src/share/vm/runtime/vframeArray.cpp

Thu, 17 Apr 2008 22:18:15 -0400

author
kamg
date
Thu, 17 Apr 2008 22:18:15 -0400
changeset 551
018d5b58dd4f
parent 435
a61af66fc99e
child 1253
b109e761e927
permissions
-rw-r--r--

6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
Summary: Initial checkin of JSDT code
Reviewed-by: acorn, sbohne

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_vframeArray.cpp.incl"
    29 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
    31 void vframeArrayElement::free_monitors(JavaThread* jt) {
    32   if (_monitors != NULL) {
    33      MonitorChunk* chunk = _monitors;
    34      _monitors = NULL;
    35      jt->remove_monitor_chunk(chunk);
    36      delete chunk;
    37   }
    38 }
    40 void vframeArrayElement::fill_in(compiledVFrame* vf) {
    42 // Copy the information from the compiled vframe to the
    43 // interpreter frame we will be creating to replace vf
    45   _method = vf->method();
    46   _bci    = vf->raw_bci();
    48   int index;
    50   // Get the monitors off-stack
    52   GrowableArray<MonitorInfo*>* list = vf->monitors();
    53   if (list->is_empty()) {
    54     _monitors = NULL;
    55   } else {
    57     // Allocate monitor chunk
    58     _monitors = new MonitorChunk(list->length());
    59     vf->thread()->add_monitor_chunk(_monitors);
    61     // Migrate the BasicLocks from the stack to the monitor chunk
    62     for (index = 0; index < list->length(); index++) {
    63       MonitorInfo* monitor = list->at(index);
    64       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
    65       BasicObjectLock* dest = _monitors->at(index);
    66       dest->set_obj(monitor->owner());
    67       monitor->lock()->move_to(monitor->owner(), dest->lock());
    68     }
    69   }
    71   // Convert the vframe locals and expressions to off stack
    72   // values. Because we will not gc all oops can be converted to
    73   // intptr_t (i.e. a stack slot) and we are fine. This is
    74   // good since we are inside a HandleMark and the oops in our
    75   // collection would go away between packing them here and
    76   // unpacking them in unpack_on_stack.
    78   // First the locals go off-stack
    80   // FIXME this seems silly it creates a StackValueCollection
    81   // in order to get the size to then copy them and
    82   // convert the types to intptr_t size slots. Seems like it
    83   // could do it in place... Still uses less memory than the
    84   // old way though
    86   StackValueCollection *locs = vf->locals();
    87   _locals = new StackValueCollection(locs->size());
    88   for(index = 0; index < locs->size(); index++) {
    89     StackValue* value = locs->at(index);
    90     switch(value->type()) {
    91       case T_OBJECT:
    92         // preserve object type
    93         _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
    94         break;
    95       case T_CONFLICT:
    96         // A dead local.  Will be initialized to null/zero.
    97         _locals->add( new StackValue());
    98         break;
    99       case T_INT:
   100         _locals->add( new StackValue(value->get_int()));
   101         break;
   102       default:
   103         ShouldNotReachHere();
   104     }
   105   }
   107   // Now the expressions off-stack
   108   // Same silliness as above
   110   StackValueCollection *exprs = vf->expressions();
   111   _expressions = new StackValueCollection(exprs->size());
   112   for(index = 0; index < exprs->size(); index++) {
   113     StackValue* value = exprs->at(index);
   114     switch(value->type()) {
   115       case T_OBJECT:
   116         // preserve object type
   117         _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
   118         break;
   119       case T_CONFLICT:
   120         // A dead stack element.  Will be initialized to null/zero.
   121         // This can occur when the compiler emits a state in which stack
   122         // elements are known to be dead (because of an imminent exception).
   123         _expressions->add( new StackValue());
   124         break;
   125       case T_INT:
   126         _expressions->add( new StackValue(value->get_int()));
   127         break;
   128       default:
   129         ShouldNotReachHere();
   130     }
   131   }
   132 }
   134 int unpack_counter = 0;
   136 void vframeArrayElement::unpack_on_stack(int callee_parameters,
   137                                          int callee_locals,
   138                                          frame* caller,
   139                                          bool is_top_frame,
   140                                          int exec_mode) {
   141   JavaThread* thread = (JavaThread*) Thread::current();
   143   // Look at bci and decide on bcp and continuation pc
   144   address bcp;
   145   // C++ interpreter doesn't need a pc since it will figure out what to do when it
   146   // begins execution
   147   address pc;
   148   bool use_next_mdp; // true if we should use the mdp associated with the next bci
   149                      // rather than the one associated with bcp
   150   if (raw_bci() == SynchronizationEntryBCI) {
   151     // We are deoptimizing while hanging in prologue code for synchronized method
   152     bcp = method()->bcp_from(0); // first byte code
   153     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
   154     use_next_mdp = false;
   155   } else {
   156     bcp = method()->bcp_from(bci());
   157     pc  = Interpreter::continuation_for(method(), bcp, callee_parameters, is_top_frame, use_next_mdp);
   158   }
   159   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
   161   // Monitorenter and pending exceptions:
   162   //
   163   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
   164   // because there is no safepoint at the null pointer check (it is either handled explicitly
   165   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
   166   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
   167   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
   168   // the monitorenter to place it in the proper exception range.
