src/share/vm/memory/referenceProcessor.hpp

Fri, 26 Sep 2014 17:48:10 -0400

author
jmasa
date
Fri, 26 Sep 2014 17:48:10 -0400
changeset 7469
01dcaba9b3f3
parent 6719
8e20ef014b08
child 7476
c2844108a708
permissions
-rw-r--r--

8047125: (ref) More phantom object references
Reviewed-by: mchung, dfuchs, ahgross, jmasa, brutisso, mgerdin
Contributed-by: kim.barrett@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "memory/referenceProcessorStats.hpp"
    30 #include "memory/referenceType.hpp"
    31 #include "oops/instanceRefKlass.hpp"
    33 class GCTimer;
    35 // ReferenceProcessor class encapsulates the per-"collector" processing
    36 // of java.lang.Reference objects for GC. The interface is useful for supporting
    37 // a generational abstraction, in particular when there are multiple
    38 // generations that are being independently collected -- possibly
    39 // concurrently and/or incrementally.  Note, however, that the
    40 // ReferenceProcessor class abstracts away from a generational setting
    41 // by using only a heap interval (called "span" below), thus allowing
    42 // its use in a straightforward manner in a general, non-generational
    43 // setting.
    44 //
    45 // The basic idea is that each ReferenceProcessor object concerns
    46 // itself with ("weak") reference processing in a specific "span"
    47 // of the heap of interest to a specific collector. Currently,
    48 // the span is a convex interval of the heap, but, efficiency
    49 // apart, there seems to be no reason it couldn't be extended
    50 // (with appropriate modifications) to any "non-convex interval".
    52 // forward references
    53 class ReferencePolicy;
    54 class AbstractRefProcTaskExecutor;
    56 // List of discovered references.
    57 class DiscoveredList {
    58 public:
    59   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    60   oop head() const     {
    61      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
    62                                 _oop_head;
    63   }
    64   HeapWord* adr_head() {
    65     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    66                                (HeapWord*)&_oop_head;
    67   }
    68   void set_head(oop o) {
    69     if (UseCompressedOops) {
    70       // Must compress the head ptr.
    71       _compressed_head = oopDesc::encode_heap_oop(o);
    72     } else {
    73       _oop_head = o;
    74     }
    75   }
    76   bool   is_empty() const       { return head() == NULL; }
    77   size_t length()               { return _len; }
    78   void   set_length(size_t len) { _len = len;  }
    79   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    80   void   dec_length(size_t dec) { _len -= dec; }
    81 private:
    82   // Set value depending on UseCompressedOops. This could be a template class
    83   // but then we have to fix all the instantiations and declarations that use this class.
    84   oop       _oop_head;
    85   narrowOop _compressed_head;
    86   size_t _len;
    87 };
    89 // Iterator for the list of discovered references.
    90 class DiscoveredListIterator {
    91 private:
    92   DiscoveredList&    _refs_list;
    93   HeapWord*          _prev_next;
    94   oop                _prev;
    95   oop                _ref;
    96   HeapWord*          _discovered_addr;
    97   oop                _next;
    98   HeapWord*          _referent_addr;
    99   oop                _referent;
   100   OopClosure*        _keep_alive;
   101   BoolObjectClosure* _is_alive;
   103   DEBUG_ONLY(
   104   oop                _first_seen; // cyclic linked list check
   105   )
   107   NOT_PRODUCT(
   108   size_t             _processed;
   109   size_t             _removed;
   110   )
   112 public:
   113   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   114                                 OopClosure*        keep_alive,
   115                                 BoolObjectClosure* is_alive):
   116     _refs_list(refs_list),
   117     _prev_next(refs_list.adr_head()),
   118     _prev(NULL),
   119     _ref(refs_list.head()),
   120 #ifdef ASSERT
   121     _first_seen(refs_list.head()),
   122 #endif
   123 #ifndef PRODUCT
   124     _processed(0),
   125     _removed(0),
   126 #endif
   127     _next(NULL),
   128     _keep_alive(keep_alive),
   129     _is_alive(is_alive)
   130 { }
   132   // End Of List.
