src/share/vm/oops/methodData.hpp

Tue, 19 Nov 2013 11:53:58 -0800

author
simonis
date
Tue, 19 Nov 2013 11:53:58 -0800
changeset 6483
018b357638aa
parent 6472
2b8e28fdf503
child 6485
da862781b584
permissions
-rw-r--r--

8028514: PPC64: Fix C++ Interpreter after '7195622: CheckUnhandledOops has limited usefulness now'
Summary: fix CPP-interpreter after CheckUnhandledOops was re-enabled in the fastdebug build
Reviewed-by: kvn, dholmes, lfoltan

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag,
   123     parameters_type_data_tag
   124   };
   126   enum {
   127     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   128     // The trap state breaks down further as [recompile:1 | reason:3].
   129     // This further breakdown is defined in deoptimization.cpp.
   130     // See Deoptimization::trap_state_reason for an assert that
   131     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   132     //
   133     // The trap_state is collected only if ProfileTraps is true.
   134     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   135     trap_shift = BitsPerByte - trap_bits,
   136     trap_mask = right_n_bits(trap_bits),
   137     trap_mask_in_place = (trap_mask << trap_shift),
   138     flag_limit = trap_shift,
   139     flag_mask = right_n_bits(flag_limit),
   140     first_flag = 0
   141   };
   143   // Size computation
   144   static int header_size_in_bytes() {
   145     return cell_size;
   146   }
   147   static int header_size_in_cells() {
   148     return 1;
   149   }
   151   static int compute_size_in_bytes(int cell_count) {
   152     return header_size_in_bytes() + cell_count * cell_size;
   153   }
   155   // Initialization
   156   void initialize(u1 tag, u2 bci, int cell_count);
   158   // Accessors
   159   u1 tag() {
   160     return _header._struct._tag;
   161   }
   163   // Return a few bits of trap state.  Range is [0..trap_mask].
   164   // The state tells if traps with zero, one, or many reasons have occurred.
   165   // It also tells whether zero or many recompilations have occurred.
   166   // The associated trap histogram in the MDO itself tells whether
   167   // traps are common or not.  If a BCI shows that a trap X has
   168   // occurred, and the MDO shows N occurrences of X, we make the
   169   // simplifying assumption that all N occurrences can be blamed
   170   // on that BCI.
   171   int trap_state() const {
   172     return ((_header._struct._flags >> trap_shift) & trap_mask);
   173   }
   175   void set_trap_state(int new_state) {
   176     assert(ProfileTraps, "used only under +ProfileTraps");
   177     uint old_flags = (_header._struct._flags & flag_mask);
   178     _header._struct._flags = (new_state << trap_shift) | old_flags;
   179   }
   181   u1 flags() const {
   182     return _header._struct._flags;
   183   }
   185   u2 bci() const {
   186     return _header._struct._bci;
   187   }
   189   void set_header(intptr_t value) {
   190     _header._bits = value;
   191   }
   192   void release_set_header(intptr_t value) {
   193     OrderAccess::release_store_ptr(&_header._bits, value);
   194   }
   195   intptr_t header() {
   196     return _header._bits;
   197   }
   198   void set_cell_at(int index, intptr_t value) {
   199     _cells[index] = value;
   200   }
   201   void release_set_cell_at(int index, intptr_t value) {
   202     OrderAccess::release_store_ptr(&_cells[index], value);
   203   }
   204   intptr_t cell_at(int index) const {
   205     return _cells[index];
   206   }
   208   void set_flag_at(int flag_number) {
   209     assert(flag_number < flag_limit, "oob");
   210     _header._struct._flags |= (0x1 << flag_number);
   211   }
   212   bool flag_at(int flag_number) const {
   213     assert(flag_number < flag_limit, "oob");
   214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   215   }
   217   // Low-level support for code generation.
   218   static ByteSize header_offset() {
   219     return byte_offset_of(DataLayout, _header);
   220   }
   221   static ByteSize tag_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._tag);
   223   }
   224   static ByteSize flags_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._flags);
   226   }
   227   static ByteSize bci_offset() {
   228     return byte_offset_of(DataLayout, _header._struct._bci);
   229   }
   230   static ByteSize cell_offset(int index) {
   231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   232   }
   233 #ifdef CC_INTERP
   234   static int cell_offset_in_bytes(int index) {
   235     return (int)offset_of(DataLayout, _cells[index]);
   236   }
   237 #endif // CC_INTERP
   238   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   239   static int flag_number_to_byte_constant(int flag_number) {
   240     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   241     DataLayout temp; temp.set_header(0);
   242     temp.set_flag_at(flag_number);
   243     return temp._header._struct._flags;
   244   }
   245   // Return a value which, when or-ed as a word into _header, sets the flag.
   246   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   247     DataLayout temp; temp.set_header(0);
   248     temp._header._struct._flags = byte_constant;
   249     return temp._header._bits;
   250   }
   252   ProfileData* data_in();
   254   // GC support
   255   void clean_weak_klass_links(BoolObjectClosure* cl);
   256 };
   259 // ProfileData class hierarchy
   260 class ProfileData;
   261 class   BitData;
   262 class     CounterData;
   263 class       ReceiverTypeData;
   264 class         VirtualCallData;
   265 class           VirtualCallTypeData;
   266 class       RetData;
   267 class       CallTypeData;
   268 class   JumpData;
   269 class     BranchData;
   270 class   ArrayData;
   271 class     MultiBranchData;
   272 class     ArgInfoData;
   273 class     ParametersTypeData;
   275 // ProfileData
   276 //
   277 // A ProfileData object is created to refer to a section of profiling
   278 // data in a structured way.
   279 class ProfileData : public ResourceObj {
   280   friend class TypeEntries;
   281   friend class ReturnTypeEntry;
   282   friend class TypeStackSlotEntries;
   283 private:
   284 #ifndef PRODUCT
   285   enum {
   286     tab_width_one = 16,
   287     tab_width_two = 36
   288   };
   289 #endif // !PRODUCT
   291   // This is a pointer to a section of profiling data.
   292   DataLayout* _data;
   294 protected:
   295   DataLayout* data() { return _data; }
   296   const DataLayout* data() const { return _data; }
   298   enum {
   299     cell_size = DataLayout::cell_size
   300   };
   302 public:
   303   // How many cells are in this?
   304   virtual int cell_count() const {
   305     ShouldNotReachHere();
   306     return -1;
   307   }
   309   // Return the size of this data.
   310   int size_in_bytes() {
   311     return DataLayout::compute_size_in_bytes(cell_count());
   312   }
   314 protected:
   315   // Low-level accessors for underlying data
   316   void set_intptr_at(int index, intptr_t value) {
   317     assert(0 <= index && index < cell_count(), "oob");
   318     data()->set_cell_at(index, value);
   319   }
   320   void release_set_intptr_at(int index, intptr_t value) {
   321     assert(0 <= index && index < cell_count(), "oob");
   322     data()->release_set_cell_at(index, value);
   323   }
   324   intptr_t intptr_at(int index) const {
   325     assert(0 <= index && index < cell_count(), "oob");
   326     return data()->cell_at(index);
   327   }
   328   void set_uint_at(int index, uint value) {
   329     set_intptr_at(index, (intptr_t) value);
   330   }
   331   void release_set_uint_at(int index, uint value) {
   332     release_set_intptr_at(index, (intptr_t) value);
   333   }
   334   uint uint_at(int index) const {
   335     return (uint)intptr_at(index);
   336   }
   337   void set_int_at(int index, int value) {
   338     set_intptr_at(index, (intptr_t) value);
   339   }
   340   void release_set_int_at(int index, int value) {
   341     release_set_intptr_at(index, (intptr_t) value);
   342   }
   343   int int_at(int index) const {
   344     return (int)intptr_at(index);
   345   }
   346   int int_at_unchecked(int index) const {
   347     return (int)data()->cell_at(index);
   348   }
   349   void set_oop_at(int index, oop value) {
   350     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   351   }
   352   oop oop_at(int index) const {
   353     return cast_to_oop(intptr_at(index));
   354   }
   356   void set_flag_at(int flag_number) {
   357     data()->set_flag_at(flag_number);
   358   }
   359   bool flag_at(int flag_number) const {
   360     return data()->flag_at(flag_number);
   361   }
   363   // two convenient imports for use by subclasses:
   364   static ByteSize cell_offset(int index) {
   365     return DataLayout::cell_offset(index);
   366   }
   367   static int flag_number_to_byte_constant(int flag_number) {
   368     return DataLayout::flag_number_to_byte_constant(flag_number);
   369   }
   371   ProfileData(DataLayout* data) {
   372     _data = data;
   373   }
   375 #ifdef CC_INTERP
   376   // Static low level accessors for DataLayout with ProfileData's semantics.
