src/cpu/x86/vm/nativeInst_x86.cpp

Thu, 17 Apr 2008 22:18:15 -0400

author
kamg
date
Thu, 17 Apr 2008 22:18:15 -0400
changeset 551
018d5b58dd4f
parent 435
a61af66fc99e
child 631
d1605aabd0a1
permissions
-rw-r--r--

6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
Summary: Initial checkin of JSDT code
Reviewed-by: acorn, sbohne

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_nativeInst_x86.cpp.incl"
    28 void NativeInstruction::wrote(int offset) {
    29   ICache::invalidate_word(addr_at(offset));
    30 }
    33 void NativeCall::verify() {
    34   // Make sure code pattern is actually a call imm32 instruction.
    35   int inst = ubyte_at(0);
    36   if (inst != instruction_code) {
    37     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
    38                                                         inst);
    39     fatal("not a call disp32");
    40   }
    41 }
    43 address NativeCall::destination() const {
    44   // Getting the destination of a call isn't safe because that call can
    45   // be getting patched while you're calling this.  There's only special
    46   // places where this can be called but not automatically verifiable by
    47   // checking which locks are held.  The solution is true atomic patching
    48   // on x86, nyi.
    49   return return_address() + displacement();
    50 }
    52 void NativeCall::print() {
    53   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
    54                 instruction_address(), destination());
    55 }
    57 // Inserts a native call instruction at a given pc
    58 void NativeCall::insert(address code_pos, address entry) {
    59   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
    60 #ifdef AMD64
    61   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
    62 #endif // AMD64
    63   *code_pos = instruction_code;
    64   *((int32_t *)(code_pos+1)) = (int32_t) disp;
    65   ICache::invalidate_range(code_pos, instruction_size);
    66 }
    68 // MT-safe patching of a call instruction.
    69 // First patches first word of instruction to two jmp's that jmps to them
    70 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
    71 // the jmp's with the first 4 byte of the new instruction.
    72 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
    73   assert(Patching_lock->is_locked() ||
    74          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
    75   assert (instr_addr != NULL, "illegal address for code patching");
    77   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
    78   if (os::is_MP()) {
    79     guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
    80   }
    82   // First patch dummy jmp in place
    83   unsigned char patch[4];
    84   assert(sizeof(patch)==sizeof(jint), "sanity check");
    85   patch[0] = 0xEB;       // jmp rel8
    86   patch[1] = 0xFE;       // jmp to self
    87   patch[2] = 0xEB;
    88   patch[3] = 0xFE;
    90   // First patch dummy jmp in place
    91   *(jint*)instr_addr = *(jint *)patch;
    93   // Invalidate.  Opteron requires a flush after every write.
    94   n_call->wrote(0);
    96   // Patch 4th byte
    97   instr_addr[4] = code_buffer[4];
    99   n_call->wrote(4);
   101   // Patch bytes 0-3
   102   *(jint*)instr_addr = *(jint *)code_buffer;
   104   n_call->wrote(0);
   106 #ifdef ASSERT
   107    // verify patching
   108    for ( int i = 0; i < instruction_size; i++) {
   109      address ptr = (address)((intptr_t)code_buffer + i);
   110      int a_byte = (*ptr) & 0xFF;
   111      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   112    }
   113 #endif
   115 }
   118 // Similar to replace_mt_safe, but just changes the destination.  The
   119 // important thing is that free-running threads are able to execute this
   120 // call instruction at all times.  If the displacement field is aligned
   121 // we can simply rely on atomicity of 32-bit writes to make sure other threads
   122 // will see no intermediate states.  Otherwise, the first two bytes of the
   123 // call are guaranteed to be aligned, and can be atomically patched to a
   124 // self-loop to guard the instruction while we change the other bytes.
   126 // We cannot rely on locks here, since the free-running threads must run at
   127 // full speed.
   128 //
   129 // Used in the runtime linkage of calls; see class CompiledIC.
   130 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
   131 void NativeCall::set_destination_mt_safe(address dest) {
   132   debug_only(verify());
   133   // Make sure patching code is locked.  No two threads can patch at the same
   134   // time but one may be executing this code.
   135   assert(Patching_lock->is_locked() ||
   136          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
   137   // Both C1 and C2 should now be generating code which aligns the patched address
   138   // to be within a single cache line except that C1 does not do the alignment on
   139   // uniprocessor systems.
   140   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
   141                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
   143   guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
   145   if (is_aligned) {
   146     // Simple case:  The destination lies within a single cache line.
   147     set_destination(dest);
   148   } else if ((uintptr_t)instruction_address() / cache_line_size ==
   149              ((uintptr_t)instruction_address()+1) / cache_line_size) {
   150     // Tricky case:  The instruction prefix lies within a single cache line.
   151     intptr_t disp = dest - return_address();
   152 #ifdef AMD64
   153     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
   154 #endif // AMD64
   156     int call_opcode = instruction_address()[0];
   158     // First patch dummy jump in place:
   159     {
   160       u_char patch_jump[2];
   161       patch_jump[0] = 0xEB;       // jmp rel8
   162       patch_jump[1] = 0xFE;       // jmp to self
   164       assert(sizeof(patch_jump)==sizeof(short), "sanity check");
   165       *(short*)instruction_address() = *(short*)patch_jump;
   166     }
   167     // Invalidate.  Opteron requires a flush after every write.
   168     wrote(0);
   170     // (Note: We assume any reader which has already started to read
   171     // the unpatched call will completely read the whole unpatched call
   172     // without seeing the next writes we are about to make.)
   174     // Next, patch the last three bytes:
   175     u_char patch_disp[5];
   176     patch_disp[0] = call_opcode;
   177     *(int32_t*)&patch_disp[1] = (int32_t)disp;
   178     assert(sizeof(patch_disp)==instruction_size, "sanity check");
   179     for (int i = sizeof(short); i < instruction_size; i++)
   180       instruction_address()[i] = patch_disp[i];
   182     // Invalidate.  Opteron requires a flush after every write.
   183     wrote(sizeof(short));
   185     // (Note: We assume that any reader which reads the opcode we are
   186     // about to repatch will also read the writes we just made.)
   188     // Finally, overwrite the jump:
   189     *(short*)instruction_address() = *(short*)patch_disp;
   190     // Invalidate.  Opteron requires a flush after every write.
   191     wrote(0);
   193     debug_only(verify());
   194     guarantee(destination() == dest, "patch succeeded");
   195   } else {
   196     // Impossible:  One or the other must be atomically writable.
   197     ShouldNotReachHere();
   198   }
   199 }
   202 void NativeMovConstReg::verify() {
   203 #ifdef AMD64
   204   // make sure code pattern is actually a mov reg64, imm64 instruction
   205   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
   206       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
   207     print();
   208     fatal("not a REX.W[B] mov reg64, imm64");
   209   }
   210 #else
   211   // make sure code pattern is actually a mov reg, imm32 instruction
   212   u_char test_byte = *(u_char*)instruction_address();
   213   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
   214   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
   215 #endif // AMD64
   216 }
   219 void NativeMovConstReg::print() {
   220   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
   221                 instruction_address(), data());
   222 }
   224 //-------------------------------------------------------------------
   226 #ifndef AMD64
   228 void NativeMovRegMem::copy_instruction_to(address new_instruction_address) {
   229   int inst_size = instruction_size;
   231   // See if there's an instruction size prefix override.
   232   if ( *(address(this))   == instruction_operandsize_prefix &&
   233        *(address(this)+1) != instruction_code_xmm_code ) { // Not SSE instr
   234     inst_size += 1;
   235   }
   236   if ( *(address(this)) == instruction_extended_prefix ) inst_size += 1;
   238   for (int i = 0; i < instruction_size; i++) {
   239     *(new_instruction_address + i) = *(address(this) + i);
   240   }
   241 }
   243 void NativeMovRegMem::verify() {
   244   // make sure code pattern is actually a mov [reg+offset], reg instruction
   245   u_char test_byte = *(u_char*)instruction_address();
   246   if ( ! ( (test_byte == instruction_code_reg2memb)
   247       || (test_byte == instruction_code_mem2regb)
   248       || (test_byte == instruction_code_mem2regl)
   249       || (test_byte == instruction_code_reg2meml)
   250       || (test_byte == instruction_code_mem2reg_movzxb )
   251       || (test_byte == instruction_code_mem2reg_movzxw )
   252       || (test_byte == instruction_code_mem2reg_movsxb )
   253       || (test_byte == instruction_code_mem2reg_movsxw )
   254       || (test_byte == instruction_code_float_s)
   255       || (test_byte == instruction_code_float_d)
   256       || (test_byte == instruction_code_long_volatile) ) )
   257   {
   258     u_char byte1 = ((u_char*)instruction_address())[1];
   259     u_char byte2 = ((u_char*)instruction_address())[2];
   260     if ((test_byte != instruction_code_xmm_ss_prefix &&
   261          test_byte != instruction_code_xmm_sd_prefix &&
   262          test_byte != instruction_operandsize_prefix) ||
   263         byte1 != instruction_code_xmm_code ||
   264         (byte2 != instruction_code_xmm_load &&
   265          byte2 != instruction_code_xmm_lpd  &&
   266          byte2 != instruction_code_xmm_store)) {
   267           fatal ("not a mov [reg+offs], reg instruction");
   268     }
   269   }
   270 }
   273 void NativeMovRegMem::print() {
   274   tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
   275 }
   277 //-------------------------------------------------------------------
   279 void NativeLoadAddress::verify() {
   280   // make sure code pattern is actually a mov [reg+offset], reg instruction
   281   u_char test_byte = *(u_char*)instruction_address();
   282   if ( ! (test_byte == instruction_code) ) {
   283     fatal ("not a lea reg, [reg+offs] instruction");
   284   }
   285 }
   288 void NativeLoadAddress::print() {
   289   tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
   290 }
   292 #endif // !AMD64
   294 //--------------------------------------------------------------------------------
   296 void NativeJump::verify() {
   297   if (*(u_char*)instruction_address() != instruction_code) {
   298     fatal("not a jump instruction");
   299   }
   300 }
   303 void NativeJump::insert(address code_pos, address entry) {
   304   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
   305 #ifdef AMD64
   306   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   307 #endif // AMD64
   309   *code_pos = instruction_code;
   310   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
   312   ICache::invalidate_range(code_pos, instruction_size);
   313 }
   315 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
   316   // Patching to not_entrant can happen while activations of the method are
   317   // in use. The patching in that instance must happen only when certain
   318   // alignment restrictions are true. These guarantees check those
   319   // conditions.
   320 #ifdef AMD64
   321   const int linesize = 64;
   322 #else
   323   const int linesize = 32;
   324 #endif // AMD64
   326   // Must be wordSize aligned
   327   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
   328             "illegal address for code patching 2");
   329   // First 5 bytes must be within the same cache line - 4827828
   330   guarantee((uintptr_t) verified_entry / linesize ==
   331             ((uintptr_t) verified_entry + 4) / linesize,
   332             "illegal address for code patching 3");
   333 }
   336 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
   337 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
   338 // First patches the first word atomically to be a jump to itself.
   339 // Then patches the last byte  and then atomically patches the first word (4-bytes),
   340 // thus inserting the desired jump
   341 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
   342 // entry point is in same cache line as unverified entry point, and the instruction being
   343 // patched is >= 5 byte (size of patch).
   344 //
   345 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
   346 // In C1 the restriction is enforced by CodeEmitter::method_entry
   347 //
   348 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
   349   // complete jump instruction (to be inserted) is in code_buffer;
   350   unsigned char code_buffer[5];
   351   code_buffer[0] = instruction_code;
   352   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
   353 #ifdef AMD64
   354   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   355 #endif // AMD64
   356   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
   358   check_verified_entry_alignment(entry, verified_entry);
   360   // Can't call nativeJump_at() because it's asserts jump exists
   361   NativeJump* n_jump = (NativeJump*) verified_entry;
   363   //First patch dummy jmp in place
   365   unsigned char patch[4];
   366   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
   367   patch[0] = 0xEB;       // jmp rel8
   368   patch[1] = 0xFE;       // jmp to self
   369   patch[2] = 0xEB;
   370   patch[3] = 0xFE;
   372   // First patch dummy jmp in place
   373   *(int32_t*)verified_entry = *(int32_t *)patch;
   375   n_jump->wrote(0);
   377   // Patch 5th byte (from jump instruction)
   378   verified_entry[4] = code_buffer[4];
   380   n_jump->wrote(4);
   382   // Patch bytes 0-3 (from jump instruction)
   383   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
   384   // Invalidate.  Opteron requires a flush after every write.
   385   n_jump->wrote(0);
   387 }
   389 void NativePopReg::insert(address code_pos, Register reg) {
   390   assert(reg->encoding() < 8, "no space for REX");
   391   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
   392   *code_pos = (u_char)(instruction_code | reg->encoding());
   393   ICache::invalidate_range(code_pos, instruction_size);
   394 }
   397 void NativeIllegalInstruction::insert(address code_pos) {
   398   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
   399   *(short *)code_pos = instruction_code;
   400   ICache::invalidate_range(code_pos, instruction_size);
   401 }
   403 void NativeGeneralJump::verify() {
   404   assert(((NativeInstruction *)this)->is_jump() ||
   405          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
   406 }
   409 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
   410   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
   411 #ifdef AMD64
   412   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   413 #endif // AMD64
   415   *code_pos = unconditional_long_jump;
   416   *((int32_t *)(code_pos+1)) = (int32_t) disp;
   417   ICache::invalidate_range(code_pos, instruction_size);
   418 }
   421 // MT-safe patching of a long jump instruction.
   422 // First patches first word of instruction to two jmp's that jmps to them
   423 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
   424 // the jmp's with the first 4 byte of the new instruction.
   425 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
   426    assert (instr_addr != NULL, "illegal address for code patching (4)");
   427    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
   429    // Temporary code
   430    unsigned char patch[4];
   431    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
   432    patch[0] = 0xEB;       // jmp rel8
   433    patch[1] = 0xFE;       // jmp to self
   434    patch[2] = 0xEB;
   435    patch[3] = 0xFE;
   437    // First patch dummy jmp in place
   438    *(int32_t*)instr_addr = *(int32_t *)patch;
   439     n_jump->wrote(0);
   441    // Patch 4th byte
   442    instr_addr[4] = code_buffer[4];
   444     n_jump->wrote(4);
   446    // Patch bytes 0-3
   447    *(jint*)instr_addr = *(jint *)code_buffer;
   449     n_jump->wrote(0);
   451 #ifdef ASSERT
   452    // verify patching
   453    for ( int i = 0; i < instruction_size; i++) {
   454      address ptr = (address)((intptr_t)code_buffer + i);
   455      int a_byte = (*ptr) & 0xFF;
   456      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   457    }
   458 #endif
   460 }
   464 address NativeGeneralJump::jump_destination() const {
   465   int op_code = ubyte_at(0);
   466   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
   467   int  offset  = (op_code == 0x0F)  ? 2 : 1;
   468   int  length  = offset + ((is_rel32off) ? 4 : 1);
   470   if (is_rel32off)
   471     return addr_at(0) + length + int_at(offset);
   472   else
   473     return addr_at(0) + length + sbyte_at(offset);
   474 }
   476 bool NativeInstruction::is_dtrace_trap() {
   477   return (*(int32_t*)this & 0xff) == 0xcc;
   478 }

mercurial