src/share/vm/c1/c1_LIR.hpp

Tue, 18 Jun 2013 12:31:07 -0700

author
johnc
date
Tue, 18 Jun 2013 12:31:07 -0700
changeset 5277
01522ca68fc7
parent 4947
acadb114c818
child 5353
b800986664f4
permissions
-rw-r--r--

8015237: Parallelize string table scanning during strong root processing
Summary: Parallelize the scanning of the intern string table by having each GC worker claim a given number of buckets. Changes were also reviewed by Per Liden <per.liden@oracle.com>.
Reviewed-by: tschatzl, stefank, twisti

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_C1_C1_LIR_HPP
    26 #define SHARE_VM_C1_C1_LIR_HPP
    28 #include "c1/c1_ValueType.hpp"
    29 #include "oops/method.hpp"
    31 class BlockBegin;
    32 class BlockList;
    33 class LIR_Assembler;
    34 class CodeEmitInfo;
    35 class CodeStub;
    36 class CodeStubList;
    37 class ArrayCopyStub;
    38 class LIR_Op;
    39 class ciType;
    40 class ValueType;
    41 class LIR_OpVisitState;
    42 class FpuStackSim;
    44 //---------------------------------------------------------------------
    45 //                 LIR Operands
    46 //  LIR_OprDesc
    47 //    LIR_OprPtr
    48 //      LIR_Const
    49 //      LIR_Address
    50 //---------------------------------------------------------------------
    51 class LIR_OprDesc;
    52 class LIR_OprPtr;
    53 class LIR_Const;
    54 class LIR_Address;
    55 class LIR_OprVisitor;
    58 typedef LIR_OprDesc* LIR_Opr;
    59 typedef int          RegNr;
    61 define_array(LIR_OprArray, LIR_Opr)
    62 define_stack(LIR_OprList, LIR_OprArray)
    64 define_array(LIR_OprRefArray, LIR_Opr*)
    65 define_stack(LIR_OprRefList, LIR_OprRefArray)
    67 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    68 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    70 define_array(LIR_OpArray, LIR_Op*)
    71 define_stack(LIR_OpList, LIR_OpArray)
    73 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    74 class LIR_OprPtr: public CompilationResourceObj {
    75  public:
    76   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    77   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    79   virtual LIR_Const*  as_constant()              { return NULL; }
    80   virtual LIR_Address* as_address()              { return NULL; }
    81   virtual BasicType type() const                 = 0;
    82   virtual void print_value_on(outputStream* out) const = 0;
    83 };
    87 // LIR constants
    88 class LIR_Const: public LIR_OprPtr {
    89  private:
    90   JavaValue _value;
    92   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    93   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    94   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
    96  public:
    97   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
    98   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    99   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
   100   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
   101   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
   102   LIR_Const(void* p) {
   103 #ifdef _LP64
   104     assert(sizeof(jlong) >= sizeof(p), "too small");;
   105     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
   106 #else
   107     assert(sizeof(jint) >= sizeof(p), "too small");;
   108     _value.set_type(T_INT);     _value.set_jint((jint)p);
   109 #endif
   110   }
   111   LIR_Const(Metadata* m) {
   112     _value.set_type(T_METADATA);
   113 #ifdef _LP64
   114     _value.set_jlong((jlong)m);
   115 #else
   116     _value.set_jint((jint)m);
   117 #endif // _LP64
   118   }
   120   virtual BasicType type()       const { return _value.get_type(); }
   121   virtual LIR_Const* as_constant()     { return this; }
   123   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
   124   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   125   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   126   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   127   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   128   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   129   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   131 #ifdef _LP64
   132   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   133   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
   134 #else
   135   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   136   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
   137 #endif
   140   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
   141   jint      as_jint_lo_bits() const    {
   142     if (type() == T_DOUBLE) {
   143       return low(jlong_cast(_value.get_jdouble()));
   144     } else {
   145       return as_jint_lo();
   146     }
   147   }
   148   jint      as_jint_hi_bits() const    {
   149     if (type() == T_DOUBLE) {
   150       return high(jlong_cast(_value.get_jdouble()));
   151     } else {
   152       return as_jint_hi();
   153     }
   154   }
   155   jlong      as_jlong_bits() const    {
   156     if (type() == T_DOUBLE) {
   157       return jlong_cast(_value.get_jdouble());
   158     } else {
   159       return as_jlong();
   160     }
   161   }
   163   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   166   bool is_zero_float() {
   167     jfloat f = as_jfloat();
   168     jfloat ok = 0.0f;
   169     return jint_cast(f) == jint_cast(ok);
   170   }
   172   bool is_one_float() {
   173     jfloat f = as_jfloat();
   174     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   175   }
   177   bool is_zero_double() {
   178     jdouble d = as_jdouble();
   179     jdouble ok = 0.0;
   180     return jlong_cast(d) == jlong_cast(ok);
   181   }
   183   bool is_one_double() {
   184     jdouble d = as_jdouble();
   185     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   186   }
   187 };
   190 //---------------------LIR Operand descriptor------------------------------------
   191 //
   192 // The class LIR_OprDesc represents a LIR instruction operand;
   193 // it can be a register (ALU/FPU), stack location or a constant;
   194 // Constants and addresses are represented as resource area allocated
   195 // structures (see above).
   196 // Registers and stack locations are inlined into the this pointer
   197 // (see value function).
   199 class LIR_OprDesc: public CompilationResourceObj {
   200  public:
   201   // value structure:
   202   //     data       opr-type opr-kind
   203   // +--------------+-------+-------+
   204   // [max...........|7 6 5 4|3 2 1 0]
   205   //                             ^
   206   //                    is_pointer bit
   207   //
   208   // lowest bit cleared, means it is a structure pointer
   209   // we need  4 bits to represent types
   211  private:
   212   friend class LIR_OprFact;
   214   // Conversion
   215   intptr_t value() const                         { return (intptr_t) this; }
   217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   218     return (value() & mask) == masked_value;
   219   }
   221   enum OprKind {
   222       pointer_value      = 0
   223     , stack_value        = 1
   224     , cpu_register       = 3
   225     , fpu_register       = 5
   226     , illegal_value      = 7
   227   };
   229   enum OprBits {
   230       pointer_bits   = 1
   231     , kind_bits      = 3
   232     , type_bits      = 4
   233     , size_bits      = 2
   234     , destroys_bits  = 1
   235     , virtual_bits   = 1
   236     , is_xmm_bits    = 1
   237     , last_use_bits  = 1
   238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   240                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   241     , data_bits      = BitsPerInt - non_data_bits
   242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   243   };
   245   enum OprShift {
   246       kind_shift     = 0
   247     , type_shift     = kind_shift     + kind_bits
   248     , size_shift     = type_shift     + type_bits
   249     , destroys_shift = size_shift     + size_bits
   250     , last_use_shift = destroys_shift + destroys_bits
   251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   253     , is_xmm_shift   = virtual_shift + virtual_bits
   254     , data_shift     = is_xmm_shift + is_xmm_bits
   255     , reg1_shift = data_shift
   256     , reg2_shift = data_shift + reg_bits
   258   };
   260   enum OprSize {
   261       single_size = 0 << size_shift
   262     , double_size = 1 << size_shift
   263   };
   265   enum OprMask {
   266       kind_mask      = right_n_bits(kind_bits)
   267     , type_mask      = right_n_bits(type_bits) << type_shift
   268     , size_mask      = right_n_bits(size_bits) << size_shift
   269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   273     , pointer_mask   = right_n_bits(pointer_bits)
   274     , lower_reg_mask = right_n_bits(reg_bits)
   275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   276   };
   278   uintptr_t data() const                         { return value() >> data_shift; }
   279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   284   static char type_char(BasicType t);
   286  public:
   287   enum {
   288     vreg_base = ConcreteRegisterImpl::number_of_registers,
   289     vreg_max = (1 << data_bits) - 1
   290   };
   292   static inline LIR_Opr illegalOpr();
   294   enum OprType {
   295       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   296     , int_type      = 1 << type_shift
   297     , long_type     = 2 << type_shift
   298     , object_type   = 3 << type_shift
   299     , address_type  = 4 << type_shift
   300     , float_type    = 5 << type_shift
   301     , double_type   = 6 << type_shift
   302     , metadata_type = 7 << type_shift
   303   };
   304   friend OprType as_OprType(BasicType t);
   305   friend BasicType as_BasicType(OprType t);
   307   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   308   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   310   static OprSize size_for(BasicType t) {
   311     switch (t) {
   312       case T_LONG:
   313       case T_DOUBLE:
   314         return double_size;
   315         break;
   317       case T_FLOAT:
   318       case T_BOOLEAN:
   319       case T_CHAR:
   320       case T_BYTE:
   321       case T_SHORT:
   322       case T_INT:
   323       case T_ADDRESS:
   324       case T_OBJECT:
   325       case T_ARRAY:
   326       case T_METADATA:
   327         return single_size;
   328         break;
   330       default:
   331         ShouldNotReachHere();
   332         return single_size;
   333       }
   334   }
   337   void validate_type() const PRODUCT_RETURN;
   339   BasicType type() const {
   340     if (is_pointer()) {
   341       return pointer()->type();
   342     }
   343     return as_BasicType(type_field());
   344   }
   347   ValueType* value_type() const                  { return as_ValueType(type()); }
   349   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   351   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   352   // checks whether types are same
   353   bool is_same_type(LIR_Opr opr) const     {
   354     assert(type_field() != unknown_type &&
   355            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   356     return type_field() == opr->type_field();
   357   }
   358   bool is_same_register(LIR_Opr opr) {
   359     return (is_register() && opr->is_register() &&
   360             kind_field() == opr->kind_field() &&
   361             (value() & no_type_mask) == (opr->value() & no_type_mask));
   362   }