   378   static int cell_offset_in_bytes(int index) {
   379     return DataLayout::cell_offset_in_bytes(index);
   380   }
   382   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
   383                                             int inc = DataLayout::counter_increment) {
   384     uint count = ((uint)layout->cell_at(index)) + inc;
   385     if (count == 0) return;
   386     layout->set_cell_at(index, (intptr_t) count);
   387   }
   389   static int int_at(DataLayout* layout, int index) {
   390     return (int)layout->cell_at(index);
   391   }
   393   static int uint_at(DataLayout* layout, int index) {
   394     return (uint)layout->cell_at(index);
   395   }
   397   static oop oop_at(DataLayout* layout, int index) {
   398     return cast_to_oop(layout->cell_at(index));
   399   }
   401   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
   402     layout->set_cell_at(index, (intptr_t) value);
   403   }
   405   static void set_flag_at(DataLayout* layout, int flag_number) {
   406     layout->set_flag_at(flag_number);
   407   }
   408 #endif // CC_INTERP
   410 public:
   411   // Constructor for invalid ProfileData.
   412   ProfileData();
   414   u2 bci() const {
   415     return data()->bci();
   416   }
   418   address dp() {
   419     return (address)_data;
   420   }
   422   int trap_state() const {
   423     return data()->trap_state();
   424   }
   425   void set_trap_state(int new_state) {
   426     data()->set_trap_state(new_state);
   427   }
   429   // Type checking
   430   virtual bool is_BitData()         const { return false; }
   431   virtual bool is_CounterData()     const { return false; }
   432   virtual bool is_JumpData()        const { return false; }
   433   virtual bool is_ReceiverTypeData()const { return false; }
   434   virtual bool is_VirtualCallData() const { return false; }
   435   virtual bool is_RetData()         const { return false; }
   436   virtual bool is_BranchData()      const { return false; }
   437   virtual bool is_ArrayData()       const { return false; }
   438   virtual bool is_MultiBranchData() const { return false; }
   439   virtual bool is_ArgInfoData()     const { return false; }
   440   virtual bool is_CallTypeData()    const { return false; }
   441   virtual bool is_VirtualCallTypeData()const { return false; }
   442   virtual bool is_ParametersTypeData() const { return false; }
   445   BitData* as_BitData() const {
   446     assert(is_BitData(), "wrong type");
   447     return is_BitData()         ? (BitData*)        this : NULL;
   448   }
   449   CounterData* as_CounterData() const {
   450     assert(is_CounterData(), "wrong type");
   451     return is_CounterData()     ? (CounterData*)    this : NULL;
   452   }
   453   JumpData* as_JumpData() const {
   454     assert(is_JumpData(), "wrong type");
   455     return is_JumpData()        ? (JumpData*)       this : NULL;
   456   }
   457   ReceiverTypeData* as_ReceiverTypeData() const {
   458     assert(is_ReceiverTypeData(), "wrong type");
   459     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   460   }
   461   VirtualCallData* as_VirtualCallData() const {
   462     assert(is_VirtualCallData(), "wrong type");
   463     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   464   }
   465   RetData* as_RetData() const {
   466     assert(is_RetData(), "wrong type");
   467     return is_RetData()         ? (RetData*)        this : NULL;
   468   }
   469   BranchData* as_BranchData() const {
   470     assert(is_BranchData(), "wrong type");
   471     return is_BranchData()      ? (BranchData*)     this : NULL;
   472   }
   473   ArrayData* as_ArrayData() const {
   474     assert(is_ArrayData(), "wrong type");
   475     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   476   }
   477   MultiBranchData* as_MultiBranchData() const {
   478     assert(is_MultiBranchData(), "wrong type");
   479     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   480   }
   481   ArgInfoData* as_ArgInfoData() const {
   482     assert(is_ArgInfoData(), "wrong type");
   483     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   484   }
   485   CallTypeData* as_CallTypeData() const {
   486     assert(is_CallTypeData(), "wrong type");
   487     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   488   }
   489   VirtualCallTypeData* as_VirtualCallTypeData() const {
   490     assert(is_VirtualCallTypeData(), "wrong type");
   491     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   492   }
   493   ParametersTypeData* as_ParametersTypeData() const {
   494     assert(is_ParametersTypeData(), "wrong type");
   495     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
   496   }
   499   // Subclass specific initialization
   500   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   502   // GC support
   503   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   505   // CI translation: ProfileData can represent both MethodDataOop data
   506   // as well as CIMethodData data. This function is provided for translating
   507   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   508   // most ProfileData don't require any translation, so we provide the null
   509   // translation here, and the required translators are in the ci subclasses.
   510   virtual void translate_from(const ProfileData* data) {}
   512   virtual void print_data_on(outputStream* st) const {
   513     ShouldNotReachHere();
   514   }
   516 #ifndef PRODUCT
   517   void print_shared(outputStream* st, const char* name) const;
   518   void tab(outputStream* st, bool first = false) const;
   519 #endif
   520 };
   522 // BitData
   523 //
   524 // A BitData holds a flag or two in its header.
   525 class BitData : public ProfileData {
   526 protected:
   527   enum {
   528     // null_seen:
   529     //  saw a null operand (cast/aastore/instanceof)
   530     null_seen_flag              = DataLayout::first_flag + 0
   531   };
   532   enum { bit_cell_count = 0 };  // no additional data fields needed.
   533 public:
   534   BitData(DataLayout* layout) : ProfileData(layout) {
   535   }
   537   virtual bool is_BitData() const { return true; }
   539   static int static_cell_count() {
   540     return bit_cell_count;
   541   }
   543   virtual int cell_count() const {
   544     return static_cell_count();
   545   }
   547   // Accessor
   549   // The null_seen flag bit is specially known to the interpreter.
   550   // Consulting it allows the compiler to avoid setting up null_check traps.
   551   bool null_seen()     { return flag_at(null_seen_flag); }
   552   void set_null_seen()    { set_flag_at(null_seen_flag); }
   555   // Code generation support
   556   static int null_seen_byte_constant() {
   557     return flag_number_to_byte_constant(null_seen_flag);
   558   }
   560   static ByteSize bit_data_size() {
   561     return cell_offset(bit_cell_count);
   562   }
   564 #ifdef CC_INTERP
   565   static int bit_data_size_in_bytes() {
   566     return cell_offset_in_bytes(bit_cell_count);
   567   }
   569   static void set_null_seen(DataLayout* layout) {
   570     set_flag_at(layout, null_seen_flag);
   571   }
   573   static DataLayout* advance(DataLayout* layout) {
   574     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
   575   }
   576 #endif // CC_INTERP
   578 #ifndef PRODUCT
   579   void print_data_on(outputStream* st) const;
   580 #endif
   581 };
   583 // CounterData
   584 //
   585 // A CounterData corresponds to a simple counter.
   586 class CounterData : public BitData {
   587 protected:
   588   enum {
   589     count_off,
   590     counter_cell_count
   591   };
   592 public:
   593   CounterData(DataLayout* layout) : BitData(layout) {}
   595   virtual bool is_CounterData() const { return true; }
   597   static int static_cell_count() {
   598     return counter_cell_count;
   599   }
   601   virtual int cell_count() const {
   602     return static_cell_count();
   603   }
   605   // Direct accessor
   606   uint count() const {
   607     return uint_at(count_off);
   608   }
   610   // Code generation support
   611   static ByteSize count_offset() {
   612     return cell_offset(count_off);
   613   }
   614   static ByteSize counter_data_size() {
   615     return cell_offset(counter_cell_count);
   616   }
   618   void set_count(uint count) {
   619     set_uint_at(count_off, count);
   620   }
   622 #ifdef CC_INTERP
   623   static int counter_data_size_in_bytes() {
   624     return cell_offset_in_bytes(counter_cell_count);
   625   }
   627   static void increment_count_no_overflow(DataLayout* layout) {
   628     increment_uint_at_no_overflow(layout, count_off);
   629   }
   631   // Support counter decrementation at checkcast / subtype check failed.