   133   inline bool has_next() const { return _ref != NULL; }
   135   // Get oop to the Reference object.
   136   inline oop obj() const { return _ref; }
   138   // Get oop to the referent object.
   139   inline oop referent() const { return _referent; }
   141   // Returns true if referent is alive.
   142   inline bool is_referent_alive() const {
   143     return _is_alive->do_object_b(_referent);
   144   }
   146   // Loads data for the current reference.
   147   // The "allow_null_referent" argument tells us to allow for the possibility
   148   // of a NULL referent in the discovered Reference object. This typically
   149   // happens in the case of concurrent collectors that may have done the
   150   // discovery concurrently, or interleaved, with mutator execution.
   151   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   153   // Move to the next discovered reference.
   154   inline void next() {
   155     _prev_next = _discovered_addr;
   156     _prev = _ref;
   157     move_to_next();
   158   }
   160   // Remove the current reference from the list
   161   void remove();
   163   // Make the Reference object active again.
   164   void make_active();
   166   // Make the referent alive.
   167   inline void make_referent_alive() {
   168     if (UseCompressedOops) {
   169       _keep_alive->do_oop((narrowOop*)_referent_addr);
   170     } else {
   171       _keep_alive->do_oop((oop*)_referent_addr);
   172     }
   173   }
   175   // Update the discovered field.
   176   inline void update_discovered() {
   177     // First _prev_next ref actually points into DiscoveredList (gross).
   178     if (UseCompressedOops) {
   179       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
   180         _keep_alive->do_oop((narrowOop*)_prev_next);
   181       }
   182     } else {
   183       if (!oopDesc::is_null(*(oop*)_prev_next)) {
   184         _keep_alive->do_oop((oop*)_prev_next);
   185       }
   186     }
   187   }
   189   // NULL out referent pointer.
   190   void clear_referent();
   192   // Statistics
   193   NOT_PRODUCT(
   194   inline size_t processed() const { return _processed; }
   195   inline size_t removed() const   { return _removed; }
   196   )
   198   inline void move_to_next() {
   199     if (_ref == _next) {
   200       // End of the list.
   201       _ref = NULL;
   202     } else {
   203       _ref = _next;
   204     }
   205     assert(_ref != _first_seen, "cyclic ref_list found");
   206     NOT_PRODUCT(_processed++);
   207   }
   208 };
   210 class ReferenceProcessor : public CHeapObj<mtGC> {
   212  private:
   213   size_t total_count(DiscoveredList lists[]);
   215  protected:
   216   // Compatibility with pre-4965777 JDK's
   217   static bool _pending_list_uses_discovered_field;
   219   // The SoftReference master timestamp clock
   220   static jlong _soft_ref_timestamp_clock;
   222   MemRegion   _span;                    // (right-open) interval of heap
   223                                         // subject to wkref discovery
   225   bool        _discovering_refs;        // true when discovery enabled
   226   bool        _discovery_is_atomic;     // if discovery is atomic wrt
   227                                         // other collectors in configuration
   228   bool        _discovery_is_mt;         // true if reference discovery is MT.
   230   bool        _enqueuing_is_done;       // true if all weak references enqueued
   231   bool        _processing_is_mt;        // true during phases when
   232                                         // reference processing is MT.
   233   uint        _next_id;                 // round-robin mod _num_q counter in
   234                                         // support of work distribution
   236   // For collectors that do not keep GC liveness information
   237   // in the object header, this field holds a closure that
   238   // helps the reference processor determine the reachability
   239   // of an oop. It is currently initialized to NULL for all
   240   // collectors except for CMS and G1.
