst, memory mem) %{
  6080   match(Set dst (ConvI2L (LoadI mem)));
  6082   ins_cost(125);
  6083   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  6084   ins_encode (load_I_enc(dst, mem));
  6085   ins_pipe( ialu_loadI );
  6086 %}
  6088 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6089 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6090   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6092   ins_cost(125);
  6093   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  6094   ins_encode(load_B_enc(dst, mem));
  6095   ins_pipe(ialu_loadI);
  6096 %}
  6098 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6099 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  6100   match(Set dst (AndI (LoadI mem) mask));
  6102   ins_cost(125);
  6103   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  6104   ins_encode(load_UB_enc(dst, mem));
  6105   ins_pipe(ialu_loadI);
  6106 %}
  6108 // Load Integer (32 bit signed) to Short (16 bit signed)
  6109 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  6110   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6112   ins_cost(125);
  6113   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  6114   ins_encode(load_S_enc(dst, mem));
  6115   ins_pipe(ialu_loadI);
  6116 %}
  6118 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6119 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  6120   match(Set dst (AndI (LoadI mem) mask));
  6122   ins_cost(125);
  6123   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  6124   ins_encode(load_C_enc(dst, mem));
  6125   ins_pipe(ialu_loadI);
  6126 %}
  6128 // Load Long.
  6129 instruct loadL(mRegL dst, memory mem) %{
  6130 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  6131   match(Set dst (LoadL mem));
  6133   ins_cost(250);
  6134   format %{ "ld    $dst, $mem   #@loadL" %}
  6135   ins_encode(load_L_enc(dst, mem));
  6136   ins_pipe( ialu_loadL );
  6137 %}
  6139 // Load Long - UNaligned
  6140 instruct loadL_unaligned(mRegL dst, memory mem) %{
  6141   match(Set dst (LoadL_unaligned mem));
  6143   // FIXME: Jin: Need more effective ldl/ldr
  6144   ins_cost(450);
  6145   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  6146   ins_encode(load_L_enc(dst, mem));
  6147   ins_pipe( ialu_loadL );
  6148 %}
  6150 // Store Long
  6151 instruct storeL_reg(memory mem, mRegL src) %{
  6152   match(Set mem (StoreL mem src));
  6154   ins_cost(200);
  6155   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  6156   ins_encode(store_L_reg_enc(mem, src));
  6157   ins_pipe( ialu_storeL );
  6158 %}
  6161 instruct storeL_immL0(memory mem, immL0 zero) %{
  6162   match(Set mem (StoreL mem zero));
  6164   ins_cost(180);
  6165   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  6166   ins_encode(store_L_immL0_enc(mem, zero));
  6167   ins_pipe( ialu_storeL );
  6168 %}
  6170 // Load Compressed Pointer
  6171 instruct loadN(mRegN dst, memory mem)
  6172 %{
  6173    match(Set dst (LoadN mem));
  6175    ins_cost(125); // XXX
  6176    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  6177    ins_encode (load_N_enc(dst, mem));
  6178    ins_pipe( ialu_loadI ); // XXX
  6179 %}
  6181 // Load Pointer
  6182 instruct loadP(mRegP dst, memory mem) %{
  6183   match(Set dst (LoadP mem));
  6185   ins_cost(125);
  6186   format %{ "ld    $dst, $mem #@loadP" %}
  6187   ins_encode (load_P_enc(dst, mem));
  6188   ins_pipe( ialu_loadI );
  6189 %}
  6191 // Load Klass Pointer
  6192 instruct loadKlass(mRegP dst, memory mem) %{
  6193   match(Set dst (LoadKlass mem));
  6195   ins_cost(125);
  6196   format %{ "MOV    $dst,$mem @ loadKlass" %}
  6197   ins_encode (load_P_enc(dst, mem));
  6198   ins_pipe( ialu_loadI );
  6199 %}
  6201 // Load narrow Klass Pointer
  6202 instruct loadNKlass(mRegN dst, memory mem)
  6203 %{
  6204   match(Set dst (LoadNKlass mem));
  6206   ins_cost(125); // XXX
  6207   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  6208   ins_encode (load_N_enc(dst, mem));
  6209   ins_pipe( ialu_loadI ); // XXX
  6210 %}
  6212 // Load Constant
  6213 instruct loadConI(mRegI dst, immI src) %{
  6214   match(Set dst src);
  6216   ins_cost(150);
  6217   format %{ "mov    $dst, $src #@loadConI" %}
  6218   ins_encode %{
  6219     Register dst = $dst$$Register;
  6220     int    value = $src$$constant;
  6221     __ move(dst, value);
  6222   %}
  6223   ins_pipe( ialu_regI_regI );
  6224 %}
  6227 instruct loadConL_set64(mRegL dst, immL src) %{
  6228   match(Set dst src);
  6229   ins_cost(120);
  6230   format %{ "li   $dst, $src @ loadConL_set64" %}
  6231   ins_encode %{
  6232     __ set64($dst$$Register, $src$$constant);
  6233   %}
  6234   ins_pipe(ialu_regL_regL);
  6235 %}
  6237 /*
  6238 // Load long value from constant table (predicated by immL_expensive).
  6239 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6240   match(Set dst src);
  6241   ins_cost(150);
  6242   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6243   ins_encode %{
  6244     int con_offset = $constantoffset($src);
  6246     if (Assembler::is_simm16(con_offset)) {
  6247        __ ld($dst$$Register, $constanttablebase, con_offset);
  6248     } else {
  6249        __ set64(AT, con_offset);
  6250        if (UseLoongsonISA) {
  6251           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6252        } else {
  6253           __ daddu(AT, $constanttablebase, AT);
  6254           __ ld($dst$$Register, AT, 0);
  6257   %}
  6258   ins_pipe(ialu_loadI);
  6259 %}
  6260 */
  6262 instruct loadConL16(mRegL dst, immL16 src) %{
  6263   match(Set dst src);
  6264   ins_cost(105);
  6265   format %{ "mov    $dst, $src #@loadConL16" %}
  6266   ins_encode %{
  6267     Register dst_reg = as_Register($dst$$reg);
  6268     int      value   = $src$$constant;
  6269     __ daddiu(dst_reg, R0, value);
  6270   %}
  6271   ins_pipe( ialu_regL_regL );
  6272 %}
  6275 instruct loadConL0(mRegL dst, immL0 src) %{
  6276   match(Set dst src);
  6277   ins_cost(100);
  6278   format %{ "mov    $dst, zero #@loadConL0" %}
  6279   ins_encode %{
  6280     Register dst_reg = as_Register($dst$$reg);
  6281     __ daddu(dst_reg, R0, R0);
  6282   %}
  6283   ins_pipe( ialu_regL_regL );
  6284 %}
  6286 // Load Range
  6287 instruct loadRange(mRegI dst, memory mem) %{
  6288   match(Set dst (LoadRange mem));
  6290   ins_cost(125);
  6291   format %{ "MOV    $dst,$mem @ loadRange" %}
  6292   ins_encode(load_I_enc(dst, mem));
  6293   ins_pipe( ialu_loadI );
  6294 %}
  6297 instruct storeP(memory mem, mRegP src ) %{
  6298   match(Set mem (StoreP mem src));
  6300   ins_cost(125);
  6301   format %{ "sd    $src, $mem #@storeP" %}
  6302   ins_encode(store_P_reg_enc(mem, src));
  6303   ins_pipe( ialu_storeI );
  6304 %}
  6306 // Store NULL Pointer, mark word, or other simple pointer constant.
  6307 instruct storeImmP0(memory mem, immP0 zero) %{
  6308   match(Set mem (StoreP mem zero));
  6310   ins_cost(125);
  6311   format %{ "mov    $mem, $zero #@storeImmP0" %}
  6312   ins_encode(store_P_immP0_enc(mem));
  6313   ins_pipe( ialu_storeI );
  6314 %}
  6316 // Store Byte Immediate
  6317 instruct storeImmB(memory mem, immI8 src) %{
  6318   match(Set mem (StoreB mem src));
  6320   ins_cost(150);
  6321   format %{ "movb   $mem, $src #@storeImmB" %}
  6322   ins_encode(store_B_immI_enc(mem, src));
  6323   ins_pipe( ialu_storeI );
  6324 %}
  6326 // Store Compressed Pointer
  6327 instruct storeN(memory mem, mRegN src)
  6328 %{
  6329   match(Set mem (StoreN mem src));
  6331   ins_cost(125); // XXX
  6332   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6333   ins_encode(store_N_reg_enc(mem, src)); 
  6334   ins_pipe( ialu_storeI );
  6335 %}
  6337 instruct storeNKlass(memory mem, mRegN src)
  6338 %{
  6339   match(Set mem (StoreNKlass mem src));
  6341   ins_cost(125); // XXX
  6342   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6343   ins_encode(store_N_reg_enc(mem, src));
  6344   ins_pipe( ialu_storeI );
  6345 %}
  6347 instruct storeImmN0(memory mem, immN0 zero)
  6348 %{
  6349   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
  6350   match(Set mem (StoreN mem zero));
  6352   ins_cost(125); // XXX
  6353   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6354   ins_encode(storeImmN0_enc(mem, zero));
  6355   ins_pipe( ialu_storeI );
  6356 %}
  6358 // Store Byte
  6359 instruct storeB(memory mem, mRegI src) %{
  6360   match(Set mem (StoreB mem src));
  6362   ins_cost(125);
  6363   format %{ "sb    $src, $mem #@storeB" %}
  6364   ins_encode(store_B_reg_enc(mem, src));
  6365   ins_pipe( ialu_storeI );
  6366 %}
  6368 instruct storeB_convL2I(memory mem, mRegL src) %{
  6369   match(Set mem (StoreB mem (ConvL2I src)));
  6371   ins_cost(125);
  6372   format %{ "sb    $src, $mem #@storeB_convL2I" %}
  6373   ins_encode(store_B_reg_enc(mem, src));
  6374   ins_pipe( ialu_storeI );
  6375 %}
  6377 // Load Byte (8bit signed)
  6378 instruct loadB(mRegI dst, memory mem) %{
  6379   match(Set dst (LoadB mem));
  6381   ins_cost(125);
  6382   format %{ "lb   $dst, $mem #@loadB" %}
  6383   ins_encode(load_B_enc(dst, mem));
  6384   ins_pipe( ialu_loadI );
  6385 %}
  6387 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6388   match(Set dst (ConvI2L (LoadB mem)));
  6390   ins_cost(125);
  6391   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6392   ins_encode(load_B_enc(dst, mem));
  6393   ins_pipe( ialu_loadI );
  6394 %}
  6396 // Load Byte (8bit UNsigned)
  6397 instruct loadUB(mRegI dst, memory mem) %{
  6398   match(Set dst (LoadUB mem));
  6400   ins_cost(125);
  6401   format %{ "lbu   $dst, $mem #@loadUB" %}
  6402   ins_encode(load_UB_enc(dst, mem));
  6403   ins_pipe( ialu_loadI );
  6404 %}
  6406 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6407   match(Set dst (ConvI2L (LoadUB mem)));
  6409   ins_cost(125);
  6410   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6411   ins_encode(load_UB_enc(dst, mem));
  6412   ins_pipe( ialu_loadI );
  6413 %}
  6415 // Load Short (16bit signed)
  6416 instruct loadS(mRegI dst, memory mem) %{
  6417   match(Set dst (LoadS mem));
  6419   ins_cost(125);
  6420   format %{ "lh   $dst, $mem #@loadS" %}
  6421   ins_encode(load_S_enc(dst, mem));
  6422   ins_pipe( ialu_loadI );
  6423 %}
  6425 // Load Short (16 bit signed) to Byte (8 bit signed)
  6426 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6427   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6429   ins_cost(125);
  6430   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6431   ins_encode(load_B_enc(dst, mem));
  6432   ins_pipe(ialu_loadI);
  6433 %}
  6435 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6436   match(Set dst (ConvI2L (LoadS mem)));
  6438   ins_cost(125);
  6439   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6440   ins_encode(load_S_enc(dst, mem));
  6441   ins_pipe( ialu_loadI );
  6442 %}
  6444 // Store Integer Immediate
  6445 instruct storeImmI(memory mem, immI src) %{
  6446   match(Set mem (StoreI mem src));
  6448   ins_cost(150);
  6449   format %{ "mov    $mem, $src #@storeImmI" %}
  6450   ins_encode(store_I_immI_enc(mem, src));
  6451   ins_pipe( ialu_storeI );
  6452 %}
  6454 // Store Integer
  6455 instruct storeI(memory mem, mRegI src) %{
  6456   match(Set mem (StoreI mem src));
  6458   ins_cost(125);
  6459   format %{ "sw    $mem, $src #@storeI" %}
  6460   ins_encode(store_I_reg_enc(mem, src));
  6461   ins_pipe( ialu_storeI );
  6462 %}
  6464 instruct storeI_convL2I(memory mem, mRegL src) %{
  6465   match(Set mem (StoreI mem (ConvL2I src)));
  6467   ins_cost(125);
  6468   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6469   ins_encode(store_I_reg_enc(mem, src));
  6470   ins_pipe( ialu_storeI );
  6471 %}
  6473 // Load Float
  6474 instruct loadF(regF dst, memory mem) %{
  6475   match(Set dst (LoadF mem));
  6477   ins_cost(150);
  6478   format %{ "loadF $dst, $mem #@loadF" %}
  6479   ins_encode(load_F_enc(dst, mem));
  6480   ins_pipe( ialu_loadI );
  6481 %}
  6483 instruct loadConP_general(mRegP dst, immP src) %{
  6484   match(Set dst src);
  6486   ins_cost(120);
  6487   format %{ "li   $dst, $src #@loadConP_general" %}
  6489   ins_encode %{
  6490     Register dst = $dst$$Register;
  6491     long* value = (long*)$src$$constant;
  6493     if($src->constant_reloc() == relocInfo::metadata_type){
  6494     	int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6495     	RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6497     	__ relocate(rspec);
  6498     	__ patchable_set48(dst, (long)value);
  6499     }else if($src->constant_reloc() == relocInfo::oop_type){
  6500     	int oop_index = __ oop_recorder()->find_index((jobject)value);
  6501     	RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6503     	__ relocate(rspec);
  6504     	__ patchable_set48(dst, (long)value);
  6505     } else if ($src->constant_reloc() == relocInfo::none) {
  6506         __ set64(dst, (long)value);
  6508   %}
  6510   ins_pipe( ialu_regI_regI );
  6511 %}
  6513 /*
  6514 instruct loadConP_load(mRegP dst, immP_load src) %{
  6515   match(Set dst src);
  6517   ins_cost(100);
  6518   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6520   ins_encode %{
  6522     int con_offset = $constantoffset($src);
  6524     if (Assembler::is_simm16(con_offset)) {
  6525        __ ld($dst$$Register, $constanttablebase, con_offset);
  6526     } else {
  6527        __ set64(AT, con_offset);
  6528        if (UseLoongsonISA) {
  6529           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6530        } else {
  6531           __ daddu(AT, $constanttablebase, AT);
  6532           __ ld($dst$$Register, AT, 0);
  6535   %}
  6537   ins_pipe(ialu_loadI);
  6538 %}
  6539 */
  6541 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6542   match(Set dst src);
  6544   ins_cost(80);
  6545   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6547   ins_encode %{
  6548     __ set64($dst$$Register, $src$$constant);
  6549   %}
  6551   ins_pipe(ialu_regI_regI);
  6552 %}
  6555 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6556   match(Set dst src);
  6558   ins_cost(50);
  6559   format %{ "li   $dst, $src #@loadConP_poll" %}
  6561   ins_encode %{
  6562     Register dst = $dst$$Register;
  6563     intptr_t value = (intptr_t)$src$$constant;
  6565     __ set64(dst, (jlong)value);
  6566   %}
  6568   ins_pipe( ialu_regI_regI );
  6569 %}
  6571 instruct loadConP0(mRegP dst, immP0 src)
  6572 %{
  6573   match(Set dst src); 
  6575   ins_cost(50);
  6576   format %{ "mov    $dst, R0\t# ptr" %}
  6577   ins_encode %{
  6578      Register dst_reg = $dst$$Register;
  6579      __ daddu(dst_reg, R0, R0);
  6580   %}
  6581   ins_pipe( ialu_regI_regI );
  6582 %}
  6584 instruct loadConN0(mRegN dst, immN0 src) %{
  6585   match(Set dst src);
  6586   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6587   ins_encode %{
  6588     __ move($dst$$Register, R0);
  6589   %}
  6590   ins_pipe( ialu_regI_regI );
  6591 %}
  6593 instruct loadConN(mRegN dst, immN src) %{
  6594   match(Set dst src);
  6596   ins_cost(125);
  6597   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6598   ins_encode %{
  6599     Register dst = $dst$$Register;
  6600     __ set_narrow_oop(dst, (jobject)$src$$constant);
  6601   %}
  6602   ins_pipe( ialu_regI_regI ); // XXX
  6603 %}
  6605 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6606   match(Set dst src);
  6608   ins_cost(125);
  6609   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6610   ins_encode %{
  6611     Register dst = $dst$$Register;
  6612     __ set_narrow_klass(dst, (Klass*)$src$$constant);
  6613   %}
  6614   ins_pipe( ialu_regI_regI ); // XXX
  6615 %}
  6617 //FIXME
  6618 // Tail Call; Jump from runtime stub to Java code.
  6619 // Also known as an 'interprocedural jump'.
  6620 // Target of jump will eventually return to caller.
  6621 // TailJump below removes the return address.
  6622 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6623   match(TailCall jump_target method_oop );
  6624   ins_cost(300);
  6625   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6627   ins_encode %{
  6628     Register target = $jump_target$$Register;
  6629     Register    oop = $method_oop$$Register;
  6631     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6632     __ push(RA);
  6634     __ move(S3, oop);
  6635     __ jr(target);
  6636     __ nop();
  6637   %}
  6639   ins_pipe( pipe_jump );
  6640 %}
  6642 // Create exception oop: created by stack-crawling runtime code.
  6643 // Created exception is now available to this handler, and is setup
  6644 // just prior to jumping to this handler.  No code emitted.
  6645 instruct CreateException( a0_RegP ex_oop )
  6646 %{
  6647   match(Set ex_oop (CreateEx));
  6649   // use the following format syntax
  6650   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6651   ins_encode %{
  6652     /* Jin: X86 leaves this function empty */
  6653     __ block_comment("CreateException is empty in X86/MIPS");
  6654   %}
  6655   ins_pipe( empty );
  6656 //  ins_pipe( pipe_jump );
  6657 %}
  6660 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6662 - Common try/catch:
  6663  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6664                     |- V0, V1 are created
  6665                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6666                     `- jr T9
  6667                          `- the caller's exception_handler
  6668                                `- jr OptoRuntime::exception_blob
  6669                                       `- here
  6670 - Rethrow(e.g. 'unwind'):
  6671   * The callee:
  6672      |- an exception is triggered during execution
  6673      `- exits the callee method through RethrowException node
  6674           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6675           `- The callee jumps to OptoRuntime::rethrow_stub()
  6676   * In OptoRuntime::rethrow_stub:
  6677      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6678      `- exits the stub with tailjmpInd
  6679           |- pops exception_oop(V0) and exception_pc(V1)
  6680           `- jumps to the return address(usually an exception_handler)
  6681   * The caller:
  6682      `- continues processing the exception_blob with V0/V1
  6683 */
  6685 /*
  6686 Disassembling OptoRuntime::rethrow_stub()
  6688 ; locals
  6689    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6690    0x2d3bf324: sw ra, 0x4(sp)
  6691    0x2d3bf328: sw fp, 0x0(sp)
  6692    0x2d3bf32c: addu fp, sp, zero
  6693    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6694    0x2d3bf334: sw ra, 0x8(sp)
  6695    0x2d3bf338: sw t0, 0x4(sp)
  6696    0x2d3bf33c: sw sp, 0x0(sp)
  6698 ; get_thread(S2)
  6699    0x2d3bf340: addu s2, sp, zero
  6700    0x2d3bf344: srl s2, s2, 12
  6701    0x2d3bf348: sll s2, s2, 2
  6702    0x2d3bf34c: lui at, 0x2c85
  6703    0x2d3bf350: addu at, at, s2
  6704    0x2d3bf354: lw s2, 0xffffcc80(at)
  6706    0x2d3bf358: lw s0, 0x0(sp)
  6707    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6708    0x2d3bf360: sw s2, 0xc(sp)
  6710 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6711    0x2d3bf364: lw a0, 0x4(sp)
  6712    0x2d3bf368: lw a1, 0xc(sp)
  6713    0x2d3bf36c: lw a2, 0x8(sp)
  6714   ;; Java_To_Runtime
  6715    0x2d3bf370: lui t9, 0x2c34
  6716    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6717    0x2d3bf378: jalr t9
  6718    0x2d3bf37c: nop
  6720    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6722    0x2d3bf384: lw s0, 0xc(sp)
  6723    0x2d3bf388: sw zero, 0x118(s0)
  6724    0x2d3bf38c: sw zero, 0x11c(s0)
  6725    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6726    0x2d3bf394: addu s2, s0, zero
  6727    0x2d3bf398: sw zero, 0x144(s2)
  6728    0x2d3bf39c: lw s0, 0x4(s2)
  6729    0x2d3bf3a0: addiu s4, zero, 0x0
  6730    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6731    0x2d3bf3a8: nop
  6732    0x2d3bf3ac: addiu sp, sp, 0x10
  6733    0x2d3bf3b0: addiu sp, sp, 0x8
  6734    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6735    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6736    0x2d3bf3bc: lui at, 0x2b48
  6737    0x2d3bf3c0: lw at, 0x100(at)
  6739 ; tailjmpInd: Restores exception_oop & exception_pc
  6740    0x2d3bf3c4: addu v1, ra, zero
  6741    0x2d3bf3c8: addu v0, s1, zero
  6742    0x2d3bf3cc: jr s3
  6743    0x2d3bf3d0: nop
  6744 ; Exception:
  6745    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6746    0x2d3bf3d8: addiu s1, s1, 0x40
  6747    0x2d3bf3dc: addiu s2, zero, 0x0
  6748    0x2d3bf3e0: addiu sp, sp, 0x10
  6749    0x2d3bf3e4: addiu sp, sp, 0x8
  6750    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6751    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6752    0x2d3bf3f0: lui at, 0x2b48
  6753    0x2d3bf3f4: lw at, 0x100(at)
  6754 ; TailCalljmpInd 
  6755               __ push(RA);		; to be used in generate_forward_exception()
  6756    0x2d3bf3f8: addu t7, s2, zero
  6757    0x2d3bf3fc: jr s1
  6758    0x2d3bf400: nop
  6759 */
  6760 // Rethrow exception:
  6761 // The exception oop will come in the first argument position.
  6762 // Then JUMP (not call) to the rethrow stub code.