   632   static void decrement_count(DataLayout* layout) {
   633     increment_uint_at_no_overflow(layout, count_off, -1);
   634   }
   636   static DataLayout* advance(DataLayout* layout) {
   637     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
   638   }
   639 #endif // CC_INTERP
   641 #ifndef PRODUCT
   642   void print_data_on(outputStream* st) const;
   643 #endif
   644 };
   646 // JumpData
   647 //
   648 // A JumpData is used to access profiling information for a direct
   649 // branch.  It is a counter, used for counting the number of branches,
   650 // plus a data displacement, used for realigning the data pointer to
   651 // the corresponding target bci.
   652 class JumpData : public ProfileData {
   653 protected:
   654   enum {
   655     taken_off_set,
   656     displacement_off_set,
   657     jump_cell_count
   658   };
   660   void set_displacement(int displacement) {
   661     set_int_at(displacement_off_set, displacement);
   662   }
   664 public:
   665   JumpData(DataLayout* layout) : ProfileData(layout) {
   666     assert(layout->tag() == DataLayout::jump_data_tag ||
   667       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   668   }
   670   virtual bool is_JumpData() const { return true; }
   672   static int static_cell_count() {
   673     return jump_cell_count;
   674   }
   676   virtual int cell_count() const {
   677     return static_cell_count();
   678   }
   680   // Direct accessor
   681   uint taken() const {
   682     return uint_at(taken_off_set);
   683   }
   685   void set_taken(uint cnt) {
   686     set_uint_at(taken_off_set, cnt);
   687   }
   689   // Saturating counter
   690   uint inc_taken() {
   691     uint cnt = taken() + 1;
   692     // Did we wrap? Will compiler screw us??
   693     if (cnt == 0) cnt--;
   694     set_uint_at(taken_off_set, cnt);
   695     return cnt;
   696   }
   698   int displacement() const {
   699     return int_at(displacement_off_set);
   700   }
   702   // Code generation support
   703   static ByteSize taken_offset() {
   704     return cell_offset(taken_off_set);
   705   }
   707   static ByteSize displacement_offset() {
   708     return cell_offset(displacement_off_set);
   709   }
   711 #ifdef CC_INTERP
   712   static void increment_taken_count_no_overflow(DataLayout* layout) {
   713     increment_uint_at_no_overflow(layout, taken_off_set);
   714   }
   716   static DataLayout* advance_taken(DataLayout* layout) {
   717     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
   718   }
   720   static uint taken_count(DataLayout* layout) {
   721     return (uint) uint_at(layout, taken_off_set);
   722   }
   723 #endif // CC_INTERP
   725   // Specific initialization.
   726   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   728 #ifndef PRODUCT
   729   void print_data_on(outputStream* st) const;
   730 #endif
   731 };
   733 // Entries in a ProfileData object to record types: it can either be
   734 // none (no profile), unknown (conflicting profile data) or a klass if
   735 // a single one is seen. Whether a null reference was seen is also
   736 // recorded. No counter is associated with the type and a single type
   737 // is tracked (unlike VirtualCallData).
   738 class TypeEntries {
   740 public:
   742   // A single cell is used to record information for a type:
   743   // - the cell is initialized to 0
   744   // - when a type is discovered it is stored in the cell
   745   // - bit zero of the cell is used to record whether a null reference
   746   // was encountered or not
   747   // - bit 1 is set to record a conflict in the type information
   749   enum {
   750     null_seen = 1,
   751     type_mask = ~null_seen,
   752     type_unknown = 2,
   753     status_bits = null_seen | type_unknown,
   754     type_klass_mask = ~status_bits
   755   };
   757   // what to initialize a cell to
   758   static intptr_t type_none() {
   759     return 0;
   760   }
   762   // null seen = bit 0 set?
   763   static bool was_null_seen(intptr_t v) {
   764     return (v & null_seen) != 0;
   765   }
   767   // conflicting type information = bit 1 set?
   768   static bool is_type_unknown(intptr_t v) {
   769     return (v & type_unknown) != 0;
   770   }
   772   // not type information yet = all bits cleared, ignoring bit 0?
   773   static bool is_type_none(intptr_t v) {
   774     return (v & type_mask) == 0;
   775   }
   777   // recorded type: cell without bit 0 and 1
   778   static intptr_t klass_part(intptr_t v) {
   779     intptr_t r = v & type_klass_mask;
   780     assert (r != 0, "invalid");
   781     return r;
   782   }
   784   // type recorded
   785   static Klass* valid_klass(intptr_t k) {
   786     if (!is_type_none(k) &&
   787         !is_type_unknown(k)) {
   788       return (Klass*)klass_part(k);
   789     } else {
   790       return NULL;
   791     }
   792   }
   794   static intptr_t with_status(intptr_t k, intptr_t in) {
   795     return k | (in & status_bits);
   796   }
   798   static intptr_t with_status(Klass* k, intptr_t in) {
   799     return with_status((intptr_t)k, in);
   800   }
   802 #ifndef PRODUCT
   803   static void print_klass(outputStream* st, intptr_t k);
   804 #endif
   806   // GC support
   807   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   809 protected:
   810   // ProfileData object these entries are part of
   811   ProfileData* _pd;
   812   // offset within the ProfileData object where the entries start
   813   const int _base_off;
   815   TypeEntries(int base_off)
   816     : _base_off(base_off), _pd(NULL) {}
   818   void set_intptr_at(int index, intptr_t value) {
   819     _pd->set_intptr_at(index, value);
   820   }
   822   intptr_t intptr_at(int index) const {
   823     return _pd->intptr_at(index);
   824   }
   826 public:
   827   void set_profile_data(ProfileData* pd) {
   828     _pd = pd;
   829   }
   830 };
   832 // Type entries used for arguments passed at a call and parameters on
   833 // method entry. 2 cells per entry: one for the type encoded as in
   834 // TypeEntries and one initialized with the stack slot where the
   835 // profiled object is to be found so that the interpreter can locate
   836 // it quickly.
   837 class TypeStackSlotEntries : public TypeEntries {
   839 private:
   840   enum {
   841     stack_slot_entry,
   842     type_entry,
   843     per_arg_cell_count
   844   };
   846   // offset of cell for stack slot for entry i within ProfileData object
   847   int stack_slot_offset(int i) const {
   848     return _base_off + stack_slot_local_offset(i);
   849   }
   851 protected:
   852   const int _number_of_entries;
   854   // offset of cell for type for entry i within ProfileData object
   855   int type_offset(int i) const {
   856     return _base_off + type_local_offset(i);
   857   }
   859 public:
   861   TypeStackSlotEntries(int base_off, int nb_entries)
   862     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   864   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
   866   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
   868   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   869   static int stack_slot_local_offset(int i) {
   870     return i * per_arg_cell_count + stack_slot_entry;
   871   }
   873   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   874   static int type_local_offset(int i) {
   875     return i * per_arg_cell_count + type_entry;
   876   }
   878   // stack slot for entry i
   879   uint stack_slot(int i) const {
   880     assert(i >= 0 && i < _number_of_entries, "oob");
   881     return _pd->uint_at(stack_slot_offset(i));
   882   }
   884   // set stack slot for entry i
   885   void set_stack_slot(int i, uint num) {
   886     assert(i >= 0 && i < _number_of_entries, "oob");
   887     _pd->set_uint_at(stack_slot_offset(i), num);
   888   }
   890   // type for entry i
   891   intptr_t type(int i) const {
   892     assert(i >= 0 && i < _number_of_entries, "oob");
   893     return _pd->intptr_at(type_offset(i));
   894   }
   896   // set type for entry i
   897   void set_type(int i, intptr_t k) {
   898     assert(i >= 0 && i < _number_of_entries, "oob");
   899     _pd->set_intptr_at(type_offset(i), k);
   900   }
   902   static ByteSize per_arg_size() {
   903     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   904   }
   906   static int per_arg_count() {
   907     return per_arg_cell_count ;
   908   }
   910   // GC support
   911   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   913 #ifndef PRODUCT
   914   void print_data_on(outputStream* st) const;
   915 #endif
   916 };
   918 // Type entry used for return from a call. A single cell to record the
   919 // type.