   364   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   365   bool is_illegal() const      { return kind_field() == illegal_value; }
   366   bool is_valid() const        { return kind_field() != illegal_value; }
   368   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   369   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   371   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   372   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   374   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   375   bool is_oop() const;
   377   // semantic for fpu- and xmm-registers:
   378   // * is_float and is_double return true for xmm_registers
   379   //   (so is_single_fpu and is_single_xmm are true)
   380   // * So you must always check for is_???_xmm prior to is_???_fpu to
   381   //   distinguish between fpu- and xmm-registers
   383   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   384   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   385   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   387   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   388   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   389   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   390   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   391   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   393   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   394   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   395   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   396   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   397   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   399   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   400   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   401   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   403   // fast accessor functions for special bits that do not work for pointers
   404   // (in this functions, the check for is_pointer() is omitted)
   405   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   406   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   407   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   408   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   409   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   411   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   412   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   413   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   414   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   417   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   418   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   419   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   420   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   421   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   422   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   423   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   424   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   425   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   426   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   427   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   428   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   430   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   431   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   432   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   434   Register as_register()    const;
   435   Register as_register_lo() const;
   436   Register as_register_hi() const;
   438   Register as_pointer_register() {
   439 #ifdef _LP64
   440     if (is_double_cpu()) {
   441       assert(as_register_lo() == as_register_hi(), "should be a single register");
   442       return as_register_lo();
   443     }
   444 #endif
   445     return as_register();
   446   }
   448 #ifdef X86
   449   XMMRegister as_xmm_float_reg() const;
   450   XMMRegister as_xmm_double_reg() const;
   451   // for compatibility with RInfo
   452   int fpu () const                                  { return lo_reg_half(); }
   453 #endif // X86
   454 #if defined(SPARC) || defined(ARM) || defined(PPC)
   455   FloatRegister as_float_reg   () const;
   456   FloatRegister as_double_reg  () const;
   457 #endif
   459   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   460   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   461   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   462   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   463   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   465   void print() const PRODUCT_RETURN;
   466   void print(outputStream* out) const PRODUCT_RETURN;
   467 };
   470 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   471   switch (type) {
   472   case T_INT:      return LIR_OprDesc::int_type;
   473   case T_LONG:     return LIR_OprDesc::long_type;
   474   case T_FLOAT:    return LIR_OprDesc::float_type;
   475   case T_DOUBLE:   return LIR_OprDesc::double_type;
   476   case T_OBJECT:
   477   case T_ARRAY:    return LIR_OprDesc::object_type;
   478   case T_ADDRESS:  return LIR_OprDesc::address_type;
   479   case T_METADATA: return LIR_OprDesc::metadata_type;
   480   case T_ILLEGAL:  // fall through
   481   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   482   }
   483 }
   485 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   486   switch (t) {
   487   case LIR_OprDesc::int_type:     return T_INT;
   488   case LIR_OprDesc::long_type:    return T_LONG;
   489   case LIR_OprDesc::float_type:   return T_FLOAT;
   490   case LIR_OprDesc::double_type:  return T_DOUBLE;
   491   case LIR_OprDesc::object_type:  return T_OBJECT;
   492   case LIR_OprDesc::address_type: return T_ADDRESS;
   493   case LIR_OprDesc::metadata_type:return T_METADATA;
   494   case LIR_OprDesc::unknown_type: // fall through
   495   default: ShouldNotReachHere();  return T_ILLEGAL;
   496   }
   497 }
   500 // LIR_Address
   501 class LIR_Address: public LIR_OprPtr {
   502  friend class LIR_OpVisitState;
   504  public:
   505   // NOTE: currently these must be the log2 of the scale factor (and
   506   // must also be equivalent to the ScaleFactor enum in
   507   // assembler_i486.hpp)
   508   enum Scale {
   509     times_1  =  0,
   510     times_2  =  1,
   511     times_4  =  2,
   512     times_8  =  3
   513   };
   515  private:
   516   LIR_Opr   _base;
   517   LIR_Opr   _index;
   518   Scale     _scale;
   519   intx      _disp;
   520   BasicType _type;
   522  public:
   523   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   524        _base(base)
   525      , _index(index)
   526      , _scale(times_1)
   527      , _type(type)
   528      , _disp(0) { verify(); }
   530   LIR_Address(LIR_Opr base, intx disp, BasicType type):
   531        _base(base)
   532      , _index(LIR_OprDesc::illegalOpr())
   533      , _scale(times_1)
   534      , _type(type)
   535      , _disp(disp) { verify(); }
   537   LIR_Address(LIR_Opr base, BasicType type):
   538        _base(base)
   539      , _index(LIR_OprDesc::illegalOpr())
   540      , _scale(times_1)
   541      , _type(type)
   542      , _disp(0) { verify(); }
   544 #if defined(X86) || defined(ARM)
   545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
   546        _base(base)
   547      , _index(index)
   548      , _scale(scale)
   549      , _type(type)
   550      , _disp(disp) { verify(); }
   551 #endif // X86 || ARM
   553   LIR_Opr base()  const                          { return _base;  }
   554   LIR_Opr index() const                          { return _index; }
   555   Scale   scale() const                          { return _scale; }
   556   intx    disp()  const                          { return _disp;  }
   558   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   560   virtual LIR_Address* as_address()              { return this;   }
   561   virtual BasicType type() const                 { return _type; }
   562   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   564   void verify() const PRODUCT_RETURN;
   566   static Scale scale(BasicType type);
   567 };
   570 // operand factory
   571 class LIR_OprFact: public AllStatic {
   572  public:
   574   static LIR_Opr illegalOpr;
   576   static LIR_Opr single_cpu(int reg) {
   577     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   578                                LIR_OprDesc::int_type             |
   579                                LIR_OprDesc::cpu_register         |
   580                                LIR_OprDesc::single_size);
   581   }
   582   static LIR_Opr single_cpu_oop(int reg) {
   583     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   584                                LIR_OprDesc::object_type          |
   585                                LIR_OprDesc::cpu_register         |
   586                                LIR_OprDesc::single_size);
   587   }
   588   static LIR_Opr single_cpu_address(int reg) {
   589     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   590                                LIR_OprDesc::address_type         |
   591                                LIR_OprDesc::cpu_register         |
   592                                LIR_OprDesc::single_size);
   593   }
   594   static LIR_Opr single_cpu_metadata(int reg) {
   595     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   596                                LIR_OprDesc::metadata_type        |
   597                                LIR_OprDesc::cpu_register         |
   598                                LIR_OprDesc::single_size);
   599   }
   600   static LIR_Opr double_cpu(int reg1, int reg2) {
   601     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   602     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   603                                (reg2 << LIR_OprDesc::reg2_shift) |
   604                                LIR_OprDesc::long_type            |
   605                                LIR_OprDesc::cpu_register         |
   606                                LIR_OprDesc::double_size);
   607   }
   609   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   610                                                                              LIR_OprDesc::float_type           |
   611                                                                              LIR_OprDesc::fpu_register         |
   612                                                                              LIR_OprDesc::single_size); }
   613 #if defined(ARM)
   614   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   615   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   616   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
   617 #endif
   618 #ifdef SPARC
   619   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   620                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   621                                                                              LIR_OprDesc::double_type          |
   622                                                                              LIR_OprDesc::fpu_register         |
   623                                                                              LIR_OprDesc::double_size); }
   624 #endif
   625 #ifdef X86
   626   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   627                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   628                                                                              LIR_OprDesc::double_type          |
   629                                                                              LIR_OprDesc::fpu_register         |
   630                                                                              LIR_OprDesc::double_size); }
   632   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   633                                                                              LIR_OprDesc::float_type           |
   634                                                                              LIR_OprDesc::fpu_register         |
   635                                                                              LIR_OprDesc::single_size          |
   636                                                                              LIR_OprDesc::is_xmm_mask); }
   637   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   638                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   639                                                                              LIR_OprDesc::double_type          |
   640                                                                              LIR_OprDesc::fpu_register         |
   641                                                                              LIR_OprDesc::double_size          |
   642                                                                              LIR_OprDesc::is_xmm_mask); }
   643 #endif // X86
   644 #ifdef PPC
   645   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   646                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   647                                                                              LIR_OprDesc::double_type          |
   648                                                                              LIR_OprDesc::fpu_register         |
   649                                                                              LIR_OprDesc::double_size); }
   650   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
   651                                                                              LIR_OprDesc::float_type           |
   652                                                                              LIR_OprDesc::cpu_register         |
   653                                                                              LIR_OprDesc::single_size); }
   654   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
   655                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
   656                                                                              LIR_OprDesc::double_type          |
   657                                                                              LIR_OprDesc::cpu_register         |
   658                                                                              LIR_OprDesc::double_size); }
   659 #endif // PPC
   661   static LIR_Opr virtual_register(int index, BasicType type) {
   662     LIR_Opr res;
   663     switch (type) {
   664       case T_OBJECT: // fall through
   665       case T_ARRAY:
   666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   667                                             LIR_OprDesc::object_type  |
   668                                             LIR_OprDesc::cpu_register |
   669                                             LIR_OprDesc::single_size  |
   670                                             LIR_OprDesc::virtual_mask);
   671         break;
   673       case T_METADATA:
   674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   675                                             LIR_OprDesc::metadata_type|
   676                                             LIR_OprDesc::cpu_register |
   677                                             LIR_OprDesc::single_size  |
   678                                             LIR_OprDesc::virtual_mask);
   679         break;
   681       case T_INT:
   682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   683                                   LIR_OprDesc::int_type              |
   684                                   LIR_OprDesc::cpu_register          |
   685                                   LIR_OprDesc::single_size           |
   686                                   LIR_OprDesc::virtual_mask);
   687         break;
   689       case T_ADDRESS:
   690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   691                                   LIR_OprDesc::address_type          |
   692                                   LIR_OprDesc::cpu_register          |
   693                                   LIR_OprDesc::single_size           |
   694                                   LIR_OprDesc::virtual_mask);
   695         break;
   697       case T_LONG:
   698         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   699                                   LIR_OprDesc::long_type             |
   700                                   LIR_OprDesc::cpu_register          |
   701                                   LIR_OprDesc::double_size           |
   702                                   LIR_OprDesc::virtual_mask);
   703         break;
   705 #ifdef __SOFTFP__
   706       case T_FLOAT:
   707         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   708                                   LIR_OprDesc::float_type  |
   709                                   LIR_OprDesc::cpu_register |
   710                                   LIR_OprDesc::single_size |
   711                                   LIR_OprDesc::virtual_mask);
   712         break;
   713       case T_DOUBLE:
   714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   715                                   LIR_OprDesc::double_type |
   716                                   LIR_OprDesc::cpu_register |
   717                                   LIR_OprDesc::double_size |
   718                                   LIR_OprDesc::virtual_mask);
   719         break;
   720 #else // __SOFTFP__
   721       case T_FLOAT:
   722         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   723                                   LIR_OprDesc::float_type           |
   724                                   LIR_OprDesc::fpu_register         |
   725                                   LIR_OprDesc::single_size          |
   726                                   LIR_OprDesc::virtual_mask);
   727         break;
   729       case
   730         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   731                                             LIR_OprDesc::double_type           |
   732                                             LIR_OprDesc::fpu_register          |
   733                                             LIR_OprDesc::double_size           |
   734                                             LIR_OprDesc::virtual_mask);
   735         break;
   736 #endif // __SOFTFP__
   737       default:       ShouldNotReachHere(); res = illegalOpr;
   738     }
   740 #ifdef ASSERT
   741     res->validate_type();
   742     assert(res->vreg_number() == index, "conversion check");
   743     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   744     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   746     // old-style calculation; check if old and new method are equal
   747     LIR_OprDesc::OprType t = as_OprType(type);
   748 #ifdef __SOFTFP__
   749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   750                                t |
   751                                LIR_OprDesc::cpu_register |
   752                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   753 #else // __SOFTFP__
   754     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   755                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   756                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   757     assert(res == old_res, "old and new method not equal");
   758 #endif // __SOFTFP__
   759 #endif // ASSERT
   761     return res;
   762   }
   764   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   765   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   766   // index 2.
   767   static LIR_Opr stack(int index, BasicType type) {
   768     LIR_Opr res;
   769     switch (type) {
   770       case T_OBJECT: // fall through
   771       case T_ARRAY:
   772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   773                                   LIR_OprDesc::object_type           |
   774                                   LIR_OprDesc::stack_value           |
   775                                   LIR_OprDesc::single_size);
   776         break;
   778       case T_METADATA:
   779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   780                                   LIR_OprDesc::metadata_type         |
   781                                   LIR_OprDesc::stack_value           |
   782                                   LIR_OprDesc::single_size);
   783         break;
   784       case T_INT:
   785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   786                                   LIR_OprDesc::int_type              |
   787                                   LIR_OprDesc::stack_value           |
   788                                   LIR_OprDesc::single_size);
   789         break;
   791       case T_ADDRESS:
   792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   793                                   LIR_OprDesc::address_type          |
   794                                   LIR_OprDesc::stack_value           |
   795                                   LIR_OprDesc::single_size);
   796         break;
   798       case T_LONG:
   799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   800                                   LIR_OprDesc::long_type             |
   801                                   LIR_OprDesc::stack_value           |
   802                                   LIR_OprDesc::double_size);
   803         break;
   805       case T_FLOAT:
   806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   807                                   LIR_OprDesc::float_type            |
   808                                   LIR_OprDesc::stack_value           |
   809                                   LIR_OprDesc::single_size);
   810         break;
   811       case T_DOUBLE:
   812         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   813                                   LIR_OprDesc::double_type           |
   814                                   LIR_OprDesc::stack_value           |
   815                                   LIR_OprDesc::double_size);
   816         break;
   818       default:       ShouldNotReachHere(); res = illegalOpr;
   819     }
   821 #ifdef ASSERT
   822     assert(index >= 0, "index must be positive");
   823     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   825     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   826                                           LIR_OprDesc::stack_value           |
   827                                           as_OprType(type)                   |
   828                                           LIR_OprDesc::size_for(type));
   829     assert(res == old_res, "old and new method not equal");
   830 #endif
   832     return res;
   833   }
   835   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   836   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   837   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   838   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   839   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   840   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   841   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   842   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   843   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   844   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
   845   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
   847   static LIR_Opr value_type(ValueType* type);
   848   static LIR_Opr dummy_value_type(ValueType* type);
   849 };
   852 //-------------------------------------------------------------------------------
   853 //                   LIR Instructions
   854 //-------------------------------------------------------------------------------
   855 //
   856 // Note:
   857 //  - every instruction has a result operand
   858 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   859 //  - every instruction has a LIR_OpCode operand
   860 //  - LIR_OpN, means an instruction that has N input operands
   861 //
   862 // class hierarchy:
   863 //
   864 class  LIR_Op;
   865 class    LIR_Op0;
   866 class      LIR_OpLabel;
   867 class    LIR_Op1;
   868 class      LIR_OpBranch;
   869 class      LIR_OpConvert;
   870 class      LIR_OpAllocObj;
   871 class      LIR_OpRoundFP;
   872 class    LIR_Op2;
   873 class    LIR_OpDelay;
   874 class    LIR_Op3;
   875 class      LIR_OpAllocArray;
   876 class    LIR_OpCall;
   877 class      LIR_OpJavaCall;
   878 class      LIR_OpRTCall;
   879 class    LIR_OpArrayCopy;
   880 class    LIR_OpLock;
   881 class    LIR_OpTypeCheck;
   882 class    LIR_OpCompareAndSwap;
   883 class    LIR_OpProfileCall;
   884 #ifdef ASSERT
   885 class    LIR_OpAssert;
   886 #endif
   888 // LIR operation codes
   889 enum LIR_Code {
   890     lir_none
   891   , begin_op0
   892       , lir_word_align
   893       , lir_label
   894       , lir_nop
   895       , lir_backwardbranch_target
   896       , lir_std_entry
   897       , lir_osr_entry
   898       , lir_build_frame
   899       , lir_fpop_raw
   900       , lir_24bit_FPU
   901       , lir_reset_FPU
   902       , lir_breakpoint
   903       , lir_rtcall
   904       , lir_membar
   905       , lir_membar_acquire
   906       , lir_membar_release
   907       , lir_membar_loadload
   908       , lir_membar_storestore
   909       , lir_membar_loadstore
   910       , lir_membar_storeload
   911       , lir_get_thread
   912   , end_op0
   913   , begin_op1
   914       , lir_fxch
   915       , lir_fld
   916       , lir_ffree
   917       , lir_push
   918       , lir_pop
   919       , lir_null_check
   920       , lir_return
   921       , lir_leal
   922       , lir_neg
   923       , lir_branch
   924       , lir_cond_float_branch
   925       , lir_move
   926       , lir_prefetchr
   927       , lir_prefetchw
   928       , lir_convert
   929       , lir_alloc_object
   930       , lir_monaddr
   931       , lir_roundfp
   932       , lir_safepoint
   933       , lir_pack64
   934       , lir_unpack64
   935       , lir_unwind
   936   , end_op1
   937   , begin_op2
   938       , lir_cmp
   939       , lir_cmp_l2i
   940       , lir_ucmp_fd2i
   941       , lir_cmp_fd2i
   942       , lir_cmove
   943       , lir_add
   944       , lir_sub
   945       , lir_mul
   946       , lir_mul_strictfp
   947       , lir_div
   948       , lir_div_strictfp
   949       , lir_rem
   950       , lir_sqrt
   951       , lir_abs
   952       , lir_sin
   953       , lir_cos
   954       , lir_tan
   955       , lir_log
   956       , lir_log10
   957       , lir_exp
   958       , lir_pow
   959       , lir_logic_and
   960       , lir_logic_or
   961       , lir_logic_xor
   962       , lir_shl
   963       , lir_shr
   964       , lir_ushr
   965       , lir_alloc_array
   966       , lir_throw
   967       , lir_compare_to
   968       , lir_xadd
   969       , lir_xchg
   970   , end_op2
   971   , begin_op3
   972       , lir_idiv
   973       , lir_irem
   974   , end_op3
   975   , begin_opJavaCall
   976       , lir_static_call
   977       , lir_optvirtual_call
   978       , lir_icvirtual_call
   979       , lir_virtual_call
   980       , lir_dynamic_call
   981   , end_opJavaCall
   982   , begin_opArrayCopy
   983       , lir_arraycopy
   984   , end_opArrayCopy
   985   , begin_opLock
   986     , lir_lock
   987     , lir_unlock
   988   , end_opLock
   989   , begin_delay_slot
   990     , lir_delay_slot
   991   , end_delay_slot
   992   , begin_opTypeCheck
   993     , lir_instanceof
   994     , lir_checkcast
   995     , lir_store_check
   996   , end_opTypeCheck
   997   , begin_opCompareAndSwap
   998     , lir_cas_long
   999     , lir_cas_obj
  1000     , lir_cas_int
  1001   , end_opCompareAndSwap
  1002   , begin_opMDOProfile
  1003     , lir_profile_call
  1004   , end_opMDOProfile
  1005   , begin_opAssert
  1006     , lir_assert
  1007   , end_opAssert
  1008 };
  1011 enum LIR_Condition {
  1012     lir_cond_equal
  1013   , lir_cond_notEqual
  1014   , lir_cond_less
  1015   , lir_cond_lessEqual
  1016   , lir_cond_greaterEqual
  1017   , lir_cond_greater
  1018   , lir_cond_belowEqual
  1019   , lir_cond_aboveEqual
  1020   , lir_cond_always
  1021   , lir_cond_unknown = -1
  1022 };
  1025 enum LIR_PatchCode {
  1026   lir_patch_none,
  1027   lir_patch_low,
  1028   lir_patch_high,
  1029   lir_patch_normal
  1030 };
  1033 enum LIR_MoveKind {
  1034   lir_move_normal,
  1035   lir_move_volatile,
  1036   lir_move_unaligned,
  1037   lir_move_wide,
  1038   lir_move_max_flag
  1039 };
  1042 // --------------------------------------------------
  1043 // LIR_Op
  1044 // --------------------------------------------------
  1045 class LIR_Op: public CompilationResourceObj {
  1046  friend class LIR_OpVisitState;
  1048 #ifdef ASSERT
  1049  private:
  1050   const char *  _file;
  1051   int           _line;
  1052 #endif
  1054  protected:
  1055   LIR_Opr       _result;
  1056   unsigned short _code;
  1057   unsigned short _flags;
  1058   CodeEmitInfo* _info;
  1059   int           _id;     // value id for register allocation
  1060   int           _fpu_pop_count;
  1061   Instruction*  _source; // for debugging
  1063   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
  1065  protected:
  1066   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
  1068  public:
  1069   LIR_Op()
  1070     : _result(LIR_OprFact::illegalOpr)
  1071     , _code(lir_none)
  1072     , _flags(0)
  1073     , _info(NULL)
  1074 #ifdef ASSERT
  1075     , _file(NULL)
  1076     , _line(0)
  1077 #endif
  1078     , _fpu_pop_count(0)
  1079     , _source(NULL)
  1080     , _id(-1)                             {}
  1082   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
  1083     : _result(result)
  1084     , _code(code)
  1085     , _flags(0)
  1086     , _info(info)
  1087 #ifdef ASSERT
  1088     , _file(NULL)
  1089     , _line(0)
  1090 #endif
  1091     , _fpu_pop_count(0)
  1092     , _source(NULL)
  1093     , _id(-1)                             {}
  1095   CodeEmitInfo* info() const                  { return _info;   }
  1096   LIR_Code code()      const                  { return (LIR_Code)_code;   }
  1097   LIR_Opr result_opr() const                  { return _result; }
  1098   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
  1100 #ifdef ASSERT
  1101   void set_file_and_line(const char * file, int line) {
  1102     _file = file;
  1103     _line = line;
  1105 #endif
  1107   virtual const char * name() const PRODUCT_RETURN0;
  1109   int id()             const                  { return _id;     }
  1110   void set_id(int id)                         { _id = id; }
  1112   // FPU stack simulation helpers -- only used on Intel
  1113   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
  1114   int  fpu_pop_count() const                  { return _fpu_pop_count; }
  1115   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
  1117   Instruction* source() const                 { return _source; }
  1118   void set_source(Instruction* ins)           { _source = ins; }
  1120   virtual void emit_code(LIR_Assembler* masm) = 0;
  1121   virtual void print_instr(outputStream* out) const   = 0;
  1122   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
  1124   virtual LIR_OpCall* as_OpCall() { return NULL; }
  1125   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
  1126   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
  1127   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
  1128   virtual LIR_OpLock* as_OpLock() { return NULL; }
  1129   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
  1130   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
  1131   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
  1132   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
  1133   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
  1134   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
  1135   virtual LIR_Op0* as_Op0() { return NULL; }
  1136   virtual LIR_Op1* as_Op1() { return NULL; }
  1137   virtual LIR_Op2* as_Op2() { return NULL; }
  1138   virtual LIR_Op3* as_Op3() { return NULL; }
  1139   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
  1140   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
  1141   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1142   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1143 #ifdef ASSERT
  1144   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
  1145 #endif
  1147   virtual void verify() const {}
  1148 };
  1150 // for calls
  1151 class LIR_OpCall: public LIR_Op {
  1152  friend class LIR_OpVisitState;
  1154  protected:
  1155   address      _addr;
  1156   LIR_OprList* _arguments;
  1157  protected:
  1158   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1159              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1160     : LIR_Op(code, result, info)
  1161     , _arguments(arguments)
  1162     , _addr(addr) {}
  1164  public:
  1165   address addr() const                           { return _addr; }
  1166   const LIR_OprList* arguments() const           { return _arguments; }
  1167   virtual LIR_OpCall* as_OpCall()                { return this; }
  1168 };
  1171 // --------------------------------------------------
  1172 // LIR_OpJavaCall
  1173 // --------------------------------------------------
  1174 class LIR_OpJavaCall: public LIR_OpCall {
  1175  friend class LIR_OpVisitState;
  1177  private:
  1178   ciMethod* _method;
  1179   LIR_Opr   _receiver;
  1180   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
  1182  public:
  1183   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1184                  LIR_Opr receiver, LIR_Opr result,
  1185                  address addr, LIR_OprList* arguments,
  1186                  CodeEmitInfo* info)
  1187   : LIR_OpCall(code, addr, result, arguments, info)
  1188   , _receiver(receiver)
  1189   , _method(method)
  1190   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1191   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1193   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1194                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1195                  LIR_OprList* arguments, CodeEmitInfo* info)
  1196   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1197   , _receiver(receiver)
  1198   , _method(method)
  1199   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1200   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1202   LIR_Opr receiver() const                       { return _receiver; }
  1203   ciMethod* method() const                       { return _method;   }
  1205   // JSR 292 support.
  1206   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
  1207   bool is_method_handle_invoke() const {
  1208     return
  1209       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
  1210       ||
  1211       method()->is_compiled_lambda_form()  // Java-generated adapter
  1212       ||
  1213       method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
  1216   intptr_t vtable_offset() const {
  1217     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1218     return (intptr_t) addr();
  1221   virtual void emit_code(LIR_Assembler* masm);
  1222   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1223   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1224 };
  1226 // --------------------------------------------------
  1227 // LIR_OpLabel
  1228 // --------------------------------------------------
  1229 // Location where a branch can continue
  1230 class LIR_OpLabel: public LIR_Op {
  1231  friend class LIR_OpVisitState;
  1233  private:
  1234   Label* _label;
  1235  public:
  1236   LIR_OpLabel(Label* lbl)
  1237    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1238    , _label(lbl)                                 {}
  1239   Label* label() const                           { return _label; }
  1241   virtual void emit_code(LIR_Assembler* masm);
  1242   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1243   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1244 };
  1246 // LIR_OpArrayCopy
  1247 class LIR_OpArrayCopy: public LIR_Op {
  1248  friend class LIR_OpVisitState;
  1250  private:
  1251   ArrayCopyStub*  _stub;
  1252   LIR_Opr   _src;
  1253   LIR_Opr   _src_pos;
  1254   LIR_Opr   _dst;
  1255   LIR_Opr   _dst_pos;
  1256   LIR_Opr   _length;
  1257   LIR_Opr   _tmp;
  1258   ciArrayKlass* _expected_type;
  1259   int       _flags;
  1261 public:
  1262   enum Flags {
  1263     src_null_check         = 1 << 0,
  1264     dst_null_check         = 1 << 1,
  1265     src_pos_positive_check = 1 << 2,
  1266     dst_pos_positive_check = 1 << 3,
  1267     length_positive_check  = 1 << 4,
  1268     src_range_check        = 1 << 5,
  1269     dst_range_check        = 1 << 6,
  1270     type_check             = 1 << 7,
  1271     overlapping            = 1 << 8,
  1272     unaligned              = 1 << 9,
  1273     src_objarray           = 1 << 10,
  1274     dst_objarray           = 1 << 11,
  1275     all_flags              = (1 << 12) - 1
  1276   };
  1278   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1279                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1281   LIR_Opr src() const                            { return _src; }
  1282   LIR_Opr src_pos() const                        { return _src_pos; }
  1283   LIR_Opr dst() const                            { return _dst; }
  1284   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1285   LIR_Opr length() const                         { return _length; }
  1286   LIR_Opr tmp() const                            { return _tmp; }
  1287   int flags() const                              { return _flags; }
  1288   ciArrayKlass* expected_type() const            { return _expected_type; }
  1289   ArrayCopyStub* stub() const                    { return _stub; }
  1291   virtual void emit_code(LIR_Assembler* masm);
  1292   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1293   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1294 };
  1297 // --------------------------------------------------
  1298 // LIR_Op0
  1299 // --------------------------------------------------
  1300 class LIR_Op0: public LIR_Op {
  1301  friend class LIR_OpVisitState;
  1303  public:
  1304   LIR_Op0(LIR_Code code)
  1305    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1306   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1307    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1309   virtual void emit_code(LIR_Assembler* masm);
  1310   virtual LIR_Op0* as_Op0() { return this; }
  1311   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1312 };
  1315 // --------------------------------------------------
  1316 // LIR_Op1
  1317 // --------------------------------------------------
  1319 class LIR_Op1: public LIR_Op {
  1320  friend class LIR_OpVisitState;
  1322  protected:
  1323   LIR_Opr         _opr;   // input operand
  1324   BasicType       _type;  // Operand types
  1325   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1327   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1329   void set_kind(LIR_MoveKind kind) {
  1330     assert(code() == lir_move, "must be");
  1331     _flags = kind;
  1334  public:
  1335   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1336     : LIR_Op(code, result, info)
  1337     , _opr(opr)
  1338     , _patch(patch)
  1339     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1341   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1342     : LIR_Op(code, result, info)
  1343     , _opr(opr)
  1344     , _patch(patch)
  1345     , _type(type)                      {
  1346     assert(code == lir_move, "must be");
  1347     set_kind(kind);
  1350   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1351     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1352     , _opr(opr)
  1353     , _patch(lir_patch_none)
  1354     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1356   LIR_Opr in_opr()           const               { return _opr;   }
  1357   LIR_PatchCode patch_code() const               { return _patch; }
  1358   BasicType type()           const               { return _type;  }
  1360   LIR_MoveKind move_kind() const {
  1361     assert(code() == lir_move, "must be");
  1362     return (LIR_MoveKind)_flags;
  1365   virtual void emit_code(LIR_Assembler* masm);
  1366   virtual LIR_Op1* as_Op1() { return this; }
  1367   virtual const char * name() const PRODUCT_RETURN0;
  1369   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1371   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1372   virtual void verify() const;
  1373 };
  1376 // for runtime calls
  1377 class LIR_OpRTCall: public LIR_OpCall {
  1378  friend class LIR_OpVisitState;
  1380  private:
  1381   LIR_Opr _tmp;
  1382  public:
  1383   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1384                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1385     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1386     , _tmp(tmp) {}
  1388   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1389   virtual void emit_code(LIR_Assembler* masm);
  1390   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1392   LIR_Opr tmp() const                            { return _tmp; }
  1394   virtual void verify() const;
  1395 };
  1398 class LIR_OpBranch: public LIR_Op {
  1399  friend class LIR_OpVisitState;
  1401  private:
  1402   LIR_Condition _cond;
  1403   BasicType     _type;
  1404   Label*        _label;
  1405   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1406   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1407   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1409  public:
  1410   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
  1411     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1412     , _cond(cond)
  1413     , _type(type)
  1414     , _label(lbl)
  1415     , _block(NULL)
  1416     , _ublock(NULL)
  1417     , _stub(NULL) { }
  1419   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1420   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1422   // for unordered comparisons
  1423   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1425   LIR_Condition cond()        const              { return _cond;        }
  1426   BasicType     type()        const              { return _type;        }
  1427   Label*        label()       const              { return _label;       }
  1428   BlockBegin*   block()       const              { return _block;       }
  1429   BlockBegin*   ublock()      const              { return _ublock;      }
  1430   CodeStub*     stub()        const              { return _stub;       }
  1432   void          change_block(BlockBegin* b);
  1433   void          change_ublock(BlockBegin* b);
  1434   void          negate_cond();
  1436   virtual void emit_code(LIR_Assembler* masm);
  1437   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1438   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1439 };
  1442 class ConversionStub;
  1444 class LIR_OpConvert: public LIR_Op1 {
  1445  friend class LIR_OpVisitState;
  1447  private:
  1448    Bytecodes::Code _bytecode;
  1449    ConversionStub* _stub;
  1450 #ifdef PPC
  1451   LIR_Opr _tmp1;
  1452   LIR_Opr _tmp2;
  1453 #endif
  1455  public:
  1456    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1457      : LIR_Op1(lir_convert, opr, result)
  1458      , _stub(stub)
  1459 #ifdef PPC
  1460      , _tmp1(LIR_OprDesc::illegalOpr())
  1461      , _tmp2(LIR_OprDesc::illegalOpr())
  1462 #endif
  1463      , _bytecode(code)                           {}
  1465 #ifdef PPC
  1466    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
  1467                  ,LIR_Opr tmp1, LIR_Opr tmp2)
  1468      : LIR_Op1(lir_convert, opr, result)
  1469      , _stub(stub)
  1470      , _tmp1(tmp1)
  1471      , _tmp2(tmp2)
  1472      , _bytecode(code)                           {}
  1473 #endif
  1475   Bytecodes::Code bytecode() const               { return _bytecode; }
  1476   ConversionStub* stub() const                   { return _stub; }
  1477 #ifdef PPC
  1478   LIR_Opr tmp1() const                           { return _tmp1; }
  1479   LIR_Opr tmp2() const                           { return _tmp2; }
  1480 #endif
  1482   virtual void emit_code(LIR_Assembler* masm);
  1483   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1484   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1486   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1487 };
  1490 // LIR_OpAllocObj
  1491 class LIR_OpAllocObj : public LIR_Op1 {
  1492  friend class LIR_OpVisitState;
  1494  private:
  1495   LIR_Opr _tmp1;
  1496   LIR_Opr _tmp2;
  1497   LIR_Opr _tmp3;
  1498   LIR_Opr _tmp4;
  1499   int     _hdr_size;
  1500   int     _obj_size;
  1501   CodeStub* _stub;
  1502   bool    _init_check;
  1504  public:
  1505   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1506                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1507                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1508     : LIR_Op1(lir_alloc_object, klass, result)
  1509     , _tmp1(t1)
  1510     , _tmp2(t2)
  1511     , _tmp3(t3)
  1512     , _tmp4(t4)
  1513     , _hdr_size(hdr_size)
  1514     , _obj_size(obj_size)
  1515     , _init_check(init_check)
  1516     , _stub(stub)                                { }
  1518   LIR_Opr klass()        const                   { return in_opr();     }
  1519   LIR_Opr obj()          const                   { return result_opr(); }
  1520   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1521   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1522   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1523   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1524   int     header_size()  const                   { return _hdr_size;    }
  1525   int     object_size()  const                   { return _obj_size;    }
  1526   bool    init_check()   const                   { return _init_check;  }
  1527   CodeStub* stub()       const                   { return _stub;        }
  1529   virtual void emit_code(LIR_Assembler* masm);
  1530   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1531   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1532 };
  1535 // LIR_OpRoundFP
  1536 class LIR_OpRoundFP : public LIR_Op1 {
  1537  friend class LIR_OpVisitState;
  1539  private:
  1540   LIR_Opr _tmp;
  1542  public:
  1543   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1544     : LIR_Op1(lir_roundfp, reg, result)
  1545     , _tmp(stack_loc_temp) {}
  1547   LIR_Opr tmp() const                            { return _tmp; }
  1548   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1549   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1550 };
  1552 // LIR_OpTypeCheck
  1553 class LIR_OpTypeCheck: public LIR_Op {
  1554  friend class LIR_OpVisitState;
  1556  private:
  1557   LIR_Opr       _object;
  1558   LIR_Opr       _array;
  1559   ciKlass*      _klass;
  1560   LIR_Opr       _tmp1;
  1561   LIR_Opr       _tmp2;
  1562   LIR_Opr       _tmp3;
  1563   bool          _fast_check;
  1564   CodeEmitInfo* _info_for_patch;
  1565   CodeEmitInfo* _info_for_exception;
  1566   CodeStub*     _stub;
  1567   ciMethod*     _profiled_method;
  1568   int           _profiled_bci;
  1569   bool          _should_profile;
  1571 public:
  1572   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1573                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1574                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
  1575   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1576                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1578   LIR_Opr object() const                         { return _object;         }
  1579   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1580   LIR_Opr tmp1() const                           { return _tmp1;           }
  1581   LIR_Opr tmp2() const                           { return _tmp2;           }
  1582   LIR_Opr tmp3() const                           { return _tmp3;           }
  1583   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1584   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1585   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1586   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1587   CodeStub* stub() const                         { return _stub;           }
  1589   // MethodData* profiling
  1590   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
  1591   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
  1592   void set_should_profile(bool b)                { _should_profile = b;       }
  1593   ciMethod* profiled_method() const              { return _profiled_method;   }
  1594   int       profiled_bci() const                 { return _profiled_bci;      }
  1595   bool      should_profile() const               { return _should_profile;    }
  1597   virtual void emit_code(LIR_Assembler* masm);
  1598   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1599   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1600 };
  1602 // LIR_Op2
  1603 class LIR_Op2: public LIR_Op {
  1604  friend class LIR_OpVisitState;
  1606   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1608  protected:
  1609   LIR_Opr   _opr1;
  1610   LIR_Opr   _opr2;
  1611   BasicType _type;
  1612   LIR_Opr   _tmp1;
  1613   LIR_Opr   _tmp2;
  1614   LIR_Opr   _tmp3;
  1615   LIR_Opr   _tmp4;
  1616   LIR_Opr   _tmp5;
  1617   LIR_Condition _condition;
  1619   void verify() const;
  1621  public:
  1622   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1623     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1624     , _opr1(opr1)
  1625     , _opr2(opr2)
  1626     , _type(T_ILLEGAL)
  1627     , _condition(condition)
  1628     , _fpu_stack_size(0)
  1629     , _tmp1(LIR_OprFact::illegalOpr)
  1630     , _tmp2(LIR_OprFact::illegalOpr)
  1631     , _tmp3(LIR_OprFact::illegalOpr)
  1632     , _tmp4(LIR_OprFact::illegalOpr)
  1633     , _tmp5(LIR_OprFact::illegalOpr) {
  1634     assert(code == lir_cmp || code == lir_assert, "code check");
  1637   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
  1638     : LIR_Op(code, result, NULL)
  1639     , _opr1(opr1)
  1640     , _opr2(opr2)
  1641     , _type(type)
  1642     , _condition(condition)
  1643     , _fpu_stack_size(0)
  1644     , _tmp1(LIR_OprFact::illegalOpr)
  1645     , _tmp2(LIR_OprFact::illegalOpr)
  1646     , _tmp3(LIR_OprFact::illegalOpr)
  1647     , _tmp4(LIR_OprFact::illegalOpr)
  1648     , _tmp5(LIR_OprFact::illegalOpr) {
  1649     assert(code == lir_cmove, "code check");
  1650     assert(type != T_ILLEGAL, "cmove should have type");
  1653   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1654           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1655     : LIR_Op(code, result, info)
  1656     , _opr1(opr1)
  1657     , _opr2(opr2)
  1658     , _type(type)
  1659     , _condition(lir_cond_unknown)
  1660     , _fpu_stack_size(0)
  1661     , _tmp1(LIR_OprFact::illegalOpr)
  1662     , _tmp2(LIR_OprFact::illegalOpr)
  1663     , _tmp3(LIR_OprFact::illegalOpr)
  1664     , _tmp4(LIR_OprFact::illegalOpr)
  1665     , _tmp5(LIR_OprFact::illegalOpr) {
  1666     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1669   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
  1670           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
  1671     : LIR_Op(code, result, NULL)
  1672     , _opr1(opr1)
  1673     , _opr2(opr2)
  1674     , _type(T_ILLEGAL)
  1675     , _condition(lir_cond_unknown)
  1676     , _fpu_stack_size(0)
  1677     , _tmp1(tmp1)
  1678     , _tmp2(tmp2)
  1679     , _tmp3(tmp3)
  1680     , _tmp4(tmp4)
  1681     , _tmp5(tmp5) {
  1682     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1685   LIR_Opr in_opr1() const                        { return _opr1; }
  1686   LIR_Opr in_opr2() const                        { return _opr2; }
  1687   BasicType type()  const                        { return _type; }
  1688   LIR_Opr tmp1_opr() const                       { return _tmp1; }
  1689   LIR_Opr tmp2_opr() const                       { return _tmp2; }
  1690   LIR_Opr tmp3_opr() const                       { return _tmp3; }
  1691   LIR_Opr tmp4_opr() const                       { return _tmp4; }
  1692   LIR_Opr tmp5_opr() const                       { return _tmp5; }
  1693   LIR_Condition condition() const  {
  1694     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
  1696   void set_condition(LIR_Condition condition) {
  1697     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
  1700   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1701   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1703   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1704   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1706   virtual void emit_code(LIR_Assembler* masm);
  1707   virtual LIR_Op2* as_Op2() { return this; }
  1708   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1709 };
  1711 class LIR_OpAllocArray : public LIR_Op {
  1712  friend class LIR_OpVisitState;
  1714  private:
  1715   LIR_Opr   _klass;
  1716   LIR_Opr   _len;
  1717   LIR_Opr   _tmp1;
  1718   LIR_Opr   _tmp2;
  1719   LIR_Opr   _tmp3;
  1720   LIR_Opr   _tmp4;
  1721   BasicType _type;
  1722   CodeStub* _stub;
  1724  public:
  1725   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1726     : LIR_Op(lir_alloc_array, result, NULL)
  1727     , _klass(klass)
  1728     , _len(len)
  1729     , _tmp1(t1)
  1730     , _tmp2(t2)
  1731     , _tmp3(t3)
  1732     , _tmp4(t4)
  1733     , _type(type)
  1734     , _stub(stub) {}
  1736   LIR_Opr   klass()   const                      { return _klass;       }
  1737   LIR_Opr   len()     const                      { return _len;         }
  1738   LIR_Opr   obj()     const                      { return result_opr(); }
  1739   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1740   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1741   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1742   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1743   BasicType type()    const                      { return _type;        }
  1744   CodeStub* stub()    const                      { return _stub;        }
  1746   virtual void emit_code(LIR_Assembler* masm);
  1747   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1748   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1749 };
  1752 class LIR_Op3: public LIR_Op {
  1753  friend class LIR_OpVisitState;
  1755  private:
  1756   LIR_Opr _opr1;
  1757   LIR_Opr _opr2;
  1758   LIR_Opr _opr3;
  1759  public:
  1760   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1761     : LIR_Op(code, result, info)
  1762     , _opr1(opr1)
  1763     , _opr2(opr2)
  1764     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1765   LIR_Opr in_opr1() const                        { return _opr1; }
  1766   LIR_Opr in_opr2() const                        { return _opr2; }
  1767   LIR_Opr in_opr3() const                        { return _opr3; }
  1769   virtual void emit_code(LIR_Assembler* masm);
  1770   virtual LIR_Op3* as_Op3() { return this; }
  1771   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1772 };
  1775 //--------------------------------
  1776 class LabelObj: public CompilationResourceObj {
  1777  private:
  1778   Label _label;
  1779  public:
  1780   LabelObj()                                     {}
  1781   Label* label()                                 { return &_label; }
  1782 };
  1785 class LIR_OpLock: public LIR_Op {
  1786  friend class LIR_OpVisitState;
  1788  private:
  1789   LIR_Opr _hdr;
  1790   LIR_Opr _obj;
  1791   LIR_Opr _lock;
  1792   LIR_Opr _scratch;
  1793   CodeStub* _stub;
  1794  public:
  1795   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1796     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1797     , _hdr(hdr)
  1798     , _obj(obj)
  1799     , _lock(lock)
  1800     , _scratch(scratch)
  1801     , _stub(stub)                      {}
  1803   LIR_Opr hdr_opr() const                        { return _hdr; }
  1804   LIR_Opr obj_opr() const                        { return _obj; }
  1805   LIR_Opr lock_opr() const                       { return _lock; }
  1806   LIR_Opr scratch_opr() const                    { return _scratch; }
  1807   CodeStub* stub() const                         { return _stub; }
  1809   virtual void emit_code(LIR_Assembler* masm);
  1810   virtual LIR_OpLock* as_OpLock() { return this; }
  1811   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1812 };
  1815 class LIR_OpDelay: public LIR_Op {
  1816  friend class LIR_OpVisitState;
  1818  private:
  1819   LIR_Op* _op;
  1821  public:
  1822   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1823     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1824     _op(op) {
  1825     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1827   virtual void emit_code(LIR_Assembler* masm);
  1828   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1829   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1830   LIR_Op* delay_op() const { return _op; }
  1831   CodeEmitInfo* call_info() const { return info(); }
  1832 };
  1834 #ifdef ASSERT
  1835 // LIR_OpAssert
  1836 class LIR_OpAssert : public LIR_Op2 {
  1837  friend class LIR_OpVisitState;
  1839  private:
  1840   const char* _msg;
  1841   bool        _halt;
  1843  public:
  1844   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
  1845     : LIR_Op2(lir_assert, condition, opr1, opr2)
  1846     , _halt(halt)
  1847     , _msg(msg) {
  1850   const char* msg() const                        { return _msg; }
  1851   bool        halt() const                       { return _halt; }
  1853   virtual void emit_code(LIR_Assembler* masm);
  1854   virtual LIR_OpAssert* as_OpAssert()            { return this; }
  1855   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1856 };
  1857 #endif
  1859 // LIR_OpCompareAndSwap
  1860 class LIR_OpCompareAndSwap : public LIR_Op {
  1861  friend class LIR_OpVisitState;
  1863  private:
  1864   LIR_Opr _addr;
  1865   LIR_Opr _cmp_value;
  1866   LIR_Opr _new_value;
  1867   LIR_Opr _tmp1;
  1868   LIR_Opr _tmp2;
  1870  public:
  1871   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1872                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
  1873     : LIR_Op(code, result, NULL)  // no result, no info
  1874     , _addr(addr)
  1875     , _cmp_value(cmp_value)
  1876     , _new_value(new_value)
  1877     , _tmp1(t1)
  1878     , _tmp2(t2)                                  { }
  1880   LIR_Opr addr()        const                    { return _addr;  }
  1881   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1882   LIR_Opr new_value()   const                    { return _new_value; }
  1883   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1884   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1886   virtual void emit_code(LIR_Assembler* masm);
  1887   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1888   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1889 };
  1891 // LIR_OpProfileCall
  1892 class LIR_OpProfileCall : public LIR_Op {
  1893  friend class LIR_OpVisitState;
  1895  private:
  1896   ciMethod* _profiled_method;
  1897   int       _profiled_bci;
  1898   ciMethod* _profiled_callee;
  1899   LIR_Opr   _mdo;
  1900   LIR_Opr   _recv;
  1901   LIR_Opr   _tmp1;
  1902   ciKlass*  _known_holder;
  1904  public:
  1905   // Destroys recv
  1906   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1907     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1908     , _profiled_method(profiled_method)
  1909     , _profiled_bci(profiled_bci)
  1910     , _profiled_callee(profiled_callee)
  1911     , _mdo(mdo)
  1912     , _recv(recv)
  1913     , _tmp1(t1)
  1914     , _known_holder(known_holder)                { }
  1916   ciMethod* profiled_method() const              { return _profiled_method;  }
  1917   int       profiled_bci()    const              { return _profiled_bci;     }
  1918   ciMethod* profiled_callee() const              { return _profiled_callee;  }
  1919   LIR_Opr   mdo()             const              { return _mdo;              }
  1920   LIR_Opr   recv()            const              { return _recv;             }
  1921   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1922   ciKlass*  known_holder()    const              { return _known_holder;     }
  1924   virtual void emit_code(LIR_Assembler* masm);
  1925   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1926   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1927 };
  1929 class LIR_InsertionBuffer;
  1931 //--------------------------------LIR_List---------------------------------------------------
  1932 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1933 // The LIR instructions are appended by the LIR_List class itself;
  1934 //
  1935 // Notes:
  1936 // - all offsets are(should be) in bytes
  1937 // - local positions are specified with an offset, with offset 0 being local 0
  1939 class LIR_List: public CompilationResourceObj {
  1940  private:
  1941   LIR_OpList  _operations;
  1943   Compilation*  _compilation;
  1944 #ifndef PRODUCT
  1945   BlockBegin*   _block;
  1946 #endif
  1947 #ifdef ASSERT
  1948   const char *  _file;
  1949   int           _line;
  1950 #endif
  1952   void append(LIR_Op* op) {
  1953     if (op->source() == NULL)
  1954       op->set_source(_compilation->current_instruction());
  1955 #ifndef PRODUCT
  1956     if (PrintIRWithLIR) {
  1957       _compilation->maybe_print_current_instruction();
  1958       op->print(); tty->cr();
  1960 #endif // PRODUCT
  1962     _operations.append(op);
  1964 #ifdef ASSERT
  1965     op->verify();
  1966     op->set_file_and_line(_file, _line);
  1967     _file = NULL;
  1968     _line = 0;
  1969 #endif
  1972  public:
  1973   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1975 #ifdef ASSERT
  1976   void set_file_and_line(const char * file, int line);
  1977 #endif
  1979   //---------- accessors ---------------
  1980   LIR_OpList* instructions_list()                { return &_operations; }
  1981   int         length() const                     { return _operations.length(); }
  1982   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1984   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1986   // insert LIR_Ops in buffer to right places in LIR_List
  1987   void append(LIR_InsertionBuffer* buffer);
  1989   //---------- mutators ---------------
  1990   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1991   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1992   void remove_at(int i)                          { _operations.remove_at(i); }
  1994   //---------- printing -------------
  1995   void print_instructions() PRODUCT_RETURN;
  1998   //---------- instructions -------------
  1999   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  2000                         address dest, LIR_OprList* arguments,
  2001                         CodeEmitInfo* info) {
  2002     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  2004   void call_static(ciMethod* method, LIR_Opr result,
  2005                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  2006     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  2008   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  2009                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  2010     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  2012   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  2013                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  2014     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  2016   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  2017                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  2018     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
  2021   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  2022   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  2023   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  2024   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  2025   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  2026   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
  2027   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
  2028   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
  2029   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
  2031   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  2032   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  2034   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  2035   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  2037   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  2039   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  2040   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  2042   // result is a stack location for old backend and vreg for UseLinearScan
  2043   // stack_loc_temp is an illegal register for old backend
  2044   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  2045   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2046   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2047   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2048   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2049   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  2050   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  2051   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
  2052     if (UseCompressedOops) {
  2053       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
  2054     } else {
  2055       move(src, dst, info);
  2058   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
  2059     if (UseCompressedOops) {
  2060       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
  2061     } else {
  2062       move(src, dst, info);
  2065   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  2067   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  2068   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  2070   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
  2071   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
  2073   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  2075   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  2077 #ifdef PPC
  2078   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
  2079 #endif
  2080   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  2082   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  2083   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  2084   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  2086   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
  2087   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
  2089   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  2090   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2091     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
  2093   void unwind_exception(LIR_Opr exceptionOop) {
  2094     append(new LIR_Op1(lir_unwind, exceptionOop));
  2097   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2098     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  2101   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  2102   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  2104   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  2105     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  2107   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  2108     cmp(condition, left, LIR_OprFact::intConst(right), info);
  2111   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  2112   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  2114   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
  2115     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
  2118   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2119                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2120   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2121                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2122   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2123                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2125   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  2126   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  2127   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  2128   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  2129   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  2130   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  2131   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  2132   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
  2133   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
  2135   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  2136   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  2137   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  2138   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  2139   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  2140   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  2141   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  2143   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2144   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2146   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2148   void prefetch(LIR_Address* addr, bool is_store);
  2150   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2151   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2152   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2153   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2154   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2156   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2157   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2158   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2159   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2161   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  2162   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  2164   // jump is an unconditional branch
  2165   void jump(BlockBegin* block) {
  2166     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  2168   void jump(CodeStub* stub) {
  2169     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  2171   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
  2172   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  2173     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2174     append(new LIR_OpBranch(cond, type, block));
  2176   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  2177     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2178     append(new LIR_OpBranch(cond, type, stub));
  2180   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  2181     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  2182     append(new LIR_OpBranch(cond, type, block, unordered));
  2185   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2186   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2187   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2189   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2190   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2191   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2193   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  2194   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  2196   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  2197     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  2200   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  2201                     LIR_OprList* arguments, CodeEmitInfo* info) {
  2202     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  2205   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  2206   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
  2207   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  2209   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  2210   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  2211   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  2213   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  2215   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  2217   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
  2218   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
  2220   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  2221                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  2222                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  2223                   ciMethod* profiled_method, int profiled_bci);
  2224   // MethodData* profiling
  2225   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
  2226     append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
  2229   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
  2230   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
  2231 #ifdef ASSERT
  2232   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
  2233 #endif
  2234 };
  2236 void print_LIR(BlockList* blocks);
  2238 class LIR_InsertionBuffer : public CompilationResourceObj {
  2239  private:
  2240   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  2242   // list of insertion points. index and count are stored alternately:
  2243   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  2244   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  2245   intStack    _index_and_count;
  2247   // the LIR_Ops to be inserted
  2248   LIR_OpList  _ops;
  2250   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  2251   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  2252   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  2254 #ifdef ASSERT
  2255   void verify();
  2256 #endif
  2257  public:
  2258   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  2260   // must be called before using the insertion buffer
  2261   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  2262   bool initialized() const  { return _lir != NULL; }
  2263   // called automatically when the buffer is appended to the LIR_List
  2264   void finish()             { _lir = NULL; }
  2266   // accessors
  2267   LIR_List*  lir_list() const             { return _lir; }
  2268   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  2269   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  2270   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  2272   int number_of_ops() const               { return _ops.length(); }
  2273   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  2275   // append an instruction to the buffer
  2276   void append(int index, LIR_Op* op);
  2278   // instruction
  2279   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2280 };
  2283 //
  2284 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  2285 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  2286 // information about the input, output and temporaries used by the
  2287 // op to be recorded.  It also records whether the op has call semantics
  2288 // and also records all the CodeEmitInfos used by this op.
  2289 //
  2292 class LIR_OpVisitState: public StackObj {
  2293  public:
  2294   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2296   enum {
  2297     maxNumberOfOperands = 20,
  2298     maxNumberOfInfos = 4
  2299   };
  2301  private:
  2302   LIR_Op*          _op;
  2304   // optimization: the operands and infos are not stored in a variable-length
  2305   //               list, but in a fixed-size array to save time of size checks and resizing
  2306   int              _oprs_len[numModes];
  2307   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2308   int _info_len;
  2309   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2311   bool             _has_call;
  2312   bool             _has_slow_case;
  2315   // only include register operands
  2316   // addresses are decomposed to the base and index registers
  2317   // constants and stack operands are ignored
  2318   void append(LIR_Opr& opr, OprMode mode) {
  2319     assert(opr->is_valid(), "should not call this otherwise");
  2320     assert(mode >= 0 && mode < numModes, "bad mode");
  2322     if (opr->is_register()) {
  2323        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2324       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2326     } else if (opr->is_pointer()) {
  2327       LIR_Address* address = opr->as_address_ptr();
  2328       if (address != NULL) {
  2329         // special handling for addresses: add base and index register of the address
  2330         // both are always input operands or temp if we want to extend
  2331         // their liveness!
  2332         if (mode == outputMode) {
  2333           mode = inputMode;
  2335         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
  2336         if (address->_base->is_valid()) {
  2337           assert(address->_base->is_register(), "must be");
  2338           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2339           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
  2341         if (address->_index->is_valid()) {
  2342           assert(address->_index->is_register(), "must be");
  2343           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2344           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
  2347       } else {
  2348         assert(opr->is_constant(), "constant operands are not processed");
  2350     } else {
  2351       assert(opr->is_stack(), "stack operands are not processed");
  2355   void append(CodeEmitInfo* info) {
  2356     assert(info != NULL, "should not call this otherwise");
  2357     assert(_info_len < maxNumberOfInfos, "array overflow");
  2358     _info_new[_info_len++] = info;
  2361  public:
  2362   LIR_OpVisitState()         { reset(); }
  2364   LIR_Op* op() const         { return _op; }
  2365   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2367   bool has_call() const      { return _has_call; }
  2368   bool has_slow_case() const { return _has_slow_case; }
  2370   void reset() {
  2371     _op = NULL;
  2372     _has_call = false;
  2373     _has_slow_case = false;
  2375     _oprs_len[inputMode] = 0;
  2376     _oprs_len[tempMode] = 0;
  2377     _oprs_len[outputMode] = 0;
  2378     _info_len = 0;
  2382   int opr_count(OprMode mode) const {
  2383     assert(mode >= 0 && mode < numModes, "bad mode");
  2384     return _oprs_len[mode];
  2387   LIR_Opr opr_at(OprMode mode, int index) const {
  2388     assert(mode >= 0 && mode < numModes, "bad mode");
  2389     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2390     return *_oprs_new[mode][index];
  2393   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2394     assert(mode >= 0 && mode < numModes, "bad mode");
  2395     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2396     *_oprs_new[mode][index] = opr;
  2399   int info_count() const {
  2400     return _info_len;
  2403   CodeEmitInfo* info_at(int index) const {
  2404     assert(index < _info_len, "index out of bounds");
  2405     return _info_new[index];
  2408   XHandlers* all_xhandler();
  2410   // collects all register operands of the instruction
  2411   void visit(LIR_Op* op);
  2413 #ifdef ASSERT
  2414   // check that an operation has no operands
  2415   bool no_operands(LIR_Op* op);
  2416 #endif
  2418   // LIR_Op visitor functions use these to fill in the state
  2419   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2420   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2421   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2422   void do_info(CodeEmitInfo* info)        { append(info); }
  2424   void do_stub(CodeStub* stub);
  2425   void do_call()                          { _has_call = true; }
  2426   void do_slow_case()                     { _has_slow_case = true; }
  2427   void do_slow_case(CodeEmitInfo* info) {
  2428     _has_slow_case = true;
  2429     append(info);
  2431 };
  2434 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
  2436 #endif // SHARE_VM_C1_C1_LIR_HPP

mercurial