   241   BoolObjectClosure* _is_alive_non_header;
   243   // Soft ref clearing policies
   244   // . the default policy
   245   static ReferencePolicy*   _default_soft_ref_policy;
   246   // . the "clear all" policy
   247   static ReferencePolicy*   _always_clear_soft_ref_policy;
   248   // . the current policy below is either one of the above
   249   ReferencePolicy*          _current_soft_ref_policy;
   251   // The discovered ref lists themselves
   253   // The active MT'ness degree of the queues below
   254   uint             _num_q;
   255   // The maximum MT'ness degree of the queues below
   256   uint             _max_num_q;
   258   // Master array of discovered oops
   259   DiscoveredList* _discovered_refs;
   261   // Arrays of lists of oops, one per thread (pointers into master array above)
   262   DiscoveredList* _discoveredSoftRefs;
   263   DiscoveredList* _discoveredWeakRefs;
   264   DiscoveredList* _discoveredFinalRefs;
   265   DiscoveredList* _discoveredPhantomRefs;
   266   DiscoveredList* _discoveredCleanerRefs;
   268  public:
   269   static int number_of_subclasses_of_ref() { return (REF_CLEANER - REF_OTHER); }
   271   uint num_q()                             { return _num_q; }
   272   uint max_num_q()                         { return _max_num_q; }
   273   void set_active_mt_degree(uint v)        { _num_q = v; }
   275   DiscoveredList* discovered_refs()        { return _discovered_refs; }
   277   ReferencePolicy* setup_policy(bool always_clear) {
   278     _current_soft_ref_policy = always_clear ?
   279       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   280     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   281     return _current_soft_ref_policy;
   282   }
   284   // Process references with a certain reachability level.
   285   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
   286                                     ReferencePolicy*             policy,
   287                                     bool                         clear_referent,
   288                                     BoolObjectClosure*           is_alive,
   289                                     OopClosure*                  keep_alive,
   290                                     VoidClosure*                 complete_gc,
   291                                     AbstractRefProcTaskExecutor* task_executor);
   293   void process_phaseJNI(BoolObjectClosure* is_alive,
   294                         OopClosure*        keep_alive,
   295                         VoidClosure*       complete_gc);
   297   // Work methods used by the method process_discovered_reflist
   298   // Phase1: keep alive all those referents that are otherwise
   299   // dead but which must be kept alive by policy (and their closure).
   300   void process_phase1(DiscoveredList&     refs_list,
   301                       ReferencePolicy*    policy,
   302                       BoolObjectClosure*  is_alive,
   303                       OopClosure*         keep_alive,
   304                       VoidClosure*        complete_gc);
   305   // Phase2: remove all those references whose referents are
   306   // reachable.
   307   inline void process_phase2(DiscoveredList&    refs_list,
   308                              BoolObjectClosure* is_alive,
   309                              OopClosure*        keep_alive,
   310                              VoidClosure*       complete_gc) {
   311     if (discovery_is_atomic()) {
   312       // complete_gc is ignored in this case for this phase
   313       pp2_work(refs_list, is_alive, keep_alive);
   314     } else {
   315       assert(complete_gc != NULL, "Error");
   316       pp2_work_concurrent_discovery(refs_list, is_alive,
   317                                     keep_alive, complete_gc);
   318     }
   319   }
   320   // Work methods in support of process_phase2
   321   void pp2_work(DiscoveredList&    refs_list,
   322                 BoolObjectClosure* is_alive,
   323                 OopClosure*        keep_alive);
   324   void pp2_work_concurrent_discovery(
   325                 DiscoveredList&    refs_list,
   326                 BoolObjectClosure* is_alive,
   327                 OopClosure*        keep_alive,
   328                 VoidClosure*       complete_gc);
   329   // Phase3: process the referents by either clearing them
   330   // or keeping them alive (and their closure)
   331   void process_phase3(DiscoveredList&    refs_list,
   332                       bool               clear_referent,
   333                       BoolObjectClosure* is_alive,
   334                       OopClosure*        keep_alive,
   335                       VoidClosure*       complete_gc);
   337   // Enqueue references with a certain reachability level
   338   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   340   // "Preclean" all the discovered reference lists
   341   // by removing references with strongly reachable referents.
   342   // The first argument is a predicate on an oop that indicates
   343   // its (strong) reachability and the second is a closure that
   344   // may be used to incrementalize or abort the precleaning process.
   345   // The caller is responsible for taking care of potential
   346   // interference with concurrent operations on these lists
   347   // (or predicates involved) by other threads. Currently
   348   // only used by the CMS collector.
   349   void preclean_discovered_references(BoolObjectClosure* is_alive,
   350                                       OopClosure*        keep_alive,
   351                                       VoidClosure*       complete_gc,
   352                                       YieldClosure*      yield,
   353                                       GCTimer*           gc_timer);
   355   // Delete entries in the discovered lists that have
   356   // either a null referent or are not active. Such
   357   // Reference objects can result from the clearing
   358   // or enqueueing of Reference objects concurrent
   359   // with their discovery by a (concurrent) collector.
   360   // For a definition of "active" see java.lang.ref.Reference;
   361   // Refs are born active, become inactive when enqueued,
   362   // and never become active again. The state of being
   363   // active is encoded as follows: A Ref is active
   364   // if and only if its "next" field is NULL.
   365   void clean_up_discovered_references();
   366   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   368   // Returns the name of the discovered reference list
   369   // occupying the i / _num_q slot.
   370   const char* list_name(uint i);
   372   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   374  protected:
   375   // "Preclean" the given discovered reference list
   376   // by removing references with strongly reachable referents.
   377   // Currently used in support of CMS only.
   378   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   379                                    BoolObjectClosure* is_alive,
   380                                    OopClosure*        keep_alive,
   381                                    VoidClosure*       complete_gc,
   382                                    YieldClosure*      yield);
   384   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   385   uint next_id() {
   386     uint id = _next_id;
   387     if (++_next_id == _num_q) {
   388       _next_id = 0;
   389     }
   390     return id;
   391   }
   392   DiscoveredList* get_discovered_list(ReferenceType rt);
   393   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   394                                         HeapWord* discovered_addr);
   395   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   397   void clear_discovered_references(DiscoveredList& refs_list);
   398   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   400   // Calculate the number of jni handles.
   401   unsigned int count_jni_refs();
   403   // Balances reference queues.
   404   void balance_queues(DiscoveredList ref_lists[]);
   406   // Update (advance) the soft ref master clock field.
   407   void update_soft_ref_master_clock();
   409  public:
   410   // Default parameters give you a vanilla reference processor.
   411   ReferenceProcessor(MemRegion span,
   412                      bool mt_processing = false, uint mt_processing_degree = 1,
   413                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
   414                      bool atomic_discovery = true,
   415                      BoolObjectClosure* is_alive_non_header = NULL);
   417   // RefDiscoveryPolicy values
   418   enum DiscoveryPolicy {
   419     ReferenceBasedDiscovery = 0,
   420     ReferentBasedDiscovery  = 1,
   421     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   422     DiscoveryPolicyMax      = ReferentBasedDiscovery
   423   };
   425   static void init_statics();
   427  public:
   428   // get and set "is_alive_non_header" field
   429   BoolObjectClosure* is_alive_non_header() {
   430     return _is_alive_non_header;
   431   }
   432   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   433     _is_alive_non_header = is_alive_non_header;
   434   }
   436   // get and set span
   437   MemRegion span()                   { return _span; }
   438   void      set_span(MemRegion span) { _span = span; }
   440   // start and stop weak ref discovery
   441   void enable_discovery(bool verify_disabled, bool check_no_refs);
   442   void disable_discovery()  { _discovering_refs = false; }
   443   bool discovery_enabled()  { return _discovering_refs;  }
   445   // whether discovery is atomic wrt other collectors
   446   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   447   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   449   // whether the JDK in which we are embedded is a pre-4965777 JDK,
   450   // and thus whether or not it uses the discovered field to chain
   451   // the entries in the pending list.
   452   static bool pending_list_uses_discovered_field() {
   453     return _pending_list_uses_discovered_field;
   454   }
   456   // whether discovery is done by multiple threads same-old-timeously
   457   bool discovery_is_mt() const { return _discovery_is_mt; }
   458   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   460   // Whether we are in a phase when _processing_ is MT.
   461   bool processing_is_mt() const { return _processing_is_mt; }
   462   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   464   // whether all enqueuing of weak references is complete
   465   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   466   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   468   // iterate over oops
   469   void weak_oops_do(OopClosure* f);       // weak roots
   471   // Balance each of the discovered lists.
   472   void balance_all_queues();
   473   void verify_list(DiscoveredList& ref_list);
   475   // Discover a Reference object, using appropriate discovery criteria
   476   bool discover_reference(oop obj, ReferenceType rt);
   478   // Process references found during GC (called by the garbage collector)
   479   ReferenceProcessorStats
   480   process_discovered_references(BoolObjectClosure*           is_alive,
   481                                 OopClosure*                  keep_alive,
   482                                 VoidClosure*                 complete_gc,
   483                                 AbstractRefProcTaskExecutor* task_executor,
   484                                 GCTimer *gc_timer);
   486   // Enqueue references at end of GC (called by the garbage collector)
   487   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   489   // If a discovery is in process that is being superceded, abandon it: all
   490   // the discovered lists will be empty, and all the objects on them will
   491   // have NULL discovered fields.  Must be called only at a safepoint.
   492   void abandon_partial_discovery();
   494   // debugging
   495   void verify_no_references_recorded() PRODUCT_RETURN;
   496   void verify_referent(oop obj)        PRODUCT_RETURN;
   498   // clear the discovered lists (unlinking each entry).
   499   void clear_discovered_references() PRODUCT_RETURN;
   500 };
   502 // A utility class to disable reference discovery in
   503 // the scope which contains it, for given ReferenceProcessor.
   504 class NoRefDiscovery: StackObj {
   505  private:
   506   ReferenceProcessor* _rp;
   507   bool _was_discovering_refs;
   508  public:
   509   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   510     _was_discovering_refs = _rp->discovery_enabled();
   511     if (_was_discovering_refs) {
   512       _rp->disable_discovery();
   513     }
   514   }
   516   ~NoRefDiscovery() {
   517     if (_was_discovering_refs) {
   518       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
   519     }
   520   }
   521 };
   524 // A utility class to temporarily mutate the span of the
   525 // given ReferenceProcessor in the scope that contains it.
   526 class ReferenceProcessorSpanMutator: StackObj {
   527  private:
   528   ReferenceProcessor* _rp;
   529   MemRegion           _saved_span;
   531  public:
   532   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   533                                 MemRegion span):
   534     _rp(rp) {
   535     _saved_span = _rp->span();
   536     _rp->set_span(span);
   537   }
   539   ~ReferenceProcessorSpanMutator() {
   540     _rp->set_span(_saved_span);
   541   }
   542 };
   544 // A utility class to temporarily change the MT'ness of
   545 // reference discovery for the given ReferenceProcessor
   546 // in the scope that contains it.
   547 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   548  private:
   549   ReferenceProcessor* _rp;
   550   bool                _saved_mt;
   552  public:
   553   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   554                                        bool mt):
   555     _rp(rp) {
   556     _saved_mt = _rp->discovery_is_mt();
   557     _rp->set_mt_discovery(mt);
   558   }
   560   ~ReferenceProcessorMTDiscoveryMutator() {
   561     _rp->set_mt_discovery(_saved_mt);
   562   }
   563 };
   566 // A utility class to temporarily change the disposition
   567 // of the "is_alive_non_header" closure field of the
   568 // given ReferenceProcessor in the scope that contains it.
