src/share/vm/memory/referenceProcessor.cpp

Fri, 26 Sep 2014 17:48:10 -0400

author
jmasa
date
Fri, 26 Sep 2014 17:48:10 -0400
changeset 7469
01dcaba9b3f3
parent 6719
8e20ef014b08
child 7476
c2844108a708
permissions
-rw-r--r--

8047125: (ref) More phantom object references
Reviewed-by: mchung, dfuchs, ahgross, jmasa, brutisso, mgerdin
Contributed-by: kim.barrett@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    45 void referenceProcessor_init() {
    46   ReferenceProcessor::init_statics();
    47 }
    49 void ReferenceProcessor::init_statics() {
    50   // We need a monotonically non-deccreasing time in ms but
    51   // os::javaTimeMillis() does not guarantee monotonicity.
    52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    54   // Initialize the soft ref timestamp clock.
    55   _soft_ref_timestamp_clock = now;
    56   // Also update the soft ref clock in j.l.r.SoftReference
    57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    63     vm_exit_during_initialization("Could not allocate reference policy object");
    64   }
    65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    66             RefDiscoveryPolicy == ReferentBasedDiscovery,
    67             "Unrecongnized RefDiscoveryPolicy");
    68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    69 }
    71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    72 #ifdef ASSERT
    73   // Verify that we're not currently discovering refs
    74   assert(!verify_disabled || !_discovering_refs, "nested call?");
    76   if (check_no_refs) {
    77     // Verify that the discovered lists are empty
    78     verify_no_references_recorded();
    79   }
    80 #endif // ASSERT
    82   // Someone could have modified the value of the static
    83   // field in the j.l.r.SoftReference class that holds the
    84   // soft reference timestamp clock using reflection or
    85   // Unsafe between GCs. Unconditionally update the static
    86   // field in ReferenceProcessor here so that we use the new
    87   // value during reference discovery.
    89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    90   _discovering_refs = true;
    91 }
    93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    94                                        bool      mt_processing,
    95                                        uint      mt_processing_degree,
    96                                        bool      mt_discovery,
    97                                        uint      mt_discovery_degree,
    98                                        bool      atomic_discovery,
    99                                        BoolObjectClosure* is_alive_non_header)  :
   100   _discovering_refs(false),
   101   _enqueuing_is_done(false),
   102   _is_alive_non_header(is_alive_non_header),
   103   _processing_is_mt(mt_processing),
   104   _next_id(0)
   105 {
   106   _span = span;
   107   _discovery_is_atomic = atomic_discovery;
   108   _discovery_is_mt     = mt_discovery;
   109   _num_q               = MAX2(1U, mt_processing_degree);
   110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   114   if (_discovered_refs == NULL) {
   115     vm_exit_during_initialization("Could not allocated RefProc Array");
   116   }
   117   _discoveredSoftRefs    = &_discovered_refs[0];
   118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   121   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
   123   // Initialize all entries to NULL
   124   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   125     _discovered_refs[i].set_head(NULL);
   126     _discovered_refs[i].set_length(0);
   127   }
   129   setup_policy(false /* default soft ref policy */);
   130 }
   132 #ifndef PRODUCT
   133 void ReferenceProcessor::verify_no_references_recorded() {
   134   guarantee(!_discovering_refs, "Discovering refs?");
   135   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   136     guarantee(_discovered_refs[i].is_empty(),
   137               "Found non-empty discovered list");
   138   }
   139 }
   140 #endif
   142 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   143   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   144     if (UseCompressedOops) {
   145       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   146     } else {
   147       f->do_oop((oop*)_discovered_refs[i].adr_head());
   148     }
   149   }
   150 }
   152 void ReferenceProcessor::update_soft_ref_master_clock() {
   153   // Update (advance) the soft ref master clock field. This must be done
   154   // after processing the soft ref list.
   156   // We need a monotonically non-deccreasing time in ms but
   157   // os::javaTimeMillis() does not guarantee monotonicity.
   158   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   159   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   160   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   162   NOT_PRODUCT(
   163   if (now < _soft_ref_timestamp_clock) {
   164     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   165             _soft_ref_timestamp_clock, now);
   166   }
   167   )
   168   // The values of now and _soft_ref_timestamp_clock are set using
   169   // javaTimeNanos(), which is guaranteed to be monotonically
   170   // non-decreasing provided the underlying platform provides such
   171   // a time source (and it is bug free).
   172   // In product mode, however, protect ourselves from non-monotonicty.
   173   if (now > _soft_ref_timestamp_clock) {
   174     _soft_ref_timestamp_clock = now;
   175     java_lang_ref_SoftReference::set_clock(now);
   176   }
   177   // Else leave clock stalled at its old value until time progresses
   178   // past clock value.
   179 }
   181 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   182   size_t total = 0;
   183   for (uint i = 0; i < _max_num_q; ++i) {
   184     total += lists[i].length();
   185   }
   186   return total;
   187 }
   189 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   190   BoolObjectClosure*           is_alive,
   191   OopClosure*                  keep_alive,
   192   VoidClosure*                 complete_gc,
   193   AbstractRefProcTaskExecutor* task_executor,
   194   GCTimer*                     gc_timer) {
   195   NOT_PRODUCT(verify_ok_to_handle_reflists());
   197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   198   // Stop treating discovered references specially.
   199   disable_discovery();
   201   // If discovery was concurrent, someone could have modified
   202   // the value of the static field in the j.l.r.SoftReference
   203   // class that holds the soft reference timestamp clock using
   204   // reflection or Unsafe between when discovery was enabled and
   205   // now. Unconditionally update the static field in ReferenceProcessor
   206   // here so that we use the new value during processing of the
   207   // discovered soft refs.
   209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   211   bool trace_time = PrintGCDetails && PrintReferenceGC;
   213   // Soft references
   214   size_t soft_count = 0;
   215   {
   216     GCTraceTime tt("SoftReference", trace_time, false, gc_timer);
   217     soft_count =
   218       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   219                                  is_alive, keep_alive, complete_gc, task_executor);
   220   }
   222   update_soft_ref_master_clock();
   224   // Weak references
   225   size_t weak_count = 0;
   226   {
   227     GCTraceTime tt("WeakReference", trace_time, false, gc_timer);
   228     weak_count =
   229       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   230                                  is_alive, keep_alive, complete_gc, task_executor);
   231   }
   233   // Final references
   234   size_t final_count = 0;
   235   {
   236     GCTraceTime tt("FinalReference", trace_time, false, gc_timer);
   237     final_count =
   238       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   239                                  is_alive, keep_alive, complete_gc, task_executor);
   240   }
   242   // Phantom references
   243   size_t phantom_count = 0;
   244   {
   245     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer);
   246     phantom_count =
   247       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   248                                  is_alive, keep_alive, complete_gc, task_executor);
   250     // Process cleaners, but include them in phantom statistics.  We expect
   251     // Cleaner references to be temporary, and don't want to deal with
   252     // possible incompatibilities arising from making it more visible.
   253     phantom_count +=
   254       process_discovered_reflist(_discoveredCleanerRefs, NULL, false,
   255                                  is_alive, keep_alive, complete_gc, task_executor);
   256   }
   258   // Weak global JNI references. It would make more sense (semantically) to
   259   // traverse these simultaneously with the regular weak references above, but
   260   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   261   // thus use JNI weak references to circumvent the phantom references and
   262   // resurrect a "post-mortem" object.
   263   {
   264     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
   265     if (task_executor != NULL) {
   266       task_executor->set_single_threaded_mode();
   267     }
   268     process_phaseJNI(is_alive, keep_alive, complete_gc);
   269   }
   271   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   272 }
   274 #ifndef PRODUCT
   275 // Calculate the number of jni handles.
   276 uint ReferenceProcessor::count_jni_refs() {
   277   class AlwaysAliveClosure: public BoolObjectClosure {
   278   public:
   279     virtual bool do_object_b(oop obj) { return true; }
   280   };
   282   class CountHandleClosure: public OopClosure {
   283   private:
   284     int _count;
   285   public:
   286     CountHandleClosure(): _count(0) {}
   287     void do_oop(oop* unused)       { _count++; }
   288     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   289     int count() { return _count; }
   290   };
   291   CountHandleClosure global_handle_count;
   292   AlwaysAliveClosure always_alive;
   293   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   294   return global_handle_count.count();
   295 }
   296 #endif
   298 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   299                                           OopClosure*        keep_alive,
   300                                           VoidClosure*       complete_gc) {
   301 #ifndef PRODUCT
   302   if (PrintGCDetails && PrintReferenceGC) {
   303     unsigned int count = count_jni_refs();
   304     gclog_or_tty->print(", %u refs", count);
   305   }
   306 #endif
   307   JNIHandles::weak_oops_do(is_alive, keep_alive);
   308   complete_gc->do_void();
   309 }
   312 template <class T>
   313 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   314                                    AbstractRefProcTaskExecutor* task_executor) {
   316   // Remember old value of pending references list
   317   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   318   T old_pending_list_value = *pending_list_addr;
   320   // Enqueue references that are not made active again, and
   321   // clear the decks for the next collection (cycle).
   322   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   323   // Do the post-barrier on pending_list_addr missed in
   324   // enqueue_discovered_reflist.
   325   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   327   // Stop treating discovered references specially.
   328   ref->disable_discovery();
   330   // Return true if new pending references were added
   331   return old_pending_list_value != *pending_list_addr;
   332 }
   334 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   335   NOT_PRODUCT(verify_ok_to_handle_reflists());
   336   if (UseCompressedOops) {
   337     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   338   } else {
   339     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   340   }
   341 }
   343 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   344                                                     HeapWord* pending_list_addr) {
   345   // Given a list of refs linked through the "discovered" field
   346   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   347   // thus distinguishing them from active References, then
   348   // prepend them to the pending list.
   349   //
   350   // The Java threads will see the Reference objects linked together through
   351   // the discovered field. Instead of trying to do the write barrier updates
   352   // in all places in the reference processor where we manipulate the discovered
   353   // field we make sure to do the barrier here where we anyway iterate through
   354   // all linked Reference objects. Note that it is important to not dirty any
   355   // cards during reference processing since this will cause card table
   356   // verification to fail for G1.
   357   //
   358   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   359   // the "next" field is used to chain the pending list, not the discovered
   360   // field.
   361   if (TraceReferenceGC && PrintGCDetails) {
   362     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   363                            INTPTR_FORMAT, (address)refs_list.head());
   364   }
   366   oop obj = NULL;
   367   oop next_d = refs_list.head();
   368   if (pending_list_uses_discovered_field()) { // New behavior
   369     // Walk down the list, self-looping the next field
   370     // so that the References are not considered active.
   371     while (obj != next_d) {
   372       obj = next_d;
   373       assert(obj->is_instanceRef(), "should be reference object");
   374       next_d = java_lang_ref_Reference::discovered(obj);
   375       if (TraceReferenceGC && PrintGCDetails) {
   376         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   377                                (void *)obj, (void *)next_d);
   378       }
   379       assert(java_lang_ref_Reference::next(obj) == NULL,
   380              "Reference not active; should not be discovered");
   381       // Self-loop next, so as to make Ref not active.
   382       java_lang_ref_Reference::set_next_raw(obj, obj);
   383       if (next_d != obj) {
   384         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
   385       } else {
   386         // This is the last object.
   387         // Swap refs_list into pending_list_addr and
   388         // set obj's discovered to what we read from pending_list_addr.
   389         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   390         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
   391         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   392         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   393       }
   394     }
   395   } else { // Old behaviour
   396     // Walk down the list, copying the discovered field into
   397     // the next field and clearing the discovered field.
   398     while (obj != next_d) {
   399       obj = next_d;
   400       assert(obj->is_instanceRef(), "should be reference object");
   401       next_d = java_lang_ref_Reference::discovered(obj);
   402       if (TraceReferenceGC && PrintGCDetails) {
   403         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   404                                (void *)obj, (void *)next_d);
   405       }
   406       assert(java_lang_ref_Reference::next(obj) == NULL,
   407              "The reference should not be enqueued");
   408       if (next_d == obj) {  // obj is last
   409         // Swap refs_list into pendling_list_addr and
   410         // set obj's next to what we read from pending_list_addr.
   411         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   412         // Need oop_check on pending_list_addr above;
   413         // see special oop-check code at the end of
   414         // enqueue_discovered_reflists() further below.
   415         if (old == NULL) {
   416           // obj should be made to point to itself, since
   417           // pending list was empty.
   418           java_lang_ref_Reference::set_next(obj, obj);
   419         } else {
   420           java_lang_ref_Reference::set_next(obj, old);
   421         }
   422       } else {
   423         java_lang_ref_Reference::set_next(obj, next_d);
   424       }
   425       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   426     }
   427   }
   428 }
   430 // Parallel enqueue task
   431 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   432 public:
   433   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   434                      DiscoveredList      discovered_refs[],
   435                      HeapWord*           pending_list_addr,
   436                      int                 n_queues)
   437     : EnqueueTask(ref_processor, discovered_refs,
   438                   pending_list_addr, n_queues)
   439   { }
   441   virtual void work(unsigned int work_id) {
   442     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   443     // Simplest first cut: static partitioning.
   444     int index = work_id;
   445     // The increment on "index" must correspond to the maximum number of queues
   446     // (n_queues) with which that ReferenceProcessor was created.  That
   447     // is because of the "clever" way the discovered references lists were
   448     // allocated and are indexed into.
   449     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   450     for (int j = 0;
   451          j < ReferenceProcessor::number_of_subclasses_of_ref();
   452          j++, index += _n_queues) {
   453       _ref_processor.enqueue_discovered_reflist(
   454         _refs_lists[index], _pending_list_addr);
   455       _refs_lists[index].set_head(NULL);
   456       _refs_lists[index].set_length(0);
   457     }
   458   }
   459 };
   461 // Enqueue references that are not made active again
   462 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   463   AbstractRefProcTaskExecutor* task_executor) {
   464   if (_processing_is_mt && task_executor != NULL) {
   465     // Parallel code
   466     RefProcEnqueueTask tsk(*this, _discovered_refs,
   467                            pending_list_addr, _max_num_q);
   468     task_executor->execute(tsk);
   469   } else {
   470     // Serial code: call the parent class's implementation
   471     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   472       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   473       _discovered_refs[i].set_head(NULL);
   474       _discovered_refs[i].set_length(0);
   475     }
   476   }
   477 }
   479 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   480   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   481   oop discovered = java_lang_ref_Reference::discovered(_ref);
   482   assert(_discovered_addr && discovered->is_oop_or_null(),
   483          "discovered field is bad");
   484   _next = discovered;
   485   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   486   _referent = java_lang_ref_Reference::referent(_ref);
   487   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   488          "Wrong oop found in java.lang.Reference object");
   489   assert(allow_null_referent ?
   490              _referent->is_oop_or_null()
   491            : _referent->is_oop(),
   492          "bad referent");
   493 }
   495 void DiscoveredListIterator::remove() {
   496   assert(_ref->is_oop(), "Dropping a bad reference");
   497   oop_store_raw(_discovered_addr, NULL);
   499   // First _prev_next ref actually points into DiscoveredList (gross).
   500   oop new_next;
   501   if (_next == _ref) {
   502     // At the end of the list, we should make _prev point to itself.
   503     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   504     // and _prev will be NULL.
   505     new_next = _prev;
   506   } else {
   507     new_next = _next;
   508   }
   509   // Remove Reference object from discovered list. Note that G1 does not need a
   510   // pre-barrier here because we know the Reference has already been found/marked,
   511   // that's how it ended up in the discovered list in the first place.
   512   oop_store_raw(_prev_next, new_next);
   513   NOT_PRODUCT(_removed++);
   514   _refs_list.dec_length(1);
   515 }
   517 // Make the Reference object active again.
   518 void DiscoveredListIterator::make_active() {
   519   // The pre barrier for G1 is probably just needed for the old
   520   // reference processing behavior. Should we guard this with
   521   // ReferenceProcessor::pending_list_uses_discovered_field() ?
   522   if (UseG1GC) {
   523     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   524     if (UseCompressedOops) {
   525       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   526     } else {
   527       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   528     }
   529   }
   530   java_lang_ref_Reference::set_next_raw(_ref, NULL);
   531 }
   533 void DiscoveredListIterator::clear_referent() {
   534   oop_store_raw(_referent_addr, NULL);
   535 }
   537 // NOTE: process_phase*() are largely similar, and at a high level
   538 // merely iterate over the extant list applying a predicate to
   539 // each of its elements and possibly removing that element from the
   540 // list and applying some further closures to that element.
   541 // We should consider the possibility of replacing these
   542 // process_phase*() methods by abstracting them into
   543 // a single general iterator invocation that receives appropriate
   544 // closures that accomplish this work.
   546 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   547 // referents are not alive, but that should be kept alive for policy reasons.
   548 // Keep alive the transitive closure of all such referents.
   549 void
   550 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   551                                    ReferencePolicy*   policy,
   552                                    BoolObjectClosure* is_alive,
   553                                    OopClosure*        keep_alive,
   554                                    VoidClosure*       complete_gc) {
   555   assert(policy != NULL, "Must have a non-NULL policy");
   556   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   557   // Decide which softly reachable refs should be kept alive.
   558   while (iter.has_next()) {
   559     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   560     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   561     if (referent_is_dead &&
   562         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   563       if (TraceReferenceGC) {
   564         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   565                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   566       }
   567       // Remove Reference object from list
   568       iter.remove();
   569       // Make the Reference object active again
   570       iter.make_active();
   571       // keep the referent around
   572       iter.make_referent_alive();
   573       iter.move_to_next();
   574     } else {
   575       iter.next();
   576     }
   577   }
   578   // Close the reachable set
   579   complete_gc->do_void();
   580   NOT_PRODUCT(
   581     if (PrintGCDetails && TraceReferenceGC) {
   582       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   583         "discovered Refs by policy, from list " INTPTR_FORMAT,
   584         iter.removed(), iter.processed(), (address)refs_list.head());
   585     }
   586   )
   587 }
   589 // Traverse the list and remove any Refs that are not active, or
   590 // whose referents are either alive or NULL.
   591 void
   592 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   593                              BoolObjectClosure* is_alive,
   594                              OopClosure*        keep_alive) {
   595   assert(discovery_is_atomic(), "Error");
   596   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   597   while (iter.has_next()) {
   598     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   599     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   600     assert(next == NULL, "Should not discover inactive Reference");
   601     if (iter.is_referent_alive()) {
   602       if (TraceReferenceGC) {
   603         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   604                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   605       }
   606       // The referent is reachable after all.
   607       // Remove Reference object from list.
   608       iter.remove();
   609       // Update the referent pointer as necessary: Note that this
   610       // should not entail any recursive marking because the
   611       // referent must already have been traversed.
   612       iter.make_referent_alive();
   613       iter.move_to_next();
   614     } else {
   615       iter.next();
   616     }
   617   }
   618   NOT_PRODUCT(
   619     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   620       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   621         "Refs in discovered list " INTPTR_FORMAT,
   622         iter.removed(), iter.processed(), (address)refs_list.head());
   623     }
   624   )
   625 }
   627 void
   628 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   629                                                   BoolObjectClosure* is_alive,
   630                                                   OopClosure*        keep_alive,
   631                                                   VoidClosure*       complete_gc) {
   632   assert(!discovery_is_atomic(), "Error");
   633   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   634   while (iter.has_next()) {
   635     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   636     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   637     oop next = java_lang_ref_Reference::next(iter.obj());
   638     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   639          next != NULL)) {
   640       assert(next->is_oop_or_null(), "bad next field");
   641       // Remove Reference object from list
   642       iter.remove();
   643       // Trace the cohorts
   644       iter.make_referent_alive();
   645       if (UseCompressedOops) {
   646         keep_alive->do_oop((narrowOop*)next_addr);
   647       } else {
   648         keep_alive->do_oop((oop*)next_addr);
   649       }
   650       iter.move_to_next();
   651     } else {
   652       iter.next();
   653     }
   654   }
   655   // Now close the newly reachable set
   656   complete_gc->do_void();
   657   NOT_PRODUCT(
   658     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   659       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   660         "Refs in discovered list " INTPTR_FORMAT,
   661         iter.removed(), iter.processed(), (address)refs_list.head());
   662     }
   663   )
   664 }
   666 // Traverse the list and process the referents, by either
   667 // clearing them or keeping them (and their reachable
   668 // closure) alive.
   669 void
   670 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   671                                    bool               clear_referent,
   672                                    BoolObjectClosure* is_alive,
   673                                    OopClosure*        keep_alive,
   674                                    VoidClosure*       complete_gc) {
   675   ResourceMark rm;
   676   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   677   while (iter.has_next()) {
   678     iter.update_discovered();
   679     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   680     if (clear_referent) {
   681       // NULL out referent pointer
   682       iter.clear_referent();
   683     } else {
   684       // keep the referent around
   685       iter.make_referent_alive();
   686     }
   687     if (TraceReferenceGC) {
   688       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   689                              clear_referent ? "cleared " : "",
   690                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   691     }
   692     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   693     iter.next();
   694   }
   695   // Remember to update the next pointer of the last ref.
   696   iter.update_discovered();
   697   // Close the reachable set
   698   complete_gc->do_void();
   699 }
   701 void
   702 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   703   oop obj = NULL;
   704   oop next = refs_list.head();
   705   while (next != obj) {
   706     obj = next;
   707     next = java_lang_ref_Reference::discovered(obj);
   708     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   709   }
   710   refs_list.set_head(NULL);
   711   refs_list.set_length(0);
   712 }
   714 void
   715 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   716   clear_discovered_references(refs_list);
   717 }
   719 void ReferenceProcessor::abandon_partial_discovery() {
   720   // loop over the lists
   721   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   722     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   723       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   724     }
   725     abandon_partial_discovered_list(_discovered_refs[i]);
   726   }
   727 }
   729 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   730 public:
   731   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   732                     DiscoveredList      refs_lists[],
   733                     ReferencePolicy*    policy,
   734                     bool                marks_oops_alive)
   735     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   736       _policy(policy)
   737   { }
   738   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   739                     OopClosure& keep_alive,
   740                     VoidClosure& complete_gc)
   741   {
   742     Thread* thr = Thread::current();
   743     int refs_list_index = ((WorkerThread*)thr)->id();
   744     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   745                                   &is_alive, &keep_alive, &complete_gc);
   746   }
   747 private:
   748   ReferencePolicy* _policy;
   749 };
   751 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   752 public:
   753   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   754                     DiscoveredList      refs_lists[],
   755                     bool                marks_oops_alive)
   756     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   757   { }
   758   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   759                     OopClosure& keep_alive,
   760                     VoidClosure& complete_gc)
   761   {
   762     _ref_processor.process_phase2(_refs_lists[i],
   763                                   &is_alive, &keep_alive, &complete_gc);
   764   }
   765 };
   767 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   768 public:
   769   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   770                     DiscoveredList      refs_lists[],
   771                     bool                clear_referent,
   772                     bool                marks_oops_alive)
   773     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   774       _clear_referent(clear_referent)
   775   { }
   776   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   777                     OopClosure& keep_alive,
   778                     VoidClosure& complete_gc)
   779   {
   780     // Don't use "refs_list_index" calculated in this way because
   781     // balance_queues() has moved the Ref's into the first n queues.
   782     // Thread* thr = Thread::current();
   783     // int refs_list_index = ((WorkerThread*)thr)->id();
   784     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   785     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   786                                   &is_alive, &keep_alive, &complete_gc);
   787   }
   788 private:
   789   bool _clear_referent;
   790 };
   792 // Balances reference queues.
   793 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   794 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   795 // corresponding to the active workers will be processed.
   796 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   797 {
   798   // calculate total length
   799   size_t total_refs = 0;
   800   if (TraceReferenceGC && PrintGCDetails) {
   801     gclog_or_tty->print_cr("\nBalance ref_lists ");
   802   }
   804   for (uint i = 0; i < _max_num_q; ++i) {
   805     total_refs += ref_lists[i].length();
   806     if (TraceReferenceGC && PrintGCDetails) {
   807       gclog_or_tty->print("%d ", ref_lists[i].length());
   808     }
   809   }
   810   if (TraceReferenceGC && PrintGCDetails) {
   811     gclog_or_tty->print_cr(" = %d", total_refs);
   812   }
   813   size_t avg_refs = total_refs / _num_q + 1;
   814   uint to_idx = 0;
   815   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   816     bool move_all = false;
   817     if (from_idx >= _num_q) {
   818       move_all = ref_lists[from_idx].length() > 0;
   819     }
   820     while ((ref_lists[from_idx].length() > avg_refs) ||
   821            move_all) {
   822       assert(to_idx < _num_q, "Sanity Check!");
   823       if (ref_lists[to_idx].length() < avg_refs) {
   824         // move superfluous refs
   825         size_t refs_to_move;
   826         // Move all the Ref's if the from queue will not be processed.
   827         if (move_all) {
   828           refs_to_move = MIN2(ref_lists[from_idx].length(),
   829                               avg_refs - ref_lists[to_idx].length());
   830         } else {
   831           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   832                               avg_refs - ref_lists[to_idx].length());
   833         }
   835         assert(refs_to_move > 0, "otherwise the code below will fail");
   837         oop move_head = ref_lists[from_idx].head();
   838         oop move_tail = move_head;
   839         oop new_head  = move_head;
   840         // find an element to split the list on
   841         for (size_t j = 0; j < refs_to_move; ++j) {
   842           move_tail = new_head;
   843           new_head = java_lang_ref_Reference::discovered(new_head);
   844         }
   846         // Add the chain to the to list.
   847         if (ref_lists[to_idx].head() == NULL) {
   848           // to list is empty. Make a loop at the end.
   849           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
   850         } else {
   851           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
   852         }
   853         ref_lists[to_idx].set_head(move_head);
   854         ref_lists[to_idx].inc_length(refs_to_move);
   856         // Remove the chain from the from list.
   857         if (move_tail == new_head) {
   858           // We found the end of the from list.
   859           ref_lists[from_idx].set_head(NULL);
   860         } else {
   861           ref_lists[from_idx].set_head(new_head);
   862         }
   863         ref_lists[from_idx].dec_length(refs_to_move);
   864         if (ref_lists[from_idx].length() == 0) {
   865           break;
   866         }
   867       } else {
   868         to_idx = (to_idx + 1) % _num_q;
   869       }
   870     }
   871   }
   872 #ifdef ASSERT
   873   size_t balanced_total_refs = 0;
   874   for (uint i = 0; i < _max_num_q; ++i) {
   875     balanced_total_refs += ref_lists[i].length();
   876     if (TraceReferenceGC && PrintGCDetails) {
   877       gclog_or_tty->print("%d ", ref_lists[i].length());
   878     }
   879   }
   880   if (TraceReferenceGC && PrintGCDetails) {
   881     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   882     gclog_or_tty->flush();
   883   }
   884   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   885 #endif
   886 }
   888 void ReferenceProcessor::balance_all_queues() {
   889   balance_queues(_discoveredSoftRefs);
   890   balance_queues(_discoveredWeakRefs);
   891   balance_queues(_discoveredFinalRefs);
   892   balance_queues(_discoveredPhantomRefs);
   893   balance_queues(_discoveredCleanerRefs);
   894 }
   896 size_t
   897 ReferenceProcessor::process_discovered_reflist(
   898   DiscoveredList               refs_lists[],
   899   ReferencePolicy*             policy,
   900   bool                         clear_referent,
   901   BoolObjectClosure*           is_alive,
   902   OopClosure*                  keep_alive,
   903   VoidClosure*                 complete_gc,
   904   AbstractRefProcTaskExecutor* task_executor)
   905 {
   906   bool mt_processing = task_executor != NULL && _processing_is_mt;
   907   // If discovery used MT and a dynamic number of GC threads, then
   908   // the queues must be balanced for correctness if fewer than the
   909   // maximum number of queues were used.  The number of queue used
   910   // during discovery may be different than the number to be used
   911   // for processing so don't depend of _num_q < _max_num_q as part
   912   // of the test.
   913   bool must_balance = _discovery_is_mt;
   915   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   916       must_balance) {
   917     balance_queues(refs_lists);
   918   }
   920   size_t total_list_count = total_count(refs_lists);
   922   if (PrintReferenceGC && PrintGCDetails) {
   923     gclog_or_tty->print(", %u refs", total_list_count);
   924   }
   926   // Phase 1 (soft refs only):
   927   // . Traverse the list and remove any SoftReferences whose
   928   //   referents are not alive, but that should be kept alive for
   929   //   policy reasons. Keep alive the transitive closure of all
   930   //   such referents.
   931   if (policy != NULL) {
   932     if (mt_processing) {
   933       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   934       task_executor->execute(phase1);
   935     } else {
   936       for (uint i = 0; i < _max_num_q; i++) {
   937         process_phase1(refs_lists[i], policy,
   938                        is_alive, keep_alive, complete_gc);
   939       }
   940     }
   941   } else { // policy == NULL
   942     assert(refs_lists != _discoveredSoftRefs,
   943            "Policy must be specified for soft references.");
   944   }
   946   // Phase 2:
   947   // . Traverse the list and remove any refs whose referents are alive.
   948   if (mt_processing) {
   949     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   950     task_executor->execute(phase2);
   951   } else {
   952     for (uint i = 0; i < _max_num_q; i++) {
   953       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   954     }
   955   }
   957   // Phase 3:
   958   // . Traverse the list and process referents as appropriate.
   959   if (mt_processing) {
   960     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   961     task_executor->execute(phase3);
   962   } else {
   963     for (uint i = 0; i < _max_num_q; i++) {
   964       process_phase3(refs_lists[i], clear_referent,
   965                      is_alive, keep_alive, complete_gc);
   966     }
   967   }
   969   return total_list_count;
   970 }
   972 void ReferenceProcessor::clean_up_discovered_references() {
   973   // loop over the lists
   974   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   975     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   976       gclog_or_tty->print_cr(
   977         "\nScrubbing %s discovered list of Null referents",
   978         list_name(i));
   979     }
   980     clean_up_discovered_reflist(_discovered_refs[i]);
   981   }
   982 }
   984 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   985   assert(!discovery_is_atomic(), "Else why call this method?");
   986   DiscoveredListIterator iter(refs_list, NULL, NULL);
   987   while (iter.has_next()) {
   988     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   989     oop next = java_lang_ref_Reference::next(iter.obj());
   990     assert(next->is_oop_or_null(), "bad next field");
   991     // If referent has been cleared or Reference is not active,
   992     // drop it.
   993     if (iter.referent() == NULL || next != NULL) {
   994       debug_only(
   995         if (PrintGCDetails && TraceReferenceGC) {
   996           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   997             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   998             " and referent: " INTPTR_FORMAT,
   999             (void *)iter.obj(), (void *)next, (void *)iter.referent());
  1002       // Remove Reference object from list
  1003       iter.remove();
  1004       iter.move_to_next();
  1005     } else {
  1006       iter.next();
  1009   NOT_PRODUCT(
  1010     if (PrintGCDetails && TraceReferenceGC) {
  1011       gclog_or_tty->print(
  1012         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1013         iter.removed(), iter.processed());
  1018 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1019   uint id = 0;
  1020   // Determine the queue index to use for this object.
  1021   if (_discovery_is_mt) {
  1022     // During a multi-threaded discovery phase,
  1023     // each thread saves to its "own" list.
  1024     Thread* thr = Thread::current();
  1025     id = thr->as_Worker_thread()->id();
  1026   } else {
  1027     // single-threaded discovery, we save in round-robin
  1028     // fashion to each of the lists.
  1029     if (_processing_is_mt) {
  1030       id = next_id();
  1033   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1035   // Get the discovered queue to which we will add
  1036   DiscoveredList* list = NULL;
  1037   switch (rt) {
  1038     case REF_OTHER:
  1039       // Unknown reference type, no special treatment
  1040       break;
  1041     case REF_SOFT:
  1042       list = &_discoveredSoftRefs[id];
  1043       break;
  1044     case REF_WEAK:
  1045       list = &_discoveredWeakRefs[id];
  1046       break;
  1047     case REF_FINAL:
  1048       list = &_discoveredFinalRefs[id];
  1049       break;
  1050     case REF_PHANTOM:
  1051       list = &_discoveredPhantomRefs[id];
  1052       break;
  1053     case REF_CLEANER:
  1054       list = &_discoveredCleanerRefs[id];
  1055       break;
  1056     case REF_NONE:
  1057       // we should not reach here if we are an InstanceRefKlass
  1058     default:
  1059       ShouldNotReachHere();
  1061   if (TraceReferenceGC && PrintGCDetails) {
  1062     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1064   return list;
  1067 inline void
  1068 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1069                                               oop             obj,
  1070                                               HeapWord*       discovered_addr) {
  1071   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1072   // First we must make sure this object is only enqueued once. CAS in a non null
  1073   // discovered_addr.
  1074   oop current_head = refs_list.head();
  1075   // The last ref must have its discovered field pointing to itself.
  1076   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1078   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1079                                                     NULL);
  1080   if (retest == NULL) {
  1081     // This thread just won the right to enqueue the object.
  1082     // We have separate lists for enqueueing, so no synchronization
  1083     // is necessary.
  1084     refs_list.set_head(obj);
  1085     refs_list.inc_length(1);
  1087     if (TraceReferenceGC) {
  1088       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1089                              (void *)obj, obj->klass()->internal_name());
  1091   } else {
  1092     // If retest was non NULL, another thread beat us to it:
  1093     // The reference has already been discovered...
  1094     if (TraceReferenceGC) {
  1095       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1096                              (void *)obj, obj->klass()->internal_name());
  1101 #ifndef PRODUCT
  1102 // Non-atomic (i.e. concurrent) discovery might allow us
  1103 // to observe j.l.References with NULL referents, being those
  1104 // cleared concurrently by mutators during (or after) discovery.
  1105 void ReferenceProcessor::verify_referent(oop obj) {
  1106   bool da = discovery_is_atomic();
  1107   oop referent = java_lang_ref_Reference::referent(obj);
  1108   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1109          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1110                  INTPTR_FORMAT " during %satomic discovery ",
  1111                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1113 #endif
  1115 // We mention two of several possible choices here:
  1116 // #0: if the reference object is not in the "originating generation"
  1117 //     (or part of the heap being collected, indicated by our "span"
  1118 //     we don't treat it specially (i.e. we scan it as we would
  1119 //     a normal oop, treating its references as strong references).
  1120 //     This means that references can't be discovered unless their
  1121 //     referent is also in the same span. This is the simplest,
  1122 //     most "local" and most conservative approach, albeit one
  1123 //     that may cause weak references to be enqueued least promptly.
  1124 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1125 // #1: the reference object may be in any generation (span), but if
  1126 //     the referent is in the generation (span) being currently collected
  1127 //     then we can discover the reference object, provided
  1128 //     the object has not already been discovered by
  1129 //     a different concurrently running collector (as may be the
  1130 //     case, for instance, if the reference object is in CMS and
  1131 //     the referent in DefNewGeneration), and provided the processing
  1132 //     of this reference object by the current collector will
  1133 //     appear atomic to every other collector in the system.
  1134 //     (Thus, for instance, a concurrent collector may not
  1135 //     discover references in other generations even if the
  1136 //     referent is in its own generation). This policy may,
  1137 //     in certain cases, enqueue references somewhat sooner than
  1138 //     might Policy #0 above, but at marginally increased cost
  1139 //     and complexity in processing these references.
  1140 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1141 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1142   // Make sure we are discovering refs (rather than processing discovered refs).
  1143   if (!_discovering_refs || !RegisterReferences) {
  1144     return false;
  1146   // We only discover active references.
  1147   oop next = java_lang_ref_Reference::next(obj);
  1148   if (next != NULL) {   // Ref is no longer active
  1149     return false;
  1152   HeapWord* obj_addr = (HeapWord*)obj;
  1153   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1154       !_span.contains(obj_addr)) {
  1155     // Reference is not in the originating generation;
  1156     // don't treat it specially (i.e. we want to scan it as a normal
  1157     // object with strong references).
  1158     return false;
  1161   // We only discover references whose referents are not (yet)
  1162   // known to be strongly reachable.
  1163   if (is_alive_non_header() != NULL) {
  1164     verify_referent(obj);
  1165     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1166       return false;  // referent is reachable
  1169   if (rt == REF_SOFT) {
  1170     // For soft refs we can decide now if these are not
  1171     // current candidates for clearing, in which case we
  1172     // can mark through them now, rather than delaying that
  1173     // to the reference-processing phase. Since all current
  1174     // time-stamp policies advance the soft-ref clock only
  1175     // at a major collection cycle, this is always currently
  1176     // accurate.
  1177     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1178       return false;
  1182   ResourceMark rm;      // Needed for tracing.
  1184   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1185   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1186   assert(discovered->is_oop_or_null(), "bad discovered field");
  1187   if (discovered != NULL) {
  1188     // The reference has already been discovered...
  1189     if (TraceReferenceGC) {
  1190       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1191                              (void *)obj, obj->klass()->internal_name());
  1193     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1194       // assumes that an object is not processed twice;
  1195       // if it's been already discovered it must be on another
  1196       // generation's discovered list; so we won't discover it.
  1197       return false;
  1198     } else {
  1199       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1200              "Unrecognized policy");
  1201       // Check assumption that an object is not potentially
  1202       // discovered twice except by concurrent collectors that potentially
  1203       // trace the same Reference object twice.
  1204       assert(UseConcMarkSweepGC || UseG1GC,
  1205              "Only possible with a concurrent marking collector");
  1206       return true;
  1210   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1211     verify_referent(obj);
  1212     // Discover if and only if EITHER:
  1213     // .. reference is in our span, OR
  1214     // .. we are an atomic collector and referent is in our span
  1215     if (_span.contains(obj_addr) ||
  1216         (discovery_is_atomic() &&
  1217          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1218       // should_enqueue = true;
  1219     } else {
  1220       return false;
  1222   } else {
  1223     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1224            _span.contains(obj_addr), "code inconsistency");
  1227   // Get the right type of discovered queue head.
  1228   DiscoveredList* list = get_discovered_list(rt);
  1229   if (list == NULL) {
  1230     return false;   // nothing special needs to be done
  1233   if (_discovery_is_mt) {
  1234     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1235   } else {
  1236     // We do a raw store here: the field will be visited later when processing
  1237     // the discovered references.
  1238     oop current_head = list->head();
  1239     // The last ref must have its discovered field pointing to itself.
  1240     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1242     assert(discovered == NULL, "control point invariant");
  1243     oop_store_raw(discovered_addr, next_discovered);
  1244     list->set_head(obj);
  1245     list->inc_length(1);
  1247     if (TraceReferenceGC) {
  1248       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1249                                 (void *)obj, obj->klass()->internal_name());
  1252   assert(obj->is_oop(), "Discovered a bad reference");
  1253   verify_referent(obj);
  1254   return true;
  1257 // Preclean the discovered references by removing those
  1258 // whose referents are alive, and by marking from those that
  1259 // are not active. These lists can be handled here
  1260 // in any order and, indeed, concurrently.
  1261 void ReferenceProcessor::preclean_discovered_references(
  1262   BoolObjectClosure* is_alive,
  1263   OopClosure* keep_alive,
  1264   VoidClosure* complete_gc,
  1265   YieldClosure* yield,
  1266   GCTimer* gc_timer) {
  1268   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1270   // Soft references
  1272     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1273               false, gc_timer);
  1274     for (uint i = 0; i < _max_num_q; i++) {
  1275       if (yield->should_return()) {
  1276         return;
  1278       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1279                                   keep_alive, complete_gc, yield);
  1283   // Weak references
  1285     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1286               false, gc_timer);
  1287     for (uint i = 0; i < _max_num_q; i++) {
  1288       if (yield->should_return()) {
  1289         return;
  1291       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1292                                   keep_alive, complete_gc, yield);
  1296   // Final references
  1298     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1299               false, gc_timer);
  1300     for (uint i = 0; i < _max_num_q; i++) {
  1301       if (yield->should_return()) {
  1302         return;
  1304       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1305                                   keep_alive, complete_gc, yield);
  1309   // Phantom references
  1311     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1312               false, gc_timer);
  1313     for (uint i = 0; i < _max_num_q; i++) {
  1314       if (yield->should_return()) {
  1315         return;
  1317       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1318                                   keep_alive, complete_gc, yield);
  1321     // Cleaner references.  Included in timing for phantom references.  We
  1322     // expect Cleaner references to be temporary, and don't want to deal with
  1323     // possible incompatibilities arising from making it more visible.
  1324     for (uint i = 0; i < _max_num_q; i++) {
  1325       if (yield->should_return()) {
  1326         return;
  1328       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
  1329                                   keep_alive, complete_gc, yield);
  1334 // Walk the given discovered ref list, and remove all reference objects
  1335 // whose referents are still alive, whose referents are NULL or which
  1336 // are not active (have a non-NULL next field). NOTE: When we are
  1337 // thus precleaning the ref lists (which happens single-threaded today),
  1338 // we do not disable refs discovery to honour the correct semantics of
  1339 // java.lang.Reference. As a result, we need to be careful below
  1340 // that ref removal steps interleave safely with ref discovery steps
  1341 // (in this thread).
  1342 void
  1343 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1344                                                 BoolObjectClosure* is_alive,
  1345                                                 OopClosure*        keep_alive,
  1346                                                 VoidClosure*       complete_gc,
  1347                                                 YieldClosure*      yield) {
  1348   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1349   while (iter.has_next()) {
  1350     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1351     oop obj = iter.obj();
  1352     oop next = java_lang_ref_Reference::next(obj);
  1353     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1354         next != NULL) {
  1355       // The referent has been cleared, or is alive, or the Reference is not
  1356       // active; we need to trace and mark its cohort.
  1357       if (TraceReferenceGC) {
  1358         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1359                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1361       // Remove Reference object from list
  1362       iter.remove();
  1363       // Keep alive its cohort.
  1364       iter.make_referent_alive();
  1365       if (UseCompressedOops) {
  1366         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1367         keep_alive->do_oop(next_addr);
  1368       } else {
  1369         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1370         keep_alive->do_oop(next_addr);
  1372       iter.move_to_next();
  1373     } else {
  1374       iter.next();
  1377   // Close the reachable set
  1378   complete_gc->do_void();
  1380   NOT_PRODUCT(
  1381     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1382       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1383         "Refs in discovered list " INTPTR_FORMAT,
  1384         iter.removed(), iter.processed(), (address)refs_list.head());
  1389 const char* ReferenceProcessor::list_name(uint i) {
  1390    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1391           "Out of bounds index");
  1393    int j = i / _max_num_q;
  1394    switch (j) {
  1395      case 0: return "SoftRef";
  1396      case 1: return "WeakRef";
  1397      case 2: return "FinalRef";
  1398      case 3: return "PhantomRef";
  1399      case 4: return "CleanerRef";
  1401    ShouldNotReachHere();
  1402    return NULL;
  1405 #ifndef PRODUCT
  1406 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1407   // empty for now
  1409 #endif
  1411 #ifndef PRODUCT
  1412 void ReferenceProcessor::clear_discovered_references() {
  1413   guarantee(!_discovering_refs, "Discovering refs?");
  1414   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1415     clear_discovered_references(_discovered_refs[i]);
  1419 #endif // PRODUCT

mercurial