   169   //
   170   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
   171   // in which case bcp should point to the monitorenter since it is within the exception's range.
   173   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
   174   // TIERED Must know the compiler of the deoptee QQQ
   175   COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
   176                               "shouldn't get exception during monitorenter");)
   178   int popframe_preserved_args_size_in_bytes = 0;
   179   int popframe_preserved_args_size_in_words = 0;
   180   if (is_top_frame) {
   181   JvmtiThreadState *state = thread->jvmti_thread_state();
   182     if (JvmtiExport::can_pop_frame() &&
   183         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
   184       if (thread->has_pending_popframe()) {
   185         // Pop top frame after deoptimization
   186 #ifndef CC_INTERP
   187         pc = Interpreter::remove_activation_preserving_args_entry();
   188 #else
   189         // Do an uncommon trap type entry. c++ interpreter will know
   190         // to pop frame and preserve the args
   191         pc = Interpreter::deopt_entry(vtos, 0);
   192         use_next_mdp = false;
   193 #endif
   194       } else {
   195         // Reexecute invoke in top frame
   196         pc = Interpreter::deopt_entry(vtos, 0);
   197         use_next_mdp = false;
   198         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
   199         // Note: the PopFrame-related extension of the expression stack size is done in
   200         // Deoptimization::fetch_unroll_info_helper
   201         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
   202       }
   203     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
   204       // Force early return from top frame after deoptimization
   205 #ifndef CC_INTERP
   206       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
   207 #else
   208      // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
   209 #endif
   210     } else {
   211       // Possibly override the previous pc computation of the top (youngest) frame
   212       switch (exec_mode) {
   213       case Deoptimization::Unpack_deopt:
   214         // use what we've got
   215         break;
   216       case Deoptimization::Unpack_exception:
   217         // exception is pending
   218         pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
   219         // [phh] We're going to end up in some handler or other, so it doesn't
   220         // matter what mdp we point to.  See exception_handler_for_exception()
   221         // in interpreterRuntime.cpp.
   222         break;
   223       case Deoptimization::Unpack_uncommon_trap:
   224       case Deoptimization::Unpack_reexecute:
   225         // redo last byte code
   226         pc  = Interpreter::deopt_entry(vtos, 0);
   227         use_next_mdp = false;
   228         break;
   229       default:
   230         ShouldNotReachHere();
   231       }
   232     }
   233   }
   235   // Setup the interpreter frame
   237   assert(method() != NULL, "method must exist");
   238   int temps = expressions()->size();
   240   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   242   Interpreter::layout_activation(method(),
   243                                  temps + callee_parameters,
   244                                  popframe_preserved_args_size_in_words,
   245                                  locks,
   246                                  callee_parameters,
   247                                  callee_locals,
   248                                  caller,
   249                                  iframe(),
   250                                  is_top_frame);
   252   // Update the pc in the frame object and overwrite the temporary pc
   253   // we placed in the skeletal frame now that we finally know the
   254   // exact interpreter address we should use.
   256   _frame.patch_pc(thread, pc);
   258   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
   260   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
   261   for (int index = 0; index < locks; index++) {
   262     top = iframe()->previous_monitor_in_interpreter_frame(top);
   263     BasicObjectLock* src = _monitors->at(index);
   264     top->set_obj(src->obj());
   265     src->lock()->move_to(src->obj(), top->lock());
   266   }
   267   if (ProfileInterpreter) {
   268     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
   269   }
   270   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
   271   if (ProfileInterpreter) {
   272     methodDataOop mdo = method()->method_data();
   273     if (mdo != NULL) {
   274       int bci = iframe()->interpreter_frame_bci();
   275       if (use_next_mdp) ++bci;
   276       address mdp = mdo->bci_to_dp(bci);
   277       iframe()->interpreter_frame_set_mdp(mdp);
   278     }
   279   }
   281   // Unpack expression stack
   282   // If this is an intermediate frame (i.e. not top frame) then this
   283   // only unpacks the part of the expression stack not used by callee
   284   // as parameters. The callee parameters are unpacked as part of the
   285   // callee locals.
   286   int i;
   287   for(i = 0; i < expressions()->size(); i++) {
   288     StackValue *value = expressions()->at(i);
   289     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
   290     switch(value->type()) {
   291       case T_INT:
   292         *addr = value->get_int();
   293         break;
   294       case T_OBJECT:
   295         *addr = value->get_int(T_OBJECT);
   296         break;
   297       case T_CONFLICT:
   298         // A dead stack slot.  Initialize to null in case it is an oop.
   299         *addr = NULL_WORD;
   300         break;
   301       default:
   302         ShouldNotReachHere();
   303     }
   304     if (TaggedStackInterpreter) {
   305       // Write tag to the stack
   306       iframe()->interpreter_frame_set_expression_stack_tag(i,
   307                                   frame::tag_for_basic_type(value->type()));
   308     }
   309   }
   312   // Unpack the locals
   313   for(i = 0; i < locals()->size(); i++) {
   314     StackValue *value = locals()->at(i);
   315     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
   316     switch(value->type()) {
   317       case T_INT:
   318         *addr = value->get_int();
   319         break;
   320       case T_OBJECT:
   321         *addr = value->get_int(T_OBJECT);
   322         break;
   323       case T_CONFLICT:
   324         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
   325         *addr = NULL_WORD;
   326         break;
   327       default:
   328         ShouldNotReachHere();
   329     }
   330     if (TaggedStackInterpreter) {
   331       // Write tag to stack
   332       iframe()->interpreter_frame_set_local_tag(i,
   333                                   frame::tag_for_basic_type(value->type()));
   334     }
   335   }
   337   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   338     // An interpreted frame was popped but it returns to a deoptimized
   339     // frame. The incoming arguments to the interpreted activation
   340     // were preserved in thread-local storage by the
   341     // remove_activation_preserving_args_entry in the interpreter; now
   342     // we put them back into the just-unpacked interpreter frame.
   343     // Note that this assumes that the locals arena grows toward lower
   344     // addresses.
   345     if (popframe_preserved_args_size_in_words != 0) {
   346       void* saved_args = thread->popframe_preserved_args();
   347       assert(saved_args != NULL, "must have been saved by interpreter");
   348 #ifdef ASSERT
   349       int stack_words = Interpreter::stackElementWords();
   350       assert(popframe_preserved_args_size_in_words <=
   351              iframe()->interpreter_frame_expression_stack_size()*stack_words,
   352              "expression stack size should have been extended");
   353 #endif // ASSERT
   354       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
   355       intptr_t* base;
   356       if (frame::interpreter_frame_expression_stack_direction() < 0) {
   357         base = iframe()->interpreter_frame_expression_stack_at(top_element);
   358       } else {
   359         base = iframe()->interpreter_frame_expression_stack();
   360       }
   361       Copy::conjoint_bytes(saved_args,
   362                            base,
   363                            popframe_preserved_args_size_in_bytes);
   364       thread->popframe_free_preserved_args();
   365     }
   366   }
   368 #ifndef PRODUCT
   369   if (TraceDeoptimization && Verbose) {
   370     ttyLocker ttyl;
   371     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
   372     iframe()->print_on(tty);
   373     RegisterMap map(thread);
   374     vframe* f = vframe::new_vframe(iframe(), &map, thread);
   375     f->print();
   376     iframe()->interpreter_frame_print_on(tty);
   378     tty->print_cr("locals size     %d", locals()->size());
   379     tty->print_cr("expression size %d", expressions()->size());
   381     method()->print_value();
   382     tty->cr();
   383     // method()->print_codes();
   384   } else if (TraceDeoptimization) {
   385     tty->print("     ");
   386     method()->print_value();
   387     Bytecodes::Code code = Bytecodes::java_code_at(bcp);
   388     int bci = method()->bci_from(bcp);
   389     tty->print(" - %s", Bytecodes::name(code));
   390     tty->print(" @ bci %d ", bci);
   391     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
   392   }
   393 #endif // PRODUCT
   395   // The expression stack and locals are in the resource area don't leave
   396   // a dangling pointer in the vframeArray we leave around for debug
   397   // purposes
   399   _locals = _expressions = NULL;
   401 }
   403 int vframeArrayElement::on_stack_size(int callee_parameters,
   404                                       int callee_locals,
   405                                       bool is_top_frame,
   406                                       int popframe_extra_stack_expression_els) const {
   407   assert(method()->max_locals() == locals()->size(), "just checking");
   408   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   409   int temps = expressions()->size();
   410   return Interpreter::size_activation(method(),
   411                                       temps + callee_parameters,
   412                                       popframe_extra_stack_expression_els,
   413                                       locks,
   414                                       callee_parameters,
   415                                       callee_locals,
   416                                       is_top_frame);
   417 }
   421 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
   422                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
   424   // Allocate the vframeArray
   425   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
   426                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
   427                                                      "vframeArray::allocate");
   428   result->_frames = chunk->length();
   429   result->_owner_thread = thread;
   430   result->_sender = sender;
   431   result->_caller = caller;
   432   result->_original = self;
   433   result->set_unroll_block(NULL); // initialize it
   434   result->fill_in(thread, frame_size, chunk, reg_map);
   435   return result;
   436 }
   438 void vframeArray::fill_in(JavaThread* thread,
   439                           int frame_size,
   440                           GrowableArray<compiledVFrame*>* chunk,
   441                           const RegisterMap *reg_map) {
   442   // Set owner first, it is used when adding monitor chunks
   444   _frame_size = frame_size;
   445   for(int i = 0; i < chunk->length(); i++) {
   446     element(i)->fill_in(chunk->at(i));
   447   }
   449   // Copy registers for callee-saved registers
   450   if (reg_map != NULL) {
   451     for(int i = 0; i < RegisterMap::reg_count; i++) {
   452 #ifdef AMD64
   453       // The register map has one entry for every int (32-bit value), so
   454       // 64-bit physical registers have two entries in the map, one for
   455       // each half.  Ignore the high halves of 64-bit registers, just like
   456       // frame::oopmapreg_to_location does.
   457       //
   458       // [phh] FIXME: this is a temporary hack!  This code *should* work
   459       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
   460       // in frame_amd64.cpp and the values of the phantom high half registers
   461       // in amd64.ad.
   462       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
   463         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
   464         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   465         //      } else {
   466         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
   467         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   468         //      }
   469 #else
   470       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
   471       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   472 #endif
   473       if (src == NULL) {
   474         set_location_valid(i, false);
   475       } else {
   476         set_location_valid(i, true);
   477         jint* dst = (jint*) register_location(i);
   478         *dst = *src;
   479       }
   480     }
   481   }
   482 }
   484 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
   485   // stack picture
   486   //   unpack_frame
   487   //   [new interpreter frames ] (frames are skeletal but walkable)
   488   //   caller_frame
   489   //
   490   //  This routine fills in the missing data for the skeletal interpreter frames
   491   //  in the above picture.
   493   // Find the skeletal interpreter frames to unpack into
   494   RegisterMap map(JavaThread::current(), false);
   495   // Get the youngest frame we will unpack (last to be unpacked)
   496   frame me = unpack_frame.sender(&map);
   497   int index;
   498   for (index = 0; index < frames(); index++ ) {
   499     *element(index)->iframe() = me;
   500     // Get the caller frame (possibly skeletal)
   501     me = me.sender(&map);
   502   }
   504   frame caller_frame = me;
   506   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
   508   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
   510   for (index = frames() - 1; index >= 0 ; index--) {
   511     int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
   512     int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
   513     element(index)->unpack_on_stack(callee_parameters,
   514                                     callee_locals,
   515                                     &caller_frame,
   516                                     index == 0,
   517                                     exec_mode);
   518     if (index == frames() - 1) {
   519       Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
   520     }
   521     caller_frame = *element(index)->iframe();
   522   }
   525   deallocate_monitor_chunks();
   526 }
   528 void vframeArray::deallocate_monitor_chunks() {
   529   JavaThread* jt = JavaThread::current();
   530   for (int index = 0; index < frames(); index++ ) {
   531      element(index)->free_monitors(jt);
   532   }
   533 }
   535 #ifndef PRODUCT
   537 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
   538   if (owner_thread() != thread) return false;
   539   int index = 0;
   540 #if 0 // FIXME can't do this comparison
   542   // Compare only within vframe array.
   543   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
   544     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
   545     index++;
   546   }
   547   if (index != chunk->length()) return false;
   548 #endif
   550   return true;
   551 }
   553 #endif
   555 address vframeArray::register_location(int i) const {
   556   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
   557   return (address) & _callee_registers[i];
   558 }
   561 #ifndef PRODUCT
   563 // Printing
   565 // Note: we cannot have print_on as const, as we allocate inside the method
   566 void vframeArray::print_on_2(outputStream* st)  {
   567   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
   568   st->print(" - thread: ");
   569   Thread::current()->print();
   570   st->print_cr(" - frame size: %d", frame_size());
   571   for (int index = 0; index < frames() ; index++ ) {
   572     element(index)->print(st);
   573   }
   574 }
   576 void vframeArrayElement::print(outputStream* st) {
   577   st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
   578 }
   580 void vframeArray::print_value_on(outputStream* st) const {
   581   st->print_cr("vframeArray [%d] ", frames());
   582 }
   585 #endif

mercurial