   569 class ReferenceProcessorIsAliveMutator: StackObj {
   570  private:
   571   ReferenceProcessor* _rp;
   572   BoolObjectClosure*  _saved_cl;
   574  public:
   575   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   576                                    BoolObjectClosure*  cl):
   577     _rp(rp) {
   578     _saved_cl = _rp->is_alive_non_header();
   579     _rp->set_is_alive_non_header(cl);
   580   }
   582   ~ReferenceProcessorIsAliveMutator() {
   583     _rp->set_is_alive_non_header(_saved_cl);
   584   }
   585 };
   587 // A utility class to temporarily change the disposition
   588 // of the "discovery_is_atomic" field of the
   589 // given ReferenceProcessor in the scope that contains it.
   590 class ReferenceProcessorAtomicMutator: StackObj {
   591  private:
   592   ReferenceProcessor* _rp;
   593   bool                _saved_atomic_discovery;
   595  public:
   596   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   597                                   bool atomic):
   598     _rp(rp) {
   599     _saved_atomic_discovery = _rp->discovery_is_atomic();
   600     _rp->set_atomic_discovery(atomic);
   601   }
   603   ~ReferenceProcessorAtomicMutator() {
   604     _rp->set_atomic_discovery(_saved_atomic_discovery);
   605   }
   606 };
   609 // A utility class to temporarily change the MT processing
   610 // disposition of the given ReferenceProcessor instance
   611 // in the scope that contains it.
   612 class ReferenceProcessorMTProcMutator: StackObj {
   613  private:
   614   ReferenceProcessor* _rp;
   615   bool  _saved_mt;
   617  public:
   618   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   619                                   bool mt):
   620     _rp(rp) {
   621     _saved_mt = _rp->processing_is_mt();
   622     _rp->set_mt_processing(mt);
   623   }
   625   ~ReferenceProcessorMTProcMutator() {
   626     _rp->set_mt_processing(_saved_mt);
   627   }
   628 };
   631 // This class is an interface used to implement task execution for the
   632 // reference processing.
   633 class AbstractRefProcTaskExecutor {
   634 public:
   636   // Abstract tasks to execute.
   637   class ProcessTask;
   638   class EnqueueTask;
   640   // Executes a task using worker threads.
   641   virtual void execute(ProcessTask& task) = 0;
   642   virtual void execute(EnqueueTask& task) = 0;
   644   // Switch to single threaded mode.
   645   virtual void set_single_threaded_mode() { };
   646 };
   648 // Abstract reference processing task to execute.
   649 class AbstractRefProcTaskExecutor::ProcessTask {
   650 protected:
   651   ProcessTask(ReferenceProcessor& ref_processor,
   652               DiscoveredList      refs_lists[],
   653               bool                marks_oops_alive)
   654     : _ref_processor(ref_processor),
   655       _refs_lists(refs_lists),
   656       _marks_oops_alive(marks_oops_alive)
   657   { }
   659 public:
   660   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   661                     OopClosure& keep_alive,
   662                     VoidClosure& complete_gc) = 0;
   664   // Returns true if a task marks some oops as alive.
   665   bool marks_oops_alive() const
   666   { return _marks_oops_alive; }
   668 protected:
   669   ReferenceProcessor& _ref_processor;
   670   DiscoveredList*     _refs_lists;
   671   const bool          _marks_oops_alive;
   672 };
   674 // Abstract reference processing task to execute.
   675 class AbstractRefProcTaskExecutor::EnqueueTask {
   676 protected:
   677   EnqueueTask(ReferenceProcessor& ref_processor,
   678               DiscoveredList      refs_lists[],
   679               HeapWord*           pending_list_addr,
   680               int                 n_queues)
   681     : _ref_processor(ref_processor),
   682       _refs_lists(refs_lists),
   683       _pending_list_addr(pending_list_addr),
   684       _n_queues(n_queues)
   685   { }
   687 public:
   688   virtual void work(unsigned int work_id) = 0;
   690 protected:
   691   ReferenceProcessor& _ref_processor;
   692   DiscoveredList*     _refs_lists;
   693   HeapWord*           _pending_list_addr;
   694   int                 _n_queues;
   695 };
   697 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial