src/share/vm/c1/c1_Instruction.cpp

Tue, 18 Jun 2013 12:31:07 -0700

author
johnc
date
Tue, 18 Jun 2013 12:31:07 -0700
changeset 5277
01522ca68fc7
parent 4860
46f6f063b272
child 5914
d13d7aba8c12
permissions
-rw-r--r--

8015237: Parallelize string table scanning during strong root processing
Summary: Parallelize the scanning of the intern string table by having each GC worker claim a given number of buckets. Changes were also reviewed by Per Liden <per.liden@oracle.com>.
Reviewed-by: tschatzl, stefank, twisti

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_IR.hpp"
    27 #include "c1/c1_Instruction.hpp"
    28 #include "c1/c1_InstructionPrinter.hpp"
    29 #include "c1/c1_ValueStack.hpp"
    30 #include "ci/ciObjArrayKlass.hpp"
    31 #include "ci/ciTypeArrayKlass.hpp"
    34 // Implementation of Instruction
    37 int Instruction::dominator_depth() {
    38   int result = -1;
    39   if (block()) {
    40     result = block()->dominator_depth();
    41   }
    42   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
    43   return result;
    44 }
    46 Instruction::Condition Instruction::mirror(Condition cond) {
    47   switch (cond) {
    48     case eql: return eql;
    49     case neq: return neq;
    50     case lss: return gtr;
    51     case leq: return geq;
    52     case gtr: return lss;
    53     case geq: return leq;
    54     case aeq: return beq;
    55     case beq: return aeq;
    56   }
    57   ShouldNotReachHere();
    58   return eql;
    59 }
    62 Instruction::Condition Instruction::negate(Condition cond) {
    63   switch (cond) {
    64     case eql: return neq;
    65     case neq: return eql;
    66     case lss: return geq;
    67     case leq: return gtr;
    68     case gtr: return leq;
    69     case geq: return lss;
    70     case aeq: assert(false, "Above equal cannot be negated");
    71     case beq: assert(false, "Below equal cannot be negated");
    72   }
    73   ShouldNotReachHere();
    74   return eql;
    75 }
    77 void Instruction::update_exception_state(ValueStack* state) {
    78   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
    79     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->jvmti_can_access_local_variables(), "unexpected state kind");
    80     _exception_state = state;
    81   } else {
    82     _exception_state = NULL;
    83   }
    84 }
    86 // Prev without need to have BlockBegin
    87 Instruction* Instruction::prev() {
    88   Instruction* p = NULL;
    89   Instruction* q = block();
    90   while (q != this) {
    91     assert(q != NULL, "this is not in the block's instruction list");
    92     p = q; q = q->next();
    93   }
    94   return p;
    95 }
    98 void Instruction::state_values_do(ValueVisitor* f) {
    99   if (state_before() != NULL) {
   100     state_before()->values_do(f);
   101   }
   102   if (exception_state() != NULL){
   103     exception_state()->values_do(f);
   104   }
   105 }
   108 #ifndef PRODUCT
   109 void Instruction::check_state(ValueStack* state) {
   110   if (state != NULL) {
   111     state->verify();
   112   }
   113 }
   116 void Instruction::print() {
   117   InstructionPrinter ip;
   118   print(ip);
   119 }
   122 void Instruction::print_line() {
   123   InstructionPrinter ip;
   124   ip.print_line(this);
   125 }
   128 void Instruction::print(InstructionPrinter& ip) {
   129   ip.print_head();
   130   ip.print_line(this);
   131   tty->cr();
   132 }
   133 #endif // PRODUCT
   136 // perform constant and interval tests on index value
   137 bool AccessIndexed::compute_needs_range_check() {
   139   if (length()) {
   141     Constant* clength = length()->as_Constant();
   142     Constant* cindex = index()->as_Constant();
   143     if (clength && cindex) {
   144       IntConstant* l = clength->type()->as_IntConstant();
   145       IntConstant* i = cindex->type()->as_IntConstant();
   146       if (l && i && i->value() < l->value() && i->value() >= 0) {
   147         return false;
   148       }
   149     }
   150   }
   152   if (!this->check_flag(NeedsRangeCheckFlag)) {
   153     return false;
   154   }
   156   return true;
   157 }
   160 ciType* Local::exact_type() const {
   161   ciType* type = declared_type();
   163   // for primitive arrays, the declared type is the exact type
   164   if (type->is_type_array_klass()) {
   165     return type;
   166   } else if (type->is_instance_klass()) {
   167     ciInstanceKlass* ik = (ciInstanceKlass*)type;
   168     if (ik->is_loaded() && ik->is_final() && !ik->is_interface()) {
   169       return type;
   170     }
   171   } else if (type->is_obj_array_klass()) {
   172     ciObjArrayKlass* oak = (ciObjArrayKlass*)type;
   173     ciType* base = oak->base_element_type();
   174     if (base->is_instance_klass()) {
   175       ciInstanceKlass* ik = base->as_instance_klass();
   176       if (ik->is_loaded() && ik->is_final()) {
   177         return type;
   178       }
   179     } else if (base->is_primitive_type()) {
   180       return type;
   181     }
   182   }
   183   return NULL;
   184 }
   186 ciType* Constant::exact_type() const {
   187   if (type()->is_object()) {
   188     return type()->as_ObjectType()->exact_type();
   189   }
   190   return NULL;
   191 }
   193 ciType* LoadIndexed::exact_type() const {
   194   ciType* array_type = array()->exact_type();
   195   if (array_type == NULL) {
   196     return NULL;
   197   }
   198   assert(array_type->is_array_klass(), "what else?");
   199   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   201   if (ak->element_type()->is_instance_klass()) {
   202     ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
   203     if (ik->is_loaded() && ik->is_final()) {
   204       return ik;
   205     }
   206   }
   207   return NULL;
   208 }
   211 ciType* LoadIndexed::declared_type() const {
   212   ciType* array_type = array()->declared_type();
   213   if (array_type == NULL || !array_type->is_loaded()) {
   214     return NULL;
   215   }
   216   assert(array_type->is_array_klass(), "what else?");
   217   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   218   return ak->element_type();
   219 }
   222 ciType* LoadField::declared_type() const {
   223   return field()->type();
   224 }
   227 ciType* LoadField::exact_type() const {
   228   ciType* type = declared_type();
   229   // for primitive arrays, the declared type is the exact type
   230   if (type->is_type_array_klass()) {
   231     return type;
   232   }
   233   if (type->is_instance_klass()) {
   234     ciInstanceKlass* ik = (ciInstanceKlass*)type;
   235     if (ik->is_loaded() && ik->is_final()) {
   236       return type;
   237     }
   238   }
   239   return NULL;
   240 }
   243 ciType* NewTypeArray::exact_type() const {
   244   return ciTypeArrayKlass::make(elt_type());
   245 }
   247 ciType* NewObjectArray::exact_type() const {
   248   return ciObjArrayKlass::make(klass());
   249 }
   251 ciType* NewArray::declared_type() const {
   252   return exact_type();
   253 }
   255 ciType* NewInstance::exact_type() const {
   256   return klass();
   257 }
   259 ciType* NewInstance::declared_type() const {
   260   return exact_type();
   261 }
   263 ciType* CheckCast::declared_type() const {
   264   return klass();
   265 }
   267 ciType* CheckCast::exact_type() const {
   268   if (klass()->is_instance_klass()) {
   269     ciInstanceKlass* ik = (ciInstanceKlass*)klass();
   270     if (ik->is_loaded() && ik->is_final()) {
   271       return ik;
   272     }
   273   }
   274   return NULL;
   275 }
   277 // Implementation of ArithmeticOp
   279 bool ArithmeticOp::is_commutative() const {
   280   switch (op()) {
   281     case Bytecodes::_iadd: // fall through
   282     case Bytecodes::_ladd: // fall through
   283     case Bytecodes::_fadd: // fall through
   284     case Bytecodes::_dadd: // fall through
   285     case Bytecodes::_imul: // fall through
   286     case Bytecodes::_lmul: // fall through
   287     case Bytecodes::_fmul: // fall through
   288     case Bytecodes::_dmul: return true;
   289   }
   290   return false;
   291 }
   294 bool ArithmeticOp::can_trap() const {
   295   switch (op()) {
   296     case Bytecodes::_idiv: // fall through
   297     case Bytecodes::_ldiv: // fall through
   298     case Bytecodes::_irem: // fall through
   299     case Bytecodes::_lrem: return true;
   300   }
   301   return false;
   302 }
   305 // Implementation of LogicOp
   307 bool LogicOp::is_commutative() const {
   308 #ifdef ASSERT
   309   switch (op()) {
   310     case Bytecodes::_iand: // fall through
   311     case Bytecodes::_land: // fall through
   312     case Bytecodes::_ior : // fall through
   313     case Bytecodes::_lor : // fall through
   314     case Bytecodes::_ixor: // fall through
   315     case Bytecodes::_lxor: break;
   316     default              : ShouldNotReachHere();
   317   }
   318 #endif
   319   // all LogicOps are commutative
   320   return true;
   321 }
   324 // Implementation of IfOp
   326 bool IfOp::is_commutative() const {
   327   return cond() == eql || cond() == neq;
   328 }
   331 // Implementation of StateSplit
   333 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
   334   NOT_PRODUCT(bool assigned = false;)
   335   for (int i = 0; i < list.length(); i++) {
   336     BlockBegin** b = list.adr_at(i);
   337     if (*b == old_block) {
   338       *b = new_block;
   339       NOT_PRODUCT(assigned = true;)
   340     }
   341   }
   342   assert(assigned == true, "should have assigned at least once");
   343 }
   346 IRScope* StateSplit::scope() const {
   347   return _state->scope();
   348 }
   351 void StateSplit::state_values_do(ValueVisitor* f) {
   352   Instruction::state_values_do(f);
   353   if (state() != NULL) state()->values_do(f);
   354 }
   357 void BlockBegin::state_values_do(ValueVisitor* f) {
   358   StateSplit::state_values_do(f);
   360   if (is_set(BlockBegin::exception_entry_flag)) {
   361     for (int i = 0; i < number_of_exception_states(); i++) {
   362       exception_state_at(i)->values_do(f);
   363     }
   364   }
   365 }
   368 // Implementation of Invoke
   371 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
   372                int vtable_index, ciMethod* target, ValueStack* state_before)
   373   : StateSplit(result_type, state_before)
   374   , _code(code)
   375   , _recv(recv)
   376   , _args(args)
   377   , _vtable_index(vtable_index)
   378   , _target(target)
   379 {
   380   set_flag(TargetIsLoadedFlag,   target->is_loaded());
   381   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
   382   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
   384   assert(args != NULL, "args must exist");
   385 #ifdef ASSERT
   386   AssertValues assert_value;
   387   values_do(&assert_value);
   388 #endif
   390   // provide an initial guess of signature size.
   391   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
   392   if (has_receiver()) {
   393     _signature->append(as_BasicType(receiver()->type()));
   394   }
   395   for (int i = 0; i < number_of_arguments(); i++) {
   396     ValueType* t = argument_at(i)->type();
   397     BasicType bt = as_BasicType(t);
   398     _signature->append(bt);
   399   }
   400 }
   403 void Invoke::state_values_do(ValueVisitor* f) {
   404   StateSplit::state_values_do(f);
   405   if (state_before() != NULL) state_before()->values_do(f);
   406   if (state()        != NULL) state()->values_do(f);
   407 }
   409 ciType* Invoke::declared_type() const {
   410   ciType *t = _target->signature()->return_type();
   411   assert(t->basic_type() != T_VOID, "need return value of void method?");
   412   return t;
   413 }
   415 // Implementation of Contant
   416 intx Constant::hash() const {
   417   if (state_before() == NULL) {
   418     switch (type()->tag()) {
   419     case intTag:
   420       return HASH2(name(), type()->as_IntConstant()->value());
   421     case addressTag:
   422       return HASH2(name(), type()->as_AddressConstant()->value());
   423     case longTag:
   424       {
   425         jlong temp = type()->as_LongConstant()->value();
   426         return HASH3(name(), high(temp), low(temp));
   427       }
   428     case floatTag:
   429       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
   430     case doubleTag:
   431       {
   432         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
   433         return HASH3(name(), high(temp), low(temp));
   434       }
   435     case objectTag:
   436       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
   437       return HASH2(name(), type()->as_ObjectType()->constant_value());
   438     case metaDataTag:
   439       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
   440       return HASH2(name(), type()->as_MetadataType()->constant_value());
   441     default:
   442       ShouldNotReachHere();
   443     }
   444   }
   445   return 0;
   446 }
   448 bool Constant::is_equal(Value v) const {
   449   if (v->as_Constant() == NULL) return false;
   451   switch (type()->tag()) {
   452     case intTag:
   453       {
   454         IntConstant* t1 =    type()->as_IntConstant();
   455         IntConstant* t2 = v->type()->as_IntConstant();
   456         return (t1 != NULL && t2 != NULL &&
   457                 t1->value() == t2->value());
   458       }
   459     case longTag:
   460       {
   461         LongConstant* t1 =    type()->as_LongConstant();
   462         LongConstant* t2 = v->type()->as_LongConstant();
   463         return (t1 != NULL && t2 != NULL &&
   464                 t1->value() == t2->value());
   465       }
   466     case floatTag:
   467       {
   468         FloatConstant* t1 =    type()->as_FloatConstant();
   469         FloatConstant* t2 = v->type()->as_FloatConstant();
   470         return (t1 != NULL && t2 != NULL &&
   471                 jint_cast(t1->value()) == jint_cast(t2->value()));
   472       }
   473     case doubleTag:
   474       {
   475         DoubleConstant* t1 =    type()->as_DoubleConstant();
   476         DoubleConstant* t2 = v->type()->as_DoubleConstant();
   477         return (t1 != NULL && t2 != NULL &&
   478                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
   479       }
   480     case objectTag:
   481       {
   482         ObjectType* t1 =    type()->as_ObjectType();
   483         ObjectType* t2 = v->type()->as_ObjectType();
   484         return (t1 != NULL && t2 != NULL &&
   485                 t1->is_loaded() && t2->is_loaded() &&
   486                 t1->constant_value() == t2->constant_value());
   487       }
   488     case metaDataTag:
   489       {
   490         MetadataType* t1 =    type()->as_MetadataType();
   491         MetadataType* t2 = v->type()->as_MetadataType();
   492         return (t1 != NULL && t2 != NULL &&
   493                 t1->is_loaded() && t2->is_loaded() &&
   494                 t1->constant_value() == t2->constant_value());
   495       }
   496   }
   497   return false;
   498 }
   500 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
   501   Constant* rc = right->as_Constant();
   502   // other is not a constant
   503   if (rc == NULL) return not_comparable;
   505   ValueType* lt = type();
   506   ValueType* rt = rc->type();
   507   // different types
   508   if (lt->base() != rt->base()) return not_comparable;
   509   switch (lt->tag()) {
   510   case intTag: {
   511     int x = lt->as_IntConstant()->value();
   512     int y = rt->as_IntConstant()->value();
   513     switch (cond) {
   514     case If::eql: return x == y ? cond_true : cond_false;
   515     case If::neq: return x != y ? cond_true : cond_false;
   516     case If::lss: return x <  y ? cond_true : cond_false;
   517     case If::leq: return x <= y ? cond_true : cond_false;
   518     case If::gtr: return x >  y ? cond_true : cond_false;
   519     case If::geq: return x >= y ? cond_true : cond_false;
   520     }
   521     break;
   522   }
   523   case longTag: {
   524     jlong x = lt->as_LongConstant()->value();
   525     jlong y = rt->as_LongConstant()->value();
   526     switch (cond) {
   527     case If::eql: return x == y ? cond_true : cond_false;
   528     case If::neq: return x != y ? cond_true : cond_false;
   529     case If::lss: return x <  y ? cond_true : cond_false;
   530     case If::leq: return x <= y ? cond_true : cond_false;
   531     case If::gtr: return x >  y ? cond_true : cond_false;
   532     case If::geq: return x >= y ? cond_true : cond_false;
   533     }
   534     break;
   535   }
   536   case objectTag: {
   537     ciObject* xvalue = lt->as_ObjectType()->constant_value();
   538     ciObject* yvalue = rt->as_ObjectType()->constant_value();
   539     assert(xvalue != NULL && yvalue != NULL, "not constants");
   540     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   541       switch (cond) {
   542       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
   543       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
   544       }
   545     }
   546     break;
   547   }
   548   case metaDataTag: {
   549     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
   550     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
   551     assert(xvalue != NULL && yvalue != NULL, "not constants");
   552     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   553       switch (cond) {
   554       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
   555       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
   556       }
   557     }
   558     break;
   559   }
   560   }
   561   return not_comparable;
   562 }
   565 // Implementation of BlockBegin
   567 void BlockBegin::set_end(BlockEnd* end) {
   568   assert(end != NULL, "should not reset block end to NULL");
   569   if (end == _end) {
   570     return;
   571   }
   572   clear_end();
   574   // Set the new end
   575   _end = end;
   577   _successors.clear();
   578   // Now reset successors list based on BlockEnd
   579   for (int i = 0; i < end->number_of_sux(); i++) {
   580     BlockBegin* sux = end->sux_at(i);
   581     _successors.append(sux);
   582     sux->_predecessors.append(this);
   583   }
   584   _end->set_begin(this);
   585 }
   588 void BlockBegin::clear_end() {
   589   // Must make the predecessors/successors match up with the
   590   // BlockEnd's notion.
   591   if (_end != NULL) {
   592     // disconnect from the old end
   593     _end->set_begin(NULL);
   595     // disconnect this block from it's current successors
   596     for (int i = 0; i < _successors.length(); i++) {
   597       _successors.at(i)->remove_predecessor(this);
   598     }
   599     _end = NULL;
   600   }
   601 }
   604 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
   605   // disconnect any edges between from and to
   606 #ifndef PRODUCT
   607   if (PrintIR && Verbose) {
   608     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
   609   }
   610 #endif
   611   for (int s = 0; s < from->number_of_sux();) {
   612     BlockBegin* sux = from->sux_at(s);
   613     if (sux == to) {
   614       int index = sux->_predecessors.index_of(from);
   615       if (index >= 0) {
   616         sux->_predecessors.remove_at(index);
   617       }
   618       from->_successors.remove_at(s);
   619     } else {
   620       s++;
   621     }
   622   }
   623 }
   626 void BlockBegin::disconnect_from_graph() {
   627   // disconnect this block from all other blocks
   628   for (int p = 0; p < number_of_preds(); p++) {
   629     pred_at(p)->remove_successor(this);
   630   }
   631   for (int s = 0; s < number_of_sux(); s++) {
   632     sux_at(s)->remove_predecessor(this);
   633   }
   634 }
   636 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   637   // modify predecessors before substituting successors
   638   for (int i = 0; i < number_of_sux(); i++) {
   639     if (sux_at(i) == old_sux) {
   640       // remove old predecessor before adding new predecessor
   641       // otherwise there is a dead predecessor in the list
   642       new_sux->remove_predecessor(old_sux);
   643       new_sux->add_predecessor(this);
   644     }
   645   }
   646   old_sux->remove_predecessor(this);
   647   end()->substitute_sux(old_sux, new_sux);
   648 }
   652 // In general it is not possible to calculate a value for the field "depth_first_number"
   653 // of the inserted block, without recomputing the values of the other blocks
   654 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
   655 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
   656   int bci = sux->bci();
   657   // critical edge splitting may introduce a goto after a if and array
   658   // bound check elimination may insert a predicate between the if and
   659   // goto. The bci of the goto can't be the one of the if otherwise
   660   // the state and bci are inconsistent and a deoptimization triggered
   661   // by the predicate would lead to incorrect execution/a crash.
   662   BlockBegin* new_sux = new BlockBegin(bci);
   664   // mark this block (special treatment when block order is computed)
   665   new_sux->set(critical_edge_split_flag);
   667   // This goto is not a safepoint.
   668   Goto* e = new Goto(sux, false);
   669   new_sux->set_next(e, bci);
   670   new_sux->set_end(e);
   671   // setup states
   672   ValueStack* s = end()->state();
   673   new_sux->set_state(s->copy(s->kind(), bci));
   674   e->set_state(s->copy(s->kind(), bci));
   675   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
   676   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
   677   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
   679   // link predecessor to new block
   680   end()->substitute_sux(sux, new_sux);
   682   // The ordering needs to be the same, so remove the link that the
   683   // set_end call above added and substitute the new_sux for this
   684   // block.
   685   sux->remove_predecessor(new_sux);
   687   // the successor could be the target of a switch so it might have
   688   // multiple copies of this predecessor, so substitute the new_sux
   689   // for the first and delete the rest.
   690   bool assigned = false;
   691   BlockList& list = sux->_predecessors;
   692   for (int i = 0; i < list.length(); i++) {
   693     BlockBegin** b = list.adr_at(i);
   694     if (*b == this) {
   695       if (assigned) {
   696         list.remove_at(i);
   697         // reprocess this index
   698         i--;
   699       } else {
   700         assigned = true;
   701         *b = new_sux;
   702       }
   703       // link the new block back to it's predecessors.
   704       new_sux->add_predecessor(this);
   705     }
   706   }
   707   assert(assigned == true, "should have assigned at least once");
   708   return new_sux;
   709 }
   712 void BlockBegin::remove_successor(BlockBegin* pred) {
   713   int idx;
   714   while ((idx = _successors.index_of(pred)) >= 0) {
   715     _successors.remove_at(idx);
   716   }
   717 }
   720 void BlockBegin::add_predecessor(BlockBegin* pred) {
   721   _predecessors.append(pred);
   722 }
   725 void BlockBegin::remove_predecessor(BlockBegin* pred) {
   726   int idx;
   727   while ((idx = _predecessors.index_of(pred)) >= 0) {
   728     _predecessors.remove_at(idx);
   729   }
   730 }
   733 void BlockBegin::add_exception_handler(BlockBegin* b) {
   734   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
   735   // add only if not in the list already
   736   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
   737 }
   739 int BlockBegin::add_exception_state(ValueStack* state) {
   740   assert(is_set(exception_entry_flag), "only for xhandlers");
   741   if (_exception_states == NULL) {
   742     _exception_states = new ValueStackStack(4);
   743   }
   744   _exception_states->append(state);
   745   return _exception_states->length() - 1;
   746 }
   749 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
   750   if (!mark.at(block_id())) {
   751     mark.at_put(block_id(), true);
   752     closure->block_do(this);
   753     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
   754     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
   755     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
   756   }
   757 }
   760 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
   761   if (!mark.at(block_id())) {
   762     mark.at_put(block_id(), true);
   763     BlockEnd* e = end();
   764     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
   765     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
   766     closure->block_do(this);
   767   }
   768 }
   771 void BlockBegin::iterate_preorder(BlockClosure* closure) {
   772   boolArray mark(number_of_blocks(), false);
   773   iterate_preorder(mark, closure);
   774 }
   777 void BlockBegin::iterate_postorder(BlockClosure* closure) {
   778   boolArray mark(number_of_blocks(), false);
   779   iterate_postorder(mark, closure);
   780 }
   783 void BlockBegin::block_values_do(ValueVisitor* f) {
   784   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
   785 }
   788 #ifndef PRODUCT
   789    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
   790 #else
   791    #define TRACE_PHI(coce)
   792 #endif
   795 bool BlockBegin::try_merge(ValueStack* new_state) {
   796   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
   798   // local variables used for state iteration
   799   int index;
   800   Value new_value, existing_value;
   802   ValueStack* existing_state = state();
   803   if (existing_state == NULL) {
   804     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
   806     if (is_set(BlockBegin::was_visited_flag)) {
   807       // this actually happens for complicated jsr/ret structures
   808       return false; // BAILOUT in caller
   809     }
   811     // copy state because it is altered
   812     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
   814     // Use method liveness to invalidate dead locals
   815     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
   816     if (liveness.is_valid()) {
   817       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
   819       for_each_local_value(new_state, index, new_value) {
   820         if (!liveness.at(index) || new_value->type()->is_illegal()) {
   821           new_state->invalidate_local(index);
   822           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
   823         }
   824       }
   825     }
   827     if (is_set(BlockBegin::parser_loop_header_flag)) {
   828       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
   830       for_each_stack_value(new_state, index, new_value) {
   831         new_state->setup_phi_for_stack(this, index);
   832         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
   833       }
   835       BitMap requires_phi_function = new_state->scope()->requires_phi_function();
   837       for_each_local_value(new_state, index, new_value) {
   838         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
   839         if (requires_phi || !SelectivePhiFunctions) {
   840           new_state->setup_phi_for_local(this, index);
   841           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
   842         }
   843       }
   844     }
   846     // initialize state of block
   847     set_state(new_state);
   849   } else if (existing_state->is_same(new_state)) {
   850     TRACE_PHI(tty->print_cr("exisiting state found"));
   852     assert(existing_state->scope() == new_state->scope(), "not matching");
   853     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
   854     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
   856     if (is_set(BlockBegin::was_visited_flag)) {
   857       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
   859       if (!is_set(BlockBegin::parser_loop_header_flag)) {
   860         // this actually happens for complicated jsr/ret structures
   861         return false; // BAILOUT in caller
   862       }
   864       for_each_local_value(existing_state, index, existing_value) {
   865         Value new_value = new_state->local_at(index);
   866         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   867           // The old code invalidated the phi function here
   868           // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
   869           return false; // BAILOUT in caller
   870         }
   871       }
   873 #ifdef ASSERT
   874       // check that all necessary phi functions are present
   875       for_each_stack_value(existing_state, index, existing_value) {
   876         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
   877       }
   878       for_each_local_value(existing_state, index, existing_value) {
   879         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
   880       }
   881 #endif
   883     } else {
   884       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
   886       // create necessary phi functions for stack
   887       for_each_stack_value(existing_state, index, existing_value) {
   888         Value new_value = new_state->stack_at(index);
   889         Phi* existing_phi = existing_value->as_Phi();
   891         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   892           existing_state->setup_phi_for_stack(this, index);
   893           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
   894         }
   895       }
   897       // create necessary phi functions for locals
   898       for_each_local_value(existing_state, index, existing_value) {
   899         Value new_value = new_state->local_at(index);
   900         Phi* existing_phi = existing_value->as_Phi();
   902         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   903           existing_state->invalidate_local(index);
   904           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
   905         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   906           existing_state->setup_phi_for_local(this, index);
   907           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
   908         }
   909       }
   910     }
   912     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
   914   } else {
   915     assert(false, "stack or locks not matching (invalid bytecodes)");
   916     return false;
   917   }
   919   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
   921   return true;
   922 }
   925 #ifndef PRODUCT
   926 void BlockBegin::print_block() {
   927   InstructionPrinter ip;
   928   print_block(ip, false);
   929 }
   932 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
   933   ip.print_instr(this); tty->cr();
   934   ip.print_stack(this->state()); tty->cr();
   935   ip.print_inline_level(this);
   936   ip.print_head();
   937   for (Instruction* n = next(); n != NULL; n = n->next()) {
   938     if (!live_only || n->is_pinned() || n->use_count() > 0) {
   939       ip.print_line(n);
   940     }
   941   }
   942   tty->cr();
   943 }
   944 #endif // PRODUCT
   947 // Implementation of BlockList
   949 void BlockList::iterate_forward (BlockClosure* closure) {
   950   const int l = length();
   951   for (int i = 0; i < l; i++) closure->block_do(at(i));
   952 }
   955 void BlockList::iterate_backward(BlockClosure* closure) {
   956   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
   957 }
   960 void BlockList::blocks_do(void f(BlockBegin*)) {
   961   for (int i = length() - 1; i >= 0; i--) f(at(i));
   962 }
   965 void BlockList::values_do(ValueVisitor* f) {
   966   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
   967 }
   970 #ifndef PRODUCT
   971 void BlockList::print(bool cfg_only, bool live_only) {
   972   InstructionPrinter ip;
   973   for (int i = 0; i < length(); i++) {
   974     BlockBegin* block = at(i);
   975     if (cfg_only) {
   976       ip.print_instr(block); tty->cr();
   977     } else {
   978       block->print_block(ip, live_only);
   979     }
   980   }
   981 }
   982 #endif // PRODUCT
   985 // Implementation of BlockEnd
   987 void BlockEnd::set_begin(BlockBegin* begin) {
   988   BlockList* sux = NULL;
   989   if (begin != NULL) {
   990     sux = begin->successors();
   991   } else if (this->begin() != NULL) {
   992     // copy our sux list
   993     BlockList* sux = new BlockList(this->begin()->number_of_sux());
   994     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
   995       sux->append(this->begin()->sux_at(i));
   996     }
   997   }
   998   _sux = sux;
   999 }
  1002 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
  1003   substitute(*_sux, old_sux, new_sux);
  1007 // Implementation of Phi
  1009 // Normal phi functions take their operands from the last instruction of the
  1010 // predecessor. Special handling is needed for xhanlder entries because there
  1011 // the state of arbitrary instructions are needed.
  1013 Value Phi::operand_at(int i) const {
  1014   ValueStack* state;
  1015   if (_block->is_set(BlockBegin::exception_entry_flag)) {
  1016     state = _block->exception_state_at(i);
  1017   } else {
  1018     state = _block->pred_at(i)->end()->state();
  1020   assert(state != NULL, "");
  1022   if (is_local()) {
  1023     return state->local_at(local_index());
  1024   } else {
  1025     return state->stack_at(stack_index());
  1030 int Phi::operand_count() const {
  1031   if (_block->is_set(BlockBegin::exception_entry_flag)) {
  1032     return _block->number_of_exception_states();
  1033   } else {
  1034     return _block->number_of_preds();
  1038 #ifdef ASSERT
  1039 // Constructor of Assert
  1040 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
  1041   , _x(x)
  1042   , _cond(cond)
  1043   , _y(y)
  1045   set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1046   assert(x->type()->tag() == y->type()->tag(), "types must match");
  1047   pin();
  1049   stringStream strStream;
  1050   Compilation::current()->method()->print_name(&strStream);
  1052   stringStream strStream1;
  1053   InstructionPrinter ip1(1, &strStream1);
  1054   ip1.print_instr(x);
  1056   stringStream strStream2;
  1057   InstructionPrinter ip2(1, &strStream2);
  1058   ip2.print_instr(y);
  1060   stringStream ss;
  1061   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
  1063   _message = ss.as_string();
  1065 #endif
  1067 void RangeCheckPredicate::check_state() {
  1068   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
  1071 void ProfileInvoke::state_values_do(ValueVisitor* f) {
  1072   if (state() != NULL) state()->values_do(f);

mercurial