  6763 instruct RethrowException()
  6764 %{
  6765   match(Rethrow);
  6767   // use the following format syntax
  6768   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6769   ins_encode %{
  6770     __ block_comment("@ RethrowException");
  6772     cbuf.set_insts_mark();
  6773     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6775     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6776     __ patchable_set48(T9, (jlong)OptoRuntime::rethrow_stub());
  6777     __ jr(T9);
  6778     __ nop();
  6779   %}
  6780   ins_pipe( pipe_jump );
  6781 %}
  6783 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6784   match(If cmp (CmpP op1 zero));
  6785   effect(USE labl);
  6787   ins_cost(180);
  6788   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6790   ins_encode %{
  6791     Register op1 = $op1$$Register;
  6792     Register op2 = R0;
  6793     Label    &L  = *($labl$$label);
  6794     int     flag = $cmp$$cmpcode;
  6796     switch(flag)
  6798       case 0x01: //equal
  6799 	if (&L)
  6800         	__ beq(op1, op2, L); 
  6801 	else 
  6802         	__ beq(op1, op2, (int)0); 
  6803         break;
  6804       case 0x02: //not_equal
  6805 	if (&L)
  6806         	__ bne(op1, op2, L); 
  6807 	else
  6808         	__ bne(op1, op2, (int)0); 
  6809         break;
  6810 /*
  6811       case 0x03: //above
  6812         __ sltu(AT, op2, op1);
  6813         if(&L)
  6814         	__ bne(R0, AT, L); 
  6815         else
  6816                 __ bne(R0, AT, (int)0);
  6817         break;
  6818       case 0x04: //above_equal
  6819         __ sltu(AT, op1, op2);
  6820         if(&L)
  6821        	        __ beq(AT, R0, L);
  6822         else
  6823        	        __ beq(AT, R0, (int)0);
  6824         break;
  6825       case 0x05: //below
  6826         __ sltu(AT, op1, op2);
  6827         if(&L)
  6828       		 __ bne(R0, AT, L); 
  6829         else
  6830         	 __ bne(R0, AT, (int)0);
  6831         break;
  6832       case 0x06: //below_equal
  6833         __ sltu(AT, op2, op1);
  6834         if(&L)
  6835         	__ beq(AT, R0, L);
  6836         else
  6837         	__ beq(AT, R0, (int)0);
  6838        break;
  6839 */
  6840       default:
  6841           Unimplemented();
  6843     __ nop();
  6844   %}
  6846   ins_pc_relative(1);
  6847   ins_pipe( pipe_alu_branch );
  6848 %}
  6851 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6852   match(If cmp (CmpP op1 op2));
  6853 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6854   effect(USE labl);
  6856   ins_cost(200);
  6857   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6859   ins_encode %{
  6860     Register op1 = $op1$$Register;
  6861     Register op2 = $op2$$Register;
  6862     Label    &L  = *($labl$$label);
  6863     int     flag = $cmp$$cmpcode;
  6865     switch(flag)
  6867       case 0x01: //equal
  6868 	if (&L)
  6869         	__ beq(op1, op2, L); 
  6870 	else 
  6871         	__ beq(op1, op2, (int)0); 
  6872         break;
  6873       case 0x02: //not_equal
  6874 	if (&L)
  6875         	__ bne(op1, op2, L); 
  6876 	else
  6877         	__ bne(op1, op2, (int)0); 
  6878         break;
  6879       case 0x03: //above
  6880         __ sltu(AT, op2, op1);
  6881         if(&L)
  6882         	__ bne(R0, AT, L); 
  6883         else
  6884                 __ bne(R0, AT, (int)0);
  6885         break;
  6886       case 0x04: //above_equal
  6887         __ sltu(AT, op1, op2);
  6888         if(&L)
  6889        	        __ beq(AT, R0, L);
  6890         else
  6891        	        __ beq(AT, R0, (int)0);
  6892         break;
  6893       case 0x05: //below
  6894         __ sltu(AT, op1, op2);
  6895         if(&L)
  6896       		 __ bne(R0, AT, L); 
  6897         else
  6898         	 __ bne(R0, AT, (int)0);
  6899         break;
  6900       case 0x06: //below_equal
  6901         __ sltu(AT, op2, op1);
  6902         if(&L)
  6903         	__ beq(AT, R0, L);
  6904         else
  6905         	__ beq(AT, R0, (int)0);
  6906        break;
  6907       default:
  6908           Unimplemented();
  6910     __ nop();
  6911   %}
  6913   ins_pc_relative(1);
  6914   ins_pipe( pipe_alu_branch );
  6915 %}
  6917 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6918   match(If cmp (CmpN op1 null));
  6919   effect(USE labl);
  6921   ins_cost(180);
  6922   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  6923             "BP$cmp   $labl @ cmpN_null_branch" %}
  6924   ins_encode %{
  6925     Register op1 = $op1$$Register;
  6926     Register op2 = R0;
  6927     Label    &L  = *($labl$$label);
  6928     int     flag = $cmp$$cmpcode;
  6930     switch(flag)
  6932 		case 0x01: //equal
  6933 			if (&L)
  6934 				__ beq(op1, op2, L); 
  6935 			else 
  6936 				__ beq(op1, op2, (int)0); 
  6937 			break;
  6938 		case 0x02: //not_equal
  6939 			if (&L)
  6940 				__ bne(op1, op2, L); 
  6941 			else
  6942 				__ bne(op1, op2, (int)0); 
  6943 			break;
  6944 		default:
  6945           Unimplemented();
  6947     __ nop();
  6948   %}
  6949 //TODO: pipe_branchP or create pipe_branchN LEE
  6950   ins_pc_relative(1);
  6951   ins_pipe( pipe_alu_branch );
  6952 %}
  6954 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  6955   match(If cmp (CmpN op1 op2));
  6956   effect(USE labl);
  6958   ins_cost(180);
  6959   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  6960             "BP$cmp   $labl" %}
  6961   ins_encode %{
  6962     Register op1_reg = $op1$$Register;
  6963     Register op2_reg = $op2$$Register;
  6964     Label    &L  = *($labl$$label);
  6965     int     flag = $cmp$$cmpcode;
  6967     switch(flag)
  6969 		case 0x01: //equal
  6970 			if (&L)
  6971 				__ beq(op1_reg, op2_reg, L); 
  6972 			else 
  6973 				__ beq(op1_reg, op2_reg, (int)0); 
  6974 			break;
  6975 		case 0x02: //not_equal
  6976 			if (&L)
  6977 				__ bne(op1_reg, op2_reg, L); 
  6978 			else
  6979 				__ bne(op1_reg, op2_reg, (int)0); 
  6980 			break;
  6981 		case 0x03: //above
  6982 			__ sltu(AT, op2_reg, op1_reg);
  6983 			if(&L)
  6984 				__ bne(R0, AT, L); 
  6985 			else
  6986 				__ bne(R0, AT, (int)0);
  6987 			break;
  6988 		case 0x04: //above_equal
  6989 			__ sltu(AT, op1_reg, op2_reg);
  6990 			if(&L)
  6991 				__ beq(AT, R0, L);
  6992 			else
  6993 				__ beq(AT, R0, (int)0);
  6994 			break;
  6995 		case 0x05: //below
  6996 			__ sltu(AT, op1_reg, op2_reg);
  6997 			if(&L)
  6998 				__ bne(R0, AT, L); 
  6999 			else
  7000 				__ bne(R0, AT, (int)0);
  7001 			break;
  7002 		case 0x06: //below_equal
  7003 			__ sltu(AT, op2_reg, op1_reg);
  7004 			if(&L)
  7005 				__ beq(AT, R0, L);
  7006 			else
  7007 				__ beq(AT, R0, (int)0);
  7008 			break;
  7009 		default:
  7010           Unimplemented();
  7012     __ nop();
  7013   %}
  7014   ins_pc_relative(1);
  7015   ins_pipe( pipe_alu_branch );
  7016 %}
  7018 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  7019   match( If cmp (CmpU src1 src2) );
  7020   effect(USE labl);
  7021   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  7023   ins_encode %{
  7024     Register op1 = $src1$$Register;
  7025     Register op2 = $src2$$Register;
  7026     Label     &L = *($labl$$label);
  7027     int     flag = $cmp$$cmpcode;
  7029     switch(flag)
  7031       case 0x01: //equal
  7032 	if (&L)
  7033         	__ beq(op1, op2, L); 
  7034 	else 
  7035         	__ beq(op1, op2, (int)0); 
  7036         break;
  7037       case 0x02: //not_equal
  7038 	if (&L)
  7039         	__ bne(op1, op2, L); 
  7040 	else
  7041         	__ bne(op1, op2, (int)0); 
  7042         break;
  7043       case 0x03: //above
  7044         __ sltu(AT, op2, op1);
  7045         if(&L)
  7046         	__ bne(AT, R0, L); 
  7047         else
  7048                 __ bne(AT, R0, (int)0);
  7049         break;
  7050       case 0x04: //above_equal
  7051         __ sltu(AT, op1, op2);
  7052         if(&L)
  7053         	__ beq(AT, R0, L);
  7054         else
  7055                 __ beq(AT, R0, (int)0);
  7056         break;
  7057       case 0x05: //below
  7058         __ sltu(AT, op1, op2);
  7059         if(&L)
  7060       		 __ bne(AT, R0, L); 
  7061         else
  7062         	 __ bne(AT, R0, (int)0);
  7063         break;
  7064       case 0x06: //below_equal
  7065         __ sltu(AT, op2, op1);
  7066         if(&L)
  7067         	__ beq(AT, R0, L);
  7068         else
  7069         	__ beq(AT, R0, (int)0);
  7070         break;
  7071       default:
  7072           Unimplemented();
  7074     __ nop();
  7075   %}
  7077   ins_pc_relative(1);
  7078   ins_pipe( pipe_alu_branch );
  7079 %}
  7082 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  7083   match( If cmp (CmpU src1 src2) );
  7084   effect(USE labl);
  7085   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  7087   ins_encode %{
  7088     Register op1 = $src1$$Register;
  7089     int      val = $src2$$constant;
  7090     Label     &L = *($labl$$label);
  7091     int     flag = $cmp$$cmpcode;
  7093     __ move(AT, val);
  7094     switch(flag)
  7096       case 0x01: //equal
  7097 	if (&L)
  7098         	__ beq(op1, AT, L); 
  7099 	else 
  7100         	__ beq(op1, AT, (int)0); 
  7101         break;
  7102       case 0x02: //not_equal
  7103 	if (&L)
  7104         	__ bne(op1, AT, L); 
  7105 	else
  7106         	__ bne(op1, AT, (int)0); 
  7107         break;
  7108       case 0x03: //above
  7109         __ sltu(AT, AT, op1);
  7110         if(&L)
  7111         	__ bne(R0, AT, L); 
  7112         else
  7113                 __ bne(R0, AT, (int)0);
  7114         break;
  7115       case 0x04: //above_equal
  7116         __ sltu(AT, op1, AT);
  7117         if(&L)
  7118         	__ beq(AT, R0, L);
  7119         else
  7120                 __ beq(AT, R0, (int)0);
  7121         break;
  7122       case 0x05: //below
  7123         __ sltu(AT, op1, AT);
  7124         if(&L)
  7125       		 __ bne(R0, AT, L); 
  7126         else
  7127         	 __ bne(R0, AT, (int)0);
  7128         break;
  7129       case 0x06: //below_equal
  7130         __ sltu(AT, AT, op1);
  7131         if(&L)
  7132         	__ beq(AT, R0, L);
  7133         else
  7134         	__ beq(AT, R0, (int)0);
  7135        break;
  7136       default:
  7137           Unimplemented();
  7139     __ nop();
  7140   %}
  7142   ins_pc_relative(1);
  7143   ins_pipe( pipe_alu_branch );
  7144 %}
  7146 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  7147   match( If cmp (CmpI src1 src2) );
  7148   effect(USE labl);
  7149   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  7151   ins_encode %{
  7152     Register op1 = $src1$$Register;
  7153     Register op2 = $src2$$Register;
  7154     Label     &L = *($labl$$label);
  7155     int     flag = $cmp$$cmpcode;
  7157     switch(flag)
  7159       case 0x01: //equal
  7160 	if (&L)
  7161         	__ beq(op1, op2, L); 
  7162 	else 
  7163         	__ beq(op1, op2, (int)0); 
  7164         break;
  7165       case 0x02: //not_equal
  7166 	if (&L)
  7167         	__ bne(op1, op2, L); 
  7168 	else
  7169         	__ bne(op1, op2, (int)0); 
  7170         break;
  7171       case 0x03: //above
  7172         __ slt(AT, op2, op1);
  7173         if(&L)
  7174         	__ bne(R0, AT, L); 
  7175         else
  7176                 __ bne(R0, AT, (int)0);
  7177         break;
  7178       case 0x04: //above_equal
  7179         __ slt(AT, op1, op2);
  7180         if(&L)
  7181         	__ beq(AT, R0, L);
  7182         else
  7183                 __ beq(AT, R0, (int)0);
  7184         break;
  7185       case 0x05: //below
  7186         __ slt(AT, op1, op2);
  7187         if(&L)
  7188       		 __ bne(R0, AT, L); 
  7189         else
  7190         	 __ bne(R0, AT, (int)0);
  7191         break;
  7192       case 0x06: //below_equal
  7193         __ slt(AT, op2, op1);
  7194         if(&L)
  7195         	__ beq(AT, R0, L);
  7196         else
  7197         	__ beq(AT, R0, (int)0);
  7198        break;
  7199       default:
  7200           Unimplemented();
  7202     __ nop();
  7203   %}
  7205   ins_pc_relative(1);
  7206   ins_pipe( pipe_alu_branch );
  7207 %}
  7209 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7210   match( If cmp (CmpI src1 src2) );
  7211   effect(USE labl);
  7212   ins_cost(170);
  7213   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7215   ins_encode %{
  7216     Register op1 = $src1$$Register;
  7217 //    int      val = $src2$$constant;
  7218     Label     &L =  *($labl$$label);
  7219     int     flag = $cmp$$cmpcode;
  7221     //__ move(AT, val);
  7222     switch(flag)
  7224       case 0x01: //equal
  7225 	if (&L)
  7226         	__ beq(op1, R0, L); 
  7227 	else 
  7228         	__ beq(op1, R0, (int)0); 
  7229         break;
  7230       case 0x02: //not_equal
  7231 	if (&L)
  7232         	__ bne(op1, R0, L); 
  7233 	else
  7234         	__ bne(op1, R0, (int)0); 
  7235         break;
  7236       case 0x03: //greater
  7237         if(&L)
  7238                __ bgtz(op1, L);
  7239         else
  7240                __ bgtz(op1, (int)0);
  7241         break;
  7242       case 0x04: //greater_equal
  7243         if(&L)
  7244                __ bgez(op1, L);
  7245         else
  7246                __ bgez(op1, (int)0);
  7247         break;
  7248       case 0x05: //less
  7249         if(&L)
  7250                 __ bltz(op1, L);
  7251         else
  7252                 __ bltz(op1, (int)0);
  7253         break;
  7254       case 0x06: //less_equal
  7255         if(&L)
  7256                __ blez(op1, L);
  7257         else
  7258                __ blez(op1, (int)0);
  7259        break;
  7260       default:
  7261           Unimplemented();
  7263     __ nop();
  7264   %}
  7266   ins_pc_relative(1);
  7267   ins_pipe( pipe_alu_branch );
  7268 %}
  7271 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7272   match( If cmp (CmpI src1 src2) );
  7273   effect(USE labl);
  7274   ins_cost(200);
  7275   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7277   ins_encode %{
  7278     Register op1 = $src1$$Register;
  7279     int      val = $src2$$constant;
  7280     Label     &L =  *($labl$$label);
  7281     int     flag = $cmp$$cmpcode;
  7283     __ move(AT, val);
  7284     switch(flag)
  7286       case 0x01: //equal
  7287 	if (&L)
  7288         	__ beq(op1, AT, L); 
  7289 	else 
  7290         	__ beq(op1, AT, (int)0); 
  7291         break;
  7292       case 0x02: //not_equal
  7293 	if (&L)
  7294         	__ bne(op1, AT, L); 
  7295 	else
  7296         	__ bne(op1, AT, (int)0); 
  7297         break;
  7298       case 0x03: //greater
  7299         __ slt(AT, AT, op1);
  7300         if(&L)
  7301         	__ bne(R0, AT, L); 
  7302         else
  7303                 __ bne(R0, AT, (int)0);
  7304         break;
  7305       case 0x04: //greater_equal
  7306         __ slt(AT, op1, AT);
  7307         if(&L)
  7308         	__ beq(AT, R0, L);
  7309         else
  7310                 __ beq(AT, R0, (int)0);
  7311         break;
  7312       case 0x05: //less
  7313         __ slt(AT, op1, AT);
  7314         if(&L)
  7315       		 __ bne(R0, AT, L); 
  7316         else
  7317         	 __ bne(R0, AT, (int)0);
  7318         break;
  7319       case 0x06: //less_equal
  7320         __ slt(AT, AT, op1);
  7321         if(&L)
  7322         	__ beq(AT, R0, L);
  7323         else
  7324         	__ beq(AT, R0, (int)0);
  7325        break;
  7326       default:
  7327           Unimplemented();
  7329     __ nop();
  7330   %}
  7332   ins_pc_relative(1);
  7333   ins_pipe( pipe_alu_branch );
  7334 %}
  7336 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7337   match( If cmp (CmpU src1 zero) );
  7338   effect(USE labl);
  7339   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7341   ins_encode %{
  7342     Register op1 = $src1$$Register;
  7343     Label     &L = *($labl$$label);
  7344     int     flag = $cmp$$cmpcode;
  7346     switch(flag)
  7348       case 0x01: //equal
  7349        if (&L)
  7350                __ beq(op1, R0, L); 
  7351        else 
  7352                __ beq(op1, R0, (int)0); 
  7353         break;
  7354       case 0x02: //not_equal
  7355        if (&L)
  7356                __ bne(op1, R0, L); 
  7357        else
  7358                __ bne(op1, R0, (int)0); 
  7359         break;
  7360       case 0x03: //above
  7361         if(&L)
  7362                __ bne(R0, op1, L); 
  7363         else
  7364                 __ bne(R0, op1, (int)0);
  7365         break;
  7366       case 0x04: //above_equal
  7367         if(&L)
  7368                __ beq(R0, R0, L);
  7369         else
  7370                 __ beq(R0, R0, (int)0);
  7371         break;
  7372       case 0x05: //below
  7373         return;
  7374         break;
  7375       case 0x06: //below_equal
  7376         if(&L)
  7377                __ beq(op1, R0, L);
  7378         else
  7379                __ beq(op1, R0, (int)0);
  7380        break;
  7381       default:
  7382           Unimplemented();
  7384     __ nop();
  7385   %}
  7387   ins_pc_relative(1);
  7388   ins_pipe( pipe_alu_branch );
  7389 %}
  7392 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7393   match( If cmp (CmpU src1 src2) );
  7394   effect(USE labl);
  7395   ins_cost(180);
  7396   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7398   ins_encode %{
  7399     Register op1 = $src1$$Register;
  7400     int      val = $src2$$constant;
  7401     Label     &L = *($labl$$label);
  7402     int     flag = $cmp$$cmpcode;
  7404     switch(flag)
  7406       case 0x01: //equal
  7407         __ move(AT, val);
  7408        if (&L)
  7409                __ beq(op1, AT, L); 
  7410        else 
  7411                __ beq(op1, AT, (int)0); 
  7412         break;
  7413       case 0x02: //not_equal
  7414         __ move(AT, val);
  7415        if (&L)
  7416                __ bne(op1, AT, L); 
  7417        else
  7418                __ bne(op1, AT, (int)0); 
  7419         break;
  7420       case 0x03: //above
  7421         __ move(AT, val);
  7422         __ sltu(AT, AT, op1);
  7423         if(&L)
  7424                __ bne(R0, AT, L); 
  7425         else
  7426                 __ bne(R0, AT, (int)0);
  7427         break;
  7428       case 0x04: //above_equal
  7429         __ sltiu(AT, op1, val);
  7430         if(&L)
  7431                __ beq(AT, R0, L);
  7432         else
  7433                 __ beq(AT, R0, (int)0);
  7434         break;
  7435       case 0x05: //below
  7436         __ sltiu(AT, op1, val);
  7437         if(&L)
  7438                 __ bne(R0, AT, L); 
  7439         else
  7440                 __ bne(R0, AT, (int)0);
  7441         break;
  7442       case 0x06: //below_equal
  7443         __ move(AT, val);
  7444         __ sltu(AT, AT, op1);
  7445         if(&L)
  7446                __ beq(AT, R0, L);
  7447         else
  7448                __ beq(AT, R0, (int)0);
  7449        break;
  7450       default:
  7451           Unimplemented();
  7453     __ nop();
  7454   %}
  7456   ins_pc_relative(1);
  7457   ins_pipe( pipe_alu_branch );
  7458 %}
  7461 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7462   match( If cmp (CmpL src1 src2) );
  7463   effect(USE labl);
  7464   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7465   ins_cost(250);
  7467   ins_encode %{
  7468     Register opr1_reg = as_Register($src1$$reg);
  7469     Register opr2_reg = as_Register($src2$$reg);
  7471     Label   &target = *($labl$$label);
  7472     int     flag = $cmp$$cmpcode;
  7474     switch(flag)
  7476       case 0x01: //equal
  7477         if (&target) 
  7478 			__ beq(opr1_reg, opr2_reg, target);
  7479         else
  7480 			__ beq(opr1_reg, opr2_reg, (int)0);
  7481         __ delayed()->nop();
  7482         break;
  7484       case 0x02: //not_equal
  7485         if(&target)
  7486            __ bne(opr1_reg, opr2_reg, target);
  7487         else
  7488            __ bne(opr1_reg, opr2_reg, (int)0);
  7489         __ delayed()->nop();
  7490         break;
  7492       case 0x03: //greater
  7493         __ slt(AT, opr2_reg, opr1_reg);
  7494         if(&target)
  7495            __ bne(AT, R0, target);
  7496         else
  7497            __ bne(AT, R0, (int)0);
  7498         __ delayed()->nop();
  7499         break;
  7501       case 0x04: //greater_equal
  7502         __ slt(AT, opr1_reg, opr2_reg);
  7503         if(&target)
  7504            __ beq(AT, R0, target);
  7505         else
  7506            __ beq(AT, R0, (int)0);
  7507         __ delayed()->nop();
  7509         break;
  7511       case 0x05: //less
  7512         __ slt(AT, opr1_reg, opr2_reg);
  7513         if(&target)
  7514            __ bne(AT, R0, target);
  7515         else
  7516            __ bne(AT, R0, (int)0);
  7517         __ delayed()->nop();
  7519         break;
  7521       case 0x06: //less_equal
  7522        __ slt(AT, opr2_reg, opr1_reg);
  7524        if(&target)
  7525           __ beq(AT, R0, target);
  7526        else
  7527           __ beq(AT, R0, (int)0);
  7528        __ delayed()->nop();
  7530        break;
  7532       default:
  7533           Unimplemented();
  7535   %}
  7538   ins_pc_relative(1);
  7539   ins_pipe( pipe_alu_branch );
  7540 %}
  7542 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7543   match( If cmp (CmpL src1 src2) );
  7544   effect(USE labl);
  7545   ins_cost(180);
  7546   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7548   ins_encode %{
  7549     Register op1 = $src1$$Register;
  7550     int      val = $src2$$constant;
  7551     Label     &L =  *($labl$$label);
  7552     int     flag = $cmp$$cmpcode;
  7554     __ daddiu(AT, op1, -1 * val);
  7555     switch(flag)
  7557       case 0x01: //equal
  7558        if (&L)
  7559                __ beq(R0, AT, L); 
  7560        else 
  7561                __ beq(R0, AT, (int)0); 
  7562         break;
  7563       case 0x02: //not_equal
  7564        if (&L)
  7565                __ bne(R0, AT, L); 
  7566        else
  7567                __ bne(R0, AT, (int)0); 
  7568         break;
  7569       case 0x03: //greater
  7570         if(&L)
  7571                __ bgtz(AT, L); 
  7572         else
  7573                 __ bgtz(AT, (int)0);
  7574         break;
  7575       case 0x04: //greater_equal
  7576         if(&L)
  7577                __ bgez(AT, L);
  7578         else
  7579                 __ bgez(AT, (int)0);
  7580         break;
  7581       case 0x05: //less
  7582         if(&L)
  7583                 __ bltz(AT, L); 
  7584         else
  7585                 __ bltz(AT, (int)0);
  7586         break;
  7587       case 0x06: //less_equal
  7588         if(&L)
  7589                __ blez(AT, L);
  7590         else
  7591                __ blez(AT, (int)0);
  7592        break;
  7593       default:
  7594           Unimplemented();
  7596     __ nop();
  7597   %}
  7599   ins_pc_relative(1);
  7600   ins_pipe( pipe_alu_branch );
  7601 %}
  7604 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7605   match( If cmp (CmpI src1 src2) );
  7606   effect(USE labl);
  7607   ins_cost(180);
  7608   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7610   ins_encode %{
  7611     Register op1 = $src1$$Register;
  7612     int      val = $src2$$constant;
  7613     Label     &L =  *($labl$$label);
  7614     int     flag = $cmp$$cmpcode;
  7616     __ addiu32(AT, op1, -1 * val);
  7617     switch(flag)
  7619       case 0x01: //equal
  7620        if (&L)
  7621                __ beq(R0, AT, L); 
  7622        else 
  7623                __ beq(R0, AT, (int)0); 
  7624         break;
  7625       case 0x02: //not_equal
  7626        if (&L)
  7627                __ bne(R0, AT, L); 
  7628        else
  7629                __ bne(R0, AT, (int)0); 
  7630         break;
  7631       case 0x03: //greater
  7632         if(&L)
  7633                __ bgtz(AT, L); 
  7634         else
  7635                 __ bgtz(AT, (int)0);
  7636         break;
  7637       case 0x04: //greater_equal
  7638         if(&L)
  7639                __ bgez(AT, L);
  7640         else
  7641                 __ bgez(AT, (int)0);
  7642         break;
  7643       case 0x05: //less
  7644         if(&L)
  7645                 __ bltz(AT, L); 
  7646         else
  7647                 __ bltz(AT, (int)0);
  7648         break;
  7649       case 0x06: //less_equal
  7650         if(&L)
  7651                __ blez(AT, L);
  7652         else
  7653                __ blez(AT, (int)0);
  7654        break;
  7655       default:
  7656           Unimplemented();
  7658     __ nop();
  7659   %}
  7661   ins_pc_relative(1);
  7662   ins_pipe( pipe_alu_branch );
  7663 %}
  7665 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7666   match( If cmp (CmpL src1 zero) );
  7667   effect(USE labl);
  7668   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7669   ins_cost(150);
  7671   ins_encode %{
  7672     Register opr1_reg = as_Register($src1$$reg);
  7673     Label   &target = *($labl$$label);
  7674     int     flag = $cmp$$cmpcode;
  7676     switch(flag)
  7678       case 0x01: //equal
  7679         if (&target) 
  7680            __ beq(opr1_reg, R0, target);
  7681         else
  7682            __ beq(opr1_reg, R0, int(0));
  7683         break;
  7685       case 0x02: //not_equal
  7686         if(&target)
  7687            __ bne(opr1_reg, R0, target);
  7688         else
  7689            __ bne(opr1_reg, R0, (int)0);
  7690         break;
  7692       case 0x03: //greater
  7693         if(&target)
  7694            __ bgtz(opr1_reg, target);
  7695         else
  7696            __ bgtz(opr1_reg, (int)0);
  7697        break;
  7699       case 0x04: //greater_equal
  7700         if(&target)
  7701            __ bgez(opr1_reg, target);
  7702         else
  7703            __ bgez(opr1_reg, (int)0);
  7704         break;
  7706       case 0x05: //less
  7707         __ slt(AT, opr1_reg, R0);
  7708         if(&target)
  7709            __ bne(AT, R0, target);
  7710         else
  7711            __ bne(AT, R0, (int)0);
  7712         break;
  7714       case 0x06: //less_equal
  7715         if (&target) 
  7716            __ blez(opr1_reg, target);
  7717         else
  7718            __ blez(opr1_reg, int(0));
  7719         break;
  7721       default:
  7722           Unimplemented();
  7724 	__ delayed()->nop();
  7725   %}
  7728   ins_pc_relative(1);
  7729   ins_pipe( pipe_alu_branch );
  7730 %}
  7733 //FIXME
  7734 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7735   match( If cmp (CmpF src1 src2) );
  7736   effect(USE labl);
  7737   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7739   ins_encode %{
  7740     FloatRegister reg_op1 = $src1$$FloatRegister;
  7741     FloatRegister reg_op2 = $src2$$FloatRegister;
  7742     Label     &L =  *($labl$$label);
  7743     int     flag = $cmp$$cmpcode;
  7745     switch(flag)
  7747       case 0x01: //equal
  7748         __ c_eq_s(reg_op1, reg_op2);
  7749 	if (&L)
  7750                 __ bc1t(L);
  7751 	else 
  7752                 __ bc1t((int)0);
  7753         break;
  7754       case 0x02: //not_equal
  7755         __ c_eq_s(reg_op1, reg_op2);
  7756 	if (&L)
  7757                 __ bc1f(L);
  7758 	else
  7759                 __ bc1f((int)0);
  7760         break;
  7761       case 0x03: //greater
  7762         __ c_ule_s(reg_op1, reg_op2);
  7763         if(&L)
  7764                 __ bc1f(L);
  7765         else
  7766                 __ bc1f((int)0);
  7767         break;
  7768       case 0x04: //greater_equal
  7769         __ c_ult_s(reg_op1, reg_op2);
  7770         if(&L)
  7771                 __ bc1f(L);
  7772         else
  7773                 __ bc1f((int)0);
  7774         break;
  7775       case 0x05: //less
  7776         __ c_ult_s(reg_op1, reg_op2);
  7777         if(&L)
  7778                 __ bc1t(L);
  7779         else
  7780                 __ bc1t((int)0);
  7781         break;
  7782       case 0x06: //less_equal
  7783         __ c_ule_s(reg_op1, reg_op2);
  7784         if(&L)
  7785                 __ bc1t(L);
  7786         else
  7787                 __ bc1t((int)0);
  7788        break;
  7789       default:
  7790           Unimplemented();
  7792     __ nop();
  7793   %}
  7795   ins_pc_relative(1);
  7796   ins_pipe(pipe_slow);
  7797 %}
  7799 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7800   match( If cmp (CmpD src1 src2) );
  7801   effect(USE labl);
  7802   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7804   ins_encode %{
  7805     FloatRegister reg_op1 = $src1$$FloatRegister;
  7806     FloatRegister reg_op2 = $src2$$FloatRegister;
  7807     Label     &L =  *($labl$$label);
  7808     int     flag = $cmp$$cmpcode;
  7810     switch(flag)
  7812       case 0x01: //equal
  7813         __ c_eq_d(reg_op1, reg_op2);
  7814 	if (&L)
  7815                 __ bc1t(L);
  7816 	else 
  7817                 __ bc1t((int)0);
  7818         break;
  7819       case 0x02: //not_equal
  7820 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7821         __ c_eq_d(reg_op1, reg_op2);
  7822 	if (&L)
  7823                 __ bc1f(L);
  7824 	else
  7825                 __ bc1f((int)0);
  7826         break;
  7827       case 0x03: //greater
  7828         __ c_ule_d(reg_op1, reg_op2);
  7829         if(&L)
  7830                 __ bc1f(L);
  7831         else
  7832                 __ bc1f((int)0);
  7833         break;
  7834       case 0x04: //greater_equal
  7835         __ c_ult_d(reg_op1, reg_op2);
  7836         if(&L)
  7837                 __ bc1f(L);
  7838         else
  7839                 __ bc1f((int)0);
  7840         break;
  7841       case 0x05: //less
  7842         __ c_ult_d(reg_op1, reg_op2);
  7843         if(&L)
  7844                 __ bc1t(L);
  7845         else
  7846                 __ bc1t((int)0);
  7847         break;
  7848       case 0x06: //less_equal
  7849         __ c_ule_d(reg_op1, reg_op2);
  7850         if(&L)
  7851                 __ bc1t(L);
  7852         else
  7853                 __ bc1t((int)0);
  7854        break;
  7855       default:
  7856           Unimplemented();
  7858     __ nop();
  7859   %}
  7861   ins_pc_relative(1);
  7862   ins_pipe(pipe_slow);
  7863 %}
  7866 // Call Runtime Instruction
  7867 instruct CallRuntimeDirect(method meth) %{
  7868   match(CallRuntime );
  7869   effect(USE meth);
  7871   ins_cost(300);
  7872   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7873   ins_encode( Java_To_Runtime( meth ) );
  7874   ins_pipe( pipe_slow );
  7875   ins_alignment(16);
  7876 %}
  7880 //------------------------MemBar Instructions-------------------------------
  7881 //Memory barrier flavors
  7883 instruct membar_acquire() %{
  7884   match(MemBarAcquire);
  7885   ins_cost(0);
  7887   size(0);
  7888   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7889   ins_encode();
  7890   ins_pipe(empty);
  7891 %}
  7893 instruct load_fence() %{
  7894   match(LoadFence);
  7895   ins_cost(400);
  7897   format %{ "MEMBAR @ load_fence" %}
  7898   ins_encode %{
  7899     __ sync(); 
  7900   %}
  7901   ins_pipe(pipe_slow);
  7902 %}
  7904 instruct membar_acquire_lock()
  7905 %{
  7906   match(MemBarAcquireLock);
  7907   ins_cost(0);
  7909   size(0);
  7910   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7911   ins_encode();
  7912   ins_pipe(empty);
  7913 %}
  7915 instruct membar_release() %{
  7916   match(MemBarRelease);
  7917   ins_cost(0);
  7919   size(0);
  7920   format %{ "MEMBAR-release (empty) @ membar_release" %}
  7921   ins_encode();
  7922   ins_pipe(empty);
  7923 %}
  7925 instruct store_fence() %{
  7926   match(StoreFence);
  7927   ins_cost(400);
  7929   format %{ "MEMBAR @ store_fence" %}
  7931   ins_encode %{
  7932     __ sync(); 
  7933   %}
  7935   ins_pipe(pipe_slow);
  7936 %}
  7938 instruct membar_release_lock()
  7939 %{
  7940   match(MemBarReleaseLock);
  7941   ins_cost(0);
  7943   size(0);
  7944   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  7945   ins_encode();
  7946   ins_pipe(empty);
  7947 %}
  7950 instruct membar_volatile() %{
  7951   match(MemBarVolatile);
  7952   ins_cost(400);
  7954   format %{ "MEMBAR-volatile" %}
  7955   ins_encode %{
  7956     if( !os::is_MP() ) return;     // Not needed on single CPU
  7957     __ sync();
  7959   %}
  7960   ins_pipe(pipe_slow);
  7961 %}
  7963 instruct unnecessary_membar_volatile() %{
  7964   match(MemBarVolatile);
  7965   predicate(Matcher::post_store_load_barrier(n));
  7966   ins_cost(0);
  7968   size(0);
  7969   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  7970   ins_encode( );
  7971   ins_pipe(empty);
  7972 %}
  7974 instruct membar_storestore() %{
  7975   match(MemBarStoreStore);
  7977   ins_cost(0);
  7978   size(0);
  7979   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  7980   ins_encode( );
  7981   ins_pipe(empty);
  7982 %}
  7984 //----------Move Instructions--------------------------------------------------
  7985 instruct castX2P(mRegP dst, mRegL src) %{
  7986   match(Set dst (CastX2P src));
  7987   format %{ "castX2P  $dst, $src @ castX2P" %}
  7988   ins_encode %{
  7989     Register src = $src$$Register;
  7990     Register dst = $dst$$Register;
  7992 	if(src != dst)
  7993 		__ move(dst, src);
  7994   %}
  7995   ins_cost(10);
  7996   ins_pipe( ialu_regI_mov );
  7997 %}
  7999 instruct castP2X(mRegL dst, mRegP src ) %{
  8000   match(Set dst (CastP2X src));
  8002   format %{ "mov    $dst, $src\t  #@castP2X" %}
  8003   ins_encode %{
  8004     Register src = $src$$Register;
  8005     Register dst = $dst$$Register;
  8007 	if(src != dst)
  8008 		__ move(dst, src);    
  8009   %}
  8010   ins_pipe( ialu_regI_mov );
  8011 %}
  8013 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  8014   match(Set dst (MoveF2I src));
  8015   effect(DEF dst, USE src);
  8016   ins_cost(85);
  8017   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  8018   ins_encode %{
  8019     Register dst = as_Register($dst$$reg);
  8020     FloatRegister src = as_FloatRegister($src$$reg);
  8022     __ mfc1(dst, src);
  8023   %}
  8024   ins_pipe( pipe_slow );
  8025 %}
  8027 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  8028   match(Set dst (MoveI2F src));
  8029   effect(DEF dst, USE src);
  8030   ins_cost(85);
  8031   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  8032   ins_encode %{
  8033     Register src = as_Register($src$$reg);
  8034     FloatRegister dst = as_FloatRegister($dst$$reg);
  8036     __ mtc1(src, dst);
  8037   %}
  8038   ins_pipe( pipe_slow );
  8039 %}
  8041 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  8042   match(Set dst (MoveD2L src));
  8043   effect(DEF dst, USE src);
  8044   ins_cost(85);
  8045   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  8046   ins_encode %{
  8047     Register dst = as_Register($dst$$reg);
  8048     FloatRegister src = as_FloatRegister($src$$reg);
  8050     __ dmfc1(dst, src);
  8051   %}
  8052   ins_pipe( pipe_slow );
  8053 %}
  8055 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  8056   match(Set dst (MoveL2D src));
  8057   effect(DEF dst, USE src);
  8058   ins_cost(85);
  8059   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  8060   ins_encode %{
  8061     FloatRegister dst = as_FloatRegister($dst$$reg);
  8062     Register src = as_Register($src$$reg);
  8064     __ dmtc1(src, dst);
  8065   %}
  8066   ins_pipe( pipe_slow );
  8067 %}
  8069 //----------Conditional Move---------------------------------------------------
  8070 // Conditional move
  8071 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8072   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8073   ins_cost(80);
  8074   format %{
  8075              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  8076              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  8077          %}
  8079   ins_encode %{
  8080     Register op1 = $tmp1$$Register;
  8081     Register op2 = $tmp2$$Register;
  8082     Register dst = $dst$$Register;
  8083     Register src = $src$$Register;
  8084     int     flag = $cop$$cmpcode;
  8086     switch(flag)
  8088       case 0x01: //equal
  8089         __ subu32(AT, op1, op2);
  8090         __ movz(dst, src, AT);
  8091         break;
  8093       case 0x02: //not_equal
  8094         __ subu32(AT, op1, op2);
  8095         __ movn(dst, src, AT);
  8096         break;
  8098       case 0x03: //great
  8099         __ slt(AT, op2, op1);
  8100         __ movn(dst, src, AT);
  8101         break;
  8103       case 0x04: //great_equal
  8104         __ slt(AT, op1, op2);
  8105         __ movz(dst, src, AT);
  8106         break;
  8108       case 0x05: //less
  8109         __ slt(AT, op1, op2);
  8110         __ movn(dst, src, AT);
  8111         break;
  8113       case 0x06: //less_equal
  8114         __ slt(AT, op2, op1);
  8115         __ movz(dst, src, AT);
  8116        break;
  8118       default:
  8119           Unimplemented();
  8121   %}
  8123   ins_pipe( pipe_slow );
  8124 %}
  8126 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8127   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8128   ins_cost(80);
  8129   format %{
  8130              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  8131              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  8132          %}
  8133   ins_encode %{
  8134     Register op1 = $tmp1$$Register;
  8135     Register op2 = $tmp2$$Register;
  8136     Register dst = $dst$$Register;
  8137     Register src = $src$$Register;
  8138     int     flag = $cop$$cmpcode;
  8140     switch(flag)
  8142       case 0x01: //equal
  8143         __ subu(AT, op1, op2);
  8144         __ movz(dst, src, AT);
  8145         break;
  8147       case 0x02: //not_equal
  8148         __ subu(AT, op1, op2);
  8149         __ movn(dst, src, AT);
  8150         break;
  8152       case 0x03: //above
  8153         __ sltu(AT, op2, op1);
  8154         __ movn(dst, src, AT);
  8155         break;
  8157       case 0x04: //above_equal
  8158         __ sltu(AT, op1, op2);
  8159         __ movz(dst, src, AT);
  8160         break;
  8162       case 0x05: //below
  8163         __ sltu(AT, op1, op2);
  8164         __ movn(dst, src, AT);
  8165         break;
  8167       case 0x06: //below_equal
  8168         __ sltu(AT, op2, op1);
  8169         __ movz(dst, src, AT);
  8170        break;
  8172       default:
  8173           Unimplemented();
  8175   %}
  8177   ins_pipe( pipe_slow );
  8178 %}
  8180 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8181   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8182   ins_cost(80);
  8183   format %{
  8184              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8185              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8186          %}
  8187   ins_encode %{
  8188     Register op1 = $tmp1$$Register;
  8189     Register op2 = $tmp2$$Register;
  8190     Register dst = $dst$$Register;
  8191     Register src = $src$$Register;
  8192     int     flag = $cop$$cmpcode;
  8194     switch(flag)
  8196       case 0x01: //equal
  8197         __ subu32(AT, op1, op2);
  8198         __ movz(dst, src, AT);
  8199         break;
  8201       case 0x02: //not_equal
  8202         __ subu32(AT, op1, op2);
  8203         __ movn(dst, src, AT);
  8204         break;
  8206       case 0x03: //above
  8207         __ sltu(AT, op2, op1);
  8208         __ movn(dst, src, AT);
  8209         break;
  8211       case 0x04: //above_equal
  8212         __ sltu(AT, op1, op2);
  8213         __ movz(dst, src, AT);
  8214         break;
  8216       case 0x05: //below
  8217         __ sltu(AT, op1, op2);
  8218         __ movn(dst, src, AT);
  8219         break;
  8221       case 0x06: //below_equal
  8222         __ sltu(AT, op2, op1);
  8223         __ movz(dst, src, AT);
  8224        break;
  8226       default:
  8227           Unimplemented();
  8229   %}
  8231   ins_pipe( pipe_slow );
  8232 %}
  8234 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8235   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8236   ins_cost(80);
  8237   format %{
  8238              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8239              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8240          %}
  8241   ins_encode %{
  8242     Register op1 = $tmp1$$Register;
  8243     Register op2 = $tmp2$$Register;
  8244     Register dst = $dst$$Register;
  8245     Register src = $src$$Register;
  8246     int     flag = $cop$$cmpcode;
  8248     switch(flag)
  8250       case 0x01: //equal
  8251         __ subu32(AT, op1, op2);
  8252         __ movz(dst, src, AT);
  8253         break;
  8255       case 0x02: //not_equal
  8256         __ subu32(AT, op1, op2);
  8257         __ movn(dst, src, AT);
  8258         break;
  8260       case 0x03: //above
  8261         __ sltu(AT, op2, op1);
  8262         __ movn(dst, src, AT);
  8263         break;
  8265       case 0x04: //above_equal
  8266         __ sltu(AT, op1, op2);
  8267         __ movz(dst, src, AT);
  8268         break;
  8270       case 0x05: //below
  8271         __ sltu(AT, op1, op2);
  8272         __ movn(dst, src, AT);
  8273         break;
  8275       case 0x06: //below_equal
  8276         __ sltu(AT, op2, op1);
  8277         __ movz(dst, src, AT);
  8278        break;
  8280       default:
  8281           Unimplemented();
  8283   %}
  8285   ins_pipe( pipe_slow );
  8286 %}
  8288 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8289   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8290   ins_cost(80);
  8291   format %{
  8292              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8293              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8294          %}
  8295   ins_encode %{
  8296     Register op1 = $tmp1$$Register;
  8297     Register op2 = $tmp2$$Register;
  8298     Register dst = $dst$$Register;
  8299     Register src = $src$$Register;
  8300     int     flag = $cop$$cmpcode;
  8302     switch(flag)
  8304       case 0x01: //equal
  8305         __ subu(AT, op1, op2);
  8306         __ movz(dst, src, AT);
  8307         break;
  8309       case 0x02: //not_equal
  8310         __ subu(AT, op1, op2);
  8311         __ movn(dst, src, AT);
  8312         break;
  8314       case 0x03: //above
  8315         __ sltu(AT, op2, op1);
  8316         __ movn(dst, src, AT);
  8317         break;
  8319       case 0x04: //above_equal
  8320         __ sltu(AT, op1, op2);
  8321         __ movz(dst, src, AT);
  8322         break;
  8324       case 0x05: //below
  8325         __ sltu(AT, op1, op2);
  8326         __ movn(dst, src, AT);
  8327         break;
  8329       case 0x06: //below_equal
  8330         __ sltu(AT, op2, op1);
  8331         __ movz(dst, src, AT);
  8332        break;
  8334       default:
  8335           Unimplemented();
  8337   %}
  8339   ins_pipe( pipe_slow );
  8340 %}
  8342 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8343   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8344   ins_cost(80);
  8345   format %{
  8346              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8347              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8348          %}
  8349   ins_encode %{
  8350     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8351     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8352     Register dst = as_Register($dst$$reg);
  8353     Register src = as_Register($src$$reg);
  8355     int     flag = $cop$$cmpcode;
  8357     switch(flag)
  8359       case 0x01: //equal
  8360         __ c_eq_d(reg_op1, reg_op2);
  8361         __ movt(dst, src);
  8362         break;
  8363       case 0x02: //not_equal
  8364         __ c_eq_d(reg_op1, reg_op2);
  8365         __ movf(dst, src);
  8366         break;
  8367       case 0x03: //greater
  8368         __ c_ole_d(reg_op1, reg_op2);
  8369         __ movf(dst, src);
  8370         break;
  8371       case 0x04: //greater_equal
  8372         __ c_olt_d(reg_op1, reg_op2);
  8373         __ movf(dst, src);
  8374         break;
  8375       case 0x05: //less
  8376         __ c_ult_d(reg_op1, reg_op2);
  8377         __ movt(dst, src);
  8378         break;
  8379       case 0x06: //less_equal
  8380         __ c_ule_d(reg_op1, reg_op2);
  8381         __ movt(dst, src);
  8382         break;
  8383       default:
  8384           Unimplemented();
  8386   %}
  8388   ins_pipe( pipe_slow );
  8389 %}
  8392 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8393   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8394   ins_cost(80);
  8395   format %{
  8396              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8397              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8398          %}
  8399   ins_encode %{
  8400     Register op1 = $tmp1$$Register;
  8401     Register op2 = $tmp2$$Register;
  8402     Register dst = $dst$$Register;
  8403     Register src = $src$$Register;
  8404     int     flag = $cop$$cmpcode;
  8406     switch(flag)
  8408       case 0x01: //equal
  8409         __ subu32(AT, op1, op2);
  8410         __ movz(dst, src, AT);
  8411         break;
  8413       case 0x02: //not_equal
  8414         __ subu32(AT, op1, op2);
  8415         __ movn(dst, src, AT);
  8416         break;
  8418       case 0x03: //above
  8419         __ sltu(AT, op2, op1);
  8420         __ movn(dst, src, AT);
  8421         break;
  8423       case 0x04: //above_equal
  8424         __ sltu(AT, op1, op2);
  8425         __ movz(dst, src, AT);
  8426         break;
  8428       case 0x05: //below
  8429         __ sltu(AT, op1, op2);
  8430         __ movn(dst, src, AT);
  8431         break;
  8433       case 0x06: //below_equal
  8434         __ sltu(AT, op2, op1);
  8435         __ movz(dst, src, AT);
  8436        break;
  8438       default:
  8439           Unimplemented();
  8441   %}
  8443   ins_pipe( pipe_slow );
  8444 %}
  8447 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8448   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8449   ins_cost(80);
  8450   format %{
  8451              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8452              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8453          %}
  8454   ins_encode %{
  8455     Register op1 = $tmp1$$Register;
  8456     Register op2 = $tmp2$$Register;
  8457     Register dst = $dst$$Register;
  8458     Register src = $src$$Register;
  8459     int     flag = $cop$$cmpcode;
  8461     switch(flag)
  8463       case 0x01: //equal
  8464         __ subu(AT, op1, op2);
  8465         __ movz(dst, src, AT);
  8466         break;
  8468       case 0x02: //not_equal
  8469         __ subu(AT, op1, op2);
  8470         __ movn(dst, src, AT);
  8471         break;
  8473       case 0x03: //above
  8474         __ sltu(AT, op2, op1);
  8475         __ movn(dst, src, AT);
  8476         break;
  8478       case 0x04: //above_equal
  8479         __ sltu(AT, op1, op2);
  8480         __ movz(dst, src, AT);
  8481         break;
  8483       case 0x05: //below
  8484         __ sltu(AT, op1, op2);
  8485         __ movn(dst, src, AT);
  8486         break;
  8488       case 0x06: //below_equal
  8489         __ sltu(AT, op2, op1);
  8490         __ movz(dst, src, AT);
  8491        break;
  8493       default:
  8494           Unimplemented();
  8496   %}
  8498   ins_pipe( pipe_slow );
  8499 %}
  8501 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8502   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8503   ins_cost(80);
  8504   format %{
  8505              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8506              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8507          %}
  8508   ins_encode %{
  8509     Register opr1 = as_Register($tmp1$$reg);
  8510     Register opr2 = as_Register($tmp2$$reg);
  8511     Register dst     = $dst$$Register;
  8512     Register src     = $src$$Register;
  8513     int     flag = $cop$$cmpcode;
  8515     switch(flag)
  8517       case 0x01: //equal
  8518         __ subu(AT, opr1, opr2);
  8519         __ movz(dst, src, AT);
  8520         break;
  8522       case 0x02: //not_equal
  8523         __ subu(AT, opr1, opr2);
  8524         __ movn(dst, src, AT);
  8525         break;
  8527       case 0x03: //greater
  8528 	__ slt(AT, opr2, opr1);
  8529         __ movn(dst, src, AT);
  8530         break;
  8532       case 0x04: //greater_equal
  8533         __ slt(AT, opr1, opr2);
  8534         __ movz(dst, src, AT);
  8535         break;
  8537       case 0x05: //less
  8538         __ slt(AT, opr1, opr2);
  8539         __ movn(dst, src, AT);
  8540         break;
  8542       case 0x06: //less_equal
  8543         __ slt(AT, opr2, opr1);
  8544         __ movz(dst, src, AT);
  8545         break;
  8547       default:
  8548           Unimplemented();
  8550   %}
  8552   ins_pipe( pipe_slow );
  8553 %}
  8555 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8556   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8557   ins_cost(80);
  8558   format %{
  8559              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8560              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8561          %}
  8562   ins_encode %{
  8563     Register opr1 = as_Register($tmp1$$reg);
  8564     Register opr2 = as_Register($tmp2$$reg);
  8565     Register dst     = $dst$$Register;
  8566     Register src     = $src$$Register;
  8567     int     flag = $cop$$cmpcode;
  8569     switch(flag)
  8571       case 0x01: //equal
  8572         __ subu(AT, opr1, opr2);
  8573         __ movz(dst, src, AT);
  8574         break;
  8576       case 0x02: //not_equal
  8577         __ subu(AT, opr1, opr2);
  8578         __ movn(dst, src, AT);
  8579         break;
  8581       case 0x03: //greater
  8582         __ slt(AT, opr2, opr1);
  8583         __ movn(dst, src, AT);
  8584         break;
  8586       case 0x04: //greater_equal
  8587         __ slt(AT, opr1, opr2);
  8588         __ movz(dst, src, AT);
  8589         break;
  8591       case 0x05: //less
  8592         __ slt(AT, opr1, opr2);
  8593         __ movn(dst, src, AT);
  8594         break;
  8596       case 0x06: //less_equal
  8597         __ slt(AT, opr2, opr1);
  8598         __ movz(dst, src, AT);
  8599         break;
  8601       default:
  8602           Unimplemented();
  8604   %}
  8606   ins_pipe( pipe_slow );
  8607 %}
  8609 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8610   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8611   ins_cost(80);
  8612   format %{
  8613              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8614              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8615          %}
  8616   ins_encode %{
  8617     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8618     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8619     Register dst = as_Register($dst$$reg);
  8620     Register src = as_Register($src$$reg);
  8622     int     flag = $cop$$cmpcode;
  8624     switch(flag)
  8626       case 0x01: //equal
  8627         __ c_eq_d(reg_op1, reg_op2);
  8628         __ movt(dst, src);
  8629         break;
  8630       case 0x02: //not_equal
  8631 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8632         __ c_eq_d(reg_op1, reg_op2);
  8633         __ movf(dst, src);
  8634         break;
  8635       case 0x03: //greater
  8636         __ c_ole_d(reg_op1, reg_op2);
  8637         __ movf(dst, src);
  8638         break;
  8639       case 0x04: //greater_equal
  8640         __ c_olt_d(reg_op1, reg_op2);
  8641         __ movf(dst, src);
  8642         break;
  8643       case 0x05: //less
  8644         __ c_ult_d(reg_op1, reg_op2);
  8645         __ movt(dst, src);
  8646         break;
  8647       case 0x06: //less_equal
  8648         __ c_ule_d(reg_op1, reg_op2);
  8649         __ movt(dst, src);
  8650         break;
  8651       default:
  8652           Unimplemented();
  8654   %}
  8656   ins_pipe( pipe_slow );
  8657 %}
  8660 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8661   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8662   ins_cost(80);
  8663   format %{
  8664              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8665              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8666          %}
  8667   ins_encode %{
  8668     Register op1 = $tmp1$$Register;
  8669     Register op2 = $tmp2$$Register;
  8670     Register dst = $dst$$Register;
  8671     Register src = $src$$Register;
  8672     int     flag = $cop$$cmpcode;
  8674     switch(flag)
  8676       case 0x01: //equal
  8677         __ subu(AT, op1, op2);
  8678         __ movz(dst, src, AT);
  8679         break;
  8681       case 0x02: //not_equal
  8682         __ subu(AT, op1, op2);
  8683         __ movn(dst, src, AT);
  8684         break;
  8686       case 0x03: //above
  8687         __ sltu(AT, op2, op1);
  8688         __ movn(dst, src, AT);
  8689         break;
  8691       case 0x04: //above_equal
  8692         __ sltu(AT, op1, op2);
  8693         __ movz(dst, src, AT);
  8694         break;
  8696       case 0x05: //below
  8697         __ sltu(AT, op1, op2);
  8698         __ movn(dst, src, AT);
  8699         break;
  8701       case 0x06: //below_equal
  8702         __ sltu(AT, op2, op1);
  8703         __ movz(dst, src, AT);
  8704        break;
  8706       default:
  8707           Unimplemented();
  8709   %}
  8711   ins_pipe( pipe_slow );
  8712 %}
  8714 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8715   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8716   ins_cost(80);
  8717   format %{
  8718              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8719              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8720          %}
  8721   ins_encode %{
  8722     Register op1 = $tmp1$$Register;
  8723     Register op2 = $tmp2$$Register;
  8724     Register dst = $dst$$Register;
  8725     Register src = $src$$Register;
  8726     int     flag = $cop$$cmpcode;
  8728     switch(flag)
  8730       case 0x01: //equal
  8731         __ subu32(AT, op1, op2);
  8732         __ movz(dst, src, AT);
  8733         break;
  8735       case 0x02: //not_equal
  8736         __ subu32(AT, op1, op2);
  8737         __ movn(dst, src, AT);
  8738         break;
  8740       case 0x03: //above
  8741         __ slt(AT, op2, op1);
  8742         __ movn(dst, src, AT);
  8743         break;
  8745       case 0x04: //above_equal
  8746         __ slt(AT, op1, op2);
  8747         __ movz(dst, src, AT);
  8748         break;
  8750       case 0x05: //below
  8751         __ slt(AT, op1, op2);
  8752         __ movn(dst, src, AT);
  8753         break;
  8755       case 0x06: //below_equal
  8756         __ slt(AT, op2, op1);
  8757         __ movz(dst, src, AT);
  8758        break;
  8760       default:
  8761           Unimplemented();
  8763   %}
  8765   ins_pipe( pipe_slow );
  8766 %}
  8768 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8769   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8770   ins_cost(80);
  8771   format %{
  8772              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8773              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8774          %}
  8775   ins_encode %{
  8776     Register op1 = $tmp1$$Register;
  8777     Register op2 = $tmp2$$Register;
  8778     Register dst = $dst$$Register;
  8779     Register src = $src$$Register;
  8780     int     flag = $cop$$cmpcode;
  8782     switch(flag)
  8784       case 0x01: //equal
  8785         __ subu32(AT, op1, op2);
  8786         __ movz(dst, src, AT);
  8787         break;
  8789       case 0x02: //not_equal
  8790         __ subu32(AT, op1, op2);
  8791         __ movn(dst, src, AT);
  8792         break;
  8794       case 0x03: //above
  8795         __ slt(AT, op2, op1);
  8796         __ movn(dst, src, AT);
  8797         break;
  8799       case 0x04: //above_equal
  8800         __ slt(AT, op1, op2);
  8801         __ movz(dst, src, AT);
  8802         break;
  8804       case 0x05: //below
  8805         __ slt(AT, op1, op2);
  8806         __ movn(dst, src, AT);
  8807         break;
  8809       case 0x06: //below_equal
  8810         __ slt(AT, op2, op1);
  8811         __ movz(dst, src, AT);
  8812        break;
  8814       default:
  8815           Unimplemented();
  8817   %}
  8819   ins_pipe( pipe_slow );
  8820 %}
  8823 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8824   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8825   ins_cost(80);
  8826   format %{
  8827              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8828              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8829          %}
  8831   ins_encode %{
  8832     Register op1 = $tmp1$$Register;
  8833     Register op2 = $tmp2$$Register;
  8834     Register dst = as_Register($dst$$reg);
  8835     Register src = as_Register($src$$reg);
  8836     int     flag = $cop$$cmpcode;
  8838     switch(flag)
  8840       case 0x01: //equal
  8841         __ subu32(AT, op1, op2);
  8842         __ movz(dst, src, AT);
  8843         break;
  8845       case 0x02: //not_equal
  8846         __ subu32(AT, op1, op2);
  8847         __ movn(dst, src, AT);
  8848         break;
  8850       case 0x03: //great
  8851         __ slt(AT, op2, op1);
  8852         __ movn(dst, src, AT);
  8853         break;
  8855       case 0x04: //great_equal
  8856         __ slt(AT, op1, op2);
  8857         __ movz(dst, src, AT);
  8858         break;
  8860       case 0x05: //less
  8861         __ slt(AT, op1, op2);
  8862         __ movn(dst, src, AT);
  8863         break;
  8865       case 0x06: //less_equal
  8866         __ slt(AT, op2, op1);
  8867         __ movz(dst, src, AT);
  8868        break;
  8870       default:
  8871           Unimplemented();
  8873   %}
  8875   ins_pipe( pipe_slow );
  8876 %}
  8878 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8879   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8880   ins_cost(80);
  8881   format %{
  8882              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8883              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8884          %}
  8885   ins_encode %{
  8886     Register opr1 = as_Register($tmp1$$reg);
  8887     Register opr2 = as_Register($tmp2$$reg);
  8888     Register dst  = as_Register($dst$$reg);
  8889     Register src  = as_Register($src$$reg);
  8890     int     flag = $cop$$cmpcode;
  8892     switch(flag)
  8894       case 0x01: //equal
  8895         __ subu(AT, opr1, opr2);
  8896         __ movz(dst, src, AT);
  8897         break;
  8899       case 0x02: //not_equal
  8900         __ subu(AT, opr1, opr2);
  8901         __ movn(dst, src, AT);
  8902         break;
  8904       case 0x03: //greater
  8905         __ slt(AT, opr2, opr1);
  8906         __ movn(dst, src, AT);
  8907         break;
  8909       case 0x04: //greater_equal
  8910         __ slt(AT, opr1, opr2);
  8911         __ movz(dst, src, AT);
  8912         break;
  8914       case 0x05: //less
  8915         __ slt(AT, opr1, opr2);
  8916         __ movn(dst, src, AT);
  8917         break;
  8919       case 0x06: //less_equal
  8920        __ slt(AT, opr2, opr1);
  8921        __ movz(dst, src, AT);
  8922        break;
  8924       default:
  8925           Unimplemented();
  8927   %}
  8929   ins_pipe( pipe_slow );
  8930 %}
  8932 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8933   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8934   ins_cost(80);
  8935   format %{
  8936              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  8937              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  8938          %}
  8939   ins_encode %{
  8940     Register op1 = $tmp1$$Register;
  8941     Register op2 = $tmp2$$Register;
  8942     Register dst = $dst$$Register;
  8943     Register src = $src$$Register;
  8944     int     flag = $cop$$cmpcode;
  8946     switch(flag)
  8948       case 0x01: //equal
  8949         __ subu32(AT, op1, op2);
  8950         __ movz(dst, src, AT);
  8951         break;
  8953       case 0x02: //not_equal
  8954         __ subu32(AT, op1, op2);
  8955         __ movn(dst, src, AT);
  8956         break;
  8958       case 0x03: //above
  8959         __ sltu(AT, op2, op1);
  8960         __ movn(dst, src, AT);
  8961         break;
  8963       case 0x04: //above_equal
  8964         __ sltu(AT, op1, op2);
  8965         __ movz(dst, src, AT);
  8966         break;
  8968       case 0x05: //below
  8969         __ sltu(AT, op1, op2);
  8970         __ movn(dst, src, AT);
  8971         break;
  8973       case 0x06: //below_equal
  8974         __ sltu(AT, op2, op1);
  8975         __ movz(dst, src, AT);
  8976         break;
  8978       default:
  8979           Unimplemented();
  8981   %}
  8983   ins_pipe( pipe_slow );
  8984 %}
  8987 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8988   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8989   ins_cost(80);
  8990   format %{
  8991              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  8992              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  8993          %}
  8994   ins_encode %{
  8995     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8996     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8997     Register dst = as_Register($dst$$reg);
  8998     Register src = as_Register($src$$reg);
  9000     int     flag = $cop$$cmpcode;
  9002     switch(flag)
  9004       case 0x01: //equal
  9005         __ c_eq_d(reg_op1, reg_op2);
  9006         __ movt(dst, src);
  9007         break;
  9008       case 0x02: //not_equal
  9009         __ c_eq_d(reg_op1, reg_op2);
  9010         __ movf(dst, src);
  9011         break;
  9012       case 0x03: //greater
  9013         __ c_ole_d(reg_op1, reg_op2);
  9014         __ movf(dst, src);
  9015         break;
  9016       case 0x04: //greater_equal
  9017         __ c_olt_d(reg_op1, reg_op2);
  9018         __ movf(dst, src);
  9019         break;
  9020       case 0x05: //less
  9021         __ c_ult_d(reg_op1, reg_op2);
  9022         __ movt(dst, src);
  9023         break;
  9024       case 0x06: //less_equal
  9025         __ c_ule_d(reg_op1, reg_op2);
  9026         __ movt(dst, src);
  9027         break;
  9028       default:
  9029           Unimplemented();
  9031   %}
  9033   ins_pipe( pipe_slow );
  9034 %}
  9036 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9037   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9038   ins_cost(200);
  9039   format %{
  9040              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  9041              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  9042          %}
  9043   ins_encode %{
  9044     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9045     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9046     FloatRegister dst = as_FloatRegister($dst$$reg);
  9047     FloatRegister src = as_FloatRegister($src$$reg);
  9049     int     flag = $cop$$cmpcode;
  9051     Label L;
  9053     switch(flag)
  9055       case 0x01: //equal
  9056         __ c_eq_d(reg_op1, reg_op2);
  9057         __ bc1f(L);
  9058         __ nop();
  9059         __ mov_d(dst, src);
  9060         __ bind(L); 
  9061         break;
  9062       case 0x02: //not_equal
  9063 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  9064         __ c_eq_d(reg_op1, reg_op2);
  9065         __ bc1t(L);
  9066         __ nop();
  9067         __ mov_d(dst, src);
  9068         __ bind(L); 
  9069         break;
  9070       case 0x03: //greater
  9071         __ c_ole_d(reg_op1, reg_op2);
  9072         __ bc1t(L);
  9073         __ nop();
  9074         __ mov_d(dst, src);
  9075         __ bind(L); 
  9076         break;
  9077       case 0x04: //greater_equal
  9078         __ c_olt_d(reg_op1, reg_op2);
  9079         __ bc1t(L);
  9080         __ nop();
  9081         __ mov_d(dst, src);
  9082         __ bind(L); 
  9083         break;
  9084       case 0x05: //less
  9085         __ c_ult_d(reg_op1, reg_op2);
  9086         __ bc1f(L);
  9087         __ nop();
  9088         __ mov_d(dst, src);
  9089         __ bind(L); 
  9090         break;
  9091       case 0x06: //less_equal
  9092         __ c_ule_d(reg_op1, reg_op2);
  9093         __ bc1f(L);
  9094         __ nop();
  9095         __ mov_d(dst, src);
  9096         __ bind(L); 
  9097         break;
  9098       default:
  9099           Unimplemented();
  9101   %}
  9103   ins_pipe( pipe_slow );
  9104 %}
  9106 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9107   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9108   ins_cost(200);
  9109   format %{
  9110              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  9111              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  9112          %}
  9114   ins_encode %{
  9115     Register op1 = $tmp1$$Register;
  9116     Register op2 = $tmp2$$Register;
  9117     FloatRegister dst = as_FloatRegister($dst$$reg);
  9118     FloatRegister src = as_FloatRegister($src$$reg);
  9119     int     flag = $cop$$cmpcode;
  9120     Label      L; 
  9122     switch(flag)
  9124       case 0x01: //equal
  9125        	__ bne(op1, op2, L); 
  9126         __ nop();
  9127         __ mov_s(dst, src);
  9128         __ bind(L);
  9129         break;
  9130       case 0x02: //not_equal
  9131        	__ beq(op1, op2, L); 
  9132         __ nop();
  9133         __ mov_s(dst, src);
  9134         __ bind(L);
  9135         break;
  9136       case 0x03: //great
  9137         __ slt(AT, op2, op1);
  9138        	__ beq(AT, R0, L);
  9139         __ nop();
  9140         __ mov_s(dst, src);
  9141         __ bind(L);
  9142         break;
  9143       case 0x04: //great_equal
  9144         __ slt(AT, op1, op2);
  9145         __ bne(AT, R0, L); 
  9146         __ nop();
  9147         __ mov_s(dst, src);
  9148         __ bind(L);
  9149         break;
  9150       case 0x05: //less
  9151         __ slt(AT, op1, op2);
  9152        	__ beq(AT, R0, L);
  9153         __ nop();
  9154         __ mov_s(dst, src);
  9155         __ bind(L);
  9156         break;
  9157       case 0x06: //less_equal
  9158         __ slt(AT, op2, op1);
  9159        	__ bne(AT, R0, L); 
  9160         __ nop();
  9161         __ mov_s(dst, src);
  9162         __ bind(L);
  9163        break;
  9164       default:
  9165           Unimplemented();
  9167   %}
  9169   ins_pipe( pipe_slow );
  9170 %}
  9172 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9173   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9174   ins_cost(200);
  9175   format %{
  9176              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9177              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9178          %}
  9180   ins_encode %{
  9181     Register op1 = $tmp1$$Register;
  9182     Register op2 = $tmp2$$Register;
  9183     FloatRegister dst = as_FloatRegister($dst$$reg);
  9184     FloatRegister src = as_FloatRegister($src$$reg);
  9185     int     flag = $cop$$cmpcode;
  9186     Label      L; 
  9188     switch(flag)
  9190       case 0x01: //equal
  9191        	__ bne(op1, op2, L); 
  9192         __ nop();
  9193         __ mov_d(dst, src);
  9194         __ bind(L);
  9195         break;
  9196       case 0x02: //not_equal
  9197        	__ beq(op1, op2, L); 
  9198         __ nop();
  9199         __ mov_d(dst, src);
  9200         __ bind(L);
  9201         break;
  9202       case 0x03: //great
  9203         __ slt(AT, op2, op1);
  9204        	__ beq(AT, R0, L);
  9205         __ nop();
  9206         __ mov_d(dst, src);
  9207         __ bind(L);
  9208         break;
  9209       case 0x04: //great_equal
  9210         __ slt(AT, op1, op2);
  9211         __ bne(AT, R0, L); 
  9212         __ nop();
  9213         __ mov_d(dst, src);
  9214         __ bind(L);
  9215         break;
  9216       case 0x05: //less
  9217         __ slt(AT, op1, op2);
  9218        	__ beq(AT, R0, L);
  9219         __ nop();
  9220         __ mov_d(dst, src);
  9221         __ bind(L);
  9222         break;
  9223       case 0x06: //less_equal
  9224         __ slt(AT, op2, op1);
  9225        	__ bne(AT, R0, L); 
  9226         __ nop();
  9227         __ mov_d(dst, src);
  9228         __ bind(L);
  9229        break;
  9230       default:
  9231           Unimplemented();
  9233   %}
  9235   ins_pipe( pipe_slow );
  9236 %}
  9238 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9239   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9240   ins_cost(200);
  9241   format %{
  9242              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9243              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9244          %}
  9246   ins_encode %{
  9247     Register op1 = $tmp1$$Register;
  9248     Register op2 = $tmp2$$Register;
  9249     FloatRegister dst = as_FloatRegister($dst$$reg);
  9250     FloatRegister src = as_FloatRegister($src$$reg);
  9251     int     flag = $cop$$cmpcode;
  9252     Label      L; 
  9254     switch(flag)
  9256       case 0x01: //equal
  9257        	__ bne(op1, op2, L); 
  9258         __ nop();
  9259         __ mov_d(dst, src);
  9260         __ bind(L);
  9261         break;
  9262       case 0x02: //not_equal
  9263        	__ beq(op1, op2, L); 
  9264         __ nop();
  9265         __ mov_d(dst, src);
  9266         __ bind(L);
  9267         break;
  9268       case 0x03: //great
  9269         __ slt(AT, op2, op1);
  9270        	__ beq(AT, R0, L);
  9271         __ nop();
  9272         __ mov_d(dst, src);
  9273         __ bind(L);
  9274         break;
  9275       case 0x04: //great_equal
  9276         __ slt(AT, op1, op2);
  9277         __ bne(AT, R0, L); 
  9278         __ nop();
  9279         __ mov_d(dst, src);
  9280         __ bind(L);
  9281         break;
  9282       case 0x05: //less
  9283         __ slt(AT, op1, op2);
  9284        	__ beq(AT, R0, L);
  9285         __ nop();
  9286         __ mov_d(dst, src);
  9287         __ bind(L);
  9288         break;
  9289       case 0x06: //less_equal
  9290         __ slt(AT, op2, op1);
  9291        	__ bne(AT, R0, L); 
  9292         __ nop();
  9293         __ mov_d(dst, src);
  9294         __ bind(L);
  9295        break;
  9296       default:
  9297           Unimplemented();
  9299   %}
  9301   ins_pipe( pipe_slow );
  9302 %}
  9304 //FIXME
  9305 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9306   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9307   ins_cost(80);
  9308   format %{
  9309              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9310              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9311          %}
  9313   ins_encode %{
  9314     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9315     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9316     Register dst = $dst$$Register;
  9317     Register src = $src$$Register;
  9318     int     flag = $cop$$cmpcode;
  9320     switch(flag)
  9322       case 0x01: //equal
  9323         __ c_eq_s(reg_op1, reg_op2);
  9324         __ movt(dst, src);
  9325         break;
  9326       case 0x02: //not_equal
  9327         __ c_eq_s(reg_op1, reg_op2);
  9328         __ movf(dst, src);
  9329         break;
  9330       case 0x03: //greater
  9331         __ c_ole_s(reg_op1, reg_op2);
  9332         __ movf(dst, src);
  9333         break;
  9334       case 0x04: //greater_equal
  9335         __ c_olt_s(reg_op1, reg_op2);
  9336         __ movf(dst, src);
  9337         break;
  9338       case 0x05: //less
  9339         __ c_ult_s(reg_op1, reg_op2);
  9340         __ movt(dst, src);
  9341         break;
  9342       case 0x06: //less_equal
  9343         __ c_ule_s(reg_op1, reg_op2);
  9344         __ movt(dst, src);
  9345        break;
  9346       default:
  9347           Unimplemented();
  9349   %}
  9350   ins_pipe( pipe_slow );
  9351 %}
  9353 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9354   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9355   ins_cost(200);
  9356   format %{
  9357              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9358              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9359          %}
  9361   ins_encode %{
  9362     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9363     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9364     FloatRegister dst = $dst$$FloatRegister;
  9365     FloatRegister src = $src$$FloatRegister;
  9366     Label  L;
  9367     int    flag = $cop$$cmpcode;
  9369     switch(flag)
  9371       case 0x01: //equal
  9372         __ c_eq_s(reg_op1, reg_op2);
  9373         __ bc1f(L);
  9374         __ nop();
  9375         __ mov_s(dst, src);
  9376         __ bind(L);
  9377         break;
  9378       case 0x02: //not_equal
  9379         __ c_eq_s(reg_op1, reg_op2);
  9380         __ bc1t(L);
  9381         __ nop();
  9382         __ mov_s(dst, src);
  9383         __ bind(L);
  9384         break;
  9385       case 0x03: //greater
  9386         __ c_ole_s(reg_op1, reg_op2);
  9387         __ bc1t(L);
  9388         __ nop();
  9389         __ mov_s(dst, src);
  9390         __ bind(L);
  9391         break;
  9392       case 0x04: //greater_equal
  9393         __ c_olt_s(reg_op1, reg_op2);
  9394         __ bc1t(L);
  9395         __ nop();
  9396         __ mov_s(dst, src);
  9397         __ bind(L);
  9398         break;
  9399       case 0x05: //less
  9400         __ c_ult_s(reg_op1, reg_op2);
  9401         __ bc1f(L);
  9402         __ nop();
  9403         __ mov_s(dst, src);
  9404         __ bind(L);
  9405         break;
  9406       case 0x06: //less_equal
  9407         __ c_ule_s(reg_op1, reg_op2);
  9408         __ bc1f(L);
  9409         __ nop();
  9410         __ mov_s(dst, src);
  9411         __ bind(L);
  9412        break;
  9413       default:
  9414           Unimplemented();
  9416   %}
  9417   ins_pipe( pipe_slow );
  9418 %}
  9420 // Manifest a CmpL result in an integer register.  Very painful.
  9421 // This is the test to avoid.
  9422 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9423   match(Set dst (CmpL3 src1 src2));
  9424   ins_cost(1000);
  9425   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9426   ins_encode %{
  9427     Register opr1 = as_Register($src1$$reg);
  9428     Register opr2 = as_Register($src2$$reg);
  9429     Register dst  = as_Register($dst$$reg);
  9431     Label Done;
  9433     __ subu(AT, opr1, opr2);
  9434     __ bltz(AT, Done);
  9435     __ delayed()->daddiu(dst, R0, -1);
  9437     __ move(dst, 1);
  9438     __ movz(dst, R0, AT);
  9440     __ bind(Done);
  9441   %}
  9442   ins_pipe( pipe_slow );
  9443 %}
  9445 //
  9446 // less_rsult     = -1 
  9447 // greater_result =  1
  9448 // equal_result   =  0 
  9449 // nan_result     = -1
  9450 //
  9451 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9452   match(Set dst (CmpF3 src1 src2));
  9453   ins_cost(1000);
  9454   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9455   ins_encode %{
  9456     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9457     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9458     Register dst = as_Register($dst$$reg);
  9460     Label Done;
  9462     __ c_ult_s(src1, src2);
  9463     __ bc1t(Done);
  9464     __ delayed()->daddiu(dst, R0, -1);
  9466     __ c_eq_s(src1, src2);
  9467     __ move(dst, 1);
  9468     __ movt(dst, R0);
  9470     __ bind(Done);
  9471   %}
  9472   ins_pipe( pipe_slow );
  9473 %}
  9475 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9476   match(Set dst (CmpD3 src1 src2));
  9477   ins_cost(1000);
  9478   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9479   ins_encode %{
  9480     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9481     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9482     Register dst = as_Register($dst$$reg);
  9484     Label Done;
  9486     __ c_ult_d(src1, src2);
  9487     __ bc1t(Done);
  9488     __ delayed()->daddiu(dst, R0, -1);
  9490     __ c_eq_d(src1, src2);
  9491     __ move(dst, 1);
  9492     __ movt(dst, R0);
  9494     __ bind(Done);
  9495   %}
  9496   ins_pipe( pipe_slow );
  9497 %}
  9499 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9500   match(Set dummy (ClearArray cnt base));
  9501   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9502   ins_encode %{
  9503     //Assume cnt is the number of bytes in an array to be cleared,
  9504     //and base points to the starting address of the array.
  9505     Register base = $base$$Register;
  9506     Register num  = $cnt$$Register;
  9507     Label Loop, done;
  9509     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9510     __ move(T9, num);	/* T9 = words */
  9511     __ beq(T9, R0, done);
  9512     __ nop();
  9513     __ move(AT, base);
  9515     __ bind(Loop);
  9516     __ sd(R0, Address(AT, 0));
  9517     __ daddi(AT, AT, wordSize);
  9518     __ daddi(T9, T9, -1);
  9519     __ bne(T9, R0, Loop);
  9520     __ delayed()->nop();
  9521     __ bind(done);
  9522   %}
  9523   ins_pipe( pipe_slow );
  9524 %}
  9526 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9527   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9528   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9530   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9531   ins_encode %{
  9532     // Get the first character position in both strings
  9533     //         [8] char array, [12] offset, [16] count 
  9534     Register str1   = $str1$$Register;
  9535     Register str2   = $str2$$Register;
  9536     Register cnt1   = $cnt1$$Register;
  9537     Register cnt2   = $cnt2$$Register;
  9538     Register result = $result$$Register;
  9540     Label L, Loop, haveResult, done;
  9542    // compute the and difference of lengths (in result)
  9543    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9545    // compute the shorter length (in cnt1)
  9546    __ slt(AT, cnt2, cnt1);
  9547    __ movn(cnt1, cnt2, AT);
  9549    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9550    __ bind(Loop);                        // Loop begin
  9551    __ beq(cnt1, R0, done);
  9552    __ delayed()->lhu(AT, str1, 0);;
  9554    // compare current character
  9555    __ lhu(cnt2, str2, 0);
  9556    __ bne(AT, cnt2, haveResult);
  9557    __ delayed()->addi(str1, str1, 2);
  9558    __ addi(str2, str2, 2);
  9559    __ b(Loop);
  9560    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9562    __ bind(haveResult);
  9563    __ subu(result, AT, cnt2);
  9565    __ bind(done);
  9566   %}
  9568   ins_pipe( pipe_slow );
  9569 %}
  9571 // intrinsic optimization
  9572 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9573   match(Set result (StrEquals (Binary str1 str2) cnt));
  9574   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9576   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9577   ins_encode %{
  9578     // Get the first character position in both strings
  9579     //         [8] char array, [12] offset, [16] count 
  9580     Register str1   = $str1$$Register;
  9581     Register str2   = $str2$$Register;
  9582     Register cnt    = $cnt$$Register;
  9583     Register tmp    = $temp$$Register;
  9584     Register result = $result$$Register;
  9586     Label    Loop, done;
  9589    __ beq(str1, str2, done);  // same char[] ?
  9590    __ daddiu(result, R0, 1);
  9592    __ bind(Loop);             // Loop begin
  9593    __ beq(cnt, R0, done);
  9594    __ daddiu(result, R0, 1); // count == 0
  9596    // compare current character
  9597    __ lhu(AT, str1, 0);;
  9598    __ lhu(tmp, str2, 0);
  9599    __ bne(AT, tmp, done);
  9600    __ delayed()->daddi(result, R0, 0);
  9601    __ addi(str1, str1, 2);
  9602    __ addi(str2, str2, 2);
  9603    __ b(Loop);
  9604    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9606    __ bind(done);
  9607   %}
  9609   ins_pipe( pipe_slow );
  9610 %}
  9612 //----------Arithmetic Instructions-------------------------------------------
  9613 //----------Addition Instructions---------------------------------------------
  9614 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9615   match(Set dst (AddI src1 src2));
  9617   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9618   ins_encode %{
  9619     Register  dst = $dst$$Register;
  9620     Register src1 = $src1$$Register;
  9621     Register src2 = $src2$$Register;
  9622     __ addu32(dst, src1, src2);
  9623   %}
  9624   ins_pipe( ialu_regI_regI );
  9625 %}
  9627 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9628   match(Set dst (AddI src1 src2));
  9630   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9631   ins_encode %{
  9632     Register  dst = $dst$$Register;
  9633     Register src1 = $src1$$Register;
  9634     int       imm = $src2$$constant;
  9636     if(Assembler::is_simm16(imm)) {
  9637        __ addiu32(dst, src1, imm);
  9638     } else {
  9639        __ move(AT, imm);
  9640        __ addu32(dst, src1, AT);
  9642   %}
  9643   ins_pipe( ialu_regI_regI );
  9644 %}
  9646 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9647   match(Set dst (AddP src1 src2));
  9649   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9651   ins_encode %{
  9652     Register  dst = $dst$$Register;
  9653     Register src1 = $src1$$Register;
  9654     Register src2 = $src2$$Register;
  9655     __ daddu(dst, src1, src2);  
  9656   %}
  9658   ins_pipe( ialu_regI_regI );
  9659 %}
  9661 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9662   match(Set dst (AddP src1 (ConvI2L src2)));
  9664   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9666   ins_encode %{
  9667     Register  dst = $dst$$Register;
  9668     Register src1 = $src1$$Register;
  9669     Register src2 = $src2$$Register;
  9670     __ daddu(dst, src1, src2);  
  9671   %}
  9673   ins_pipe( ialu_regI_regI );
  9674 %}
  9676 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL src2) %{
  9677   match(Set dst (AddP src1 src2));
  9679   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9680   ins_encode %{
  9681     Register src1 = $src1$$Register;
  9682     long      src2 = $src2$$constant;
  9683     Register  dst = $dst$$Register;
  9685     if(Assembler::is_simm16(src2)) {
  9686        __ daddiu(dst, src1, src2);
  9687     } else {
  9688        __ set64(AT, src2);
  9689        __ daddu(dst, src1, AT);
  9691   %}
  9692   ins_pipe( ialu_regI_imm16 );
  9693 %}
  9695 // Add Long Register with Register
  9696 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9697   match(Set dst (AddL src1 src2));
  9698   ins_cost(200);
  9699   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9701   ins_encode %{
  9702     Register dst_reg = as_Register($dst$$reg);
  9703     Register src1_reg = as_Register($src1$$reg);
  9704     Register src2_reg = as_Register($src2$$reg);
  9706     __ daddu(dst_reg, src1_reg, src2_reg);
  9707   %}
  9709   ins_pipe( ialu_regL_regL );
  9710 %}
  9712 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9713 %{
  9714   match(Set dst (AddL src1 src2));
  9716   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9717   ins_encode %{
  9718     Register dst_reg  = as_Register($dst$$reg);
  9719     Register src1_reg = as_Register($src1$$reg);
  9720     int      src2_imm = $src2$$constant;
  9722     __ daddiu(dst_reg, src1_reg, src2_imm);
  9723   %}
  9725   ins_pipe( ialu_regL_regL );
  9726 %}
  9728 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9729 %{
  9730   match(Set dst (AddL (ConvI2L src1) src2));
  9732   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9733   ins_encode %{
  9734     Register dst_reg  = as_Register($dst$$reg);
  9735     Register src1_reg = as_Register($src1$$reg);
  9736     int      src2_imm = $src2$$constant;
  9738     __ daddiu(dst_reg, src1_reg, src2_imm);
  9739   %}
  9741   ins_pipe( ialu_regL_regL );
  9742 %}
  9744 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9745   match(Set dst (AddL (ConvI2L src1) src2));
  9746   ins_cost(200);
  9747   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9749   ins_encode %{
  9750     Register dst_reg = as_Register($dst$$reg);
  9751     Register src1_reg = as_Register($src1$$reg);
  9752     Register src2_reg = as_Register($src2$$reg);
  9754     __ daddu(dst_reg, src1_reg, src2_reg);
  9755   %}
  9757   ins_pipe( ialu_regL_regL );
  9758 %}
  9760 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9761   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9762   ins_cost(200);
  9763   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9765   ins_encode %{
  9766     Register dst_reg = as_Register($dst$$reg);
  9767     Register src1_reg = as_Register($src1$$reg);
  9768     Register src2_reg = as_Register($src2$$reg);
  9770     __ daddu(dst_reg, src1_reg, src2_reg);
  9771   %}
  9773   ins_pipe( ialu_regL_regL );
  9774 %}
  9776 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9777   match(Set dst (AddL src1 (ConvI2L src2)));
  9778   ins_cost(200);
  9779   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9781   ins_encode %{
  9782     Register dst_reg = as_Register($dst$$reg);
  9783     Register src1_reg = as_Register($src1$$reg);
  9784     Register src2_reg = as_Register($src2$$reg);
  9786     __ daddu(dst_reg, src1_reg, src2_reg);
  9787   %}
  9789   ins_pipe( ialu_regL_regL );
  9790 %}
  9792 //----------Subtraction Instructions-------------------------------------------
  9793 // Integer Subtraction Instructions
  9794 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9795   match(Set dst (SubI src1 src2));
  9796   ins_cost(100);
  9798   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9799   ins_encode %{
  9800     Register  dst = $dst$$Register;
  9801     Register src1 = $src1$$Register;
  9802     Register src2 = $src2$$Register;
  9803     __ subu32(dst, src1, src2);
  9804   %}
  9805   ins_pipe( ialu_regI_regI );
  9806 %}
  9808 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9809   match(Set dst (SubI src1 src2));
  9810   ins_cost(80);
  9812   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9813   ins_encode %{
  9814     Register  dst = $dst$$Register;
  9815     Register src1 = $src1$$Register;
  9816     __ addiu32(dst, src1, -1 * $src2$$constant);
  9817   %}
  9818   ins_pipe( ialu_regI_regI );
  9819 %}
  9821 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9822   match(Set dst (SubI zero src));
  9823   ins_cost(80);
  9825   format %{ "neg    $dst, $src #@negI_Reg" %}
  9826   ins_encode %{
  9827     Register  dst = $dst$$Register;
  9828     Register  src = $src$$Register;
  9829     __ subu32(dst, R0, src);
  9830   %}
  9831   ins_pipe( ialu_regI_regI );
  9832 %}
  9834 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9835   match(Set dst (SubL zero src));
  9836   ins_cost(80);
  9838   format %{ "neg    $dst, $src #@negL_Reg" %}
  9839   ins_encode %{
  9840     Register  dst = $dst$$Register;
  9841     Register  src = $src$$Register;
  9842     __ subu(dst, R0, src);
  9843   %}
  9844   ins_pipe( ialu_regI_regI );
  9845 %}
  9847 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9848   match(Set dst (SubL src1 src2));
  9849   ins_cost(80);
  9851   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9852   ins_encode %{
  9853     Register  dst = $dst$$Register;
  9854     Register src1 = $src1$$Register;
  9855     __ daddiu(dst, src1, -1 * $src2$$constant);
  9856   %}
  9857   ins_pipe( ialu_regI_regI );
  9858 %}
  9860 // Subtract Long Register with Register.
  9861 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9862   match(Set dst (SubL src1 src2));
  9863   ins_cost(100);
  9864   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9865   ins_encode %{
  9866     Register dst  = as_Register($dst$$reg);
  9867     Register src1 = as_Register($src1$$reg);
  9868     Register src2 = as_Register($src2$$reg);
  9870     __ subu(dst, src1, src2);
  9871   %}
  9872   ins_pipe( ialu_regL_regL );
  9873 %}
  9875 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9876   match(Set dst (SubL src1 (ConvI2L src2)));
  9877   ins_cost(100);
  9878   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9879   ins_encode %{
  9880     Register dst  = as_Register($dst$$reg);
  9881     Register src1 = as_Register($src1$$reg);
  9882     Register src2 = as_Register($src2$$reg);
  9884     __ subu(dst, src1, src2);
  9885   %}
  9886   ins_pipe( ialu_regL_regL );
  9887 %}
  9889 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9890   match(Set dst (SubL (ConvI2L src1) src2));
  9891   ins_cost(200);
  9892   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9893   ins_encode %{
  9894     Register dst  = as_Register($dst$$reg);
  9895     Register src1 = as_Register($src1$$reg);
  9896     Register src2 = as_Register($src2$$reg);
  9898     __ subu(dst, src1, src2);
  9899   %}
  9900   ins_pipe( ialu_regL_regL );
  9901 %}
  9903 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9904   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9905   ins_cost(200);
  9906   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9907   ins_encode %{
  9908     Register dst  = as_Register($dst$$reg);
  9909     Register src1 = as_Register($src1$$reg);
  9910     Register src2 = as_Register($src2$$reg);
  9912     __ subu(dst, src1, src2);
  9913   %}
  9914   ins_pipe( ialu_regL_regL );
  9915 %}
  9917 // Integer MOD with Register
  9918 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9919   match(Set dst (ModI src1 src2));
  9920   ins_cost(300);
  9921   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
  9922   ins_encode %{
  9923     Register  dst = $dst$$Register;
  9924     Register src1 = $src1$$Register;
  9925     Register src2 = $src2$$Register;
  9927     //if (UseLoongsonISA) {
  9928     if (0) {
  9929       // 2016.08.10 
  9930       // Experiments show that gsmod is slower that div+mfhi.
  9931       // So I just disable it here.
  9932       __ gsmod(dst, src1, src2);
  9933     } else {
  9934       __ div(src1, src2); 
  9935       __ mfhi(dst);  
  9937   %}
  9939   //ins_pipe( ialu_mod );
  9940   ins_pipe( ialu_regI_regI );
  9941 %}
  9943 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  9944   match(Set dst (ModL src1 src2));
  9945   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
  9947   ins_encode %{
  9948     Register dst = as_Register($dst$$reg);
  9949     Register op1 = as_Register($src1$$reg);
  9950     Register op2 = as_Register($src2$$reg);
  9952     if (UseLoongsonISA) {
  9953       __ gsdmod(dst, op1, op2);
  9954     } else {
  9955       __ ddiv(op1, op2);
  9956       __ mfhi(dst);
  9958   %}
  9959   ins_pipe( pipe_slow );
  9960 %}
  9962 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9963   match(Set dst (MulI src1 src2));
  9965   ins_cost(300);
  9966   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
  9967   ins_encode %{
  9968      Register src1 = $src1$$Register;
  9969      Register src2 = $src2$$Register;
  9970      Register dst  = $dst$$Register;
  9972      __ mul(dst, src1, src2);
  9973   %}
  9974   ins_pipe( ialu_mult );
  9975 %}
  9977 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
  9978   match(Set dst (AddI (MulI src1 src2) src3));
  9980   ins_cost(999);
  9981   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
  9982   ins_encode %{
  9983      Register src1 = $src1$$Register;
  9984      Register src2 = $src2$$Register;
  9985      Register src3 = $src3$$Register;
  9986      Register dst  = $dst$$Register;
  9988      __ mtlo(src3);
  9989      __ madd(src1, src2);
  9990      __ mflo(dst);
  9991   %}
  9992   ins_pipe( ialu_mult );
  9993 %}
  9995 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9996   match(Set dst (DivI src1 src2));
  9998   ins_cost(300);
  9999   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
 10000   ins_encode %{
 10001      Register src1 = $src1$$Register;
 10002      Register src2 = $src2$$Register;
 10003      Register dst  = $dst$$Register;
 10005     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
 10006        We must trap an exception manually. */   
 10007     __ teq(R0, src2, 0x7);
 10009     if (UseLoongsonISA) {
 10010       __ gsdiv(dst, src1, src2);
 10011     } else {
 10012       __ div(src1, src2);
 10014       __ nop();
 10015       __ nop();
 10016       __ mflo(dst);
 10018   %}
 10019   ins_pipe( ialu_mod );
 10020 %}
 10022 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
 10023   match(Set dst (DivF src1 src2));
 10025   ins_cost(300);
 10026   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
 10027   ins_encode %{
 10028      FloatRegister src1 = $src1$$FloatRegister;
 10029      FloatRegister src2 = $src2$$FloatRegister;
 10030      FloatRegister dst  = $dst$$FloatRegister;
 10032     /* Here do we need to trap an exception manually ? */   
 10033     __ div_s(dst, src1, src2);
 10034   %}
 10035   ins_pipe( pipe_slow );
 10036 %}
 10038 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
 10039   match(Set dst (DivD src1 src2));
 10041   ins_cost(300);
 10042   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
 10043   ins_encode %{
 10044      FloatRegister src1 = $src1$$FloatRegister;
 10045      FloatRegister src2 = $src2$$FloatRegister;
 10046      FloatRegister dst  = $dst$$FloatRegister;
 10048     /* Here do we need to trap an exception manually ? */   
 10049     __ div_d(dst, src1, src2);
 10050   %}
 10051   ins_pipe( pipe_slow );
 10052 %}
 10054 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10055   match(Set dst (MulL src1 src2));
 10056   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
 10057   ins_encode %{
 10058     Register dst = as_Register($dst$$reg);
 10059     Register op1 = as_Register($src1$$reg);
 10060     Register op2 = as_Register($src2$$reg);
 10062     if (UseLoongsonISA) {
 10063       __ gsdmult(dst, op1, op2);
 10064     } else {
 10065       __ dmult(op1, op2);
 10066       __ mflo(dst);
 10068   %}
 10069   ins_pipe( pipe_slow );
 10070 %}
 10072 instruct mulL_reg_regI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10073   match(Set dst (MulL src1 (ConvI2L src2)));
 10074   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_regI2L" %}
 10075   ins_encode %{
 10076     Register dst = as_Register($dst$$reg);
 10077     Register op1 = as_Register($src1$$reg);
 10078     Register op2 = as_Register($src2$$reg);
 10080     if (UseLoongsonISA) {
 10081       __ gsdmult(dst, op1, op2);
 10082     } else {
 10083       __ dmult(op1, op2);
 10084       __ mflo(dst);
 10086   %}
 10087   ins_pipe( pipe_slow );
 10088 %}
 10090 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10091   match(Set dst (DivL src1 src2));
 10092   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
 10094   ins_encode %{
 10095     Register dst = as_Register($dst$$reg);
 10096     Register op1 = as_Register($src1$$reg);
 10097     Register op2 = as_Register($src2$$reg);
 10099     if (UseLoongsonISA) {
 10100       __ gsddiv(dst, op1, op2);
 10101     } else {
 10102       __ ddiv(op1, op2);
 10103       __ mflo(dst);
 10105   %}
 10106   ins_pipe( pipe_slow );
 10107 %}
 10109 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
 10110   match(Set dst (AddF src1 src2));
 10111   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
 10112   ins_encode %{
 10113     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10114     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10115     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10117     __ add_s(dst, src1, src2);  
 10118   %}
 10119   ins_pipe( fpu_regF_regF );
 10120 %}
 10122 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
 10123   match(Set dst (SubF src1 src2));
 10124   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
 10125   ins_encode %{
 10126     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10127     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10128     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10130     __ sub_s(dst, src1, src2);  
 10131   %}
 10132   ins_pipe( fpu_regF_regF );
 10133 %}
 10134 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
 10135   match(Set dst (AddD src1 src2));
 10136   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
 10137   ins_encode %{
 10138     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10139     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10140     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10142     __ add_d(dst, src1, src2);  
 10143   %}
 10144   ins_pipe( fpu_regF_regF );
 10145 %}
 10147 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
 10148   match(Set dst (SubD src1 src2));
 10149   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
 10150   ins_encode %{
 10151     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10152     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10153     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10155     __ sub_d(dst, src1, src2);  
 10156   %}
 10157   ins_pipe( fpu_regF_regF );
 10158 %}
 10160 instruct negF_reg(regF dst, regF src) %{
 10161   match(Set dst (NegF src));
 10162   format %{ "negF  $dst, $src @negF_reg" %}
 10163   ins_encode %{
 10164     FloatRegister src = as_FloatRegister($src$$reg);
 10165     FloatRegister dst = as_FloatRegister($dst$$reg);
 10167     __ neg_s(dst, src);
 10168   %}
 10169   ins_pipe( fpu_regF_regF );
 10170 %}
 10172 instruct negD_reg(regD dst, regD src) %{
 10173   match(Set dst (NegD src));
 10174   format %{ "negD  $dst, $src @negD_reg" %}
 10175   ins_encode %{
 10176     FloatRegister src = as_FloatRegister($src$$reg);
 10177     FloatRegister dst = as_FloatRegister($dst$$reg);
 10179     __ neg_d(dst, src);  
 10180   %}
 10181   ins_pipe( fpu_regF_regF );
 10182 %}
 10185 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10186   match(Set dst (MulF src1 src2));
 10187   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10188   ins_encode %{
 10189     FloatRegister src1 = $src1$$FloatRegister;
 10190     FloatRegister src2 = $src2$$FloatRegister;
 10191     FloatRegister dst  = $dst$$FloatRegister;
 10193     __ mul_s(dst, src1, src2);  
 10194   %}
 10195   ins_pipe( fpu_regF_regF );
 10196 %}
 10198 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10199   match(Set dst (AddF (MulF src1 src2) src3));
 10200   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10201   ins_cost(44444);
 10202   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10203   ins_encode %{
 10204     FloatRegister src1 = $src1$$FloatRegister;
 10205     FloatRegister src2 = $src2$$FloatRegister;
 10206     FloatRegister src3 = $src3$$FloatRegister;
 10207     FloatRegister dst  = $dst$$FloatRegister;
 10209     __ madd_s(dst, src1, src2, src3);  
 10210   %}
 10211   ins_pipe( fpu_regF_regF );
 10212 %}
 10214 // Mul two double precision floating piont number
 10215 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10216   match(Set dst (MulD src1 src2));
 10217   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10218   ins_encode %{
 10219     FloatRegister src1 = $src1$$FloatRegister;
 10220     FloatRegister src2 = $src2$$FloatRegister;
 10221     FloatRegister dst  = $dst$$FloatRegister;
 10223     __ mul_d(dst, src1, src2);  
 10224   %}
 10225   ins_pipe( fpu_regF_regF );
 10226 %}
 10228 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10229   match(Set dst (AddD (MulD src1 src2) src3));
 10230   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10231   ins_cost(44444);
 10232   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10233   ins_encode %{
 10234     FloatRegister src1 = $src1$$FloatRegister;
 10235     FloatRegister src2 = $src2$$FloatRegister;
 10236     FloatRegister src3 = $src3$$FloatRegister;
 10237     FloatRegister dst  = $dst$$FloatRegister;
 10239     __ madd_d(dst, src1, src2, src3);  
 10240   %}
 10241   ins_pipe( fpu_regF_regF );
 10242 %}
 10244 instruct absF_reg(regF dst, regF src) %{
 10245   match(Set dst (AbsF src));
 10246   ins_cost(100);
 10247   format %{ "absF  $dst, $src @absF_reg" %}
 10248   ins_encode %{
 10249     FloatRegister src = as_FloatRegister($src$$reg);
 10250     FloatRegister dst = as_FloatRegister($dst$$reg);
 10252     __ abs_s(dst, src);  
 10253   %}
 10254   ins_pipe( fpu_regF_regF );
 10255 %}
 10258 // intrinsics for math_native.
 10259 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10261 instruct absD_reg(regD dst, regD src) %{
 10262   match(Set dst (AbsD src));
 10263   ins_cost(100);
 10264   format %{ "absD  $dst, $src @absD_reg" %}
 10265   ins_encode %{
 10266     FloatRegister src = as_FloatRegister($src$$reg);
 10267     FloatRegister dst = as_FloatRegister($dst$$reg);
 10269     __ abs_d(dst, src);  
 10270   %}
 10271   ins_pipe( fpu_regF_regF );
 10272 %}
 10274 instruct sqrtD_reg(regD dst, regD src) %{
 10275   match(Set dst (SqrtD src));
 10276   ins_cost(100);
 10277   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10278   ins_encode %{
 10279     FloatRegister src = as_FloatRegister($src$$reg);
 10280     FloatRegister dst = as_FloatRegister($dst$$reg);
 10282     __ sqrt_d(dst, src);  
 10283   %}
 10284   ins_pipe( fpu_regF_regF );
 10285 %}
 10287 instruct sqrtF_reg(regF dst, regF src) %{
 10288   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10289   ins_cost(100);
 10290   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10291   ins_encode %{
 10292     FloatRegister src = as_FloatRegister($src$$reg);
 10293     FloatRegister dst = as_FloatRegister($dst$$reg);
 10295     __ sqrt_s(dst, src);
 10296   %}
 10297   ins_pipe( fpu_regF_regF );
 10298 %}
 10299 //----------------------------------Logical Instructions----------------------
 10300 //__________________________________Integer Logical Instructions-------------
 10302 //And Instuctions
 10303 // And Register with Immediate
 10304 instruct andI_Reg_immI(mRegI dst, mRegI src1,  immI src2) %{
 10305   match(Set dst (AndI src1 src2));
 10307   format %{ "and  $dst, $src1, $src2 #@andI_Reg_immI" %}
 10308   ins_encode %{
 10309     Register dst = $dst$$Register;
 10310     Register src = $src1$$Register;
 10311     int      val = $src2$$constant;
 10313        __ move(AT, val);
 10314        __ andr(dst, src, AT);
 10315   %}
 10316   ins_pipe( ialu_regI_regI );
 10317 %}
 10319 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10320   match(Set dst (AndI src1 src2));
 10321   ins_cost(60);
 10323   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10324   ins_encode %{
 10325     Register dst = $dst$$Register;
 10326     Register src = $src1$$Register;
 10327     int      val = $src2$$constant;
 10329        __ andi(dst, src, val);
 10330   %}
 10331   ins_pipe( ialu_regI_regI );
 10332 %}
 10334 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10335   match(Set dst (AndI src1 mask));
 10336   ins_cost(60);
 10338   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10339   ins_encode %{
 10340     Register dst = $dst$$Register;
 10341     Register src = $src1$$Register;
 10342     int     size = Assembler::is_int_mask($mask$$constant);
 10344     __ ext(dst, src, 0, size);
 10345   %}
 10346   ins_pipe( ialu_regI_regI );
 10347 %}
 10349 instruct andL_Reg_immL_nonneg_mask(mRegL dst, mRegL src1,  immL_nonneg_mask mask) %{
 10350   match(Set dst (AndL src1 mask));
 10351   ins_cost(60);
 10353   format %{ "and  $dst, $src1, $mask #@andL_Reg_immL_nonneg_mask" %}
 10354   ins_encode %{
 10355     Register dst = $dst$$Register;
 10356     Register src = $src1$$Register;
 10357     int     size = Assembler::is_jlong_mask($mask$$constant);
 10359     __ dext(dst, src, 0, size);
 10360   %}
 10361   ins_pipe( ialu_regI_regI );
 10362 %}
 10364 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10365   match(Set dst (XorI src1 src2));
 10366   ins_cost(60);
 10368   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10369   ins_encode %{
 10370     Register dst = $dst$$Register;
 10371     Register src = $src1$$Register;
 10372     int      val = $src2$$constant;
 10374        __ xori(dst, src, val);
 10375   %}
 10376   ins_pipe( ialu_regI_regI );
 10377 %}
 10379 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10380   match(Set dst (XorI src1 M1));
 10381   predicate(UseLoongsonISA && Use3A2000);
 10382   ins_cost(60);
 10384   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10385   ins_encode %{
 10386     Register dst = $dst$$Register;
 10387     Register src = $src1$$Register;
 10389        __ gsorn(dst, R0, src);
 10390   %}
 10391   ins_pipe( ialu_regI_regI );
 10392 %}
 10394 instruct xorL2I_Reg_immI_M1(mRegI dst, mRegL src1,  immI_M1 M1) %{
 10395   match(Set dst (XorI (ConvL2I src1) M1));
 10396   predicate(UseLoongsonISA && Use3A2000);
 10397   ins_cost(60);
 10399   format %{ "xor  $dst, $src1, $M1 #@xorL2I_Reg_immI_M1" %}
 10400   ins_encode %{
 10401     Register dst = $dst$$Register;
 10402     Register src = $src1$$Register;
 10404        __ gsorn(dst, R0, src);
 10405   %}
 10406   ins_pipe( ialu_regI_regI );
 10407 %}
 10409 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10410   match(Set dst (XorL src1 src2));
 10411   ins_cost(60);
 10413   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10414   ins_encode %{
 10415     Register dst = $dst$$Register;
 10416     Register src = $src1$$Register;
 10417     int      val = $src2$$constant;
 10419        __ xori(dst, src, val);
 10420   %}
 10421   ins_pipe( ialu_regI_regI );
 10422 %}
 10424 /*
 10425 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10426   match(Set dst (XorL src1 M1));
 10427   predicate(UseLoongsonISA);
 10428   ins_cost(60);
 10430   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10431   ins_encode %{
 10432     Register dst = $dst$$Register;
 10433     Register src = $src1$$Register;
 10435        __ gsorn(dst, R0, src);
 10436   %}
 10437   ins_pipe( ialu_regI_regI );
 10438 %}
 10439 */
 10441 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10442   match(Set dst (AndI mask (LoadB mem)));
 10443   ins_cost(60);
 10445   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10446   ins_encode(load_UB_enc(dst, mem));
 10447   ins_pipe( ialu_loadI );
 10448 %}
 10450 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10451   match(Set dst (AndI (LoadB mem) mask));
 10452   ins_cost(60);
 10454   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10455   ins_encode(load_UB_enc(dst, mem));
 10456   ins_pipe( ialu_loadI );
 10457 %}
 10459 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10460   match(Set dst (AndI src1 src2));
 10462   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10463   ins_encode %{
 10464     Register dst = $dst$$Register;
 10465     Register src1 = $src1$$Register;
 10466     Register src2 = $src2$$Register;
 10467     __ andr(dst, src1, src2);
 10468   %}
 10469   ins_pipe( ialu_regI_regI );
 10470 %}
 10472 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10473   match(Set dst (AndI src1 (XorI src2 M1)));
 10474   predicate(UseLoongsonISA && Use3A2000);
 10476   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10477   ins_encode %{
 10478     Register dst = $dst$$Register;
 10479     Register src1 = $src1$$Register;
 10480     Register src2 = $src2$$Register;
 10482     __ gsandn(dst, src1, src2);
 10483   %}
 10484   ins_pipe( ialu_regI_regI );
 10485 %}
 10487 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10488   match(Set dst (OrI src1 (XorI src2 M1)));
 10489   predicate(UseLoongsonISA && Use3A2000);
 10491   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10492   ins_encode %{
 10493     Register dst = $dst$$Register;
 10494     Register src1 = $src1$$Register;
 10495     Register src2 = $src2$$Register;
 10497     __ gsorn(dst, src1, src2);
 10498   %}
 10499   ins_pipe( ialu_regI_regI );
 10500 %}
 10502 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10503   match(Set dst (AndI (XorI src1 M1) src2));
 10504   predicate(UseLoongsonISA && Use3A2000);
 10506   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10507   ins_encode %{
 10508     Register dst = $dst$$Register;
 10509     Register src1 = $src1$$Register;
 10510     Register src2 = $src2$$Register;
 10512     __ gsandn(dst, src2, src1);
 10513   %}
 10514   ins_pipe( ialu_regI_regI );
 10515 %}
 10517 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10518   match(Set dst (OrI (XorI src1 M1) src2));
 10519   predicate(UseLoongsonISA && Use3A2000);
 10521   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10522   ins_encode %{
 10523     Register dst = $dst$$Register;
 10524     Register src1 = $src1$$Register;
 10525     Register src2 = $src2$$Register;
 10527     __ gsorn(dst, src2, src1);
 10528   %}
 10529   ins_pipe( ialu_regI_regI );
 10530 %}
 10532 // And Long Register with Register
 10533 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10534   match(Set dst (AndL src1 src2));
 10535   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10536   ins_encode %{
 10537     Register dst_reg = as_Register($dst$$reg);
 10538     Register src1_reg = as_Register($src1$$reg);
 10539     Register src2_reg = as_Register($src2$$reg);
 10541     __ andr(dst_reg, src1_reg, src2_reg);
 10542   %}
 10543   ins_pipe( ialu_regL_regL );
 10544 %}
 10546 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10547   match(Set dst (AndL src1 (ConvI2L src2)));
 10548   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10549   ins_encode %{
 10550     Register dst_reg = as_Register($dst$$reg);
 10551     Register src1_reg = as_Register($src1$$reg);
 10552     Register src2_reg = as_Register($src2$$reg);
 10554     __ andr(dst_reg, src1_reg, src2_reg);
 10555   %}
 10556   ins_pipe( ialu_regL_regL );
 10557 %}
 10559 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10560   match(Set dst (AndL src1 src2));
 10561   ins_cost(60);
 10563   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10564   ins_encode %{
 10565     Register dst = $dst$$Register;
 10566     Register src = $src1$$Register;
 10567     long     val = $src2$$constant;
 10569        __ andi(dst, src, val);
 10570   %}
 10571   ins_pipe( ialu_regI_regI );
 10572 %}
 10574 instruct andL2I_Reg_imm_0_65535(mRegI dst, mRegL src1,  immL_0_65535 src2) %{
 10575   match(Set dst (ConvL2I (AndL src1 src2)));
 10576   ins_cost(60);
 10578   format %{ "and  $dst, $src1, $src2 #@andL2I_Reg_imm_0_65535" %}
 10579   ins_encode %{
 10580     Register dst = $dst$$Register;
 10581     Register src = $src1$$Register;
 10582     long     val = $src2$$constant;
 10584        __ andi(dst, src, val);
 10585   %}
 10586   ins_pipe( ialu_regI_regI );
 10587 %}
 10589 /*
 10590 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10591   match(Set dst (AndL src1 (XorL src2 M1)));
 10592   predicate(UseLoongsonISA);
 10594   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10595   ins_encode %{
 10596     Register dst = $dst$$Register;
 10597     Register src1 = $src1$$Register;
 10598     Register src2 = $src2$$Register;
 10600     __ gsandn(dst, src1, src2);
 10601   %}
 10602   ins_pipe( ialu_regI_regI );
 10603 %}
 10604 */
 10606 /*
 10607 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10608   match(Set dst (OrL src1 (XorL src2 M1)));
 10609   predicate(UseLoongsonISA);
 10611   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10612   ins_encode %{
 10613     Register dst = $dst$$Register;
 10614     Register src1 = $src1$$Register;
 10615     Register src2 = $src2$$Register;
 10617     __ gsorn(dst, src1, src2);
 10618   %}
 10619   ins_pipe( ialu_regI_regI );
 10620 %}
 10621 */
 10623 /*
 10624 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10625   match(Set dst (AndL (XorL src1 M1) src2));
 10626   predicate(UseLoongsonISA);
 10628   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10629   ins_encode %{
 10630     Register dst = $dst$$Register;
 10631     Register src1 = $src1$$Register;
 10632     Register src2 = $src2$$Register;
 10634     __ gsandn(dst, src2, src1);
 10635   %}
 10636   ins_pipe( ialu_regI_regI );
 10637 %}
 10638 */
 10640 /*
 10641 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10642   match(Set dst (OrL (XorL src1 M1) src2));
 10643   predicate(UseLoongsonISA);
 10645   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10646   ins_encode %{
 10647     Register dst = $dst$$Register;
 10648     Register src1 = $src1$$Register;
 10649     Register src2 = $src2$$Register;
 10651     __ gsorn(dst, src2, src1);
 10652   %}
 10653   ins_pipe( ialu_regI_regI );
 10654 %}
 10655 */
 10657 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10658   match(Set dst (AndL dst M8));
 10659   ins_cost(60);
 10661   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10662   ins_encode %{
 10663     Register dst = $dst$$Register;
 10665     __ dins(dst, R0, 0, 3);
 10666   %}
 10667   ins_pipe( ialu_regI_regI );
 10668 %}
 10670 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10671   match(Set dst (AndL dst M5));
 10672   ins_cost(60);
 10674   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10675   ins_encode %{
 10676     Register dst = $dst$$Register;
 10678     __ dins(dst, R0, 2, 1);
 10679   %}
 10680   ins_pipe( ialu_regI_regI );
 10681 %}
 10683 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10684   match(Set dst (AndL dst M7));
 10685   ins_cost(60);
 10687   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10688   ins_encode %{
 10689     Register dst = $dst$$Register;
 10691     __ dins(dst, R0, 1, 2);
 10692   %}
 10693   ins_pipe( ialu_regI_regI );
 10694 %}
 10696 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10697   match(Set dst (AndL dst M4));
 10698   ins_cost(60);
 10700   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10701   ins_encode %{
 10702     Register dst = $dst$$Register;
 10704     __ dins(dst, R0, 0, 2);
 10705   %}
 10706   ins_pipe( ialu_regI_regI );
 10707 %}
 10709 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10710   match(Set dst (AndL dst M121));
 10711   ins_cost(60);
 10713   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10714   ins_encode %{
 10715     Register dst = $dst$$Register;
 10717     __ dins(dst, R0, 3, 4);
 10718   %}
 10719   ins_pipe( ialu_regI_regI );
 10720 %}
 10722 // Or Long Register with Register
 10723 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10724   match(Set dst (OrL src1 src2));
 10725   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10726   ins_encode %{
 10727     Register dst_reg  = $dst$$Register;
 10728     Register src1_reg = $src1$$Register;
 10729     Register src2_reg = $src2$$Register;
 10731     __ orr(dst_reg, src1_reg, src2_reg);
 10732   %}
 10733   ins_pipe( ialu_regL_regL );
 10734 %}
 10736 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10737   match(Set dst (OrL (CastP2X src1) src2));
 10738   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10739   ins_encode %{
 10740     Register dst_reg  = $dst$$Register;
 10741     Register src1_reg = $src1$$Register;
 10742     Register src2_reg = $src2$$Register;
 10744     __ orr(dst_reg, src1_reg, src2_reg);
 10745   %}
 10746   ins_pipe( ialu_regL_regL );
 10747 %}
 10749 // Xor Long Register with Register
 10750 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10751   match(Set dst (XorL src1 src2));
 10752   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10753   ins_encode %{
 10754     Register dst_reg = as_Register($dst$$reg);
 10755     Register src1_reg = as_Register($src1$$reg);
 10756     Register src2_reg = as_Register($src2$$reg);
 10758     __ xorr(dst_reg, src1_reg, src2_reg);
 10759   %}
 10760   ins_pipe( ialu_regL_regL );
 10761 %}
 10763 // Shift Left by 8-bit immediate
 10764 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10765   match(Set dst (LShiftI src shift));
 10767   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10768   ins_encode %{
 10769     Register src = $src$$Register;
 10770     Register dst = $dst$$Register;
 10771     int    shamt = $shift$$constant;
 10773     __ sll(dst, src, shamt);
 10774   %}
 10775   ins_pipe( ialu_regI_regI );
 10776 %}
 10778 instruct salL2I_Reg_imm(mRegI dst, mRegL src, immI8 shift) %{
 10779   match(Set dst (LShiftI (ConvL2I src) shift));
 10781   format %{ "SHL    $dst, $src, $shift #@salL2I_Reg_imm" %}
 10782   ins_encode %{
 10783     Register src = $src$$Register;
 10784     Register dst = $dst$$Register;
 10785     int    shamt = $shift$$constant;
 10787     __ sll(dst, src, shamt);
 10788   %}
 10789   ins_pipe( ialu_regI_regI );
 10790 %}
 10792 instruct salI_Reg_imm_and_M65536(mRegI dst, mRegI src, immI_16 shift, immI_M65536 mask) %{
 10793   match(Set dst (AndI (LShiftI src shift) mask));
 10795   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm_and_M65536" %}
 10796   ins_encode %{
 10797     Register src = $src$$Register;
 10798     Register dst = $dst$$Register;
 10800     __ sll(dst, src, 16);
 10801   %}
 10802   ins_pipe( ialu_regI_regI );
 10803 %}
 10805 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10806 %{
 10807   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10809   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10810   ins_encode %{
 10811     Register src = $src$$Register;
 10812     Register dst = $dst$$Register;
 10814     __ andi(dst, src, 7);
 10815   %}
 10816   ins_pipe(ialu_regI_regI);
 10817 %}
 10819 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10820 %{
 10821   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10823   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10824   ins_encode %{
 10825     Register src = $src1$$Register;
 10826     int      val = $src2$$constant;
 10827     Register dst = $dst$$Register;
 10829     __ ori(dst, src, val);
 10830   %}
 10831   ins_pipe(ialu_regI_regI);
 10832 %}
 10834 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10835 // This idiom is used by the compiler the i2s bytecode.
 10836 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10837 %{
 10838   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10840   format %{ "i2s  $dst, $src\t# @i2s" %}
 10841   ins_encode %{
 10842     Register src = $src$$Register;
 10843     Register dst = $dst$$Register;
 10845     __ seh(dst, src);
 10846   %}
 10847   ins_pipe(ialu_regI_regI);
 10848 %}
 10850 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10851 // This idiom is used by the compiler for the i2b bytecode.
 10852 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10853 %{
 10854   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10856   format %{ "i2b  $dst, $src\t# @i2b" %}
 10857   ins_encode %{
 10858     Register src = $src$$Register;
 10859     Register dst = $dst$$Register;
 10861     __ seb(dst, src);
 10862   %}
 10863   ins_pipe(ialu_regI_regI);
 10864 %}
 10867 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10868   match(Set dst (LShiftI (ConvL2I src) shift));
 10870   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10871   ins_encode %{
 10872     Register src = $src$$Register;
 10873     Register dst = $dst$$Register;
 10874     int    shamt = $shift$$constant;
 10876     __ sll(dst, src, shamt);
 10877   %}
 10878   ins_pipe( ialu_regI_regI );
 10879 %}
 10881 // Shift Left by 8-bit immediate
 10882 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10883   match(Set dst (LShiftI src shift));
 10885   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10886   ins_encode %{
 10887     Register src = $src$$Register;
 10888     Register dst = $dst$$Register;
 10889     Register shamt = $shift$$Register;
 10890     __ sllv(dst, src, shamt);
 10891   %}
 10892   ins_pipe( ialu_regI_regI );
 10893 %}
 10896 // Shift Left Long 
 10897 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10898   //predicate(UseNewLongLShift);
 10899   match(Set dst (LShiftL src shift));
 10900   ins_cost(100);
 10901   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10902   ins_encode %{
 10903     Register src_reg = as_Register($src$$reg);
 10904     Register dst_reg = as_Register($dst$$reg);
 10905     int      shamt = $shift$$constant;
 10907     if (__ is_simm(shamt, 5))
 10908         __ dsll(dst_reg, src_reg, shamt);
 10909     else
 10911        int sa = Assembler::low(shamt, 6);
 10912        if (sa < 32) { 
 10913           __ dsll(dst_reg, src_reg, sa);
 10914        } else {
 10915           __ dsll32(dst_reg, src_reg, sa - 32);
 10918   %}
 10919   ins_pipe( ialu_regL_regL );
 10920 %}
 10922 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 10923   //predicate(UseNewLongLShift);
 10924   match(Set dst (LShiftL (ConvI2L src) shift));
 10925   ins_cost(100);
 10926   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 10927   ins_encode %{
 10928     Register src_reg = as_Register($src$$reg);
 10929     Register dst_reg = as_Register($dst$$reg);
 10930     int      shamt = $shift$$constant;
 10932     if (__ is_simm(shamt, 5))
 10933         __ dsll(dst_reg, src_reg, shamt);
 10934     else
 10936        int sa = Assembler::low(shamt, 6);
 10937        if (sa < 32) { 
 10938           __ dsll(dst_reg, src_reg, sa);
 10939        } else {
 10940           __ dsll32(dst_reg, src_reg, sa - 32);
 10943   %}
 10944   ins_pipe( ialu_regL_regL );
 10945 %}
 10947 // Shift Left Long 
 10948 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10949   //predicate(UseNewLongLShift);
 10950   match(Set dst (LShiftL src shift));
 10951   ins_cost(100);
 10952   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 10953   ins_encode %{
 10954     Register src_reg = as_Register($src$$reg);
 10955     Register dst_reg = as_Register($dst$$reg);
 10957     __ dsllv(dst_reg, src_reg, $shift$$Register);
 10958   %}
 10959   ins_pipe( ialu_regL_regL );
 10960 %}
 10962 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 10963   match(Set dst (LShiftL (ConvI2L src) shift));
 10964   ins_cost(100);
 10965   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 10966   ins_encode %{
 10967     Register src_reg = as_Register($src$$reg);
 10968     Register dst_reg = as_Register($dst$$reg);
 10969     int      shamt = $shift$$constant;
 10971     if (__ is_simm(shamt, 5)) {
 10972         __ dsll(dst_reg, src_reg, shamt);
 10973     } else {
 10974        int sa = Assembler::low(shamt, 6);
 10975        if (sa < 32) { 
 10976           __ dsll(dst_reg, src_reg, sa);
 10977        } else {
 10978           __ dsll32(dst_reg, src_reg, sa - 32);
 10981   %}
 10982   ins_pipe( ialu_regL_regL );
 10983 %}
 10985 // Shift Right Long 
 10986 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10987   match(Set dst (RShiftL src shift));
 10988   ins_cost(100);
 10989   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 10990   ins_encode %{
 10991     Register src_reg = as_Register($src$$reg);
 10992     Register dst_reg = as_Register($dst$$reg);
 10993     int      shamt = ($shift$$constant & 0x3f);
 10994     if (__  is_simm(shamt, 5))
 10995 	__ dsra(dst_reg, src_reg, shamt);
 10996     else {
 10997         int sa = Assembler::low(shamt, 6);
 10998         if (sa < 32) {
 10999 	   __ dsra(dst_reg, src_reg, sa);
 11000         } else {
 11001 	   __ dsra32(dst_reg, src_reg, sa - 32);
 11004   %}
 11005   ins_pipe( ialu_regL_regL );
 11006 %}
 11008 instruct sarL2I_Reg_immI_32_63(mRegI dst, mRegL src, immI_32_63 shift) %{
 11009   match(Set dst (ConvL2I (RShiftL src shift)));
 11010   ins_cost(100);
 11011   format %{ "sarL    $dst, $src, $shift @ sarL2I_Reg_immI_32_63" %}
 11012   ins_encode %{
 11013     Register src_reg = as_Register($src$$reg);
 11014     Register dst_reg = as_Register($dst$$reg);
 11015     int      shamt   = $shift$$constant;
 11017     __ dsra32(dst_reg, src_reg, shamt - 32);
 11018   %}
 11019   ins_pipe( ialu_regL_regL );
 11020 %}
 11022 // Shift Right Long arithmetically
 11023 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11024   //predicate(UseNewLongLShift);
 11025   match(Set dst (RShiftL src shift));
 11026   ins_cost(100);
 11027   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 11028   ins_encode %{
 11029     Register src_reg = as_Register($src$$reg);
 11030     Register dst_reg = as_Register($dst$$reg);
 11032     __ dsrav(dst_reg, src_reg, $shift$$Register);
 11033   %}
 11034   ins_pipe( ialu_regL_regL );
 11035 %}
 11037 // Shift Right Long logically
 11038 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11039   match(Set dst (URShiftL src shift));
 11040   ins_cost(100);
 11041   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 11042   ins_encode %{
 11043     Register src_reg = as_Register($src$$reg);
 11044     Register dst_reg = as_Register($dst$$reg);
 11046     __ dsrlv(dst_reg, src_reg, $shift$$Register);
 11047   %}
 11048   ins_pipe( ialu_regL_regL );
 11049 %}
 11051 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 11052   match(Set dst (URShiftL src shift));
 11053   ins_cost(80);
 11054   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 11055   ins_encode %{
 11056     Register src_reg = as_Register($src$$reg);
 11057     Register dst_reg = as_Register($dst$$reg);
 11058     int        shamt = $shift$$constant;
 11060     __ dsrl(dst_reg, src_reg, shamt);
 11061   %}
 11062   ins_pipe( ialu_regL_regL );
 11063 %}
 11065 instruct slrL_Reg_immI_0_31_and_max_int(mRegI dst, mRegL src, immI_0_31 shift, immI_MaxI max_int) %{
 11066   match(Set dst (AndI (ConvL2I (URShiftL src shift)) max_int));
 11067   ins_cost(80);
 11068   format %{ "dext    $dst, $src, $shift, 31 @ slrL_Reg_immI_0_31_and_max_int" %}
 11069   ins_encode %{
 11070     Register src_reg = as_Register($src$$reg);
 11071     Register dst_reg = as_Register($dst$$reg);
 11072     int        shamt = $shift$$constant;
 11074     __ dext(dst_reg, src_reg, shamt, 31);
 11075   %}
 11076   ins_pipe( ialu_regL_regL );
 11077 %}
 11079 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 11080   match(Set dst (URShiftL (CastP2X src) shift));
 11081   ins_cost(80);
 11082   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 11083   ins_encode %{
 11084     Register src_reg = as_Register($src$$reg);
 11085     Register dst_reg = as_Register($dst$$reg);
 11086     int        shamt = $shift$$constant;
 11088     __ dsrl(dst_reg, src_reg, shamt);
 11089   %}
 11090   ins_pipe( ialu_regL_regL );
 11091 %}
 11093 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 11094   match(Set dst (URShiftL src shift));
 11095   ins_cost(80);
 11096   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 11097   ins_encode %{
 11098     Register src_reg = as_Register($src$$reg);
 11099     Register dst_reg = as_Register($dst$$reg);
 11100     int        shamt = $shift$$constant;
 11102     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11103   %}
 11104   ins_pipe( ialu_regL_regL );
 11105 %}
 11107 instruct slrL_Reg_immI_convL2I(mRegI dst, mRegL src, immI_32_63 shift) %{
 11108   match(Set dst (ConvL2I (URShiftL src shift)));
 11109   predicate(n->in(1)->in(2)->get_int() > 32);
 11110   ins_cost(80);
 11111   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_convL2I" %}
 11112   ins_encode %{
 11113     Register src_reg = as_Register($src$$reg);
 11114     Register dst_reg = as_Register($dst$$reg);
 11115     int        shamt = $shift$$constant;
 11117     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11118   %}
 11119   ins_pipe( ialu_regL_regL );
 11120 %}
 11122 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 11123   match(Set dst (URShiftL (CastP2X src) shift));
 11124   ins_cost(80);
 11125   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 11126   ins_encode %{
 11127     Register src_reg = as_Register($src$$reg);
 11128     Register dst_reg = as_Register($dst$$reg);
 11129     int        shamt = $shift$$constant;
 11131     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11132   %}
 11133   ins_pipe( ialu_regL_regL );
 11134 %}
 11136 // Xor Instructions
 11137 // Xor Register with Register
 11138 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11139   match(Set dst (XorI src1 src2));
 11141   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 11143   ins_encode %{
 11144     Register  dst = $dst$$Register;
 11145     Register src1 = $src1$$Register;
 11146     Register src2 = $src2$$Register;
 11147     __ xorr(dst, src1, src2);
 11148     __ sll(dst, dst, 0); /* long -> int */
 11149   %}
 11151   ins_pipe( ialu_regI_regI );
 11152 %}
 11154 // Or Instructions
 11155 // Or Register with Register
 11156 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11157   match(Set dst (OrI src1 src2));
 11159   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 11160   ins_encode %{
 11161     Register  dst = $dst$$Register;
 11162     Register src1 = $src1$$Register;
 11163     Register src2 = $src2$$Register;
 11164     __ orr(dst, src1, src2);
 11165   %}
 11167   ins_pipe( ialu_regI_regI );
 11168 %}
 11170 instruct rotI_shr_logical_Reg(mRegI dst, mRegI src, immI_0_31 rshift, immI_0_31 lshift, immI_1 one) %{
 11171   match(Set dst (OrI (URShiftI src rshift) (LShiftI (AndI src one) lshift)));
 11172   predicate(32 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int())));
 11174   format %{ "rotr     $dst, $src, 1 ...\n\t" 
 11175             "srl      $dst, $dst, ($rshift-1) @ rotI_shr_logical_Reg" %}
 11176   ins_encode %{
 11177     Register   dst = $dst$$Register;
 11178     Register   src = $src$$Register;
 11179     int     rshift = $rshift$$constant;
 11181     __ rotr(dst, src, 1);
 11182     if (rshift - 1) {
 11183        __ srl(dst, dst, rshift - 1);
 11185   %}
 11187   ins_pipe( ialu_regI_regI );
 11188 %}
 11190 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11191   match(Set dst (OrI src1 (CastP2X src2)));
 11193   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11194   ins_encode %{
 11195     Register  dst = $dst$$Register;
 11196     Register src1 = $src1$$Register;
 11197     Register src2 = $src2$$Register;
 11198     __ orr(dst, src1, src2);
 11199   %}
 11201   ins_pipe( ialu_regI_regI );
 11202 %}
 11204 // Logical Shift Right by 8-bit immediate
 11205 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11206   match(Set dst (URShiftI src shift));
 11207  // effect(KILL cr);
 11209   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11210   ins_encode %{
 11211     Register src = $src$$Register;
 11212     Register dst = $dst$$Register;
 11213     int    shift = $shift$$constant;
 11215     __ srl(dst, src, shift);
 11216   %}
 11217   ins_pipe( ialu_regI_regI );
 11218 %}
 11220 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11221   match(Set dst (AndI (URShiftI src shift) mask));
 11223   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11224   ins_encode %{
 11225     Register src = $src$$Register;
 11226     Register dst = $dst$$Register;
 11227     int      pos = $shift$$constant;
 11228     int     size = Assembler::is_int_mask($mask$$constant);
 11230     __ ext(dst, src, pos, size);
 11231   %}
 11232   ins_pipe( ialu_regI_regI );
 11233 %}
 11235 instruct rolI_Reg_immI_0_31(mRegI dst, immI_0_31 lshift, immI_0_31 rshift)
 11236 %{
 11237   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11238   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
 11240   ins_cost(100);
 11241   format %{ "rotr    $dst, $dst, $rshift #@rolI_Reg_immI_0_31" %}
 11242   ins_encode %{
 11243     Register dst = $dst$$Register;
 11244     int      sa  = $rshift$$constant;
 11246     __ rotr(dst, dst, sa);
 11247   %}
 11248   ins_pipe( ialu_regI_regI );
 11249 %}
 11251 instruct rolL_Reg_immI_0_31(mRegL dst, immI_32_63 lshift, immI_0_31 rshift)
 11252 %{
 11253   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11254   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11256   ins_cost(100);
 11257   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_0_31" %}
 11258   ins_encode %{
 11259     Register dst = $dst$$Register;
 11260     int      sa  = $rshift$$constant;
 11262     __ drotr(dst, dst, sa);
 11263   %}
 11264   ins_pipe( ialu_regI_regI );
 11265 %}
 11267 instruct rolL_Reg_immI_32_63(mRegL dst, immI_0_31 lshift, immI_32_63 rshift)
 11268 %{
 11269   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11270   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11272   ins_cost(100);
 11273   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_32_63" %}
 11274   ins_encode %{
 11275     Register dst = $dst$$Register;
 11276     int      sa  = $rshift$$constant;
 11278     __ drotr32(dst, dst, sa - 32);
 11279   %}
 11280   ins_pipe( ialu_regI_regI );
 11281 %}
 11283 instruct rorI_Reg_immI_0_31(mRegI dst, immI_0_31 rshift, immI_0_31 lshift)
 11284 %{
 11285   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11286   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
 11288   ins_cost(100);
 11289   format %{ "rotr    $dst, $dst, $rshift #@rorI_Reg_immI_0_31" %}
 11290   ins_encode %{
 11291     Register dst = $dst$$Register;
 11292     int      sa  = $rshift$$constant;
 11294     __ rotr(dst, dst, sa);
 11295   %}
 11296   ins_pipe( ialu_regI_regI );
 11297 %}
 11299 instruct rorL_Reg_immI_0_31(mRegL dst, immI_0_31 rshift, immI_32_63 lshift)
 11300 %{
 11301   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11302   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11304   ins_cost(100);
 11305   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_0_31" %}
 11306   ins_encode %{
 11307     Register dst = $dst$$Register;
 11308     int      sa  = $rshift$$constant;
 11310     __ drotr(dst, dst, sa);
 11311   %}
 11312   ins_pipe( ialu_regI_regI );
 11313 %}
 11315 instruct rorL_Reg_immI_32_63(mRegL dst, immI_32_63 rshift, immI_0_31 lshift)
 11316 %{
 11317   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11318   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11320   ins_cost(100);
 11321   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_32_63" %}
 11322   ins_encode %{
 11323     Register dst = $dst$$Register;
 11324     int      sa  = $rshift$$constant;
 11326     __ drotr32(dst, dst, sa - 32);
 11327   %}
 11328   ins_pipe( ialu_regI_regI );
 11329 %}
 11331 // Logical Shift Right 
 11332 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11333   match(Set dst (URShiftI src shift));
 11335   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11336   ins_encode %{
 11337     Register src = $src$$Register;
 11338     Register dst = $dst$$Register;
 11339     Register shift = $shift$$Register;
 11340     __ srlv(dst, src, shift);
 11341   %}
 11342   ins_pipe( ialu_regI_regI );
 11343 %}
 11346 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11347   match(Set dst (RShiftI src shift));
 11348  // effect(KILL cr);
 11350   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11351   ins_encode %{
 11352     Register src = $src$$Register;
 11353     Register dst = $dst$$Register;
 11354     int    shift = $shift$$constant;
 11355     __ sra(dst, src, shift);
 11356   %}
 11357   ins_pipe( ialu_regI_regI );
 11358 %}
 11360 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11361   match(Set dst (RShiftI src shift));
 11362  // effect(KILL cr);
 11364   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11365   ins_encode %{
 11366     Register src = $src$$Register;
 11367     Register dst = $dst$$Register;
 11368     Register shift = $shift$$Register;
 11369     __ srav(dst, src, shift);
 11370   %}
 11371   ins_pipe( ialu_regI_regI );
 11372 %}
 11374 //----------Convert Int to Boolean---------------------------------------------
 11376 instruct convI2B(mRegI dst, mRegI src) %{
 11377   match(Set dst (Conv2B src));
 11379   ins_cost(100);
 11380   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11381   ins_encode %{
 11382     Register dst = as_Register($dst$$reg);
 11383     Register src = as_Register($src$$reg);
 11385     if (dst != src) {
 11386       __ daddiu(dst, R0, 1);
 11387       __ movz(dst, R0, src);
 11388     } else {
 11389       __ move(AT, src);
 11390       __ daddiu(dst, R0, 1);
 11391       __ movz(dst, R0, AT);
 11393   %}
 11395   ins_pipe( ialu_regL_regL );
 11396 %}
 11398 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11399   match(Set dst (ConvI2L src));
 11401   ins_cost(100);
 11402   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11403   ins_encode %{
 11404     Register dst = as_Register($dst$$reg);
 11405     Register src = as_Register($src$$reg);
 11407     if(dst != src) __ sll(dst, src, 0);
 11408   %}
 11409   ins_pipe( ialu_regL_regL );
 11410 %}
 11413 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11414   match(Set dst (ConvL2I src));
 11416   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11417   ins_encode %{
 11418     Register dst = as_Register($dst$$reg);
 11419     Register src = as_Register($src$$reg);
 11421     __ sll(dst, src, 0);
 11422   %}
 11424   ins_pipe( ialu_regI_regI );
 11425 %}
 11427 instruct convL2I2L_reg( mRegL dst, mRegL src ) %{
 11428   match(Set dst (ConvI2L (ConvL2I src)));
 11430   format %{ "sll    $dst, $src, 0 @ convL2I2L_reg" %}
 11431   ins_encode %{
 11432     Register dst = as_Register($dst$$reg);
 11433     Register src = as_Register($src$$reg);
 11435     __ sll(dst, src, 0);
 11436   %}
 11438   ins_pipe( ialu_regI_regI );
 11439 %}
 11441 instruct convL2D_reg( regD dst, mRegL src ) %{
 11442   match(Set dst (ConvL2D src));
 11443   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11444   ins_encode %{
 11445     Register src = as_Register($src$$reg);
 11446     FloatRegister dst = as_FloatRegister($dst$$reg);
 11448     __ dmtc1(src, dst);
 11449     __ cvt_d_l(dst, dst);
 11450   %}
 11452   ins_pipe( pipe_slow );
 11453 %}
 11455 instruct convD2L_reg_fast( mRegL dst, regD src ) %{
 11456   match(Set dst (ConvD2L src));
 11457   ins_cost(150);
 11458   format %{ "convD2L    $dst, $src @ convD2L_reg_fast" %}
 11459   ins_encode %{
 11460     Register dst = as_Register($dst$$reg);
 11461     FloatRegister src = as_FloatRegister($src$$reg);
 11463     Label Done;
 11465     __ trunc_l_d(F30, src);
 11466     // max_long:    0x7fffffffffffffff 
 11467     // __ set64(AT, 0x7fffffffffffffff);
 11468     __ daddiu(AT, R0, -1);
 11469     __ dsrl(AT, AT, 1);
 11470     __ dmfc1(dst, F30);
 11472     __ bne(dst, AT, Done);
 11473     __ delayed()->mtc1(R0, F30);
 11475     __ cvt_d_w(F30, F30);
 11476     __ c_ult_d(src, F30);
 11477     __ bc1f(Done);
 11478     __ delayed()->daddiu(T9, R0, -1);
 11480     __ c_un_d(src, src);    //NaN?
 11481     __ subu(dst, T9, AT);
 11482     __ movt(dst, R0);
 11484     __ bind(Done);
 11485   %}
 11487   ins_pipe( pipe_slow );
 11488 %}
 11490 instruct convD2L_reg_slow( mRegL dst, regD src ) %{
 11491   match(Set dst (ConvD2L src));
 11492   ins_cost(250);
 11493   format %{ "convD2L    $dst, $src @ convD2L_reg_slow" %}
 11494   ins_encode %{
 11495     Register dst = as_Register($dst$$reg);
 11496     FloatRegister src = as_FloatRegister($src$$reg);
 11498     Label L;
 11500     __ c_un_d(src, src);    //NaN?
 11501     __ bc1t(L);
 11502     __ delayed();
 11503     __ move(dst, R0);
 11505     __ trunc_l_d(F30, src);
 11506     __ cfc1(AT, 31);
 11507     __ li(T9, 0x10000);
 11508     __ andr(AT, AT, T9);
 11509     __ beq(AT, R0, L);
 11510     __ delayed()->dmfc1(dst, F30);
 11512     __ mov_d(F12, src);
 11513     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11514     __ move(dst, V0);
 11515     __ bind(L);
 11516   %}
 11518   ins_pipe( pipe_slow );
 11519 %}
 11521 instruct convF2I_reg_fast( mRegI dst, regF src ) %{
 11522   match(Set dst (ConvF2I src));
 11523   ins_cost(150);
 11524   format %{ "convf2i    $dst, $src @ convF2I_reg_fast" %}
 11525   ins_encode %{
 11526     Register      dreg = $dst$$Register;
 11527     FloatRegister fval = $src$$FloatRegister;
 11529     __ trunc_w_s(F30, fval);
 11530     __ mfc1(dreg, F30);
 11531     __ c_un_s(fval, fval);    //NaN?
 11532     __ movt(dreg, R0);
 11533   %}
 11535   ins_pipe( pipe_slow );
 11536 %}
 11538 instruct convF2I_reg_slow( mRegI dst, regF src ) %{
 11539   match(Set dst (ConvF2I src));
 11540   ins_cost(250);
 11541   format %{ "convf2i    $dst, $src @ convF2I_reg_slow" %}
 11542   ins_encode %{
 11543     Register      dreg = $dst$$Register;
 11544     FloatRegister fval = $src$$FloatRegister;
 11545     Label L;
 11547     __ c_un_s(fval, fval);    //NaN?
 11548     __ bc1t(L);
 11549     __ delayed();
 11550     __ move(dreg, R0);
 11552     __ trunc_w_s(F30, fval);
 11554     /* Call SharedRuntime:f2i() to do valid convention */
 11555     __ cfc1(AT, 31);
 11556     __ li(T9, 0x10000);
 11557     __ andr(AT, AT, T9);
 11558     __ beq(AT, R0, L);
 11559     __ delayed()->mfc1(dreg, F30);
 11561     __ mov_s(F12, fval);
 11563     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11564      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11566      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11567      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11568      */
 11569     if(dreg != V0) {
 11570       __ push(V0); 
 11572     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11573     if(dreg != V0) {
 11574       __ move(dreg, V0);
 11575       __ pop(V0);
 11577     __ bind(L);
 11578   %}
 11580   ins_pipe( pipe_slow );
 11581 %}
 11583 instruct convF2L_reg_fast( mRegL dst, regF src ) %{
 11584   match(Set dst (ConvF2L src));
 11585   ins_cost(150);
 11586   format %{ "convf2l    $dst, $src @ convF2L_reg_fast" %}
 11587   ins_encode %{
 11588     Register      dreg = $dst$$Register;
 11589     FloatRegister fval = $src$$FloatRegister;
 11591     __ trunc_l_s(F30, fval);
 11592     __ dmfc1(dreg, F30);
 11593     __ c_un_s(fval, fval);    //NaN?
 11594     __ movt(dreg, R0);
 11595   %}
 11597   ins_pipe( pipe_slow );
 11598 %}
 11600 instruct convF2L_reg_slow( mRegL dst, regF src ) %{
 11601   match(Set dst (ConvF2L src));
 11602   ins_cost(250);
 11603   format %{ "convf2l    $dst, $src @ convF2L_reg_slow" %}
 11604   ins_encode %{
 11605     Register dst = as_Register($dst$$reg);
 11606     FloatRegister fval = $src$$FloatRegister;
 11607     Label L;
 11609     __ c_un_s(fval, fval);    //NaN?
 11610     __ bc1t(L);
 11611     __ delayed();
 11612     __ move(dst, R0);
 11614     __ trunc_l_s(F30, fval);
 11615     __ cfc1(AT, 31);
 11616     __ li(T9, 0x10000);
 11617     __ andr(AT, AT, T9);
 11618     __ beq(AT, R0, L);
 11619     __ delayed()->dmfc1(dst, F30);
 11621     __ mov_s(F12, fval);
 11622     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11623     __ move(dst, V0);
 11624     __ bind(L);
 11625   %}
 11627   ins_pipe( pipe_slow );
 11628 %}
 11630 instruct convL2F_reg( regF dst, mRegL src ) %{
 11631   match(Set dst (ConvL2F src));
 11632   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11633   ins_encode %{
 11634     FloatRegister dst = $dst$$FloatRegister;
 11635     Register src = as_Register($src$$reg);
 11636     Label L;
 11638     __ dmtc1(src, dst);
 11639     __ cvt_s_l(dst, dst);
 11640   %}
 11642   ins_pipe( pipe_slow );
 11643 %}
 11645 instruct convI2F_reg( regF dst, mRegI src ) %{
 11646   match(Set dst (ConvI2F src));
 11647   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11648   ins_encode %{
 11649     Register      src = $src$$Register;
 11650     FloatRegister dst = $dst$$FloatRegister;
 11652     __ mtc1(src, dst);
 11653     __ cvt_s_w(dst, dst);
 11654   %}
 11656   ins_pipe( fpu_regF_regF );
 11657 %}
 11659 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11660   match(Set dst (CmpLTMask p zero));
 11661   ins_cost(100);
 11663   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11664     ins_encode %{
 11665        Register src = $p$$Register;
 11666        Register dst = $dst$$Register;
 11668        __ sra(dst, src, 31);
 11669     %}
 11670     ins_pipe( pipe_slow );
 11671 %}
 11674 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11675   match(Set dst (CmpLTMask p q));
 11676   ins_cost(400);
 11678   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11679     ins_encode %{
 11680        Register p   = $p$$Register;
 11681        Register q   = $q$$Register;
 11682        Register dst = $dst$$Register;
 11684        __ slt(dst, p, q);
 11685        __ subu(dst, R0, dst);
 11686     %}
 11687     ins_pipe( pipe_slow );
 11688 %}
 11690 instruct convP2B(mRegI dst, mRegP src) %{
 11691   match(Set dst (Conv2B src));
 11693   ins_cost(100);
 11694   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11695   ins_encode %{
 11696     Register dst = as_Register($dst$$reg);
 11697     Register src = as_Register($src$$reg);
 11699     if (dst != src) {
 11700       __ daddiu(dst, R0, 1);
 11701       __ movz(dst, R0, src);
 11702     } else {
 11703       __ move(AT, src);
 11704       __ daddiu(dst, R0, 1);
 11705       __ movz(dst, R0, AT);
 11707   %}
 11709   ins_pipe( ialu_regL_regL );
 11710 %}
 11713 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11714   match(Set dst (ConvI2D src));
 11715   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11716   ins_encode %{
 11717      Register      src = $src$$Register;
 11718      FloatRegister dst = $dst$$FloatRegister;
 11719      __ mtc1(src, dst);
 11720      __ cvt_d_w(dst, dst);
 11721   %}
 11722   ins_pipe( fpu_regF_regF );
 11723 %}
 11725 instruct convF2D_reg_reg(regD dst, regF src) %{
 11726   match(Set dst (ConvF2D src));
 11727   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11728   ins_encode %{
 11729     FloatRegister dst = $dst$$FloatRegister;
 11730     FloatRegister src = $src$$FloatRegister;
 11732     __ cvt_d_s(dst, src);
 11733   %}
 11734   ins_pipe( fpu_regF_regF );
 11735 %}
 11737 instruct convD2F_reg_reg(regF dst, regD src) %{
 11738   match(Set dst (ConvD2F src));
 11739   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11740   ins_encode %{
 11741     FloatRegister dst = $dst$$FloatRegister;
 11742     FloatRegister src = $src$$FloatRegister;
 11744     __ cvt_s_d(dst, src);
 11745   %}
 11746   ins_pipe( fpu_regF_regF );
 11747 %}
 11749 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11750 instruct convD2I_reg_reg_fast( mRegI dst, regD src ) %{
 11751   match(Set dst (ConvD2I src));
 11753   ins_cost(150);
 11754   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_fast" %}
 11756   ins_encode %{
 11757       FloatRegister src = $src$$FloatRegister;
 11758       Register      dst = $dst$$Register;
 11760       Label Done;
 11762       __ trunc_w_d(F30, src);
 11763       // max_int: 2147483647
 11764       __ move(AT, 0x7fffffff);
 11765       __ mfc1(dst, F30);
 11767       __ bne(dst, AT, Done);
 11768       __ delayed()->mtc1(R0, F30);
 11770       __ cvt_d_w(F30, F30); 
 11771       __ c_ult_d(src, F30);
 11772       __ bc1f(Done);
 11773       __ delayed()->addiu(T9, R0, -1);
 11775       __ c_un_d(src, src);    //NaN?
 11776       __ subu32(dst, T9, AT);
 11777       __ movt(dst, R0);
 11779       __ bind(Done);
 11780   %}
 11781   ins_pipe( pipe_slow );
 11782 %}
 11784 instruct convD2I_reg_reg_slow( mRegI dst, regD src ) %{
 11785   match(Set dst (ConvD2I src));
 11787   ins_cost(250);
 11788   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_slow" %}
 11790   ins_encode %{
 11791       FloatRegister src = $src$$FloatRegister;
 11792       Register      dst = $dst$$Register;
 11793       Label L;
 11795       __ trunc_w_d(F30, src);
 11796       __ cfc1(AT, 31);
 11797       __ li(T9, 0x10000);
 11798       __ andr(AT, AT, T9);
 11799       __ beq(AT, R0, L);
 11800       __ delayed()->mfc1(dst, F30);
 11802       __ mov_d(F12, src);
 11803       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11804       __ move(dst, V0);
 11805       __ bind(L);
 11807   %}
 11808   ins_pipe( pipe_slow );
 11809 %}
 11811 // Convert oop pointer into compressed form
 11812 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11813   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11814   match(Set dst (EncodeP src));
 11815   format %{ "encode_heap_oop $dst,$src" %}
 11816   ins_encode %{
 11817     Register src = $src$$Register;
 11818     Register dst = $dst$$Register;
 11819     if (src != dst) {
 11820       __ move(dst, src);
 11822     __ encode_heap_oop(dst);
 11823   %}
 11824   ins_pipe( ialu_regL_regL );
 11825 %}
 11827 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11828   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11829   match(Set dst (EncodeP src));
 11830   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11831   ins_encode %{
 11832     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11833   %}
 11834   ins_pipe( ialu_regL_regL );
 11835 %}
 11837 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11838   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11839             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11840   match(Set dst (DecodeN src));
 11841   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11842   ins_encode %{
 11843     Register s = $src$$Register;
 11844     Register d = $dst$$Register;
 11845     if (s != d) {
 11846       __ move(d, s);
 11848     __ decode_heap_oop(d);
 11849   %}
 11850   ins_pipe( ialu_regL_regL );
 11851 %}
 11853 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11854   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11855             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11856   match(Set dst (DecodeN src));
 11857   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11858   ins_encode %{
 11859     Register s = $src$$Register;
 11860     Register d = $dst$$Register;
 11861     if (s != d) {
 11862       __ decode_heap_oop_not_null(d, s);
 11863     } else {
 11864       __ decode_heap_oop_not_null(d);
 11866   %}
 11867   ins_pipe( ialu_regL_regL );
 11868 %}
 11870 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11871   match(Set dst (EncodePKlass src));
 11872   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11873   ins_encode %{
 11874     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11875   %}
 11876   ins_pipe( ialu_regL_regL );
 11877 %}
 11879 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11880   match(Set dst (DecodeNKlass src));
 11881   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11882   ins_encode %{
 11883     Register s = $src$$Register;
 11884     Register d = $dst$$Register;
 11885     if (s != d) {
 11886       __ decode_klass_not_null(d, s);
 11887     } else {
 11888       __ decode_klass_not_null(d);
 11890   %}
 11891   ins_pipe( ialu_regL_regL );
 11892 %}
 11894 //FIXME
 11895 instruct tlsLoadP(mRegP dst) %{
 11896   match(Set dst (ThreadLocal));
 11898   ins_cost(0);
 11899   format %{ " get_thread in $dst #@tlsLoadP" %}
 11900   ins_encode %{
 11901     Register dst = $dst$$Register;
 11902 #ifdef OPT_THREAD
 11903     __ move(dst, TREG);
 11904 #else
 11905     __ get_thread(dst);
 11906 #endif
 11907   %}
 11909   ins_pipe( ialu_loadI );
 11910 %}
 11913 instruct checkCastPP( mRegP dst ) %{
 11914   match(Set dst (CheckCastPP dst));
 11916   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11917   ins_encode( /*empty encoding*/ );
 11918   ins_pipe( empty );
 11919 %}
 11921 instruct castPP(mRegP dst)
 11922 %{
 11923   match(Set dst (CastPP dst));
 11925   size(0);
 11926   format %{ "# castPP of $dst" %}
 11927   ins_encode(/* empty encoding */);
 11928   ins_pipe(empty);
 11929 %}
 11931 instruct castII( mRegI dst ) %{
 11932   match(Set dst (CastII dst));
 11933   format %{ "#castII of $dst  empty encoding" %}
 11934   ins_encode( /*empty encoding*/ );
 11935   ins_cost(0);
 11936   ins_pipe( empty );
 11937 %}
 11939 // Return Instruction
 11940 // Remove the return address & jump to it.
 11941 instruct Ret() %{
 11942   match(Return);
 11943   format %{ "RET #@Ret" %}
 11945   ins_encode %{
 11946    __ jr(RA); 
 11947    __ nop();
 11948   %}
 11950   ins_pipe( pipe_jump );
 11951 %}
 11953 /*
 11954 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 11955 instruct jumpXtnd(mRegL switch_val) %{
 11956   match(Jump switch_val);
 11958   ins_cost(350);
 11960   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 11961              "jr     T9\n\t"
 11962              "nop" %}
 11963   ins_encode %{
 11964     Register table_base = $constanttablebase;
 11965     int      con_offset = $constantoffset;
 11966     Register switch_reg = $switch_val$$Register;
 11968     if (UseLoongsonISA) {
 11969        if (Assembler::is_simm(con_offset, 8)) {
 11970          __ gsldx(T9, table_base, switch_reg, con_offset);
 11971        } else if (Assembler::is_simm16(con_offset)) {
 11972          __ daddu(T9, table_base, switch_reg);
 11973          __ ld(T9, T9, con_offset);
 11974        } else {
 11975          __ move(T9, con_offset);
 11976          __ daddu(AT, table_base, switch_reg);
 11977          __ gsldx(T9, AT, T9, 0);
 11979     } else {
 11980        if (Assembler::is_simm16(con_offset)) {
 11981          __ daddu(T9, table_base, switch_reg);
 11982          __ ld(T9, T9, con_offset);
 11983        } else {
 11984          __ move(T9, con_offset);
 11985          __ daddu(AT, table_base, switch_reg);
 11986          __ daddu(AT, T9, AT);
 11987          __ ld(T9, AT, 0);
 11991     __ jr(T9);
 11992     __ nop();
 11994   %}
 11995   ins_pipe(pipe_jump);
 11996 %}
 11997 */
 11999 // Jump Direct - Label defines a relative address from JMP
 12000 instruct jmpDir(label labl) %{
 12001   match(Goto);
 12002   effect(USE labl);
 12004   ins_cost(300);
 12005   format %{ "JMP    $labl #@jmpDir" %}
 12007   ins_encode %{
 12008     Label &L = *($labl$$label);
 12009     if(&L)
 12010     	 __ b(L);
 12011     else
 12012          __ b(int(0));
 12013     __ nop();
 12014   %}
 12016     ins_pipe( pipe_jump );
 12017     ins_pc_relative(1);
 12018 %}
 12022 // Tail Jump; remove the return address; jump to target.
 12023 // TailCall above leaves the return address around.
 12024 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 12025 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 12026 // "restore" before this instruction (in Epilogue), we need to materialize it
 12027 // in %i0.
 12028 //FIXME
 12029 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 12030   match( TailJump jump_target ex_oop );
 12031   ins_cost(200);
 12032   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 12033   ins_encode %{
 12034     Register target = $jump_target$$Register;
 12036     /* 2012/9/14 Jin: V0, V1 are indicated in:
 12037      *      [stubGenerator_mips.cpp] generate_forward_exception()
 12038      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 12039      */
 12040     Register oop  = $ex_oop$$Register;
 12041     Register exception_oop = V0;
 12042     Register exception_pc = V1;
 12044     __ move(exception_pc, RA);
 12045     __ move(exception_oop, oop);
 12047     __ jr(target);  
 12048     __ nop();
 12049   %}
 12050   ins_pipe( pipe_jump ); 
 12051 %}
 12053 // ============================================================================
 12054 // Procedure Call/Return Instructions
 12055 // Call Java Static Instruction
 12056 // Note: If this code changes, the corresponding ret_addr_offset() and
 12057 //       compute_padding() functions will have to be adjusted.
 12058 instruct CallStaticJavaDirect(method meth) %{
 12059   match(CallStaticJava);
 12060   effect(USE meth);
 12062   ins_cost(300);
 12063   format %{ "CALL,static #@CallStaticJavaDirect " %}
 12064   ins_encode( Java_Static_Call( meth ) );
 12065   ins_pipe( pipe_slow );
 12066   ins_pc_relative(1);
 12067   ins_alignment(16);
 12068 %}
 12070 // Call Java Dynamic Instruction
 12071 // Note: If this code changes, the corresponding ret_addr_offset() and
 12072 //       compute_padding() functions will have to be adjusted.
 12073 instruct CallDynamicJavaDirect(method meth) %{
 12074   match(CallDynamicJava);
 12075   effect(USE meth);
 12077   ins_cost(300);
 12078   format %{"MOV IC_Klass, (oop)-1\n\t"
 12079            "CallDynamic @ CallDynamicJavaDirect" %}
 12080   ins_encode( Java_Dynamic_Call( meth ) );
 12081   ins_pipe( pipe_slow );
 12082   ins_pc_relative(1);
 12083   ins_alignment(16);
 12084 %}
 12086 instruct CallLeafNoFPDirect(method meth) %{
 12087   match(CallLeafNoFP);
 12088   effect(USE meth);
 12090   ins_cost(300);
 12091   format %{ "CALL_LEAF_NOFP,runtime " %}
 12092   ins_encode(Java_To_Runtime(meth));
 12093   ins_pipe( pipe_slow );
 12094   ins_pc_relative(1);
 12095   ins_alignment(16);
 12096 %}
 12098 // Prefetch instructions.
 12100 instruct prefetchrNTA( memory mem ) %{
 12101   match(PrefetchRead mem);
 12102   ins_cost(125);
 12104   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 12105   ins_encode %{
 12106     int  base = $mem$$base;
 12107     int  index = $mem$$index;
 12108     int  scale = $mem$$scale;
 12109     int  disp = $mem$$disp;
 12111     if( index != 0 ) {
 12112       if (scale == 0) {
 12113         __ daddu(AT, as_Register(base), as_Register(index));
 12114       } else {
 12115         __ dsll(AT, as_Register(index), scale);
 12116         __ daddu(AT, as_Register(base), AT);
 12118     } else {
 12119       __ move(AT, as_Register(base));
 12121     if( Assembler::is_simm16(disp) ) {
 12122       __ daddiu(AT, as_Register(base), disp);
 12123       __ daddiu(AT, AT, disp);
 12124     } else {
 12125       __ move(T9, disp);
 12126       __ daddu(AT, as_Register(base), T9);
 12128     __ pref(0, AT, 0); //hint: 0:load
 12129   %}
 12130   ins_pipe(pipe_slow);
 12131 %}
 12133 instruct prefetchwNTA( memory mem ) %{
 12134   match(PrefetchWrite mem);
 12135   ins_cost(125);
 12136   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 12137   ins_encode %{
 12138     int  base = $mem$$base;
 12139     int  index = $mem$$index;
 12140     int  scale = $mem$$scale;
 12141     int  disp = $mem$$disp;
 12143     if( index != 0 ) {
 12144       if (scale == 0) {
 12145         __ daddu(AT, as_Register(base), as_Register(index));
 12146       } else {
 12147         __ dsll(AT, as_Register(index), scale);
 12148         __ daddu(AT, as_Register(base), AT);
 12150     } else {
 12151       __ move(AT, as_Register(base));
 12153     if( Assembler::is_simm16(disp) ) {
 12154       __ daddiu(AT, as_Register(base), disp);
 12155       __ daddiu(AT, AT, disp);
 12156     } else {
 12157       __ move(T9, disp);
 12158       __ daddu(AT, as_Register(base), T9);
 12160      __ pref(1, AT, 0); //hint: 1:store
 12161   %}
 12162   ins_pipe(pipe_slow);
 12163 %}
 12165 // Prefetch instructions for allocation.
 12167 instruct prefetchAllocNTA( memory mem ) %{
 12168   match(PrefetchAllocation mem);
 12169   ins_cost(125);
 12170   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 12171   ins_encode %{
 12172      int  base = $mem$$base;
 12173      int  index = $mem$$index;
 12174      int  scale = $mem$$scale;
 12175      int  disp = $mem$$disp;
 12177      Register dst = R0;
 12179      if( index != 0 ) {
 12180         if( Assembler::is_simm16(disp) ) { 
 12181            if( UseLoongsonISA ) {
 12182               if (scale == 0) {
 12183                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 12184               } else {
 12185                  __ dsll(AT, as_Register(index), scale);
 12186                  __ gslbx(dst, as_Register(base), AT, disp);
 12188            } else {
 12189               if (scale == 0) {
 12190                  __ addu(AT, as_Register(base), as_Register(index));
 12191               } else {
 12192                  __ dsll(AT, as_Register(index), scale);
 12193                  __ addu(AT, as_Register(base), AT);
 12195               __ lb(dst, AT, disp);
 12197         } else {
 12198            if (scale == 0) {
 12199               __ addu(AT, as_Register(base), as_Register(index));
 12200            } else {
 12201               __ dsll(AT, as_Register(index), scale);
 12202               __ addu(AT, as_Register(base), AT);
 12204            __ move(T9, disp);
 12205            if( UseLoongsonISA ) {
 12206               __ gslbx(dst, AT, T9, 0);
 12207            } else {
 12208               __ addu(AT, AT, T9); 
 12209               __ lb(dst, AT, 0);
 12212      } else {
 12213         if( Assembler::is_simm16(disp) ) { 
 12214            __ lb(dst, as_Register(base), disp);
 12215         } else {
 12216            __ move(T9, disp);   
 12217            if( UseLoongsonISA ) {
 12218               __ gslbx(dst, as_Register(base), T9, 0);
 12219            } else {
 12220               __ addu(AT, as_Register(base), T9); 
 12221               __ lb(dst, AT, 0);
 12225   %}
 12226   ins_pipe(pipe_slow);
 12227 %}
 12230 // Call runtime without safepoint
 12231 instruct CallLeafDirect(method meth) %{
 12232   match(CallLeaf);
 12233   effect(USE meth);
 12235   ins_cost(300);
 12236   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 12237   ins_encode(Java_To_Runtime(meth));
 12238   ins_pipe( pipe_slow );
 12239   ins_pc_relative(1);
 12240   ins_alignment(16);
 12241 %}
 12243 // Load Char (16bit unsigned)
 12244 instruct loadUS(mRegI dst, memory mem) %{
 12245   match(Set dst (LoadUS mem));
 12247   ins_cost(125);
 12248   format %{ "loadUS  $dst,$mem @ loadC" %}
 12249   ins_encode(load_C_enc(dst, mem));
 12250   ins_pipe( ialu_loadI );
 12251 %}
 12253 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 12254   match(Set dst (ConvI2L (LoadUS mem)));
 12256   ins_cost(125);
 12257   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 12258   ins_encode(load_C_enc(dst, mem));
 12259   ins_pipe( ialu_loadI );
 12260 %}
 12262 // Store Char (16bit unsigned)
 12263 instruct storeC(memory mem, mRegI src) %{
 12264   match(Set mem (StoreC mem src));
 12266   ins_cost(125);
 12267   format %{ "storeC  $src, $mem @ storeC" %}
 12268   ins_encode(store_C_reg_enc(mem, src));
 12269   ins_pipe( ialu_loadI );
 12270 %}
 12272 instruct storeC0(memory mem, immI0 zero) %{
 12273   match(Set mem (StoreC mem zero));
 12275   ins_cost(125);
 12276   format %{ "storeC  $zero, $mem @ storeC0" %}
 12277   ins_encode(store_C0_enc(mem));
 12278   ins_pipe( ialu_loadI );
 12279 %}
 12282 instruct loadConF0(regF dst, immF0 zero) %{
 12283   match(Set dst zero);
 12284   ins_cost(100);
 12286   format %{ "mov  $dst, zero @ loadConF0\n"%}
 12287   ins_encode %{
 12288     FloatRegister dst = $dst$$FloatRegister;
 12290     __ mtc1(R0, dst);
 12291   %}
 12292   ins_pipe( fpu_loadF );
 12293 %}
 12296 instruct loadConF(regF dst, immF src) %{
 12297   match(Set dst src);
 12298   ins_cost(125);
 12300   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12301   ins_encode %{
 12302     int con_offset = $constantoffset($src);
 12304     if (Assembler::is_simm16(con_offset)) {
 12305        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12306     } else {
 12307        __ set64(AT, con_offset);
 12308        if (UseLoongsonISA) {
 12309           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12310        } else {
 12311           __ daddu(AT, $constanttablebase, AT);
 12312           __ lwc1($dst$$FloatRegister, AT, 0);
 12315   %}
 12316   ins_pipe( fpu_loadF );
 12317 %}
 12320 instruct loadConD0(regD dst, immD0 zero) %{
 12321   match(Set dst zero);
 12322   ins_cost(100);
 12324   format %{ "mov  $dst, zero @ loadConD0"%}
 12325   ins_encode %{
 12326     FloatRegister dst = as_FloatRegister($dst$$reg);
 12328       __ dmtc1(R0, dst);
 12329   %}
 12330   ins_pipe( fpu_loadF );
 12331 %}
 12333 instruct loadConD(regD dst, immD src) %{
 12334   match(Set dst src);
 12335   ins_cost(125);
 12337   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12338   ins_encode %{
 12339     int con_offset = $constantoffset($src);
 12341     if (Assembler::is_simm16(con_offset)) {
 12342        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12343     } else {
 12344        __ set64(AT, con_offset);
 12345        if (UseLoongsonISA) {
 12346           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12347        } else {
 12348           __ daddu(AT, $constanttablebase, AT);
 12349           __ ldc1($dst$$FloatRegister, AT, 0);
 12352   %}
 12353   ins_pipe( fpu_loadF );
 12354 %}
 12356 // Store register Float value (it is faster than store from FPU register)
 12357 instruct storeF_reg( memory mem, regF src) %{
 12358   match(Set mem (StoreF mem src));
 12360   ins_cost(50);
 12361   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12362   ins_encode(store_F_reg_enc(mem, src));
 12363   ins_pipe( fpu_storeF );
 12364 %}
 12366 instruct storeF_imm0( memory mem, immF0 zero) %{
 12367   match(Set mem (StoreF mem zero));
 12369   ins_cost(40);
 12370   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12371   ins_encode %{
 12372     int      base = $mem$$base;
 12373     int     index = $mem$$index;
 12374     int     scale = $mem$$scale;
 12375     int      disp = $mem$$disp;
 12377     if( index != 0 ) {
 12378 		if ( UseLoongsonISA ) {
 12379 			if ( Assembler::is_simm(disp, 8) ) {
 12380 				if ( scale == 0 ) {
 12381 					__ gsswx(R0, as_Register(base), as_Register(index), disp);
 12382 				} else {
 12383 					__ dsll(T9, as_Register(index), scale);
 12384 					__ gsswx(R0, as_Register(base), T9, disp);
 12386 			} else if ( Assembler::is_simm16(disp) ) {
 12387 				if ( scale == 0 ) {
 12388 					__ daddu(AT, as_Register(base), as_Register(index));
 12389 				} else {
 12390 					__ dsll(T9, as_Register(index), scale);
 12391 					__ daddu(AT, as_Register(base), T9);
 12393 				__ sw(R0, AT, disp);
 12394 			} else {
 12395 				if ( scale == 0 ) {
 12396 					__ move(T9, disp);
 12397 					__ daddu(AT, as_Register(index), T9);
 12398 					__ gsswx(R0, as_Register(base), AT, 0);
 12399 				} else {
 12400 					__ dsll(T9, as_Register(index), scale);
 12401 					__ move(AT, disp);
 12402 					__ daddu(AT, AT, T9);
 12403 					__ gsswx(R0, as_Register(base), AT, 0);
 12406 		} else { //not use loongson isa
 12407 		    if(scale != 0) {
 12408 		       __ dsll(T9, as_Register(index), scale);
 12409 		       __ daddu(AT, as_Register(base), T9);
 12410 		    } else {
 12411 		       __ daddu(AT, as_Register(base), as_Register(index));
 12413 		   if( Assembler::is_simm16(disp) ) { 
 12414 		      __ sw(R0, AT, disp);
 12415 		   } else {
 12416 		      __ move(T9, disp);
 12417 		      __ daddu(AT, AT, T9);
 12418 			  __ sw(R0, AT, 0);
 12421     } else { //index is 0
 12422 		if ( UseLoongsonISA ) {
 12423 			if ( Assembler::is_simm16(disp) ) {
 12424 				__ sw(R0, as_Register(base), disp);
 12425 			} else {
 12426 				__ move(T9, disp);
 12427 				__ gsswx(R0, as_Register(base), T9, 0);
 12429 		} else {
 12430 		   if( Assembler::is_simm16(disp) ) { 
 12431 		      __ sw(R0, as_Register(base), disp);
 12432 		   } else {
 12433 		      __ move(T9, disp);
 12434 		      __ daddu(AT, as_Register(base), T9);
 12435 			  __ sw(R0, AT, 0);
 12439   %}
 12440   ins_pipe( ialu_storeI );
 12441 %}
 12443 // Load Double
 12444 instruct loadD(regD dst, memory mem) %{
 12445   match(Set dst (LoadD mem));
 12447   ins_cost(150);
 12448   format %{ "loadD   $dst, $mem #@loadD" %}
 12449   ins_encode(load_D_enc(dst, mem));
 12450   ins_pipe( ialu_loadI );
 12451 %}
 12453 // Load Double - UNaligned
 12454 instruct loadD_unaligned(regD dst, memory mem ) %{
 12455   match(Set dst (LoadD_unaligned mem));
 12456   ins_cost(250);
 12457   // FIXME: Jin: Need more effective ldl/ldr
 12458   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12459   ins_encode(load_D_enc(dst, mem));
 12460   ins_pipe( ialu_loadI );
 12461 %}
 12463 instruct storeD_reg( memory mem, regD src) %{
 12464   match(Set mem (StoreD mem src));
 12466   ins_cost(50);
 12467   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12468   ins_encode(store_D_reg_enc(mem, src));
 12469   ins_pipe( fpu_storeF );
 12470 %}
 12472 instruct storeD_imm0( memory mem, immD0 zero) %{
 12473   match(Set mem (StoreD mem zero));
 12475   ins_cost(40);
 12476   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12477   ins_encode %{
 12478     int      base = $mem$$base;
 12479     int     index = $mem$$index;
 12480     int     scale = $mem$$scale;
 12481     int      disp = $mem$$disp;
 12483     __ mtc1(R0, F30);
 12484     __ cvt_d_w(F30, F30);
 12486     if( index != 0 ) {
 12487 		if ( UseLoongsonISA ) {
 12488 			if ( Assembler::is_simm(disp, 8) ) {
 12489 				if (scale == 0) {
 12490 					__ gssdxc1(F30, as_Register(base), as_Register(index), disp);
 12491 				} else {
 12492 					__ dsll(T9, as_Register(index), scale);
 12493 					__ gssdxc1(F30, as_Register(base), T9, disp);
 12495 			} else if ( Assembler::is_simm16(disp) ) {
 12496 				if (scale == 0) {
 12497 					__ daddu(AT, as_Register(base), as_Register(index));
 12498 					__ sdc1(F30, AT, disp);
 12499 				} else {
 12500 					__ dsll(T9, as_Register(index), scale);
 12501 					__ daddu(AT, as_Register(base), T9);
 12502 					__ sdc1(F30, AT, disp);
 12504 			} else {
 12505 				if (scale == 0) {
 12506 					__ move(T9, disp);
 12507 					__ daddu(AT, as_Register(index), T9);
 12508 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12509 				} else {
 12510 					__ move(T9, disp);
 12511 					__ dsll(AT, as_Register(index), scale);
 12512 					__ daddu(AT, AT, T9);
 12513 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12516 		} else { // not use loongson isa
 12517 		    if(scale != 0) {
 12518 		       __ dsll(T9, as_Register(index), scale);
 12519 		       __ daddu(AT, as_Register(base), T9);
 12520 		    } else {
 12521 		       __ daddu(AT, as_Register(base), as_Register(index));
 12523 		   if( Assembler::is_simm16(disp) ) { 
 12524 		      __ sdc1(F30, AT, disp);
 12525 		   } else {
 12526 		      __ move(T9, disp);
 12527 		      __ daddu(AT, AT, T9);
 12528 		      __ sdc1(F30, AT, 0);
 12531     } else {// index is 0
 12532 		if ( UseLoongsonISA ) {
 12533 			if ( Assembler::is_simm16(disp) ) {
 12534 				__ sdc1(F30, as_Register(base), disp);
 12535 			} else {
 12536 				__ move(T9, disp);
 12537 				__ gssdxc1(F30, as_Register(base), T9, 0);
 12539 		} else {
 12540 		   if( Assembler::is_simm16(disp) ) { 
 12541 		      __ sdc1(F30, as_Register(base), disp);
 12542 		   } else {
 12543 		      __ move(T9, disp);
 12544 		      __ daddu(AT, as_Register(base), T9);
 12545 		      __ sdc1(F30, AT, 0);
 12549   %}
 12550   ins_pipe( ialu_storeI );
 12551 %}
 12553 instruct loadSSI(mRegI dst, stackSlotI src)
 12554 %{
 12555   match(Set dst src);
 12557   ins_cost(125);
 12558   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12559   ins_encode %{
 12560     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12561     __ lw($dst$$Register, SP, $src$$disp);
 12562   %}
 12563   ins_pipe(ialu_loadI);
 12564 %}
 12566 instruct storeSSI(stackSlotI dst, mRegI src)
 12567 %{
 12568   match(Set dst src);
 12570   ins_cost(100);
 12571   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12572   ins_encode %{
 12573     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12574     __ sw($src$$Register, SP, $dst$$disp);
 12575   %}
 12576   ins_pipe(ialu_storeI);
 12577 %}
 12579 instruct loadSSL(mRegL dst, stackSlotL src)
 12580 %{
 12581   match(Set dst src);
 12583   ins_cost(125);
 12584   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12585   ins_encode %{
 12586     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12587     __ ld($dst$$Register, SP, $src$$disp);
 12588   %}
 12589   ins_pipe(ialu_loadI);
 12590 %}
 12592 instruct storeSSL(stackSlotL dst, mRegL src)
 12593 %{
 12594   match(Set dst src);
 12596   ins_cost(100);
 12597   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12598   ins_encode %{
 12599     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12600     __ sd($src$$Register, SP, $dst$$disp);
 12601   %}
 12602   ins_pipe(ialu_storeI);
 12603 %}
 12605 instruct loadSSP(mRegP dst, stackSlotP src)
 12606 %{
 12607   match(Set dst src);
 12609   ins_cost(125);
 12610   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12611   ins_encode %{
 12612     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12613     __ ld($dst$$Register, SP, $src$$disp);
 12614   %}
 12615   ins_pipe(ialu_loadI);
 12616 %}
 12618 instruct storeSSP(stackSlotP dst, mRegP src)
 12619 %{
 12620   match(Set dst src);
 12622   ins_cost(100);
 12623   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12624   ins_encode %{
 12625     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12626     __ sd($src$$Register, SP, $dst$$disp);
 12627   %}
 12628   ins_pipe(ialu_storeI);
 12629 %}
 12631 instruct loadSSF(regF dst, stackSlotF src)
 12632 %{
 12633   match(Set dst src);
 12635   ins_cost(125);
 12636   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12637   ins_encode %{
 12638     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12639     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12640   %}
 12641   ins_pipe(ialu_loadI);
 12642 %}
 12644 instruct storeSSF(stackSlotF dst, regF src)
 12645 %{
 12646   match(Set dst src);
 12648   ins_cost(100);
 12649   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12650   ins_encode %{
 12651     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12652     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12653   %}
 12654   ins_pipe(fpu_storeF);
 12655 %}
 12657 // Use the same format since predicate() can not be used here.
 12658 instruct loadSSD(regD dst, stackSlotD src)
 12659 %{
 12660   match(Set dst src);
 12662   ins_cost(125);
 12663   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12664   ins_encode %{
 12665     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12666     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12667   %}
 12668   ins_pipe(ialu_loadI);
 12669 %}
 12671 instruct storeSSD(stackSlotD dst, regD src)
 12672 %{
 12673   match(Set dst src);
 12675   ins_cost(100);
 12676   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12677   ins_encode %{
 12678     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12679     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12680   %}
 12681   ins_pipe(fpu_storeF);
 12682 %}
 12684 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12685   match( Set cr (FastLock object box) );
 12686   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12687   ins_cost(300);
 12688   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12689   ins_encode %{
 12690     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12691   %}
 12693   ins_pipe( pipe_slow );
 12694   ins_pc_relative(1);
 12695 %}
 12697 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12698   match( Set cr (FastUnlock object box) );
 12699   effect( TEMP tmp, USE_KILL box );
 12700   ins_cost(300);
 12701   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12702   ins_encode %{
 12703     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12704   %}
 12706   ins_pipe( pipe_slow );
 12707   ins_pc_relative(1);
 12708 %}
 12710 // Store CMS card-mark Immediate
 12711 instruct storeImmCM(memory mem, immI8 src) %{
 12712   match(Set mem (StoreCM mem src));
 12714   ins_cost(150);
 12715   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12716 //  opcode(0xC6);
 12717   ins_encode(store_B_immI_enc_sync(mem, src));
 12718   ins_pipe( ialu_storeI );
 12719 %}
 12721 // Die now
 12722 instruct ShouldNotReachHere( )
 12723 %{
 12724   match(Halt);
 12725   ins_cost(300);
 12727   // Use the following format syntax
 12728   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12729   ins_encode %{
 12730     // Here we should emit illtrap !
 12732     __ stop("in ShoudNotReachHere");
 12734   %}
 12735   ins_pipe( pipe_jump );
 12736 %}
 12738 instruct leaP8Narrow(mRegP dst, indOffset8Narrow mem)
 12739 %{
 12740   predicate(Universe::narrow_oop_shift() == 0);
 12741   match(Set dst mem);
 12743   ins_cost(110); 
 12744   format %{ "leaq    $dst, $mem\t# ptr off8narrow @ leaP8Narrow" %}
 12745   ins_encode %{
 12746     Register  dst  = $dst$$Register;
 12747     Register  base = as_Register($mem$$base);
 12748     int       disp = $mem$$disp;
 12750     __ daddiu(dst, base, disp);
 12751   %}
 12752   ins_pipe( ialu_regI_imm16 );
 12753 %}
 12755 instruct leaPPosIdxScaleOff8(mRegP dst, basePosIndexScaleOffset8 mem)
 12756 %{
 12757   match(Set dst mem);
 12759   ins_cost(110);
 12760   format %{ "leaq    $dst, $mem\t# @ PosIdxScaleOff8" %}
 12761   ins_encode %{
 12762     Register  dst   = $dst$$Register;
 12763     Register  base  = as_Register($mem$$base);
 12764     Register  index = as_Register($mem$$index);
 12765     int       scale = $mem$$scale;
 12766     int       disp  = $mem$$disp;
 12768     if (scale == 0) {
 12769        __ daddu(AT, base, index);
 12770        __ daddiu(dst, AT, disp);
 12771     } else {
 12772        __ dsll(AT, index, scale);
 12773        __ daddu(AT, base, AT);
 12774        __ daddiu(dst, AT, disp);
 12776  %}
 12778   ins_pipe( ialu_regI_imm16 );
 12779 %}
 12781 instruct leaPIdxScale(mRegP dst, indIndexScale mem)
 12782 %{
 12783   match(Set dst mem);
 12785   ins_cost(110);
 12786   format %{ "leaq    $dst, $mem\t# @ leaPIdxScale" %}
 12787   ins_encode %{
 12788     Register  dst   = $dst$$Register;
 12789     Register  base  = as_Register($mem$$base);
 12790     Register  index = as_Register($mem$$index);
 12791     int       scale = $mem$$scale;
 12793     if (scale == 0) {
 12794        __ daddu(dst, base, index);
 12795     } else {
 12796        __ dsll(AT, index, scale);
 12797        __ daddu(dst, base, AT);
 12799  %}
 12801   ins_pipe( ialu_regI_imm16 );
 12802 %}
 12804 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12805 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12806   match(CountedLoopEnd cop (CmpI src1 src2));
 12807   effect(USE labl);
 12809   ins_cost(300);
 12810   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12811   ins_encode %{
 12812     Register op1 = $src1$$Register;
 12813     Register op2 = $src2$$Register;
 12814     Label     &L = *($labl$$label);
 12815     int     flag = $cop$$cmpcode;
 12817     switch(flag)
 12819       case 0x01: //equal
 12820 	if (&L)
 12821         	__ beq(op1, op2, L); 
 12822 	else 
 12823         	__ beq(op1, op2, (int)0); 
 12824         break;
 12825       case 0x02: //not_equal
 12826 	if (&L)
 12827         	__ bne(op1, op2, L); 
 12828 	else
 12829         	__ bne(op1, op2, (int)0); 
 12830         break;
 12831       case 0x03: //above
 12832         __ slt(AT, op2, op1);
 12833         if(&L)
 12834         	__ bne(AT, R0, L); 
 12835         else
 12836                 __ bne(AT, R0, (int)0);
 12837         break;
 12838       case 0x04: //above_equal
 12839         __ slt(AT, op1, op2);
 12840         if(&L)
 12841         	__ beq(AT, R0, L);
 12842         else
 12843                 __ beq(AT, R0, (int)0);
 12844         break;
 12845       case 0x05: //below
 12846         __ slt(AT, op1, op2);
 12847         if(&L)
 12848       		 __ bne(AT, R0, L); 
 12849         else
 12850         	 __ bne(AT, R0, (int)0);
 12851         break;
 12852       case 0x06: //below_equal
 12853         __ slt(AT, op2, op1);
 12854         if(&L)
 12855         	__ beq(AT, R0, L);
 12856         else
 12857         	__ beq(AT, R0, (int)0);
 12858        break;
 12859       default:
 12860           Unimplemented();
 12862     __ nop();
 12863   %}
 12864   ins_pipe( pipe_jump );
 12865   ins_pc_relative(1);
 12866 %}
 12869  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12870   match(CountedLoopEnd cop (CmpI src1 src2));
 12871   effect(USE labl);
 12873   ins_cost(250);
 12874   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12875   ins_encode %{
 12876     Register op1 = $src1$$Register;
 12877     int      op2 = $src2$$constant;
 12878     Label     &L = *($labl$$label);
 12879     int     flag = $cop$$cmpcode;
 12881     __ addiu32(AT, op1, -1 * op2);
 12883     switch(flag)
 12885       case 0x01: //equal
 12886        if (&L)
 12887                __ beq(AT, R0, L); 
 12888        else 
 12889                __ beq(AT, R0, (int)0); 
 12890         break;
 12891       case 0x02: //not_equal
 12892        if (&L)
 12893                __ bne(AT, R0, L); 
 12894        else
 12895                __ bne(AT, R0, (int)0); 
 12896         break;
 12897       case 0x03: //above
 12898         if(&L)
 12899                __ bgtz(AT, L); 
 12900         else
 12901                 __ bgtz(AT, (int)0);
 12902         break;
 12903       case 0x04: //above_equal
 12904         if(&L)
 12905                __ bgez(AT, L);
 12906         else
 12907                 __ bgez(AT,(int)0);
 12908         break;
 12909       case 0x05: //below
 12910         if(&L)
 12911                 __ bltz(AT, L); 
 12912         else
 12913                 __ bltz(AT, (int)0);
 12914         break;
 12915       case 0x06: //below_equal
 12916         if(&L)
 12917                __ blez(AT, L);
 12918         else
 12919                __ blez(AT, (int)0);
 12920        break;
 12921       default:
 12922           Unimplemented();
 12924     __ nop();
 12925   %}
 12926   ins_pipe( pipe_jump );
 12927   ins_pc_relative(1);
 12928 %}
 12931 /*  
 12932 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12933 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12934   match(CountedLoopEnd cop cmp);
 12935   effect(USE labl);
 12937   ins_cost(300);
 12938   format %{ "J$cop,u  $labl\t# Loop end" %}
 12939   size(6);
 12940   opcode(0x0F, 0x80);
 12941   ins_encode( Jcc( cop, labl) );
 12942   ins_pipe( pipe_jump );
 12943   ins_pc_relative(1);
 12944 %}
 12946 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12947   match(CountedLoopEnd cop cmp);
 12948   effect(USE labl);
 12950   ins_cost(200);
 12951   format %{ "J$cop,u  $labl\t# Loop end" %}
 12952   opcode(0x0F, 0x80);
 12953   ins_encode( Jcc( cop, labl) );
 12954   ins_pipe( pipe_jump );
 12955   ins_pc_relative(1);
 12956 %}
 12957 */
 12959 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 12960 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 12961   match(If cop cr);
 12962   effect(USE labl);
 12964   ins_cost(300);
 12965   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 12967   ins_encode %{
 12968     Label    &L =  *($labl$$label);
 12969     switch($cop$$cmpcode)
 12971       case 0x01: //equal
 12972 	if (&L)
 12973         	__ bne(AT, R0, L); 
 12974 	else 
 12975         	__ bne(AT, R0, (int)0); 
 12976         break;
 12977       case 0x02: //not equal
 12978 	if (&L)
 12979         	__ beq(AT, R0, L); 
 12980 	else 
 12981         	__ beq(AT, R0, (int)0); 
 12982         break;
 12983       default:
 12984          Unimplemented(); 
 12986     __ nop();
 12987   %}
 12989   ins_pipe( pipe_jump );
 12990   ins_pc_relative(1);
 12991 %}
 12994 // ============================================================================
 12995 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12996 // array for an instance of the superklass.  Set a hidden internal cache on a
 12997 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12998 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12999 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 13000   match(Set result (PartialSubtypeCheck sub super));
 13001   effect(KILL tmp);
 13002   ins_cost(1100);  // slightly larger than the next version
 13003   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 13005   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 13006   ins_pipe( pipe_slow );
 13007 %}
 13010 // Conditional-store of an int value.
 13011 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 13012 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 13013   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 13014 //  effect(KILL oldval);
 13015   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 13017   ins_encode %{
 13018     Register oldval = $oldval$$Register;
 13019     Register newval = $newval$$Register;
 13020     Address  addr(as_Register($mem$$base), $mem$$disp);
 13021     Label    again, failure;
 13023 //    int      base = $mem$$base;
 13024     int     index = $mem$$index;
 13025     int     scale = $mem$$scale;
 13026     int      disp = $mem$$disp;
 13028     guarantee(Assembler::is_simm16(disp), ""); 
 13030     if( index != 0 ) {
 13031        __ stop("in storeIConditional: index != 0");
 13032     } else {
 13033        __ bind(again);
 13034        if(UseSyncLevel <= 1000) __ sync();
 13035        __ ll(AT, addr);
 13036        __ bne(AT, oldval, failure);
 13037        __ delayed()->addu(AT, R0, R0);
 13039        __ addu(AT, newval, R0);
 13040        __ sc(AT, addr);
 13041        __ beq(AT, R0, again);
 13042        __ delayed()->addiu(AT, R0, 0xFF);
 13043        __ bind(failure);
 13044        __ sync();
 13046 %}
 13048   ins_pipe( long_memory_op );
 13049 %}
 13051 // Conditional-store of a long value.
 13052 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 13053 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 13054 %{
 13055   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 13056   effect(KILL oldval);
 13058   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 13059   ins_encode%{
 13060 		Register oldval = $oldval$$Register;
 13061 		Register newval = $newval$$Register;
 13062 		Address addr((Register)$mem$$base, $mem$$disp);  
 13064 		int     index = $mem$$index;
 13065 		int     scale = $mem$$scale;
 13066 		int      disp = $mem$$disp;
 13068 		guarantee(Assembler::is_simm16(disp), ""); 
 13070 		if( index != 0 ) {
 13071 			__ stop("in storeIConditional: index != 0");
 13072 		} else {
 13073 			__ cmpxchg(newval, addr, oldval);
 13075   %}
 13076   ins_pipe( long_memory_op );
 13077 %}
 13080 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 13081   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 13082   effect(KILL oldval);
 13083 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 13084   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 13085             "MOV    $res, 1 @ compareAndSwapI\n\t"
 13086             "BNE    AT, R0 @ compareAndSwapI\n\t"
 13087             "MOV    $res, 0 @ compareAndSwapI\n"
 13088           "L:" %}
 13089   ins_encode %{
 13090     Register newval = $newval$$Register;
 13091     Register oldval = $oldval$$Register;
 13092     Register res    = $res$$Register;
 13093     Address  addr($mem_ptr$$Register, 0);    
 13094     Label L;
 13096     __ cmpxchg32(newval, addr, oldval);
 13097     __ move(res, AT);
 13098   %}
 13099   ins_pipe( long_memory_op );
 13100 %}
 13102 //FIXME:
 13103 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 13104   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 13105   effect(KILL oldval);
 13106   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 13107             "MOV    $res, AT @ compareAndSwapP\n\t"
 13108           "L:" %}
 13109   ins_encode %{
 13110     Register newval = $newval$$Register;
 13111     Register oldval = $oldval$$Register;
 13112     Register res    = $res$$Register;
 13113     Address  addr($mem_ptr$$Register, 0);    
 13114     Label L;
 13116     __ cmpxchg(newval, addr, oldval);
 13117     __ move(res, AT);
 13118   %}
 13119   ins_pipe( long_memory_op );
 13120 %}
 13122 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 13123   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 13124   effect(KILL oldval);
 13125   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 13126             "MOV    $res, AT @ compareAndSwapN\n\t"
 13127           "L:" %}
 13128   ins_encode %{
 13129     Register newval = $newval$$Register;
 13130     Register oldval = $oldval$$Register;
 13131     Register res    = $res$$Register;
 13132     Address  addr($mem_ptr$$Register, 0);    
 13133     Label L;
 13135     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 13136      *      Thus, we should extend oldval's sign for correct comparision.
 13137      */
 13138     __ sll(oldval, oldval, 0);
 13140     __ cmpxchg32(newval, addr, oldval);
 13141     __ move(res, AT);
 13142   %}
 13143   ins_pipe( long_memory_op );
 13144 %}
 13146 //----------Max and Min--------------------------------------------------------
 13147 // Min Instructions
 13148 ////
 13149 //   *** Min and Max using the conditional move are slower than the
 13150 //   *** branch version on a Pentium III.
 13151 // // Conditional move for min
 13152 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13153 //  effect( USE_DEF op2, USE op1, USE cr );
 13154 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 13155 //  opcode(0x4C,0x0F);
 13156 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13157 //  ins_pipe( pipe_cmov_reg );
 13158 //%}
 13159 //
 13160 //// Min Register with Register (P6 version)
 13161 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13162 //  predicate(VM_Version::supports_cmov() );
 13163 //  match(Set op2 (MinI op1 op2));
 13164 //  ins_cost(200);
 13165 //  expand %{
 13166 //    eFlagsReg cr;
 13167 //    compI_eReg(cr,op1,op2);
 13168 //    cmovI_reg_lt(op2,op1,cr);
 13169 //  %}
 13170 //%}
 13172 // Min Register with Register (generic version)
 13173 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 13174   match(Set dst (MinI dst src));
 13175   //effect(KILL flags);
 13176   ins_cost(80);
 13178   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 13179   ins_encode %{
 13180     Register dst   = $dst$$Register;
 13181     Register src   = $src$$Register;
 13183     __ slt(AT, src, dst);
 13184     __ movn(dst, src, AT);
 13186   %}
 13188   ins_pipe( pipe_slow );
 13189 %}
 13191 // Max Register with Register
 13192 //   *** Min and Max using the conditional move are slower than the
 13193 //   *** branch version on a Pentium III.
 13194 // // Conditional move for max
 13195 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13196 //  effect( USE_DEF op2, USE op1, USE cr );
 13197 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 13198 //  opcode(0x4F,0x0F);
 13199 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13200 //  ins_pipe( pipe_cmov_reg );
 13201 //%}
 13202 //
 13203 // // Max Register with Register (P6 version)
 13204 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13205 //  predicate(VM_Version::supports_cmov() );
 13206 //  match(Set op2 (MaxI op1 op2));
 13207 //  ins_cost(200);
 13208 //  expand %{
 13209 //    eFlagsReg cr;
 13210 //    compI_eReg(cr,op1,op2);
 13211 //    cmovI_reg_gt(op2,op1,cr);
 13212 //  %}
 13213 //%}
 13215 // Max Register with Register (generic version)
 13216 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 13217   match(Set dst (MaxI dst src));
 13218   ins_cost(80);
 13220   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 13222   ins_encode %{
 13223     Register dst   = $dst$$Register;
 13224     Register src   = $src$$Register;
 13226     __ slt(AT, dst, src);
 13227     __ movn(dst, src, AT);
 13229   %}
 13231   ins_pipe( pipe_slow );
 13232 %}
 13234 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 13235   match(Set dst (MaxI dst zero));
 13236   ins_cost(50);
 13238   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 13240   ins_encode %{
 13241     Register dst   = $dst$$Register;
 13243     __ slt(AT, dst, R0);
 13244     __ movn(dst, R0, AT);
 13246   %}
 13248   ins_pipe( pipe_slow );
 13249 %}
 13251 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 13252 %{
 13253   match(Set dst (AndL src mask));
 13255   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 13256   ins_encode %{
 13257     Register dst = $dst$$Register;
 13258     Register src = $src$$Register;
 13260     __ dext(dst, src, 0, 32);
 13261   %}
 13262   ins_pipe(ialu_regI_regI);
 13263 %}
 13265 instruct combine_i2l(mRegL dst, mRegI src1, immL_32bits mask, mRegI src2, immI_32 shift32)
 13266 %{
 13267   match(Set dst (OrL (AndL (ConvI2L src1) mask) (LShiftL (ConvI2L src2) shift32)));
 13269   format %{ "combine_i2l    $dst, $src2(H), $src1(L) @ combine_i2l" %}
 13270   ins_encode %{
 13271     Register dst  = $dst$$Register;
 13272     Register src1 = $src1$$Register;
 13273     Register src2 = $src2$$Register;
 13275     if (src1 == dst) {
 13276        __ dinsu(dst, src2, 32, 32);
 13277     } else if (src2 == dst) {
 13278        __ dsll32(dst, dst, 0); 
 13279        __ dins(dst, src1, 0, 32);
 13280     } else {
 13281        __ dext(dst, src1, 0, 32);
 13282        __ dinsu(dst, src2, 32, 32);
 13284   %}
 13285   ins_pipe(ialu_regI_regI);
 13286 %}
 13288 // Zero-extend convert int to long
 13289 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 13290 %{
 13291   match(Set dst (AndL (ConvI2L src) mask));
 13293   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 13294   ins_encode %{
 13295     Register dst = $dst$$Register;
 13296     Register src = $src$$Register;
 13298     __ dext(dst, src, 0, 32);
 13299   %}
 13300   ins_pipe(ialu_regI_regI);
 13301 %}
 13303 instruct convL2I2L_reg_reg_zex(mRegL dst, mRegL src, immL_32bits mask)
 13304 %{
 13305   match(Set dst (AndL (ConvI2L (ConvL2I src)) mask));
 13307   format %{ "movl    $dst, $src\t# i2l zero-extend @ convL2I2L_reg_reg_zex" %}
 13308   ins_encode %{
 13309     Register dst = $dst$$Register;
 13310     Register src = $src$$Register;
 13312     __ dext(dst, src, 0, 32);
 13313   %}
 13314   ins_pipe(ialu_regI_regI);
 13315 %}
 13317 // Match loading integer and casting it to unsigned int in long register.
 13318 // LoadI + ConvI2L + AndL 0xffffffff.
 13319 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 13320   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 13322   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 13323   ins_encode (load_N_enc(dst, mem));
 13324   ins_pipe(ialu_loadI);
 13325 %}
 13327 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 13328   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 13330   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 13331   ins_encode (load_N_enc(dst, mem));
 13332   ins_pipe(ialu_loadI);
 13333 %}
 13336 // ============================================================================
 13337 // Safepoint Instruction
 13338 instruct safePoint_poll_reg(mRegP poll) %{
 13339   match(SafePoint poll);
 13340   predicate(false);
 13341   effect(USE poll);
 13343   ins_cost(125);
 13344   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll_reg" %}
 13346   ins_encode %{
 13347     Register poll_reg = $poll$$Register;
 13349     __ block_comment("Safepoint:");
 13350     __ relocate(relocInfo::poll_type);
 13351     __ lw(AT, poll_reg, 0);
 13352   %}
 13354   ins_pipe( ialu_storeI );
 13355 %}
 13357 instruct safePoint_poll() %{
 13358   match(SafePoint);
 13360   ins_cost(105);
 13361   format %{ "poll for GC @ safePoint_poll" %}
 13363   ins_encode %{
 13364     __ block_comment("Safepoint:");
 13365     __ set64(T9, (long)os::get_polling_page());
 13366     __ relocate(relocInfo::poll_type);
 13367     __ lw(AT, T9, 0);
 13368   %}
 13370   ins_pipe( ialu_storeI );
 13371 %}
 13373 //----------Arithmetic Conversion Instructions---------------------------------
 13375 instruct roundFloat_nop(regF dst)
 13376 %{
 13377   match(Set dst (RoundFloat dst));
 13379   ins_cost(0);
 13380   ins_encode();
 13381   ins_pipe(empty);
 13382 %}
 13384 instruct roundDouble_nop(regD dst)
 13385 %{
 13386   match(Set dst (RoundDouble dst));
 13388   ins_cost(0);
 13389   ins_encode();
 13390   ins_pipe(empty);
 13391 %}
 13393 //---------- Zeros Count Instructions ------------------------------------------
 13394 // CountLeadingZerosINode CountTrailingZerosINode 
 13395 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 13396   predicate(UseCountLeadingZerosInstruction);
 13397   match(Set dst (CountLeadingZerosI src));
 13399   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 13400   ins_encode %{
 13401     __ clz($dst$$Register, $src$$Register);
 13402   %}
 13403   ins_pipe( ialu_regL_regL );
 13404 %}
 13406 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 13407   predicate(UseCountLeadingZerosInstruction);
 13408   match(Set dst (CountLeadingZerosL src));
 13410   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 13411   ins_encode %{
 13412     __ dclz($dst$$Register, $src$$Register);
 13413   %}
 13414   ins_pipe( ialu_regL_regL );
 13415 %}
 13417 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13418   predicate(UseCountTrailingZerosInstruction);
 13419   match(Set dst (CountTrailingZerosI src));
 13421   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13422   ins_encode %{
 13423     // ctz and dctz is gs instructions.
 13424     __ ctz($dst$$Register, $src$$Register);
 13425   %}
 13426   ins_pipe( ialu_regL_regL );
 13427 %}
 13429 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13430   predicate(UseCountTrailingZerosInstruction);
 13431   match(Set dst (CountTrailingZerosL src));
 13433   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13434   ins_encode %{
 13435     __ dctz($dst$$Register, $src$$Register);
 13436   %}
 13437   ins_pipe( ialu_regL_regL );
 13438 %}
 13440 // ====================VECTOR INSTRUCTIONS=====================================
 13442 // Load vectors (8 bytes long)
 13443 instruct loadV8(vecD dst, memory mem) %{
 13444   predicate(n->as_LoadVector()->memory_size() == 8);
 13445   match(Set dst (LoadVector mem));
 13446   ins_cost(125);
 13447   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13448   ins_encode(load_D_enc(dst, mem));
 13449   ins_pipe( fpu_loadF );
 13450 %}
 13452 // Store vectors (8 bytes long)
 13453 instruct storeV8(memory mem, vecD src) %{
 13454   predicate(n->as_StoreVector()->memory_size() == 8);
 13455   match(Set mem (StoreVector mem src));
 13456   ins_cost(145);
 13457   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13458   ins_encode(store_D_reg_enc(mem, src));
 13459   ins_pipe( fpu_storeF );
 13460 %}
 13462 instruct Repl8B_DSP(vecD dst, mRegI src) %{
 13463   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13464   match(Set dst (ReplicateB src));
 13465   ins_cost(100);
 13466   format %{ "replv_ob    AT, $src\n\t"
 13467             "dmtc1 AT, $dst\t! replicate8B" %}
 13468   ins_encode %{
 13469     __ replv_ob(AT, $src$$Register);
 13470     __ dmtc1(AT, $dst$$FloatRegister);
 13471   %}
 13472   ins_pipe( pipe_mtc1 );
 13473 %}
 13475 instruct Repl8B(vecD dst, mRegI src) %{
 13476   predicate(n->as_Vector()->length() == 8);
 13477   match(Set dst (ReplicateB src));
 13478   ins_cost(140);
 13479   format %{ "move       AT,  $src\n\t"
 13480             "dins  AT, AT,  8,  8\n\t"
 13481             "dins  AT, AT, 16, 16\n\t"
 13482             "dinsu AT, AT, 32, 32\n\t"
 13483             "dmtc1 AT, $dst\t! replicate8B" %}
 13484   ins_encode %{
 13485     __ move(AT, $src$$Register);
 13486     __ dins(AT, AT, 8, 8);
 13487     __ dins(AT, AT, 16, 16);
 13488     __ dinsu(AT, AT, 32, 32);
 13489     __ dmtc1(AT, $dst$$FloatRegister);
 13490   %}
 13491   ins_pipe( pipe_mtc1 );
 13492 %}
 13494 instruct Repl8B_imm_DSP(vecD dst, immI con) %{
 13495   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13496   match(Set dst (ReplicateB con));
 13497   ins_cost(110);
 13498   format %{ "repl_ob    AT, [$con]\n\t"
 13499             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13500   ins_encode %{
 13501     int      val = $con$$constant;
 13502     __ repl_ob(AT, val);
 13503     __ dmtc1(AT, $dst$$FloatRegister);
 13504   %}
 13505   ins_pipe( pipe_mtc1 );
 13506 %}
 13508 instruct Repl8B_imm(vecD dst, immI con) %{
 13509   predicate(n->as_Vector()->length() == 8);
 13510   match(Set dst (ReplicateB con));
 13511   ins_cost(150);
 13512   format %{ "move      AT, [$con]\n\t"
 13513             "dins  AT, AT,  8,  8\n\t"
 13514             "dins  AT, AT, 16, 16\n\t"
 13515             "dinsu AT, AT, 32, 32\n\t"
 13516             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13517   ins_encode %{
 13518     __ move(AT, $con$$constant);
 13519     __ dins(AT, AT, 8, 8);
 13520     __ dins(AT, AT, 16, 16);
 13521     __ dinsu(AT, AT, 32, 32);
 13522     __ dmtc1(AT, $dst$$FloatRegister);
 13523   %}
 13524   ins_pipe( pipe_mtc1 );
 13525 %}
 13527 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13528   predicate(n->as_Vector()->length() == 8);
 13529   match(Set dst (ReplicateB zero));
 13530   ins_cost(90);
 13531   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13532   ins_encode %{
 13533     __ dmtc1(R0, $dst$$FloatRegister);
 13534   %}
 13535   ins_pipe( pipe_mtc1 );
 13536 %}
 13538 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13539   predicate(n->as_Vector()->length() == 8);
 13540   match(Set dst (ReplicateB M1));
 13541   ins_cost(80);
 13542   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13543   ins_encode %{
 13544     __ nor(AT, R0, R0);
 13545     __ dmtc1(AT, $dst$$FloatRegister);
 13546   %}
 13547   ins_pipe( pipe_mtc1 );
 13548 %}
 13550 instruct Repl4S_DSP(vecD dst, mRegI src) %{
 13551   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13552   match(Set dst (ReplicateS src));
 13553   ins_cost(100);
 13554   format %{ "replv_qh    AT, $src\n\t"
 13555             "dmtc1 AT, $dst\t! replicate4S" %}
 13556   ins_encode %{
 13557     __ replv_qh(AT, $src$$Register);
 13558     __ dmtc1(AT, $dst$$FloatRegister);
 13559   %}
 13560   ins_pipe( pipe_mtc1 );
 13561 %}
 13563 instruct Repl4S(vecD dst, mRegI src) %{
 13564   predicate(n->as_Vector()->length() == 4);
 13565   match(Set dst (ReplicateS src));
 13566   ins_cost(120);
 13567   format %{ "move    AT,     $src  \n\t"
 13568             "dins    AT, AT, 16, 16\n\t"
 13569             "dinsu   AT, AT, 32, 32\n\t"
 13570             "dmtc1 AT, $dst\t! replicate4S" %}
 13571   ins_encode %{
 13572     __ move(AT, $src$$Register);
 13573     __ dins(AT, AT, 16, 16);
 13574     __ dinsu(AT, AT, 32, 32);
 13575     __ dmtc1(AT, $dst$$FloatRegister);
 13576   %}
 13577   ins_pipe( pipe_mtc1 );
 13578 %}
 13580 instruct Repl4S_imm_DSP(vecD dst, immI con) %{
 13581   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13582   match(Set dst (ReplicateS con));
 13583   ins_cost(100);
 13584   format %{ "replv_qh    AT, [$con]\n\t"
 13585             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13586   ins_encode %{
 13587     int      val = $con$$constant;
 13588     if ( Assembler::is_simm(val, 10)) {
 13589       //repl_qh supports 10 bits immediate
 13590       __ repl_qh(AT, val);
 13591     } else {
 13592       __ li32(AT, val);
 13593       __ replv_qh(AT, AT);
 13595     __ dmtc1(AT, $dst$$FloatRegister);
 13596   %}
 13597   ins_pipe( pipe_mtc1 );
 13598 %}
 13600 instruct Repl4S_imm(vecD dst, immI con) %{
 13601   predicate(n->as_Vector()->length() == 4);
 13602   match(Set dst (ReplicateS con));
 13603   ins_cost(110);
 13604   format %{ "move    AT,   [$con]\n\t"
 13605             "dins  AT, AT, 16, 16\n\t"
 13606             "dinsu AT, AT, 32, 32\n\t"
 13607             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13608   ins_encode %{
 13609     __ move(AT, $con$$constant);
 13610     __ dins(AT, AT, 16, 16);
 13611     __ dinsu(AT, AT, 32, 32);
 13612     __ dmtc1(AT, $dst$$FloatRegister);
 13613   %}
 13614   ins_pipe( pipe_mtc1 );
 13615 %}
 13617 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13618   predicate(n->as_Vector()->length() == 4);
 13619   match(Set dst (ReplicateS zero));
 13620   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13621   ins_encode %{
 13622     __ dmtc1(R0, $dst$$FloatRegister);
 13623   %}
 13624   ins_pipe( pipe_mtc1 );
 13625 %}
 13627 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13628   predicate(n->as_Vector()->length() == 4);
 13629   match(Set dst (ReplicateS M1));
 13630   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13631   ins_encode %{
 13632     __ nor(AT, R0, R0);
 13633     __ dmtc1(AT, $dst$$FloatRegister);
 13634   %}
 13635   ins_pipe( pipe_mtc1 );
 13636 %}
 13638 // Replicate integer (4 byte) scalar to be vector
 13639 instruct Repl2I(vecD dst, mRegI src) %{
 13640   predicate(n->as_Vector()->length() == 2);
 13641   match(Set dst (ReplicateI src));
 13642   format %{ "dins    AT, $src, 0, 32\n\t"
 13643             "dinsu   AT, $src, 32, 32\n\t"
 13644             "dmtc1   AT, $dst\t! replicate2I" %}
 13645   ins_encode %{
 13646     __ dins(AT, $src$$Register, 0, 32);
 13647     __ dinsu(AT, $src$$Register, 32, 32);
 13648     __ dmtc1(AT, $dst$$FloatRegister);
 13649   %}
 13650   ins_pipe( pipe_mtc1 );
 13651 %}
 13653 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13654 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13655   predicate(n->as_Vector()->length() == 2);
 13656   match(Set dst (ReplicateI con));
 13657   effect(KILL tmp);
 13658   format %{ "li32    AT, [$con], 32\n\t"
 13659             "dinsu   AT,         AT\n\t"
 13660             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13661   ins_encode %{
 13662     int      val = $con$$constant;
 13663     __ li32(AT, val);
 13664     __ dinsu(AT, AT, 32, 32);
 13665     __ dmtc1(AT, $dst$$FloatRegister);
 13666   %}
 13667   ins_pipe( pipe_mtc1 );
 13668 %}
 13670 // Replicate integer (4 byte) scalar zero to be vector
 13671 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13672   predicate(n->as_Vector()->length() == 2);
 13673   match(Set dst (ReplicateI zero));
 13674   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13675   ins_encode %{
 13676     __ dmtc1(R0, $dst$$FloatRegister);
 13677   %}
 13678   ins_pipe( pipe_mtc1 );
 13679 %}
 13681 // Replicate integer (4 byte) scalar -1 to be vector
 13682 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13683   predicate(n->as_Vector()->length() == 2);
 13684   match(Set dst (ReplicateI M1));
 13685   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13686   ins_encode %{
 13687     __ nor(AT, R0, R0);
 13688     __ dmtc1(AT, $dst$$FloatRegister);
 13689   %}
 13690   ins_pipe( pipe_mtc1 );
 13691 %}
 13693 // Replicate float (4 byte) scalar to be vector
 13694 instruct Repl2F(vecD dst, regF src) %{
 13695   predicate(n->as_Vector()->length() == 2);
 13696   match(Set dst (ReplicateF src));
 13697   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13698   ins_encode %{
 13699     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13700   %}
 13701   ins_pipe( pipe_slow );
 13702 %}
 13704 // Replicate float (4 byte) scalar zero to be vector
 13705 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13706   predicate(n->as_Vector()->length() == 2);
 13707   match(Set dst (ReplicateF zero));
 13708   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13709   ins_encode %{
 13710     __ dmtc1(R0, $dst$$FloatRegister);
 13711   %}
 13712   ins_pipe( pipe_mtc1 );
 13713 %}
 13716 // ====================VECTOR ARITHMETIC=======================================
 13718 // --------------------------------- ADD --------------------------------------
 13720 // Floats vector add
 13721 instruct vadd2F(vecD dst, vecD src) %{
 13722   predicate(n->as_Vector()->length() == 2);
 13723   match(Set dst (AddVF dst src));
 13724   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13725   ins_encode %{
 13726     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13727   %}
 13728   ins_pipe( pipe_slow );
 13729 %}
 13731 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13732   predicate(n->as_Vector()->length() == 2);
 13733   match(Set dst (AddVF src1 src2));
 13734   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13735   ins_encode %{
 13736     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13737   %}
 13738   ins_pipe( fpu_regF_regF );
 13739 %}
 13741 // --------------------------------- SUB --------------------------------------
 13743 // Floats vector sub
 13744 instruct vsub2F(vecD dst, vecD src) %{
 13745   predicate(n->as_Vector()->length() == 2);
 13746   match(Set dst (SubVF dst src));
 13747   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13748   ins_encode %{
 13749     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13750   %}
 13751   ins_pipe( fpu_regF_regF );
 13752 %}
 13754 // --------------------------------- MUL --------------------------------------
 13756 // Floats vector mul
 13757 instruct vmul2F(vecD dst, vecD src) %{
 13758   predicate(n->as_Vector()->length() == 2);
 13759   match(Set dst (MulVF dst src));
 13760   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13761   ins_encode %{
 13762     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13763   %}
 13764   ins_pipe( fpu_regF_regF );
 13765 %}
 13767 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13768   predicate(n->as_Vector()->length() == 2);
 13769   match(Set dst (MulVF src1 src2));
 13770   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13771   ins_encode %{
 13772     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13773   %}
 13774   ins_pipe( fpu_regF_regF );
 13775 %}
 13777 // --------------------------------- DIV --------------------------------------
 13778 // MIPS do not have div.ps
 13781 //----------PEEPHOLE RULES-----------------------------------------------------
 13782 // These must follow all instruction definitions as they use the names
 13783 // defined in the instructions definitions.
 13784 // 
 13785 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13786 //
 13787 // peepconstraint %{
 13788 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13789 //  [, ...] );
 13790 // // instruction numbers are zero-based using left to right order in peepmatch
 13791 //
 13792 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13793 // // provide an instruction_number.operand_name for each operand that appears
 13794 // // in the replacement instruction's match rule
 13795 //
 13796 // ---------VM FLAGS---------------------------------------------------------
 13797 // 
 13798 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13799 // 
 13800 // Each peephole rule is given an identifying number starting with zero and
 13801 // increasing by one in the order seen by the parser.  An individual peephole
 13802 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13803 // on the command-line.
 13804 // 
 13805 // ---------CURRENT LIMITATIONS----------------------------------------------
 13806 // 
 13807 // Only match adjacent instructions in same basic block
 13808 // Only equality constraints
 13809 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13810 // Only one replacement instruction
 13811 //
 13812 // ---------EXAMPLE----------------------------------------------------------
 13813 //
 13814 // // pertinent parts of existing instructions in architecture description
 13815 // instruct movI(eRegI dst, eRegI src) %{
 13816 //   match(Set dst (CopyI src));
 13817 // %}
 13818 // 
 13819 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13820 //   match(Set dst (AddI dst src));
 13821 //   effect(KILL cr);
 13822 // %}
 13823 // 
 13824 // // Change (inc mov) to lea
 13825 // peephole %{
 13826 //   // increment preceeded by register-register move
 13827 //   peepmatch ( incI_eReg movI );
 13828 //   // require that the destination register of the increment 
 13829 //   // match the destination register of the move
 13830 //   peepconstraint ( 0.dst == 1.dst );
 13831 //   // construct a replacement instruction that sets
 13832 //   // the destination to ( move's source register + one )
 13833 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13834 // %}
 13835 // 
 13836 // Implementation no longer uses movX instructions since 
 13837 // machine-independent system no longer uses CopyX nodes.
 13838 // 
 13839 // peephole %{
 13840 //   peepmatch ( incI_eReg movI );
 13841 //   peepconstraint ( 0.dst == 1.dst );
 13842 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13843 // %}
 13844 // 
 13845 // peephole %{
 13846 //   peepmatch ( decI_eReg movI );
 13847 //   peepconstraint ( 0.dst == 1.dst );
 13848 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13849 // %}
 13850 // 
 13851 // peephole %{
 13852 //   peepmatch ( addI_eReg_imm movI );
 13853 //   peepconstraint ( 0.dst == 1.dst );
 13854 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13855 // %}
 13856 // 
 13857 // peephole %{
 13858 //   peepmatch ( addP_eReg_imm movP );
 13859 //   peepconstraint ( 0.dst == 1.dst );
 13860 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13861 // %}
 13863 // // Change load of spilled value to only a spill
 13864 // instruct storeI(memory mem, eRegI src) %{
 13865 //   match(Set mem (StoreI mem src));
 13866 // %}
 13867 // 
 13868 // instruct loadI(eRegI dst, memory mem) %{
 13869 //   match(Set dst (LoadI mem));
 13870 // %}
 13871 // 
 13872 //peephole %{
 13873 //  peepmatch ( loadI storeI );
 13874 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13875 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13876 //%}
 13878 //----------SMARTSPILL RULES---------------------------------------------------
 13879 // These must follow all instruction definitions as they use the names
 13880 // defined in the instructions definitions.

mercurial