   920 class ReturnTypeEntry : public TypeEntries {
   922 private:
   923   enum {
   924     cell_count = 1
   925   };
   927 public:
   928   ReturnTypeEntry(int base_off)
   929     : TypeEntries(base_off) {}
   931   void post_initialize() {
   932     set_type(type_none());
   933   }
   935   intptr_t type() const {
   936     return _pd->intptr_at(_base_off);
   937   }
   939   void set_type(intptr_t k) {
   940     _pd->set_intptr_at(_base_off, k);
   941   }
   943   static int static_cell_count() {
   944     return cell_count;
   945   }
   947   static ByteSize size() {
   948     return in_ByteSize(cell_count * DataLayout::cell_size);
   949   }
   951   ByteSize type_offset() {
   952     return DataLayout::cell_offset(_base_off);
   953   }
   955   // GC support
   956   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   958 #ifndef PRODUCT
   959   void print_data_on(outputStream* st) const;
   960 #endif
   961 };
   963 // Entries to collect type information at a call: contains arguments
   964 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   965 // number of cells. Because the number of cells for the return type is
   966 // smaller than the number of cells for the type of an arguments, the
   967 // number of cells is used to tell how many arguments are profiled and
   968 // whether a return value is profiled. See has_arguments() and
   969 // has_return().
   970 class TypeEntriesAtCall {
   971 private:
   972   static int stack_slot_local_offset(int i) {
   973     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   974   }
   976   static int argument_type_local_offset(int i) {
   977     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   978   }
   980 public:
   982   static int header_cell_count() {
   983     return 1;
   984   }
   986   static int cell_count_local_offset() {
   987     return 0;
   988   }
   990   static int compute_cell_count(BytecodeStream* stream);
   992   static void initialize(DataLayout* dl, int base, int cell_count) {
   993     int off = base + cell_count_local_offset();
   994     dl->set_cell_at(off, cell_count - base - header_cell_count());
   995   }
   997   static bool arguments_profiling_enabled();
   998   static bool return_profiling_enabled();
  1000   // Code generation support
  1001   static ByteSize cell_count_offset() {
  1002     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
  1005   static ByteSize args_data_offset() {
  1006     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
  1009   static ByteSize stack_slot_offset(int i) {
  1010     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
  1013   static ByteSize argument_type_offset(int i) {
  1014     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
  1016 };
  1018 // CallTypeData
  1019 //
  1020 // A CallTypeData is used to access profiling information about a non
  1021 // virtual call for which we collect type information about arguments
  1022 // and return value.
  1023 class CallTypeData : public CounterData {
  1024 private:
  1025   // entries for arguments if any
  1026   TypeStackSlotEntries _args;
  1027   // entry for return type if any
  1028   ReturnTypeEntry _ret;
  1030   int cell_count_global_offset() const {
  1031     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1034   // number of cells not counting the header
  1035   int cell_count_no_header() const {
  1036     return uint_at(cell_count_global_offset());
  1039   void check_number_of_arguments(int total) {
  1040     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1043 public:
  1044   CallTypeData(DataLayout* layout) :
  1045     CounterData(layout),
  1046     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1047     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1049     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
  1050     // Some compilers (VC++) don't want this passed in member initialization list
  1051     _args.set_profile_data(this);
  1052     _ret.set_profile_data(this);
  1055   const TypeStackSlotEntries* args() const {
  1056     assert(has_arguments(), "no profiling of arguments");
  1057     return &_args;
  1060   const ReturnTypeEntry* ret() const {
  1061     assert(has_return(), "no profiling of return value");
  1062     return &_ret;
  1065   virtual bool is_CallTypeData() const { return true; }
  1067   static int static_cell_count() {
  1068     return -1;
  1071   static int compute_cell_count(BytecodeStream* stream) {
  1072     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1075   static void initialize(DataLayout* dl, int cell_count) {
  1076     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
  1079   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1081   virtual int cell_count() const {
  1082     return CounterData::static_cell_count() +
  1083       TypeEntriesAtCall::header_cell_count() +
  1084       int_at_unchecked(cell_count_global_offset());
  1087   int number_of_arguments() const {
  1088     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1091   void set_argument_type(int i, Klass* k) {
  1092     assert(has_arguments(), "no arguments!");
  1093     intptr_t current = _args.type(i);
  1094     _args.set_type(i, TypeEntries::with_status(k, current));
  1097   void set_return_type(Klass* k) {
  1098     assert(has_return(), "no return!");
  1099     intptr_t current = _ret.type();
  1100     _ret.set_type(TypeEntries::with_status(k, current));
  1103   // An entry for a return value takes less space than an entry for an
  1104   // argument so if the number of cells exceeds the number of cells
  1105   // needed for an argument, this object contains type information for
  1106   // at least one argument.
  1107   bool has_arguments() const {
  1108     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1109     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1110     return res;
  1113   // An entry for a return value takes less space than an entry for an
  1114   // argument, so if the remainder of the number of cells divided by
  1115   // the number of cells for an argument is not null, a return value
  1116   // is profiled in this object.
  1117   bool has_return() const {
  1118     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1119     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1120     return res;
  1123   // Code generation support
  1124   static ByteSize args_data_offset() {
  1125     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1128   // GC support
  1129   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1130     if (has_arguments()) {
  1131       _args.clean_weak_klass_links(is_alive_closure);
  1133     if (has_return()) {
  1134       _ret.clean_weak_klass_links(is_alive_closure);
  1138 #ifndef PRODUCT
  1139   virtual void print_data_on(outputStream* st) const;
  1140 #endif
  1141 };
  1143 // ReceiverTypeData
  1144 //
  1145 // A ReceiverTypeData is used to access profiling information about a
  1146 // dynamic type check.  It consists of a counter which counts the total times
  1147 // that the check is reached, and a series of (Klass*, count) pairs
  1148 // which are used to store a type profile for the receiver of the check.
  1149 class ReceiverTypeData : public CounterData {
  1150 protected:
  1151   enum {
  1152     receiver0_offset = counter_cell_count,
  1153     count0_offset,
  1154     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1155   };
  1157 public:
  1158   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1159     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1160            layout->tag() == DataLayout::virtual_call_data_tag ||
  1161            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1164   virtual bool is_ReceiverTypeData() const { return true; }
  1166   static int static_cell_count() {
  1167     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1170   virtual int cell_count() const {
  1171     return static_cell_count();
  1174   // Direct accessors
  1175   static uint row_limit() {
  1176     return TypeProfileWidth;
  1178   static int receiver_cell_index(uint row) {
  1179     return receiver0_offset + row * receiver_type_row_cell_count;
  1181   static int receiver_count_cell_index(uint row) {
  1182     return count0_offset + row * receiver_type_row_cell_count;
  1185   Klass* receiver(uint row) const {
  1186     assert(row < row_limit(), "oob");
  1188     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1189     assert(recv == NULL || recv->is_klass(), "wrong type");
  1190     return recv;
  1193   void set_receiver(uint row, Klass* k) {
  1194     assert((uint)row < row_limit(), "oob");
  1195     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1198   uint receiver_count(uint row) const {
  1199     assert(row < row_limit(), "oob");
  1200     return uint_at(receiver_count_cell_index(row));
  1203   void set_receiver_count(uint row, uint count) {
  1204     assert(row < row_limit(), "oob");
  1205     set_uint_at(receiver_count_cell_index(row), count);
  1208   void clear_row(uint row) {
  1209     assert(row < row_limit(), "oob");
  1210     // Clear total count - indicator of polymorphic call site.
  1211     // The site may look like as monomorphic after that but
  1212     // it allow to have more accurate profiling information because
  1213     // there was execution phase change since klasses were unloaded.
  1214     // If the site is still polymorphic then MDO will be updated
  1215     // to reflect it. But it could be the case that the site becomes
  1216     // only bimorphic. Then keeping total count not 0 will be wrong.
  1217     // Even if we use monomorphic (when it is not) for compilation
  1218     // we will only have trap, deoptimization and recompile again
  1219     // with updated MDO after executing method in Interpreter.
  1220     // An additional receiver will be recorded in the cleaned row
  1221     // during next call execution.
  1222     //
  1223     // Note: our profiling logic works with empty rows in any slot.
  1224     // We do sorting a profiling info (ciCallProfile) for compilation.
  1225     //
  1226     set_count(0);
  1227     set_receiver(row, NULL);
  1228     set_receiver_count(row, 0);
  1231   // Code generation support
  1232   static ByteSize receiver_offset(uint row) {
  1233     return cell_offset(receiver_cell_index(row));
  1235   static ByteSize receiver_count_offset(uint row) {
  1236     return cell_offset(receiver_count_cell_index(row));
  1238   static ByteSize receiver_type_data_size() {
  1239     return cell_offset(static_cell_count());
  1242   // GC support
  1243   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1245 #ifdef CC_INTERP
  1246   static int receiver_type_data_size_in_bytes() {
  1247     return cell_offset_in_bytes(static_cell_count());
  1250   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
  1251     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
  1252     return recv;
  1255   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
  1256     const int num_rows = row_limit();
  1257     // Receiver already exists?
  1258     for (int row = 0; row < num_rows; row++) {
  1259       if (receiver_unchecked(layout, row) == rcvr) {
  1260         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1261         return;
  1264     // New receiver, find a free slot.
  1265     for (int row = 0; row < num_rows; row++) {
  1266       if (receiver_unchecked(layout, row) == NULL) {
  1267         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
  1268         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1269         return;
  1272     // Receiver did not match any saved receiver and there is no empty row for it.
  1273     // Increment total counter to indicate polymorphic case.
  1274     increment_count_no_overflow(layout);
  1277   static DataLayout* advance(DataLayout* layout) {
  1278     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
  1280 #endif // CC_INTERP
  1282 #ifndef PRODUCT
  1283   void print_receiver_data_on(outputStream* st) const;
  1284   void print_data_on(outputStream* st) const;
  1285 #endif
  1286 };
  1288 // VirtualCallData
  1289 //
  1290 // A VirtualCallData is used to access profiling information about a
  1291 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1292 class VirtualCallData : public ReceiverTypeData {
  1293 public:
  1294   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1295     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1296            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1299   virtual bool is_VirtualCallData() const { return true; }
  1301   static int static_cell_count() {
  1302     // At this point we could add more profile state, e.g., for arguments.
  1303     // But for now it's the same size as the base record type.
  1304     return ReceiverTypeData::static_cell_count();
  1307   virtual int cell_count() const {
  1308     return static_cell_count();
  1311   // Direct accessors
  1312   static ByteSize virtual_call_data_size() {
  1313     return cell_offset(static_cell_count());
  1316 #ifdef CC_INTERP
  1317   static int virtual_call_data_size_in_bytes() {
  1318     return cell_offset_in_bytes(static_cell_count());
  1321   static DataLayout* advance(DataLayout* layout) {
  1322     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
  1324 #endif // CC_INTERP
  1326 #ifndef PRODUCT
  1327   void print_data_on(outputStream* st) const;
  1328 #endif
  1329 };
  1331 // VirtualCallTypeData
  1332 //
  1333 // A VirtualCallTypeData is used to access profiling information about
  1334 // a virtual call for which we collect type information about
  1335 // arguments and return value.
  1336 class VirtualCallTypeData : public VirtualCallData {
  1337 private:
  1338   // entries for arguments if any
  1339   TypeStackSlotEntries _args;
  1340   // entry for return type if any
  1341   ReturnTypeEntry _ret;
  1343   int cell_count_global_offset() const {
  1344     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1347   // number of cells not counting the header
  1348   int cell_count_no_header() const {
  1349     return uint_at(cell_count_global_offset());
  1352   void check_number_of_arguments(int total) {
  1353     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1356 public:
  1357   VirtualCallTypeData(DataLayout* layout) :
  1358     VirtualCallData(layout),
  1359     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1360     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1362     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1363     // Some compilers (VC++) don't want this passed in member initialization list
  1364     _args.set_profile_data(this);
  1365     _ret.set_profile_data(this);
  1368   const TypeStackSlotEntries* args() const {
  1369     assert(has_arguments(), "no profiling of arguments");
  1370     return &_args;
  1373   const ReturnTypeEntry* ret() const {
  1374     assert(has_return(), "no profiling of return value");
  1375     return &_ret;
  1378   virtual bool is_VirtualCallTypeData() const { return true; }
  1380   static int static_cell_count() {
  1381     return -1;
  1384   static int compute_cell_count(BytecodeStream* stream) {
  1385     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1388   static void initialize(DataLayout* dl, int cell_count) {
  1389     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1392   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1394   virtual int cell_count() const {
  1395     return VirtualCallData::static_cell_count() +
  1396       TypeEntriesAtCall::header_cell_count() +
  1397       int_at_unchecked(cell_count_global_offset());
  1400   int number_of_arguments() const {
  1401     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1404   void set_argument_type(int i, Klass* k) {
  1405     assert(has_arguments(), "no arguments!");
  1406     intptr_t current = _args.type(i);
  1407     _args.set_type(i, TypeEntries::with_status(k, current));
  1410   void set_return_type(Klass* k) {
  1411     assert(has_return(), "no return!");
  1412     intptr_t current = _ret.type();
  1413     _ret.set_type(TypeEntries::with_status(k, current));
  1416   // An entry for a return value takes less space than an entry for an
  1417   // argument, so if the remainder of the number of cells divided by
  1418   // the number of cells for an argument is not null, a return value
  1419   // is profiled in this object.
  1420   bool has_return() const {
  1421     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1422     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1423     return res;
  1426   // An entry for a return value takes less space than an entry for an
  1427   // argument so if the number of cells exceeds the number of cells
  1428   // needed for an argument, this object contains type information for
  1429   // at least one argument.
  1430   bool has_arguments() const {
  1431     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1432     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1433     return res;
  1436   // Code generation support
  1437   static ByteSize args_data_offset() {
  1438     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1441   // GC support
  1442   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1443     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1444     if (has_arguments()) {
  1445       _args.clean_weak_klass_links(is_alive_closure);
  1447     if (has_return()) {
  1448       _ret.clean_weak_klass_links(is_alive_closure);
  1452 #ifndef PRODUCT
  1453   virtual void print_data_on(outputStream* st) const;
  1454 #endif
  1455 };
  1457 // RetData
  1458 //
  1459 // A RetData is used to access profiling information for a ret bytecode.
  1460 // It is composed of a count of the number of times that the ret has
  1461 // been executed, followed by a series of triples of the form
  1462 // (bci, count, di) which count the number of times that some bci was the
  1463 // target of the ret and cache a corresponding data displacement.
  1464 class RetData : public CounterData {
  1465 protected:
  1466   enum {
  1467     bci0_offset = counter_cell_count,
  1468     count0_offset,
  1469     displacement0_offset,
  1470     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1471   };
  1473   void set_bci(uint row, int bci) {
  1474     assert((uint)row < row_limit(), "oob");
  1475     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1477   void release_set_bci(uint row, int bci) {
  1478     assert((uint)row < row_limit(), "oob");
  1479     // 'release' when setting the bci acts as a valid flag for other
  1480     // threads wrt bci_count and bci_displacement.
  1481     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1483   void set_bci_count(uint row, uint count) {
  1484     assert((uint)row < row_limit(), "oob");
  1485     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1487   void set_bci_displacement(uint row, int disp) {
  1488     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1491 public:
  1492   RetData(DataLayout* layout) : CounterData(layout) {
  1493     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1496   virtual bool is_RetData() const { return true; }
  1498   enum {
  1499     no_bci = -1 // value of bci when bci1/2 are not in use.
  1500   };
  1502   static int static_cell_count() {
  1503     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1506   virtual int cell_count() const {
  1507     return static_cell_count();
  1510   static uint row_limit() {
  1511     return BciProfileWidth;
  1513   static int bci_cell_index(uint row) {
  1514     return bci0_offset + row * ret_row_cell_count;
  1516   static int bci_count_cell_index(uint row) {
  1517     return count0_offset + row * ret_row_cell_count;
  1519   static int bci_displacement_cell_index(uint row) {
  1520     return displacement0_offset + row * ret_row_cell_count;
  1523   // Direct accessors
  1524   int bci(uint row) const {
  1525     return int_at(bci_cell_index(row));
  1527   uint bci_count(uint row) const {
  1528     return uint_at(bci_count_cell_index(row));
  1530   int bci_displacement(uint row) const {
  1531     return int_at(bci_displacement_cell_index(row));
  1534   // Interpreter Runtime support
  1535   address fixup_ret(int return_bci, MethodData* mdo);
  1537   // Code generation support
  1538   static ByteSize bci_offset(uint row) {
  1539     return cell_offset(bci_cell_index(row));
  1541   static ByteSize bci_count_offset(uint row) {
  1542     return cell_offset(bci_count_cell_index(row));
  1544   static ByteSize bci_displacement_offset(uint row) {
  1545     return cell_offset(bci_displacement_cell_index(row));
  1548 #ifdef CC_INTERP
  1549   static DataLayout* advance(MethodData *md, int bci);
  1550 #endif // CC_INTERP
  1552   // Specific initialization.
  1553   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1555 #ifndef PRODUCT
  1556   void print_data_on(outputStream* st) const;
  1557 #endif
  1558 };
  1560 // BranchData
  1561 //
  1562 // A BranchData is used to access profiling data for a two-way branch.
  1563 // It consists of taken and not_taken counts as well as a data displacement
  1564 // for the taken case.
  1565 class BranchData : public JumpData {
  1566 protected:
  1567   enum {
  1568     not_taken_off_set = jump_cell_count,
  1569     branch_cell_count
  1570   };
  1572   void set_displacement(int displacement) {
  1573     set_int_at(displacement_off_set, displacement);
  1576 public:
  1577   BranchData(DataLayout* layout) : JumpData(layout) {
  1578     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1581   virtual bool is_BranchData() const { return true; }
  1583   static int static_cell_count() {
  1584     return branch_cell_count;
  1587   virtual int cell_count() const {
  1588     return static_cell_count();
  1591   // Direct accessor
  1592   uint not_taken() const {
  1593     return uint_at(not_taken_off_set);
  1596   void set_not_taken(uint cnt) {
  1597     set_uint_at(not_taken_off_set, cnt);
  1600   uint inc_not_taken() {
  1601     uint cnt = not_taken() + 1;
  1602     // Did we wrap? Will compiler screw us??
  1603     if (cnt == 0) cnt--;
  1604     set_uint_at(not_taken_off_set, cnt);
  1605     return cnt;
  1608   // Code generation support
  1609   static ByteSize not_taken_offset() {
  1610     return cell_offset(not_taken_off_set);
  1612   static ByteSize branch_data_size() {
  1613     return cell_offset(branch_cell_count);
  1616 #ifdef CC_INTERP
  1617   static int branch_data_size_in_bytes() {
  1618     return cell_offset_in_bytes(branch_cell_count);
  1621   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
  1622     increment_uint_at_no_overflow(layout, not_taken_off_set);
  1625   static DataLayout* advance_not_taken(DataLayout* layout) {
  1626     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
  1628 #endif // CC_INTERP
  1630   // Specific initialization.
  1631   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1633 #ifndef PRODUCT
  1634   void print_data_on(outputStream* st) const;
  1635 #endif
  1636 };
  1638 // ArrayData
  1639 //
  1640 // A ArrayData is a base class for accessing profiling data which does
  1641 // not have a statically known size.  It consists of an array length
  1642 // and an array start.
  1643 class ArrayData : public ProfileData {
  1644 protected:
  1645   friend class DataLayout;
  1647   enum {
  1648     array_len_off_set,
  1649     array_start_off_set
  1650   };
  1652   uint array_uint_at(int index) const {
  1653     int aindex = index + array_start_off_set;
  1654     return uint_at(aindex);
  1656   int array_int_at(int index) const {
  1657     int aindex = index + array_start_off_set;
  1658     return int_at(aindex);
  1660   oop array_oop_at(int index) const {
  1661     int aindex = index + array_start_off_set;
  1662     return oop_at(aindex);
  1664   void array_set_int_at(int index, int value) {
  1665     int aindex = index + array_start_off_set;
  1666     set_int_at(aindex, value);
  1669 #ifdef CC_INTERP
  1670   // Static low level accessors for DataLayout with ArrayData's semantics.
  1672   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
  1673     int aindex = index + array_start_off_set;
  1674     increment_uint_at_no_overflow(layout, aindex);
  1677   static int array_int_at(DataLayout* layout, int index) {
  1678     int aindex = index + array_start_off_set;
  1679     return int_at(layout, aindex);
  1681 #endif // CC_INTERP
  1683   // Code generation support for subclasses.
  1684   static ByteSize array_element_offset(int index) {
  1685     return cell_offset(array_start_off_set + index);
  1688 public:
  1689   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1691   virtual bool is_ArrayData() const { return true; }
  1693   static int static_cell_count() {
  1694     return -1;
  1697   int array_len() const {
  1698     return int_at_unchecked(array_len_off_set);
  1701   virtual int cell_count() const {
  1702     return array_len() + 1;
  1705   // Code generation support
  1706   static ByteSize array_len_offset() {
  1707     return cell_offset(array_len_off_set);
  1709   static ByteSize array_start_offset() {
  1710     return cell_offset(array_start_off_set);
  1712 };
  1714 // MultiBranchData
  1715 //
  1716 // A MultiBranchData is used to access profiling information for
  1717 // a multi-way branch (*switch bytecodes).  It consists of a series
  1718 // of (count, displacement) pairs, which count the number of times each
  1719 // case was taken and specify the data displacment for each branch target.
  1720 class MultiBranchData : public ArrayData {
  1721 protected:
  1722   enum {
  1723     default_count_off_set,
  1724     default_disaplacement_off_set,
  1725     case_array_start
  1726   };
  1727   enum {
  1728     relative_count_off_set,
  1729     relative_displacement_off_set,
  1730     per_case_cell_count
  1731   };
  1733   void set_default_displacement(int displacement) {
  1734     array_set_int_at(default_disaplacement_off_set, displacement);
  1736   void set_displacement_at(int index, int displacement) {
  1737     array_set_int_at(case_array_start +
  1738                      index * per_case_cell_count +
  1739                      relative_displacement_off_set,
  1740                      displacement);
  1743 public:
  1744   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1745     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1748   virtual bool is_MultiBranchData() const { return true; }
  1750   static int compute_cell_count(BytecodeStream* stream);
  1752   int number_of_cases() const {
  1753     int alen = array_len() - 2; // get rid of default case here.
  1754     assert(alen % per_case_cell_count == 0, "must be even");
  1755     return (alen / per_case_cell_count);
  1758   uint default_count() const {
  1759     return array_uint_at(default_count_off_set);
  1761   int default_displacement() const {
  1762     return array_int_at(default_disaplacement_off_set);
  1765   uint count_at(int index) const {
  1766     return array_uint_at(case_array_start +
  1767                          index * per_case_cell_count +
  1768                          relative_count_off_set);
  1770   int displacement_at(int index) const {
  1771     return array_int_at(case_array_start +
  1772                         index * per_case_cell_count +
  1773                         relative_displacement_off_set);
  1776   // Code generation support
  1777   static ByteSize default_count_offset() {
  1778     return array_element_offset(default_count_off_set);
  1780   static ByteSize default_displacement_offset() {
  1781     return array_element_offset(default_disaplacement_off_set);
  1783   static ByteSize case_count_offset(int index) {
  1784     return case_array_offset() +
  1785            (per_case_size() * index) +
  1786            relative_count_offset();
  1788   static ByteSize case_array_offset() {
  1789     return array_element_offset(case_array_start);
  1791   static ByteSize per_case_size() {
  1792     return in_ByteSize(per_case_cell_count) * cell_size;
  1794   static ByteSize relative_count_offset() {
  1795     return in_ByteSize(relative_count_off_set) * cell_size;
  1797   static ByteSize relative_displacement_offset() {
  1798     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1801 #ifdef CC_INTERP
  1802   static void increment_count_no_overflow(DataLayout* layout, int index) {
  1803     if (index == -1) {
  1804       increment_array_uint_at_no_overflow(layout, default_count_off_set);
  1805     } else {
  1806       increment_array_uint_at_no_overflow(layout, case_array_start +
  1807                                                   index * per_case_cell_count +
  1808                                                   relative_count_off_set);
  1812   static DataLayout* advance(DataLayout* layout, int index) {
  1813     if (index == -1) {
  1814       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
  1815     } else {
  1816       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
  1817                                                                               index * per_case_cell_count +
  1818                                                                               relative_displacement_off_set));
  1821 #endif // CC_INTERP
  1823   // Specific initialization.
  1824   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1826 #ifndef PRODUCT
  1827   void print_data_on(outputStream* st) const;
  1828 #endif
  1829 };
  1831 class ArgInfoData : public ArrayData {
  1833 public:
  1834   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1835     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1838   virtual bool is_ArgInfoData() const { return true; }
  1841   int number_of_args() const {
  1842     return array_len();
  1845   uint arg_modified(int arg) const {
  1846     return array_uint_at(arg);
  1849   void set_arg_modified(int arg, uint val) {
  1850     array_set_int_at(arg, val);
  1853 #ifndef PRODUCT
  1854   void print_data_on(outputStream* st) const;
  1855 #endif
  1856 };
  1858 // ParametersTypeData
  1859 //
  1860 // A ParametersTypeData is used to access profiling information about
  1861 // types of parameters to a method
  1862 class ParametersTypeData : public ArrayData {
  1864 private:
  1865   TypeStackSlotEntries _parameters;
  1867   static int stack_slot_local_offset(int i) {
  1868     assert_profiling_enabled();
  1869     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
  1872   static int type_local_offset(int i) {
  1873     assert_profiling_enabled();
  1874     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
  1877   static bool profiling_enabled();
  1878   static void assert_profiling_enabled() {
  1879     assert(profiling_enabled(), "method parameters profiling should be on");
  1882 public:
  1883   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
  1884     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
  1885     // Some compilers (VC++) don't want this passed in member initialization list
  1886     _parameters.set_profile_data(this);
  1889   static int compute_cell_count(Method* m);
  1891   virtual bool is_ParametersTypeData() const { return true; }
  1893   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1895   int number_of_parameters() const {
  1896     return array_len() / TypeStackSlotEntries::per_arg_count();
  1899   const TypeStackSlotEntries* parameters() const { return &_parameters; }
  1901   uint stack_slot(int i) const {
  1902     return _parameters.stack_slot(i);
  1905   void set_type(int i, Klass* k) {
  1906     intptr_t current = _parameters.type(i);
  1907     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
  1910   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1911     _parameters.clean_weak_klass_links(is_alive_closure);
  1914 #ifndef PRODUCT
  1915   virtual void print_data_on(outputStream* st) const;
  1916 #endif
  1918   static ByteSize stack_slot_offset(int i) {
  1919     return cell_offset(stack_slot_local_offset(i));
  1922   static ByteSize type_offset(int i) {
  1923     return cell_offset(type_local_offset(i));
  1925 };
  1927 // MethodData*
  1928 //
  1929 // A MethodData* holds information which has been collected about
  1930 // a method.  Its layout looks like this:
  1931 //
  1932 // -----------------------------
  1933 // | header                    |
  1934 // | klass                     |
  1935 // -----------------------------
  1936 // | method                    |
  1937 // | size of the MethodData* |
  1938 // -----------------------------
  1939 // | Data entries...           |
  1940 // |   (variable size)         |
  1941 // |                           |
  1942 // .                           .
  1943 // .                           .
  1944 // .                           .
  1945 // |                           |
  1946 // -----------------------------
  1947 //
  1948 // The data entry area is a heterogeneous array of DataLayouts. Each
  1949 // DataLayout in the array corresponds to a specific bytecode in the
  1950 // method.  The entries in the array are sorted by the corresponding
  1951 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1952 // which point to the underlying blocks of DataLayout structures.
  1953 //
  1954 // During interpretation, if profiling in enabled, the interpreter
  1955 // maintains a method data pointer (mdp), which points at the entry
  1956 // in the array corresponding to the current bci.  In the course of
  1957 // intepretation, when a bytecode is encountered that has profile data
  1958 // associated with it, the entry pointed to by mdp is updated, then the
  1959 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1960 // is NULL to begin with, the interpreter assumes that the current method
  1961 // is not (yet) being profiled.
  1962 //
  1963 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1964 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1965 // from the base of the data entry array.  A "displacement" is the byte offset
  1966 // in certain ProfileData objects that indicate the amount the mdp must be
  1967 // adjusted in the event of a change in control flow.
  1968 //
  1970 CC_INTERP_ONLY(class BytecodeInterpreter;)
  1972 class MethodData : public Metadata {
  1973   friend class VMStructs;
  1974   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
  1975 private:
  1976   friend class ProfileData;
  1978   // Back pointer to the Method*
  1979   Method* _method;
  1981   // Size of this oop in bytes
  1982   int _size;
  1984   // Cached hint for bci_to_dp and bci_to_data
  1985   int _hint_di;
  1987   MethodData(methodHandle method, int size, TRAPS);
  1988 public:
  1989   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1990   MethodData() {}; // For ciMethodData
  1992   bool is_methodData() const volatile { return true; }
  1994   // Whole-method sticky bits and flags
  1995   enum {
  1996     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1997     _trap_hist_mask     = max_jubyte,
  1998     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1999   }; // Public flag values
  2000 private:
  2001   uint _nof_decompiles;             // count of all nmethod removals
  2002   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  2003   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  2004   union {
  2005     intptr_t _align;
  2006     u1 _array[_trap_hist_limit];
  2007   } _trap_hist;
  2009   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2010   intx              _eflags;          // flags on escape information
  2011   intx              _arg_local;       // bit set of non-escaping arguments
  2012   intx              _arg_stack;       // bit set of stack-allocatable arguments
  2013   intx              _arg_returned;    // bit set of returned arguments
  2015   int _creation_mileage;              // method mileage at MDO creation
  2017   // How many invocations has this MDO seen?
  2018   // These counters are used to determine the exact age of MDO.
  2019   // We need those because in tiered a method can be concurrently
  2020   // executed at different levels.
  2021   InvocationCounter _invocation_counter;
  2022   // Same for backedges.
  2023   InvocationCounter _backedge_counter;
  2024   // Counter values at the time profiling started.
  2025   int               _invocation_counter_start;
  2026   int               _backedge_counter_start;
  2027   // Number of loops and blocks is computed when compiling the first
  2028   // time with C1. It is used to determine if method is trivial.
  2029   short             _num_loops;
  2030   short             _num_blocks;
  2031   // Highest compile level this method has ever seen.
  2032   u1                _highest_comp_level;
  2033   // Same for OSR level
  2034   u1                _highest_osr_comp_level;
  2035   // Does this method contain anything worth profiling?
  2036   bool              _would_profile;
  2038   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  2039   int _data_size;
  2041   // data index for the area dedicated to parameters. -1 if no
  2042   // parameter profiling.
  2043   int _parameters_type_data_di;
  2045   // Beginning of the data entries
  2046   intptr_t _data[1];
  2048   // Helper for size computation
  2049   static int compute_data_size(BytecodeStream* stream);
  2050   static int bytecode_cell_count(Bytecodes::Code code);
  2051   enum { no_profile_data = -1, variable_cell_count = -2 };
  2053   // Helper for initialization
  2054   DataLayout* data_layout_at(int data_index) const {
  2055     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  2056     return (DataLayout*) (((address)_data) + data_index);
  2059   // Initialize an individual data segment.  Returns the size of
  2060   // the segment in bytes.
  2061   int initialize_data(BytecodeStream* stream, int data_index);
  2063   // Helper for data_at
  2064   DataLayout* limit_data_position() const {
  2065     return (DataLayout*)((address)data_base() + _data_size);
  2067   bool out_of_bounds(int data_index) const {
  2068     return data_index >= data_size();
  2071   // Give each of the data entries a chance to perform specific
  2072   // data initialization.
  2073   void post_initialize(BytecodeStream* stream);
  2075   // hint accessors
  2076   int      hint_di() const  { return _hint_di; }
  2077   void set_hint_di(int di)  {
  2078     assert(!out_of_bounds(di), "hint_di out of bounds");
  2079     _hint_di = di;
  2081   ProfileData* data_before(int bci) {
  2082     // avoid SEGV on this edge case
  2083     if (data_size() == 0)
  2084       return NULL;
  2085     int hint = hint_di();
  2086     if (data_layout_at(hint)->bci() <= bci)
  2087       return data_at(hint);
  2088     return first_data();
  2091   // What is the index of the first data entry?
  2092   int first_di() const { return 0; }
  2094   // Find or create an extra ProfileData:
  2095   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  2097   // return the argument info cell
  2098   ArgInfoData *arg_info();
  2100   enum {
  2101     no_type_profile = 0,
  2102     type_profile_jsr292 = 1,
  2103     type_profile_all = 2
  2104   };
  2106   static bool profile_jsr292(methodHandle m, int bci);
  2107   static int profile_arguments_flag();
  2108   static bool profile_arguments_jsr292_only();
  2109   static bool profile_all_arguments();
  2110   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  2111   static int profile_return_flag();
  2112   static bool profile_all_return();
  2113   static bool profile_return_for_invoke(methodHandle m, int bci);
  2114   static int profile_parameters_flag();
  2115   static bool profile_parameters_jsr292_only();
  2116   static bool profile_all_parameters();
  2118 public:
  2119   static int header_size() {
  2120     return sizeof(MethodData)/wordSize;
  2123   // Compute the size of a MethodData* before it is created.
  2124   static int compute_allocation_size_in_bytes(methodHandle method);
  2125   static int compute_allocation_size_in_words(methodHandle method);
  2126   static int compute_extra_data_count(int data_size, int empty_bc_count);
  2128   // Determine if a given bytecode can have profile information.
  2129   static bool bytecode_has_profile(Bytecodes::Code code) {
  2130     return bytecode_cell_count(code) != no_profile_data;
  2133   // reset into original state
  2134   void init();
  2136   // My size
  2137   int size_in_bytes() const { return _size; }
  2138   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  2139 #if INCLUDE_SERVICES
  2140   void collect_statistics(KlassSizeStats *sz) const;
  2141 #endif
  2143   int      creation_mileage() const  { return _creation_mileage; }
  2144   void set_creation_mileage(int x)   { _creation_mileage = x; }
  2146   int invocation_count() {
  2147     if (invocation_counter()->carry()) {
  2148       return InvocationCounter::count_limit;
  2150     return invocation_counter()->count();
  2152   int backedge_count() {
  2153     if (backedge_counter()->carry()) {
  2154       return InvocationCounter::count_limit;
  2156     return backedge_counter()->count();
  2159   int invocation_count_start() {
  2160     if (invocation_counter()->carry()) {
  2161       return 0;
  2163     return _invocation_counter_start;
  2166   int backedge_count_start() {
  2167     if (backedge_counter()->carry()) {
  2168       return 0;
  2170     return _backedge_counter_start;
  2173   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  2174   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  2176   void reset_start_counters() {
  2177     _invocation_counter_start = invocation_count();
  2178     _backedge_counter_start = backedge_count();
  2181   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  2182   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  2184   void set_would_profile(bool p)              { _would_profile = p;    }
  2185   bool would_profile() const                  { return _would_profile; }
  2187   int highest_comp_level() const              { return _highest_comp_level;      }
  2188   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  2189   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  2190   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  2192   int num_loops() const                       { return _num_loops;  }
  2193   void set_num_loops(int n)                   { _num_loops = n;     }
  2194   int num_blocks() const                      { return _num_blocks; }
  2195   void set_num_blocks(int n)                  { _num_blocks = n;    }
  2197   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  2198   static int mileage_of(Method* m);
  2200   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2201   enum EscapeFlag {
  2202     estimated    = 1 << 0,
  2203     return_local = 1 << 1,
  2204     return_allocated = 1 << 2,
  2205     allocated_escapes = 1 << 3,
  2206     unknown_modified = 1 << 4
  2207   };
  2209   intx eflags()                                  { return _eflags; }
  2210   intx arg_local()                               { return _arg_local; }
  2211   intx arg_stack()                               { return _arg_stack; }
  2212   intx arg_returned()                            { return _arg_returned; }
  2213   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  2214                                                    assert(aid != NULL, "arg_info must be not null");
  2215                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2216                                                    return aid->arg_modified(a); }
  2218   void set_eflags(intx v)                        { _eflags = v; }
  2219   void set_arg_local(intx v)                     { _arg_local = v; }
  2220   void set_arg_stack(intx v)                     { _arg_stack = v; }
  2221   void set_arg_returned(intx v)                  { _arg_returned = v; }
  2222   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  2223                                                    assert(aid != NULL, "arg_info must be not null");
  2224                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2225                                                    aid->set_arg_modified(a, v); }
  2227   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  2229   // Location and size of data area
  2230   address data_base() const {
  2231     return (address) _data;
  2233   int data_size() const {
  2234     return _data_size;
  2237   // Accessors
  2238   Method* method() const { return _method; }
  2240   // Get the data at an arbitrary (sort of) data index.
  2241   ProfileData* data_at(int data_index) const;
  2243   // Walk through the data in order.
  2244   ProfileData* first_data() const { return data_at(first_di()); }
  2245   ProfileData* next_data(ProfileData* current) const;
  2246   bool is_valid(ProfileData* current) const { return current != NULL; }
  2248   // Convert a dp (data pointer) to a di (data index).
  2249   int dp_to_di(address dp) const {
  2250     return dp - ((address)_data);
  2253   address di_to_dp(int di) {
  2254     return (address)data_layout_at(di);
  2257   // bci to di/dp conversion.
  2258   address bci_to_dp(int bci);
  2259   int bci_to_di(int bci) {
  2260     return dp_to_di(bci_to_dp(bci));
  2263   // Get the data at an arbitrary bci, or NULL if there is none.
  2264   ProfileData* bci_to_data(int bci);
  2266   // Same, but try to create an extra_data record if one is needed:
  2267   ProfileData* allocate_bci_to_data(int bci) {
  2268     ProfileData* data = bci_to_data(bci);
  2269     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  2272   // Add a handful of extra data records, for trap tracking.
  2273   DataLayout* extra_data_base() const { return limit_data_position(); }
  2274   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2275   int extra_data_size() const { return (address)extra_data_limit()
  2276                                - (address)extra_data_base(); }
  2277   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  2279   // Return (uint)-1 for overflow.
  2280   uint trap_count(int reason) const {
  2281     assert((uint)reason < _trap_hist_limit, "oob");
  2282     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2284   // For loops:
  2285   static uint trap_reason_limit() { return _trap_hist_limit; }
  2286   static uint trap_count_limit()  { return _trap_hist_mask; }
  2287   uint inc_trap_count(int reason) {
  2288     // Count another trap, anywhere in this method.
  2289     assert(reason >= 0, "must be single trap");
  2290     if ((uint)reason < _trap_hist_limit) {
  2291       uint cnt1 = 1 + _trap_hist._array[reason];
  2292       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2293         _trap_hist._array[reason] = cnt1;
  2294         return cnt1;
  2295       } else {
  2296         return _trap_hist_mask + (++_nof_overflow_traps);
  2298     } else {
  2299       // Could not represent the count in the histogram.
  2300       return (++_nof_overflow_traps);
  2304   uint overflow_trap_count() const {
  2305     return _nof_overflow_traps;
  2307   uint overflow_recompile_count() const {
  2308     return _nof_overflow_recompiles;
  2310   void inc_overflow_recompile_count() {
  2311     _nof_overflow_recompiles += 1;
  2313   uint decompile_count() const {
  2314     return _nof_decompiles;
  2316   void inc_decompile_count() {
  2317     _nof_decompiles += 1;
  2318     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2319       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2323   // Return pointer to area dedicated to parameters in MDO
  2324   ParametersTypeData* parameters_type_data() const {
  2325     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
  2328   int parameters_type_data_di() const {
  2329     assert(_parameters_type_data_di != -1, "no args type data");
  2330     return _parameters_type_data_di;
  2333   // Support for code generation
  2334   static ByteSize data_offset() {
  2335     return byte_offset_of(MethodData, _data[0]);
  2338   static ByteSize invocation_counter_offset() {
  2339     return byte_offset_of(MethodData, _invocation_counter);
  2341   static ByteSize backedge_counter_offset() {
  2342     return byte_offset_of(MethodData, _backedge_counter);
  2345   static ByteSize parameters_type_data_di_offset() {
  2346     return byte_offset_of(MethodData, _parameters_type_data_di);
  2349   // Deallocation support - no pointer fields to deallocate
  2350   void deallocate_contents(ClassLoaderData* loader_data) {}
  2352   // GC support
  2353   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2355   // Printing
  2356 #ifndef PRODUCT
  2357   void print_on      (outputStream* st) const;
  2358 #endif
  2359   void print_value_on(outputStream* st) const;
  2361 #ifndef PRODUCT
  2362   // printing support for method data
  2363   void print_data_on(outputStream* st) const;
  2364 #endif
  2366   const char* internal_name() const { return "{method data}"; }
  2368   // verification
  2369   void verify_on(outputStream* st);
  2370   void verify_data_on(outputStream* st);
  2372   static bool profile_parameters_for_method(methodHandle m);
  2373   static bool profile_arguments();
  2374   static bool profile_return();
  2375   static bool profile_parameters();
  2376   static bool profile_return_jsr292_only();
  2377 };
  2379 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial