src/share/vm/runtime/sharedRuntime.cpp

Tue, 26 Apr 2011 14:04:43 -0400

author
coleenp
date
Tue, 26 Apr 2011 14:04:43 -0400
changeset 2804
01147d8aac1d
parent 2743
758ba0bf7bcc
child 2806
2a23b1b5a0a8
permissions
-rw-r--r--

7009923: JSR 292: VM crash in JavaThread::last_frame
Summary: Handle stack overflow before the first frame is called, by printing out the called method and not walking the stack.
Reviewed-by: dholmes, phh, dsamersoff

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 #include <math.h>
    85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    87                       char*, int, char*, int, char*, int);
    88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    89                       char*, int, char*, int, char*, int);
    91 // Implementation of SharedRuntime
    93 #ifndef PRODUCT
    94 // For statistics
    95 int SharedRuntime::_ic_miss_ctr = 0;
    96 int SharedRuntime::_wrong_method_ctr = 0;
    97 int SharedRuntime::_resolve_static_ctr = 0;
    98 int SharedRuntime::_resolve_virtual_ctr = 0;
    99 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   100 int SharedRuntime::_implicit_null_throws = 0;
   101 int SharedRuntime::_implicit_div0_throws = 0;
   102 int SharedRuntime::_throw_null_ctr = 0;
   104 int SharedRuntime::_nof_normal_calls = 0;
   105 int SharedRuntime::_nof_optimized_calls = 0;
   106 int SharedRuntime::_nof_inlined_calls = 0;
   107 int SharedRuntime::_nof_megamorphic_calls = 0;
   108 int SharedRuntime::_nof_static_calls = 0;
   109 int SharedRuntime::_nof_inlined_static_calls = 0;
   110 int SharedRuntime::_nof_interface_calls = 0;
   111 int SharedRuntime::_nof_optimized_interface_calls = 0;
   112 int SharedRuntime::_nof_inlined_interface_calls = 0;
   113 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   114 int SharedRuntime::_nof_removable_exceptions = 0;
   116 int SharedRuntime::_new_instance_ctr=0;
   117 int SharedRuntime::_new_array_ctr=0;
   118 int SharedRuntime::_multi1_ctr=0;
   119 int SharedRuntime::_multi2_ctr=0;
   120 int SharedRuntime::_multi3_ctr=0;
   121 int SharedRuntime::_multi4_ctr=0;
   122 int SharedRuntime::_multi5_ctr=0;
   123 int SharedRuntime::_mon_enter_stub_ctr=0;
   124 int SharedRuntime::_mon_exit_stub_ctr=0;
   125 int SharedRuntime::_mon_enter_ctr=0;
   126 int SharedRuntime::_mon_exit_ctr=0;
   127 int SharedRuntime::_partial_subtype_ctr=0;
   128 int SharedRuntime::_jbyte_array_copy_ctr=0;
   129 int SharedRuntime::_jshort_array_copy_ctr=0;
   130 int SharedRuntime::_jint_array_copy_ctr=0;
   131 int SharedRuntime::_jlong_array_copy_ctr=0;
   132 int SharedRuntime::_oop_array_copy_ctr=0;
   133 int SharedRuntime::_checkcast_array_copy_ctr=0;
   134 int SharedRuntime::_unsafe_array_copy_ctr=0;
   135 int SharedRuntime::_generic_array_copy_ctr=0;
   136 int SharedRuntime::_slow_array_copy_ctr=0;
   137 int SharedRuntime::_find_handler_ctr=0;
   138 int SharedRuntime::_rethrow_ctr=0;
   140 int     SharedRuntime::_ICmiss_index                    = 0;
   141 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   142 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   144 void SharedRuntime::trace_ic_miss(address at) {
   145   for (int i = 0; i < _ICmiss_index; i++) {
   146     if (_ICmiss_at[i] == at) {
   147       _ICmiss_count[i]++;
   148       return;
   149     }
   150   }
   151   int index = _ICmiss_index++;
   152   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   153   _ICmiss_at[index] = at;
   154   _ICmiss_count[index] = 1;
   155 }
   157 void SharedRuntime::print_ic_miss_histogram() {
   158   if (ICMissHistogram) {
   159     tty->print_cr ("IC Miss Histogram:");
   160     int tot_misses = 0;
   161     for (int i = 0; i < _ICmiss_index; i++) {
   162       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   163       tot_misses += _ICmiss_count[i];
   164     }
   165     tty->print_cr ("Total IC misses: %7d", tot_misses);
   166   }
   167 }
   168 #endif // PRODUCT
   170 #ifndef SERIALGC
   172 // G1 write-barrier pre: executed before a pointer store.
   173 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   174   if (orig == NULL) {
   175     assert(false, "should be optimized out");
   176     return;
   177   }
   178   assert(orig->is_oop(true /* ignore mark word */), "Error");
   179   // store the original value that was in the field reference
   180   thread->satb_mark_queue().enqueue(orig);
   181 JRT_END
   183 // G1 write-barrier post: executed after a pointer store.
   184 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   185   thread->dirty_card_queue().enqueue(card_addr);
   186 JRT_END
   188 #endif // !SERIALGC
   191 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   192   return x * y;
   193 JRT_END
   196 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   197   if (x == min_jlong && y == CONST64(-1)) {
   198     return x;
   199   } else {
   200     return x / y;
   201   }
   202 JRT_END
   205 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   206   if (x == min_jlong && y == CONST64(-1)) {
   207     return 0;
   208   } else {
   209     return x % y;
   210   }
   211 JRT_END
   214 const juint  float_sign_mask  = 0x7FFFFFFF;
   215 const juint  float_infinity   = 0x7F800000;
   216 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   217 const julong double_infinity  = CONST64(0x7FF0000000000000);
   219 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   220 #ifdef _WIN64
   221   // 64-bit Windows on amd64 returns the wrong values for
   222   // infinity operands.
   223   union { jfloat f; juint i; } xbits, ybits;
   224   xbits.f = x;
   225   ybits.f = y;
   226   // x Mod Infinity == x unless x is infinity
   227   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   228        ((ybits.i & float_sign_mask) == float_infinity) ) {
   229     return x;
   230   }
   231 #endif
   232   return ((jfloat)fmod((double)x,(double)y));
   233 JRT_END
   236 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   237 #ifdef _WIN64
   238   union { jdouble d; julong l; } xbits, ybits;
   239   xbits.d = x;
   240   ybits.d = y;
   241   // x Mod Infinity == x unless x is infinity
   242   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   243        ((ybits.l & double_sign_mask) == double_infinity) ) {
   244     return x;
   245   }
   246 #endif
   247   return ((jdouble)fmod((double)x,(double)y));
   248 JRT_END
   250 #ifdef __SOFTFP__
   251 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   252   return x + y;
   253 JRT_END
   255 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   256   return x - y;
   257 JRT_END
   259 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   260   return x * y;
   261 JRT_END
   263 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   264   return x / y;
   265 JRT_END
   267 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   268   return x + y;
   269 JRT_END
   271 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   272   return x - y;
   273 JRT_END
   275 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   276   return x * y;
   277 JRT_END
   279 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   280   return x / y;
   281 JRT_END
   283 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   284   return (jfloat)x;
   285 JRT_END
   287 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   288   return (jdouble)x;
   289 JRT_END
   291 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   292   return (jdouble)x;
   293 JRT_END
   295 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   296   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   297 JRT_END
   299 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   301 JRT_END
   303 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   304   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   305 JRT_END
   307 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   308   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   309 JRT_END
   311 // Functions to return the opposite of the aeabi functions for nan.
   312 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   313   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   314 JRT_END
   316 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   317   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   318 JRT_END
   320 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   321   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   322 JRT_END
   324 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   325   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   326 JRT_END
   328 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   329   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   330 JRT_END
   332 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   333   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   334 JRT_END
   336 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   337   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   338 JRT_END
   340 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   341   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   342 JRT_END
   344 // Intrinsics make gcc generate code for these.
   345 float  SharedRuntime::fneg(float f)   {
   346   return -f;
   347 }
   349 double SharedRuntime::dneg(double f)  {
   350   return -f;
   351 }
   353 #endif // __SOFTFP__
   355 #if defined(__SOFTFP__) || defined(E500V2)
   356 // Intrinsics make gcc generate code for these.
   357 double SharedRuntime::dabs(double f)  {
   358   return (f <= (double)0.0) ? (double)0.0 - f : f;
   359 }
   361 #endif
   363 #if defined(__SOFTFP__) || defined(PPC)
   364 double SharedRuntime::dsqrt(double f) {
   365   return sqrt(f);
   366 }
   367 #endif
   369 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   370   if (g_isnan(x))
   371     return 0;
   372   if (x >= (jfloat) max_jint)
   373     return max_jint;
   374   if (x <= (jfloat) min_jint)
   375     return min_jint;
   376   return (jint) x;
   377 JRT_END
   380 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   381   if (g_isnan(x))
   382     return 0;
   383   if (x >= (jfloat) max_jlong)
   384     return max_jlong;
   385   if (x <= (jfloat) min_jlong)
   386     return min_jlong;
   387   return (jlong) x;
   388 JRT_END
   391 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   392   if (g_isnan(x))
   393     return 0;
   394   if (x >= (jdouble) max_jint)
   395     return max_jint;
   396   if (x <= (jdouble) min_jint)
   397     return min_jint;
   398   return (jint) x;
   399 JRT_END
   402 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   403   if (g_isnan(x))
   404     return 0;
   405   if (x >= (jdouble) max_jlong)
   406     return max_jlong;
   407   if (x <= (jdouble) min_jlong)
   408     return min_jlong;
   409   return (jlong) x;
   410 JRT_END
   413 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   414   return (jfloat)x;
   415 JRT_END
   418 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   419   return (jfloat)x;
   420 JRT_END
   423 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   424   return (jdouble)x;
   425 JRT_END
   427 // Exception handling accross interpreter/compiler boundaries
   428 //
   429 // exception_handler_for_return_address(...) returns the continuation address.
   430 // The continuation address is the entry point of the exception handler of the
   431 // previous frame depending on the return address.
   433 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   434   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   436   // Reset method handle flag.
   437   thread->set_is_method_handle_return(false);
   439   // The fastest case first
   440   CodeBlob* blob = CodeCache::find_blob(return_address);
   441   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   442   if (nm != NULL) {
   443     // Set flag if return address is a method handle call site.
   444     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   445     // native nmethods don't have exception handlers
   446     assert(!nm->is_native_method(), "no exception handler");
   447     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   448     if (nm->is_deopt_pc(return_address)) {
   449       return SharedRuntime::deopt_blob()->unpack_with_exception();
   450     } else {
   451       return nm->exception_begin();
   452     }
   453   }
   455   // Entry code
   456   if (StubRoutines::returns_to_call_stub(return_address)) {
   457     return StubRoutines::catch_exception_entry();
   458   }
   459   // Interpreted code
   460   if (Interpreter::contains(return_address)) {
   461     return Interpreter::rethrow_exception_entry();
   462   }
   464   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   465   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   467 #ifndef PRODUCT
   468   { ResourceMark rm;
   469     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   470     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   471     tty->print_cr("b) other problem");
   472   }
   473 #endif // PRODUCT
   475   ShouldNotReachHere();
   476   return NULL;
   477 }
   480 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   481   return raw_exception_handler_for_return_address(thread, return_address);
   482 JRT_END
   485 address SharedRuntime::get_poll_stub(address pc) {
   486   address stub;
   487   // Look up the code blob
   488   CodeBlob *cb = CodeCache::find_blob(pc);
   490   // Should be an nmethod
   491   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   493   // Look up the relocation information
   494   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   495     "safepoint polling: type must be poll" );
   497   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   498     "Only polling locations are used for safepoint");
   500   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   501   if (at_poll_return) {
   502     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   503            "polling page return stub not created yet");
   504     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   505   } else {
   506     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   507            "polling page safepoint stub not created yet");
   508     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   509   }
   510 #ifndef PRODUCT
   511   if( TraceSafepoint ) {
   512     char buf[256];
   513     jio_snprintf(buf, sizeof(buf),
   514                  "... found polling page %s exception at pc = "
   515                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   516                  at_poll_return ? "return" : "loop",
   517                  (intptr_t)pc, (intptr_t)stub);
   518     tty->print_raw_cr(buf);
   519   }
   520 #endif // PRODUCT
   521   return stub;
   522 }
   525 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   526   assert(caller.is_interpreted_frame(), "");
   527   int args_size = ArgumentSizeComputer(sig).size() + 1;
   528   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   529   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   530   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   531   return result;
   532 }
   535 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   536   if (JvmtiExport::can_post_on_exceptions()) {
   537     vframeStream vfst(thread, true);
   538     methodHandle method = methodHandle(thread, vfst.method());
   539     address bcp = method()->bcp_from(vfst.bci());
   540     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   541   }
   542   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   543 }
   545 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   546   Handle h_exception = Exceptions::new_exception(thread, name, message);
   547   throw_and_post_jvmti_exception(thread, h_exception);
   548 }
   550 // The interpreter code to call this tracing function is only
   551 // called/generated when TraceRedefineClasses has the right bits
   552 // set. Since obsolete methods are never compiled, we don't have
   553 // to modify the compilers to generate calls to this function.
   554 //
   555 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   556     JavaThread* thread, methodOopDesc* method))
   557   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   559   if (method->is_obsolete()) {
   560     // We are calling an obsolete method, but this is not necessarily
   561     // an error. Our method could have been redefined just after we
   562     // fetched the methodOop from the constant pool.
   564     // RC_TRACE macro has an embedded ResourceMark
   565     RC_TRACE_WITH_THREAD(0x00001000, thread,
   566                          ("calling obsolete method '%s'",
   567                           method->name_and_sig_as_C_string()));
   568     if (RC_TRACE_ENABLED(0x00002000)) {
   569       // this option is provided to debug calls to obsolete methods
   570       guarantee(false, "faulting at call to an obsolete method.");
   571     }
   572   }
   573   return 0;
   574 JRT_END
   576 // ret_pc points into caller; we are returning caller's exception handler
   577 // for given exception
   578 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   579                                                     bool force_unwind, bool top_frame_only) {
   580   assert(nm != NULL, "must exist");
   581   ResourceMark rm;
   583   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   584   // determine handler bci, if any
   585   EXCEPTION_MARK;
   587   int handler_bci = -1;
   588   int scope_depth = 0;
   589   if (!force_unwind) {
   590     int bci = sd->bci();
   591     do {
   592       bool skip_scope_increment = false;
   593       // exception handler lookup
   594       KlassHandle ek (THREAD, exception->klass());
   595       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   596       if (HAS_PENDING_EXCEPTION) {
   597         // We threw an exception while trying to find the exception handler.
   598         // Transfer the new exception to the exception handle which will
   599         // be set into thread local storage, and do another lookup for an
   600         // exception handler for this exception, this time starting at the
   601         // BCI of the exception handler which caused the exception to be
   602         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   603         // argument to ensure that the correct exception is thrown (4870175).
   604         exception = Handle(THREAD, PENDING_EXCEPTION);
   605         CLEAR_PENDING_EXCEPTION;
   606         if (handler_bci >= 0) {
   607           bci = handler_bci;
   608           handler_bci = -1;
   609           skip_scope_increment = true;
   610         }
   611       }
   612       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   613         sd = sd->sender();
   614         if (sd != NULL) {
   615           bci = sd->bci();
   616         }
   617         ++scope_depth;
   618       }
   619     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   620   }
   622   // found handling method => lookup exception handler
   623   int catch_pco = ret_pc - nm->code_begin();
   625   ExceptionHandlerTable table(nm);
   626   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   627   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   628     // Allow abbreviated catch tables.  The idea is to allow a method
   629     // to materialize its exceptions without committing to the exact
   630     // routing of exceptions.  In particular this is needed for adding
   631     // a synthethic handler to unlock monitors when inlining
   632     // synchonized methods since the unlock path isn't represented in
   633     // the bytecodes.
   634     t = table.entry_for(catch_pco, -1, 0);
   635   }
   637 #ifdef COMPILER1
   638   if (t == NULL && nm->is_compiled_by_c1()) {
   639     assert(nm->unwind_handler_begin() != NULL, "");
   640     return nm->unwind_handler_begin();
   641   }
   642 #endif
   644   if (t == NULL) {
   645     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   646     tty->print_cr("   Exception:");
   647     exception->print();
   648     tty->cr();
   649     tty->print_cr(" Compiled exception table :");
   650     table.print();
   651     nm->print_code();
   652     guarantee(false, "missing exception handler");
   653     return NULL;
   654   }
   656   return nm->code_begin() + t->pco();
   657 }
   659 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   660   // These errors occur only at call sites
   661   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   662 JRT_END
   664 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   665   // These errors occur only at call sites
   666   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   667 JRT_END
   669 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   670   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   671 JRT_END
   673 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   674   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   675 JRT_END
   677 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   678   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   679   // cache sites (when the callee activation is not yet set up) so we are at a call site
   680   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   681 JRT_END
   683 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   684   // We avoid using the normal exception construction in this case because
   685   // it performs an upcall to Java, and we're already out of stack space.
   686   klassOop k = SystemDictionary::StackOverflowError_klass();
   687   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   688   Handle exception (thread, exception_oop);
   689   if (StackTraceInThrowable) {
   690     java_lang_Throwable::fill_in_stack_trace(exception);
   691   }
   692   throw_and_post_jvmti_exception(thread, exception);
   693 JRT_END
   695 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   696                                                            address pc,
   697                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   698 {
   699   address target_pc = NULL;
   701   if (Interpreter::contains(pc)) {
   702 #ifdef CC_INTERP
   703     // C++ interpreter doesn't throw implicit exceptions
   704     ShouldNotReachHere();
   705 #else
   706     switch (exception_kind) {
   707       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   708       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   709       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   710       default:                      ShouldNotReachHere();
   711     }
   712 #endif // !CC_INTERP
   713   } else {
   714     switch (exception_kind) {
   715       case STACK_OVERFLOW: {
   716         // Stack overflow only occurs upon frame setup; the callee is
   717         // going to be unwound. Dispatch to a shared runtime stub
   718         // which will cause the StackOverflowError to be fabricated
   719         // and processed.
   720         // For stack overflow in deoptimization blob, cleanup thread.
   721         if (thread->deopt_mark() != NULL) {
   722           Deoptimization::cleanup_deopt_info(thread, NULL);
   723         }
   724         return StubRoutines::throw_StackOverflowError_entry();
   725       }
   727       case IMPLICIT_NULL: {
   728         if (VtableStubs::contains(pc)) {
   729           // We haven't yet entered the callee frame. Fabricate an
   730           // exception and begin dispatching it in the caller. Since
   731           // the caller was at a call site, it's safe to destroy all
   732           // caller-saved registers, as these entry points do.
   733           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   735           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   736           if (vt_stub == NULL) return NULL;
   738           if (vt_stub->is_abstract_method_error(pc)) {
   739             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   740             return StubRoutines::throw_AbstractMethodError_entry();
   741           } else {
   742             return StubRoutines::throw_NullPointerException_at_call_entry();
   743           }
   744         } else {
   745           CodeBlob* cb = CodeCache::find_blob(pc);
   747           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   748           if (cb == NULL) return NULL;
   750           // Exception happened in CodeCache. Must be either:
   751           // 1. Inline-cache check in C2I handler blob,
   752           // 2. Inline-cache check in nmethod, or
   753           // 3. Implict null exception in nmethod
   755           if (!cb->is_nmethod()) {
   756             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   757                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   758             // There is no handler here, so we will simply unwind.
   759             return StubRoutines::throw_NullPointerException_at_call_entry();
   760           }
   762           // Otherwise, it's an nmethod.  Consult its exception handlers.
   763           nmethod* nm = (nmethod*)cb;
   764           if (nm->inlinecache_check_contains(pc)) {
   765             // exception happened inside inline-cache check code
   766             // => the nmethod is not yet active (i.e., the frame
   767             // is not set up yet) => use return address pushed by
   768             // caller => don't push another return address
   769             return StubRoutines::throw_NullPointerException_at_call_entry();
   770           }
   772 #ifndef PRODUCT
   773           _implicit_null_throws++;
   774 #endif
   775           target_pc = nm->continuation_for_implicit_exception(pc);
   776           // If there's an unexpected fault, target_pc might be NULL,
   777           // in which case we want to fall through into the normal
   778           // error handling code.
   779         }
   781         break; // fall through
   782       }
   785       case IMPLICIT_DIVIDE_BY_ZERO: {
   786         nmethod* nm = CodeCache::find_nmethod(pc);
   787         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   788 #ifndef PRODUCT
   789         _implicit_div0_throws++;
   790 #endif
   791         target_pc = nm->continuation_for_implicit_exception(pc);
   792         // If there's an unexpected fault, target_pc might be NULL,
   793         // in which case we want to fall through into the normal
   794         // error handling code.
   795         break; // fall through
   796       }
   798       default: ShouldNotReachHere();
   799     }
   801     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   803     // for AbortVMOnException flag
   804     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   805     if (exception_kind == IMPLICIT_NULL) {
   806       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   807     } else {
   808       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   809     }
   810     return target_pc;
   811   }
   813   ShouldNotReachHere();
   814   return NULL;
   815 }
   818 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   819 {
   820   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   821 }
   822 JNI_END
   825 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   826   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   827 }
   830 #ifndef PRODUCT
   831 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   832   const frame f = thread->last_frame();
   833   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   834 #ifndef PRODUCT
   835   methodHandle mh(THREAD, f.interpreter_frame_method());
   836   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   837 #endif // !PRODUCT
   838   return preserve_this_value;
   839 JRT_END
   840 #endif // !PRODUCT
   843 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   844   os::yield_all(attempts);
   845 JRT_END
   848 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   849   assert(obj->is_oop(), "must be a valid oop");
   850   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   851   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   852 JRT_END
   855 jlong SharedRuntime::get_java_tid(Thread* thread) {
   856   if (thread != NULL) {
   857     if (thread->is_Java_thread()) {
   858       oop obj = ((JavaThread*)thread)->threadObj();
   859       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   860     }
   861   }
   862   return 0;
   863 }
   865 /**
   866  * This function ought to be a void function, but cannot be because
   867  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   868  * 6254741.  Once that is fixed we can remove the dummy return value.
   869  */
   870 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   871   return dtrace_object_alloc_base(Thread::current(), o);
   872 }
   874 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   875   assert(DTraceAllocProbes, "wrong call");
   876   Klass* klass = o->blueprint();
   877   int size = o->size();
   878   Symbol* name = klass->name();
   879   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   880                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   881   return 0;
   882 }
   884 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   885     JavaThread* thread, methodOopDesc* method))
   886   assert(DTraceMethodProbes, "wrong call");
   887   Symbol* kname = method->klass_name();
   888   Symbol* name = method->name();
   889   Symbol* sig = method->signature();
   890   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   891       kname->bytes(), kname->utf8_length(),
   892       name->bytes(), name->utf8_length(),
   893       sig->bytes(), sig->utf8_length());
   894   return 0;
   895 JRT_END
   897 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   898     JavaThread* thread, methodOopDesc* method))
   899   assert(DTraceMethodProbes, "wrong call");
   900   Symbol* kname = method->klass_name();
   901   Symbol* name = method->name();
   902   Symbol* sig = method->signature();
   903   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   904       kname->bytes(), kname->utf8_length(),
   905       name->bytes(), name->utf8_length(),
   906       sig->bytes(), sig->utf8_length());
   907   return 0;
   908 JRT_END
   911 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   912 // for a call current in progress, i.e., arguments has been pushed on stack
   913 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   914 // vtable updates, etc.  Caller frame must be compiled.
   915 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   916   ResourceMark rm(THREAD);
   918   // last java frame on stack (which includes native call frames)
   919   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   921   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   922 }
   925 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   926 // for a call current in progress, i.e., arguments has been pushed on stack
   927 // but callee has not been invoked yet.  Caller frame must be compiled.
   928 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   929                                               vframeStream& vfst,
   930                                               Bytecodes::Code& bc,
   931                                               CallInfo& callinfo, TRAPS) {
   932   Handle receiver;
   933   Handle nullHandle;  //create a handy null handle for exception returns
   935   assert(!vfst.at_end(), "Java frame must exist");
   937   // Find caller and bci from vframe
   938   methodHandle caller (THREAD, vfst.method());
   939   int          bci    = vfst.bci();
   941   // Find bytecode
   942   Bytecode_invoke bytecode(caller, bci);
   943   bc = bytecode.java_code();
   944   int bytecode_index = bytecode.index();
   946   // Find receiver for non-static call
   947   if (bc != Bytecodes::_invokestatic) {
   948     // This register map must be update since we need to find the receiver for
   949     // compiled frames. The receiver might be in a register.
   950     RegisterMap reg_map2(thread);
   951     frame stubFrame   = thread->last_frame();
   952     // Caller-frame is a compiled frame
   953     frame callerFrame = stubFrame.sender(&reg_map2);
   955     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
   956     if (callee.is_null()) {
   957       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   958     }
   959     // Retrieve from a compiled argument list
   960     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   962     if (receiver.is_null()) {
   963       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   964     }
   965   }
   967   // Resolve method. This is parameterized by bytecode.
   968   constantPoolHandle constants (THREAD, caller->constants());
   969   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   970   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   972 #ifdef ASSERT
   973   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   974   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
   975     assert(receiver.not_null(), "should have thrown exception");
   976     KlassHandle receiver_klass (THREAD, receiver->klass());
   977     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   978                             // klass is already loaded
   979     KlassHandle static_receiver_klass (THREAD, rk);
   980     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   981     if (receiver_klass->oop_is_instance()) {
   982       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   983         tty->print_cr("ERROR: Klass not yet initialized!!");
   984         receiver_klass.print();
   985       }
   986       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   987     }
   988   }
   989 #endif
   991   return receiver;
   992 }
   994 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   995   ResourceMark rm(THREAD);
   996   // We need first to check if any Java activations (compiled, interpreted)
   997   // exist on the stack since last JavaCall.  If not, we need
   998   // to get the target method from the JavaCall wrapper.
   999   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1000   methodHandle callee_method;
  1001   if (vfst.at_end()) {
  1002     // No Java frames were found on stack since we did the JavaCall.
  1003     // Hence the stack can only contain an entry_frame.  We need to
  1004     // find the target method from the stub frame.
  1005     RegisterMap reg_map(thread, false);
  1006     frame fr = thread->last_frame();
  1007     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1008     fr = fr.sender(&reg_map);
  1009     assert(fr.is_entry_frame(), "must be");
  1010     // fr is now pointing to the entry frame.
  1011     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1012     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1013   } else {
  1014     Bytecodes::Code bc;
  1015     CallInfo callinfo;
  1016     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1017     callee_method = callinfo.selected_method();
  1019   assert(callee_method()->is_method(), "must be");
  1020   return callee_method;
  1023 // Resolves a call.
  1024 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1025                                            bool is_virtual,
  1026                                            bool is_optimized, TRAPS) {
  1027   methodHandle callee_method;
  1028   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1029   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1030     int retry_count = 0;
  1031     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1032            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1033       // If has a pending exception then there is no need to re-try to
  1034       // resolve this method.
  1035       // If the method has been redefined, we need to try again.
  1036       // Hack: we have no way to update the vtables of arrays, so don't
  1037       // require that java.lang.Object has been updated.
  1039       // It is very unlikely that method is redefined more than 100 times
  1040       // in the middle of resolve. If it is looping here more than 100 times
  1041       // means then there could be a bug here.
  1042       guarantee((retry_count++ < 100),
  1043                 "Could not resolve to latest version of redefined method");
  1044       // method is redefined in the middle of resolve so re-try.
  1045       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1048   return callee_method;
  1051 // Resolves a call.  The compilers generate code for calls that go here
  1052 // and are patched with the real destination of the call.
  1053 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1054                                            bool is_virtual,
  1055                                            bool is_optimized, TRAPS) {
  1057   ResourceMark rm(thread);
  1058   RegisterMap cbl_map(thread, false);
  1059   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1061   CodeBlob* caller_cb = caller_frame.cb();
  1062   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1063   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1064   // make sure caller is not getting deoptimized
  1065   // and removed before we are done with it.
  1066   // CLEANUP - with lazy deopt shouldn't need this lock
  1067   nmethodLocker caller_lock(caller_nm);
  1070   // determine call info & receiver
  1071   // note: a) receiver is NULL for static calls
  1072   //       b) an exception is thrown if receiver is NULL for non-static calls
  1073   CallInfo call_info;
  1074   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1075   Handle receiver = find_callee_info(thread, invoke_code,
  1076                                      call_info, CHECK_(methodHandle()));
  1077   methodHandle callee_method = call_info.selected_method();
  1079   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
  1080          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
  1082 #ifndef PRODUCT
  1083   // tracing/debugging/statistics
  1084   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1085                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1086                                (&_resolve_static_ctr);
  1087   Atomic::inc(addr);
  1089   if (TraceCallFixup) {
  1090     ResourceMark rm(thread);
  1091     tty->print("resolving %s%s (%s) call to",
  1092       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1093       Bytecodes::name(invoke_code));
  1094     callee_method->print_short_name(tty);
  1095     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1097 #endif
  1099   // JSR 292
  1100   // If the resolved method is a MethodHandle invoke target the call
  1101   // site must be a MethodHandle call site.
  1102   if (callee_method->is_method_handle_invoke()) {
  1103     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1106   // Compute entry points. This might require generation of C2I converter
  1107   // frames, so we cannot be holding any locks here. Furthermore, the
  1108   // computation of the entry points is independent of patching the call.  We
  1109   // always return the entry-point, but we only patch the stub if the call has
  1110   // not been deoptimized.  Return values: For a virtual call this is an
  1111   // (cached_oop, destination address) pair. For a static call/optimized
  1112   // virtual this is just a destination address.
  1114   StaticCallInfo static_call_info;
  1115   CompiledICInfo virtual_call_info;
  1117   // Make sure the callee nmethod does not get deoptimized and removed before
  1118   // we are done patching the code.
  1119   nmethod* callee_nm = callee_method->code();
  1120   nmethodLocker nl_callee(callee_nm);
  1121 #ifdef ASSERT
  1122   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1123 #endif
  1125   if (is_virtual) {
  1126     assert(receiver.not_null(), "sanity check");
  1127     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1128     KlassHandle h_klass(THREAD, receiver->klass());
  1129     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1130                      is_optimized, static_bound, virtual_call_info,
  1131                      CHECK_(methodHandle()));
  1132   } else {
  1133     // static call
  1134     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1137   // grab lock, check for deoptimization and potentially patch caller
  1139     MutexLocker ml_patch(CompiledIC_lock);
  1141     // Now that we are ready to patch if the methodOop was redefined then
  1142     // don't update call site and let the caller retry.
  1144     if (!callee_method->is_old()) {
  1145 #ifdef ASSERT
  1146       // We must not try to patch to jump to an already unloaded method.
  1147       if (dest_entry_point != 0) {
  1148         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1149                "should not unload nmethod while locked");
  1151 #endif
  1152       if (is_virtual) {
  1153         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1154         if (inline_cache->is_clean()) {
  1155           inline_cache->set_to_monomorphic(virtual_call_info);
  1157       } else {
  1158         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1159         if (ssc->is_clean()) ssc->set(static_call_info);
  1163   } // unlock CompiledIC_lock
  1165   return callee_method;
  1169 // Inline caches exist only in compiled code
  1170 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1171 #ifdef ASSERT
  1172   RegisterMap reg_map(thread, false);
  1173   frame stub_frame = thread->last_frame();
  1174   assert(stub_frame.is_runtime_frame(), "sanity check");
  1175   frame caller_frame = stub_frame.sender(&reg_map);
  1176   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1177 #endif /* ASSERT */
  1179   methodHandle callee_method;
  1180   JRT_BLOCK
  1181     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1182     // Return methodOop through TLS
  1183     thread->set_vm_result(callee_method());
  1184   JRT_BLOCK_END
  1185   // return compiled code entry point after potential safepoints
  1186   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1187   return callee_method->verified_code_entry();
  1188 JRT_END
  1191 // Handle call site that has been made non-entrant
  1192 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1193   // 6243940 We might end up in here if the callee is deoptimized
  1194   // as we race to call it.  We don't want to take a safepoint if
  1195   // the caller was interpreted because the caller frame will look
  1196   // interpreted to the stack walkers and arguments are now
  1197   // "compiled" so it is much better to make this transition
  1198   // invisible to the stack walking code. The i2c path will
  1199   // place the callee method in the callee_target. It is stashed
  1200   // there because if we try and find the callee by normal means a
  1201   // safepoint is possible and have trouble gc'ing the compiled args.
  1202   RegisterMap reg_map(thread, false);
  1203   frame stub_frame = thread->last_frame();
  1204   assert(stub_frame.is_runtime_frame(), "sanity check");
  1205   frame caller_frame = stub_frame.sender(&reg_map);
  1207   // MethodHandle invokes don't have a CompiledIC and should always
  1208   // simply redispatch to the callee_target.
  1209   address   sender_pc = caller_frame.pc();
  1210   CodeBlob* sender_cb = caller_frame.cb();
  1211   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1212   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1213   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1214     // If the callee_target is set, then we have come here via an i2c
  1215     // adapter.
  1216     methodOop callee = thread->callee_target();
  1217     if (callee != NULL) {
  1218       assert(callee->is_method(), "sanity");
  1219       is_mh_invoke_via_adapter = true;
  1223   if (caller_frame.is_interpreted_frame() ||
  1224       caller_frame.is_entry_frame()       ||
  1225       is_mh_invoke_via_adapter) {
  1226     methodOop callee = thread->callee_target();
  1227     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1228     thread->set_vm_result(callee);
  1229     thread->set_callee_target(NULL);
  1230     return callee->get_c2i_entry();
  1233   // Must be compiled to compiled path which is safe to stackwalk
  1234   methodHandle callee_method;
  1235   JRT_BLOCK
  1236     // Force resolving of caller (if we called from compiled frame)
  1237     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1238     thread->set_vm_result(callee_method());
  1239   JRT_BLOCK_END
  1240   // return compiled code entry point after potential safepoints
  1241   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1242   return callee_method->verified_code_entry();
  1243 JRT_END
  1246 // resolve a static call and patch code
  1247 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1248   methodHandle callee_method;
  1249   JRT_BLOCK
  1250     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1251     thread->set_vm_result(callee_method());
  1252   JRT_BLOCK_END
  1253   // return compiled code entry point after potential safepoints
  1254   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1255   return callee_method->verified_code_entry();
  1256 JRT_END
  1259 // resolve virtual call and update inline cache to monomorphic
  1260 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1261   methodHandle callee_method;
  1262   JRT_BLOCK
  1263     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1264     thread->set_vm_result(callee_method());
  1265   JRT_BLOCK_END
  1266   // return compiled code entry point after potential safepoints
  1267   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1268   return callee_method->verified_code_entry();
  1269 JRT_END
  1272 // Resolve a virtual call that can be statically bound (e.g., always
  1273 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1274 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1275   methodHandle callee_method;
  1276   JRT_BLOCK
  1277     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1278     thread->set_vm_result(callee_method());
  1279   JRT_BLOCK_END
  1280   // return compiled code entry point after potential safepoints
  1281   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1282   return callee_method->verified_code_entry();
  1283 JRT_END
  1289 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1290   ResourceMark rm(thread);
  1291   CallInfo call_info;
  1292   Bytecodes::Code bc;
  1294   // receiver is NULL for static calls. An exception is thrown for NULL
  1295   // receivers for non-static calls
  1296   Handle receiver = find_callee_info(thread, bc, call_info,
  1297                                      CHECK_(methodHandle()));
  1298   // Compiler1 can produce virtual call sites that can actually be statically bound
  1299   // If we fell thru to below we would think that the site was going megamorphic
  1300   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1301   // we'd try and do a vtable dispatch however methods that can be statically bound
  1302   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1303   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1304   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1305   // never to miss again. I don't believe C2 will produce code like this but if it
  1306   // did this would still be the correct thing to do for it too, hence no ifdef.
  1307   //
  1308   if (call_info.resolved_method()->can_be_statically_bound()) {
  1309     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1310     if (TraceCallFixup) {
  1311       RegisterMap reg_map(thread, false);
  1312       frame caller_frame = thread->last_frame().sender(&reg_map);
  1313       ResourceMark rm(thread);
  1314       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1315       callee_method->print_short_name(tty);
  1316       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1317       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1319     return callee_method;
  1322   methodHandle callee_method = call_info.selected_method();
  1324   bool should_be_mono = false;
  1326 #ifndef PRODUCT
  1327   Atomic::inc(&_ic_miss_ctr);
  1329   // Statistics & Tracing
  1330   if (TraceCallFixup) {
  1331     ResourceMark rm(thread);
  1332     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1333     callee_method->print_short_name(tty);
  1334     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1337   if (ICMissHistogram) {
  1338     MutexLocker m(VMStatistic_lock);
  1339     RegisterMap reg_map(thread, false);
  1340     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1341     // produce statistics under the lock
  1342     trace_ic_miss(f.pc());
  1344 #endif
  1346   // install an event collector so that when a vtable stub is created the
  1347   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1348   // event can't be posted when the stub is created as locks are held
  1349   // - instead the event will be deferred until the event collector goes
  1350   // out of scope.
  1351   JvmtiDynamicCodeEventCollector event_collector;
  1353   // Update inline cache to megamorphic. Skip update if caller has been
  1354   // made non-entrant or we are called from interpreted.
  1355   { MutexLocker ml_patch (CompiledIC_lock);
  1356     RegisterMap reg_map(thread, false);
  1357     frame caller_frame = thread->last_frame().sender(&reg_map);
  1358     CodeBlob* cb = caller_frame.cb();
  1359     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1360       // Not a non-entrant nmethod, so find inline_cache
  1361       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1362       bool should_be_mono = false;
  1363       if (inline_cache->is_optimized()) {
  1364         if (TraceCallFixup) {
  1365           ResourceMark rm(thread);
  1366           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1367           callee_method->print_short_name(tty);
  1368           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1370         should_be_mono = true;
  1371       } else {
  1372         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1373         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1375           if (receiver()->klass() == ic_oop->holder_klass()) {
  1376             // This isn't a real miss. We must have seen that compiled code
  1377             // is now available and we want the call site converted to a
  1378             // monomorphic compiled call site.
  1379             // We can't assert for callee_method->code() != NULL because it
  1380             // could have been deoptimized in the meantime
  1381             if (TraceCallFixup) {
  1382               ResourceMark rm(thread);
  1383               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1384               callee_method->print_short_name(tty);
  1385               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1387             should_be_mono = true;
  1392       if (should_be_mono) {
  1394         // We have a path that was monomorphic but was going interpreted
  1395         // and now we have (or had) a compiled entry. We correct the IC
  1396         // by using a new icBuffer.
  1397         CompiledICInfo info;
  1398         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1399         inline_cache->compute_monomorphic_entry(callee_method,
  1400                                                 receiver_klass,
  1401                                                 inline_cache->is_optimized(),
  1402                                                 false,
  1403                                                 info, CHECK_(methodHandle()));
  1404         inline_cache->set_to_monomorphic(info);
  1405       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1406         // Change to megamorphic
  1407         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1408       } else {
  1409         // Either clean or megamorphic
  1412   } // Release CompiledIC_lock
  1414   return callee_method;
  1417 //
  1418 // Resets a call-site in compiled code so it will get resolved again.
  1419 // This routines handles both virtual call sites, optimized virtual call
  1420 // sites, and static call sites. Typically used to change a call sites
  1421 // destination from compiled to interpreted.
  1422 //
  1423 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1424   ResourceMark rm(thread);
  1425   RegisterMap reg_map(thread, false);
  1426   frame stub_frame = thread->last_frame();
  1427   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1428   frame caller = stub_frame.sender(&reg_map);
  1430   // Do nothing if the frame isn't a live compiled frame.
  1431   // nmethod could be deoptimized by the time we get here
  1432   // so no update to the caller is needed.
  1434   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1436     address pc = caller.pc();
  1437     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1439     // Default call_addr is the location of the "basic" call.
  1440     // Determine the address of the call we a reresolving. With
  1441     // Inline Caches we will always find a recognizable call.
  1442     // With Inline Caches disabled we may or may not find a
  1443     // recognizable call. We will always find a call for static
  1444     // calls and for optimized virtual calls. For vanilla virtual
  1445     // calls it depends on the state of the UseInlineCaches switch.
  1446     //
  1447     // With Inline Caches disabled we can get here for a virtual call
  1448     // for two reasons:
  1449     //   1 - calling an abstract method. The vtable for abstract methods
  1450     //       will run us thru handle_wrong_method and we will eventually
  1451     //       end up in the interpreter to throw the ame.
  1452     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1453     //       call and between the time we fetch the entry address and
  1454     //       we jump to it the target gets deoptimized. Similar to 1
  1455     //       we will wind up in the interprter (thru a c2i with c2).
  1456     //
  1457     address call_addr = NULL;
  1459       // Get call instruction under lock because another thread may be
  1460       // busy patching it.
  1461       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1462       // Location of call instruction
  1463       if (NativeCall::is_call_before(pc)) {
  1464         NativeCall *ncall = nativeCall_before(pc);
  1465         call_addr = ncall->instruction_address();
  1469     // Check for static or virtual call
  1470     bool is_static_call = false;
  1471     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1472     // Make sure nmethod doesn't get deoptimized and removed until
  1473     // this is done with it.
  1474     // CLEANUP - with lazy deopt shouldn't need this lock
  1475     nmethodLocker nmlock(caller_nm);
  1477     if (call_addr != NULL) {
  1478       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1479       int ret = iter.next(); // Get item
  1480       if (ret) {
  1481         assert(iter.addr() == call_addr, "must find call");
  1482         if (iter.type() == relocInfo::static_call_type) {
  1483           is_static_call = true;
  1484         } else {
  1485           assert(iter.type() == relocInfo::virtual_call_type ||
  1486                  iter.type() == relocInfo::opt_virtual_call_type
  1487                 , "unexpected relocInfo. type");
  1489       } else {
  1490         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1493       // Cleaning the inline cache will force a new resolve. This is more robust
  1494       // than directly setting it to the new destination, since resolving of calls
  1495       // is always done through the same code path. (experience shows that it
  1496       // leads to very hard to track down bugs, if an inline cache gets updated
  1497       // to a wrong method). It should not be performance critical, since the
  1498       // resolve is only done once.
  1500       MutexLocker ml(CompiledIC_lock);
  1501       //
  1502       // We do not patch the call site if the nmethod has been made non-entrant
  1503       // as it is a waste of time
  1504       //
  1505       if (caller_nm->is_in_use()) {
  1506         if (is_static_call) {
  1507           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1508           ssc->set_to_clean();
  1509         } else {
  1510           // compiled, dispatched call (which used to call an interpreted method)
  1511           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1512           inline_cache->set_to_clean();
  1519   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1522 #ifndef PRODUCT
  1523   Atomic::inc(&_wrong_method_ctr);
  1525   if (TraceCallFixup) {
  1526     ResourceMark rm(thread);
  1527     tty->print("handle_wrong_method reresolving call to");
  1528     callee_method->print_short_name(tty);
  1529     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1531 #endif
  1533   return callee_method;
  1536 // ---------------------------------------------------------------------------
  1537 // We are calling the interpreter via a c2i. Normally this would mean that
  1538 // we were called by a compiled method. However we could have lost a race
  1539 // where we went int -> i2c -> c2i and so the caller could in fact be
  1540 // interpreted. If the caller is compiled we attempt to patch the caller
  1541 // so he no longer calls into the interpreter.
  1542 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1543   methodOop moop(method);
  1545   address entry_point = moop->from_compiled_entry();
  1547   // It's possible that deoptimization can occur at a call site which hasn't
  1548   // been resolved yet, in which case this function will be called from
  1549   // an nmethod that has been patched for deopt and we can ignore the
  1550   // request for a fixup.
  1551   // Also it is possible that we lost a race in that from_compiled_entry
  1552   // is now back to the i2c in that case we don't need to patch and if
  1553   // we did we'd leap into space because the callsite needs to use
  1554   // "to interpreter" stub in order to load up the methodOop. Don't
  1555   // ask me how I know this...
  1557   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1558   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1559     return;
  1562   // The check above makes sure this is a nmethod.
  1563   nmethod* nm = cb->as_nmethod_or_null();
  1564   assert(nm, "must be");
  1566   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1567   // to implement MethodHandle actions.
  1568   if (nm->is_method_handle_return(caller_pc)) {
  1569     return;
  1572   // There is a benign race here. We could be attempting to patch to a compiled
  1573   // entry point at the same time the callee is being deoptimized. If that is
  1574   // the case then entry_point may in fact point to a c2i and we'd patch the
  1575   // call site with the same old data. clear_code will set code() to NULL
  1576   // at the end of it. If we happen to see that NULL then we can skip trying
  1577   // to patch. If we hit the window where the callee has a c2i in the
  1578   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1579   // and patch the code with the same old data. Asi es la vida.
  1581   if (moop->code() == NULL) return;
  1583   if (nm->is_in_use()) {
  1585     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1586     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1587     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1588       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1589       //
  1590       // bug 6281185. We might get here after resolving a call site to a vanilla
  1591       // virtual call. Because the resolvee uses the verified entry it may then
  1592       // see compiled code and attempt to patch the site by calling us. This would
  1593       // then incorrectly convert the call site to optimized and its downhill from
  1594       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1595       // just made a call site that could be megamorphic into a monomorphic site
  1596       // for the rest of its life! Just another racing bug in the life of
  1597       // fixup_callers_callsite ...
  1598       //
  1599       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1600       iter.next();
  1601       assert(iter.has_current(), "must have a reloc at java call site");
  1602       relocInfo::relocType typ = iter.reloc()->type();
  1603       if ( typ != relocInfo::static_call_type &&
  1604            typ != relocInfo::opt_virtual_call_type &&
  1605            typ != relocInfo::static_stub_type) {
  1606         return;
  1608       address destination = call->destination();
  1609       if (destination != entry_point) {
  1610         CodeBlob* callee = CodeCache::find_blob(destination);
  1611         // callee == cb seems weird. It means calling interpreter thru stub.
  1612         if (callee == cb || callee->is_adapter_blob()) {
  1613           // static call or optimized virtual
  1614           if (TraceCallFixup) {
  1615             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1616             moop->print_short_name(tty);
  1617             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1619           call->set_destination_mt_safe(entry_point);
  1620         } else {
  1621           if (TraceCallFixup) {
  1622             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1623             moop->print_short_name(tty);
  1624             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1626           // assert is too strong could also be resolve destinations.
  1627           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1629       } else {
  1630           if (TraceCallFixup) {
  1631             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1632             moop->print_short_name(tty);
  1633             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1639 IRT_END
  1642 // same as JVM_Arraycopy, but called directly from compiled code
  1643 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1644                                                 oopDesc* dest, jint dest_pos,
  1645                                                 jint length,
  1646                                                 JavaThread* thread)) {
  1647 #ifndef PRODUCT
  1648   _slow_array_copy_ctr++;
  1649 #endif
  1650   // Check if we have null pointers
  1651   if (src == NULL || dest == NULL) {
  1652     THROW(vmSymbols::java_lang_NullPointerException());
  1654   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1655   // even though the copy_array API also performs dynamic checks to ensure
  1656   // that src and dest are truly arrays (and are conformable).
  1657   // The copy_array mechanism is awkward and could be removed, but
  1658   // the compilers don't call this function except as a last resort,
  1659   // so it probably doesn't matter.
  1660   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1661                                         (arrayOopDesc*)dest, dest_pos,
  1662                                         length, thread);
  1664 JRT_END
  1666 char* SharedRuntime::generate_class_cast_message(
  1667     JavaThread* thread, const char* objName) {
  1669   // Get target class name from the checkcast instruction
  1670   vframeStream vfst(thread, true);
  1671   assert(!vfst.at_end(), "Java frame must exist");
  1672   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1673   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1674     cc.index(), thread));
  1675   return generate_class_cast_message(objName, targetKlass->external_name());
  1678 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1679                                                         oopDesc* required,
  1680                                                         oopDesc* actual) {
  1681   if (TraceMethodHandles) {
  1682     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
  1683                   thread, required, actual);
  1685   assert(EnableInvokeDynamic, "");
  1686   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1687   char* message = NULL;
  1688   if (singleKlass != NULL) {
  1689     const char* objName = "argument or return value";
  1690     if (actual != NULL) {
  1691       // be flexible about the junk passed in:
  1692       klassOop ak = (actual->is_klass()
  1693                      ? (klassOop)actual
  1694                      : actual->klass());
  1695       objName = Klass::cast(ak)->external_name();
  1697     Klass* targetKlass = Klass::cast(required->is_klass()
  1698                                      ? (klassOop)required
  1699                                      : java_lang_Class::as_klassOop(required));
  1700     message = generate_class_cast_message(objName, targetKlass->external_name());
  1701   } else {
  1702     // %%% need to get the MethodType string, without messing around too much
  1703     const char* desc = NULL;
  1704     // Get a signature from the invoke instruction
  1705     const char* mhName = "method handle";
  1706     const char* targetType = "the required signature";
  1707     int targetArity = -1, mhArity = -1;
  1708     vframeStream vfst(thread, true);
  1709     if (!vfst.at_end()) {
  1710       Bytecode_invoke call(vfst.method(), vfst.bci());
  1711       methodHandle target;
  1713         EXCEPTION_MARK;
  1714         target = call.static_target(THREAD);
  1715         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1717       if (target.not_null()
  1718           && target->is_method_handle_invoke()
  1719           && required == target->method_handle_type()) {
  1720         targetType = target->signature()->as_C_string();
  1721         targetArity = ArgumentCount(target->signature()).size();
  1724     klassOop kignore; int dmf_flags = 0;
  1725     methodOop actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
  1726     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
  1727                        MethodHandles::_dmf_does_dispatch |
  1728                        MethodHandles::_dmf_from_interface)) != 0)
  1729       actual_method = NULL;  // MH does extra binds, drops, etc.
  1730     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
  1731     if (actual_method != NULL) {
  1732       mhName = actual_method->signature()->as_C_string();
  1733       mhArity = ArgumentCount(actual_method->signature()).size();
  1734       if (!actual_method->is_static())  mhArity += 1;
  1735     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
  1736       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
  1737       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
  1738       stringStream st;
  1739       java_lang_invoke_MethodType::print_signature(mhType, &st);
  1740       mhName = st.as_string();
  1742     if (targetArity != -1 && targetArity != mhArity) {
  1743       if (has_receiver && targetArity == mhArity-1)
  1744         desc = " cannot be called without a receiver argument as ";
  1745       else
  1746         desc = " cannot be called with a different arity as ";
  1748     message = generate_class_cast_message(mhName, targetType,
  1749                                           desc != NULL ? desc :
  1750                                           " cannot be called as ");
  1752   if (TraceMethodHandles) {
  1753     tty->print_cr("WrongMethodType => message=%s", message);
  1755   return message;
  1758 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1759                                                             oopDesc* required) {
  1760   if (required == NULL)  return NULL;
  1761   if (required->klass() == SystemDictionary::Class_klass())
  1762     return required;
  1763   if (required->is_klass())
  1764     return Klass::cast(klassOop(required))->java_mirror();
  1765   return NULL;
  1769 char* SharedRuntime::generate_class_cast_message(
  1770     const char* objName, const char* targetKlassName, const char* desc) {
  1771   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1773   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1774   if (NULL == message) {
  1775     // Shouldn't happen, but don't cause even more problems if it does
  1776     message = const_cast<char*>(objName);
  1777   } else {
  1778     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1780   return message;
  1783 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1784   (void) JavaThread::current()->reguard_stack();
  1785 JRT_END
  1788 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1789 #ifndef PRODUCT
  1790 int SharedRuntime::_monitor_enter_ctr=0;
  1791 #endif
  1792 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1793   oop obj(_obj);
  1794 #ifndef PRODUCT
  1795   _monitor_enter_ctr++;             // monitor enter slow
  1796 #endif
  1797   if (PrintBiasedLockingStatistics) {
  1798     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1800   Handle h_obj(THREAD, obj);
  1801   if (UseBiasedLocking) {
  1802     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1803     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1804   } else {
  1805     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1807   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1808 JRT_END
  1810 #ifndef PRODUCT
  1811 int SharedRuntime::_monitor_exit_ctr=0;
  1812 #endif
  1813 // Handles the uncommon cases of monitor unlocking in compiled code
  1814 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1815    oop obj(_obj);
  1816 #ifndef PRODUCT
  1817   _monitor_exit_ctr++;              // monitor exit slow
  1818 #endif
  1819   Thread* THREAD = JavaThread::current();
  1820   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1821   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1822   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1823 #undef MIGHT_HAVE_PENDING
  1824 #ifdef MIGHT_HAVE_PENDING
  1825   // Save and restore any pending_exception around the exception mark.
  1826   // While the slow_exit must not throw an exception, we could come into
  1827   // this routine with one set.
  1828   oop pending_excep = NULL;
  1829   const char* pending_file;
  1830   int pending_line;
  1831   if (HAS_PENDING_EXCEPTION) {
  1832     pending_excep = PENDING_EXCEPTION;
  1833     pending_file  = THREAD->exception_file();
  1834     pending_line  = THREAD->exception_line();
  1835     CLEAR_PENDING_EXCEPTION;
  1837 #endif /* MIGHT_HAVE_PENDING */
  1840     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1841     EXCEPTION_MARK;
  1842     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1845 #ifdef MIGHT_HAVE_PENDING
  1846   if (pending_excep != NULL) {
  1847     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1849 #endif /* MIGHT_HAVE_PENDING */
  1850 JRT_END
  1852 #ifndef PRODUCT
  1854 void SharedRuntime::print_statistics() {
  1855   ttyLocker ttyl;
  1856   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1858   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1859   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1860   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1862   SharedRuntime::print_ic_miss_histogram();
  1864   if (CountRemovableExceptions) {
  1865     if (_nof_removable_exceptions > 0) {
  1866       Unimplemented(); // this counter is not yet incremented
  1867       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1871   // Dump the JRT_ENTRY counters
  1872   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1873   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1874   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1875   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1876   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1877   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1878   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1880   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1881   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1882   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1883   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1884   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1886   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1887   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1888   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1889   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1890   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1891   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1892   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1893   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1894   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1895   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1896   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1897   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1898   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1899   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1900   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1901   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1903   AdapterHandlerLibrary::print_statistics();
  1905   if (xtty != NULL)  xtty->tail("statistics");
  1908 inline double percent(int x, int y) {
  1909   return 100.0 * x / MAX2(y, 1);
  1912 class MethodArityHistogram {
  1913  public:
  1914   enum { MAX_ARITY = 256 };
  1915  private:
  1916   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1917   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1918   static int _max_arity;                      // max. arity seen
  1919   static int _max_size;                       // max. arg size seen
  1921   static void add_method_to_histogram(nmethod* nm) {
  1922     methodOop m = nm->method();
  1923     ArgumentCount args(m->signature());
  1924     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1925     int argsize = m->size_of_parameters();
  1926     arity   = MIN2(arity, MAX_ARITY-1);
  1927     argsize = MIN2(argsize, MAX_ARITY-1);
  1928     int count = nm->method()->compiled_invocation_count();
  1929     _arity_histogram[arity]  += count;
  1930     _size_histogram[argsize] += count;
  1931     _max_arity = MAX2(_max_arity, arity);
  1932     _max_size  = MAX2(_max_size, argsize);
  1935   void print_histogram_helper(int n, int* histo, const char* name) {
  1936     const int N = MIN2(5, n);
  1937     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1938     double sum = 0;
  1939     double weighted_sum = 0;
  1940     int i;
  1941     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1942     double rest = sum;
  1943     double percent = sum / 100;
  1944     for (i = 0; i <= N; i++) {
  1945       rest -= histo[i];
  1946       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1948     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1949     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1952   void print_histogram() {
  1953     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1954     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1955     tty->print_cr("\nSame for parameter size (in words):");
  1956     print_histogram_helper(_max_size, _size_histogram, "size");
  1957     tty->cr();
  1960  public:
  1961   MethodArityHistogram() {
  1962     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1963     _max_arity = _max_size = 0;
  1964     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1965     CodeCache::nmethods_do(add_method_to_histogram);
  1966     print_histogram();
  1968 };
  1970 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1971 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1972 int MethodArityHistogram::_max_arity;
  1973 int MethodArityHistogram::_max_size;
  1975 void SharedRuntime::print_call_statistics(int comp_total) {
  1976   tty->print_cr("Calls from compiled code:");
  1977   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1978   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1979   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1980   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1981   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1982   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1983   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1984   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1985   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1986   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1987   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1988   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1989   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1990   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1991   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1992   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1993   tty->cr();
  1994   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1995   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1996   tty->print_cr("        %% in nested categories are relative to their category");
  1997   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1998   tty->cr();
  2000   MethodArityHistogram h;
  2002 #endif
  2005 // A simple wrapper class around the calling convention information
  2006 // that allows sharing of adapters for the same calling convention.
  2007 class AdapterFingerPrint : public CHeapObj {
  2008  private:
  2009   union {
  2010     int  _compact[3];
  2011     int* _fingerprint;
  2012   } _value;
  2013   int _length; // A negative length indicates the fingerprint is in the compact form,
  2014                // Otherwise _value._fingerprint is the array.
  2016   // Remap BasicTypes that are handled equivalently by the adapters.
  2017   // These are correct for the current system but someday it might be
  2018   // necessary to make this mapping platform dependent.
  2019   static BasicType adapter_encoding(BasicType in) {
  2020     assert((~0xf & in) == 0, "must fit in 4 bits");
  2021     switch(in) {
  2022       case T_BOOLEAN:
  2023       case T_BYTE:
  2024       case T_SHORT:
  2025       case T_CHAR:
  2026         // There are all promoted to T_INT in the calling convention
  2027         return T_INT;
  2029       case T_OBJECT:
  2030       case T_ARRAY:
  2031 #ifdef _LP64
  2032         return T_LONG;
  2033 #else
  2034         return T_INT;
  2035 #endif
  2037       case T_INT:
  2038       case T_LONG:
  2039       case T_FLOAT:
  2040       case T_DOUBLE:
  2041       case T_VOID:
  2042         return in;
  2044       default:
  2045         ShouldNotReachHere();
  2046         return T_CONFLICT;
  2050  public:
  2051   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2052     // The fingerprint is based on the BasicType signature encoded
  2053     // into an array of ints with four entries per int.
  2054     int* ptr;
  2055     int len = (total_args_passed + 3) >> 2;
  2056     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  2057       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2058       // Storing the signature encoded as signed chars hits about 98%
  2059       // of the time.
  2060       _length = -len;
  2061       ptr = _value._compact;
  2062     } else {
  2063       _length = len;
  2064       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  2065       ptr = _value._fingerprint;
  2068     // Now pack the BasicTypes with 4 per int
  2069     int sig_index = 0;
  2070     for (int index = 0; index < len; index++) {
  2071       int value = 0;
  2072       for (int byte = 0; byte < 4; byte++) {
  2073         if (sig_index < total_args_passed) {
  2074           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  2077       ptr[index] = value;
  2081   ~AdapterFingerPrint() {
  2082     if (_length > 0) {
  2083       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  2087   int value(int index) {
  2088     if (_length < 0) {
  2089       return _value._compact[index];
  2091     return _value._fingerprint[index];
  2093   int length() {
  2094     if (_length < 0) return -_length;
  2095     return _length;
  2098   bool is_compact() {
  2099     return _length <= 0;
  2102   unsigned int compute_hash() {
  2103     int hash = 0;
  2104     for (int i = 0; i < length(); i++) {
  2105       int v = value(i);
  2106       hash = (hash << 8) ^ v ^ (hash >> 5);
  2108     return (unsigned int)hash;
  2111   const char* as_string() {
  2112     stringStream st;
  2113     for (int i = 0; i < length(); i++) {
  2114       st.print(PTR_FORMAT, value(i));
  2116     return st.as_string();
  2119   bool equals(AdapterFingerPrint* other) {
  2120     if (other->_length != _length) {
  2121       return false;
  2123     if (_length < 0) {
  2124       return _value._compact[0] == other->_value._compact[0] &&
  2125              _value._compact[1] == other->_value._compact[1] &&
  2126              _value._compact[2] == other->_value._compact[2];
  2127     } else {
  2128       for (int i = 0; i < _length; i++) {
  2129         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2130           return false;
  2134     return true;
  2136 };
  2139 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2140 class AdapterHandlerTable : public BasicHashtable {
  2141   friend class AdapterHandlerTableIterator;
  2143  private:
  2145 #ifndef PRODUCT
  2146   static int _lookups; // number of calls to lookup
  2147   static int _buckets; // number of buckets checked
  2148   static int _equals;  // number of buckets checked with matching hash
  2149   static int _hits;    // number of successful lookups
  2150   static int _compact; // number of equals calls with compact signature
  2151 #endif
  2153   AdapterHandlerEntry* bucket(int i) {
  2154     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  2157  public:
  2158   AdapterHandlerTable()
  2159     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  2161   // Create a new entry suitable for insertion in the table
  2162   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2163     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  2164     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2165     return entry;
  2168   // Insert an entry into the table
  2169   void add(AdapterHandlerEntry* entry) {
  2170     int index = hash_to_index(entry->hash());
  2171     add_entry(index, entry);
  2174   void free_entry(AdapterHandlerEntry* entry) {
  2175     entry->deallocate();
  2176     BasicHashtable::free_entry(entry);
  2179   // Find a entry with the same fingerprint if it exists
  2180   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2181     NOT_PRODUCT(_lookups++);
  2182     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2183     unsigned int hash = fp.compute_hash();
  2184     int index = hash_to_index(hash);
  2185     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2186       NOT_PRODUCT(_buckets++);
  2187       if (e->hash() == hash) {
  2188         NOT_PRODUCT(_equals++);
  2189         if (fp.equals(e->fingerprint())) {
  2190 #ifndef PRODUCT
  2191           if (fp.is_compact()) _compact++;
  2192           _hits++;
  2193 #endif
  2194           return e;
  2198     return NULL;
  2201 #ifndef PRODUCT
  2202   void print_statistics() {
  2203     ResourceMark rm;
  2204     int longest = 0;
  2205     int empty = 0;
  2206     int total = 0;
  2207     int nonempty = 0;
  2208     for (int index = 0; index < table_size(); index++) {
  2209       int count = 0;
  2210       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2211         count++;
  2213       if (count != 0) nonempty++;
  2214       if (count == 0) empty++;
  2215       if (count > longest) longest = count;
  2216       total += count;
  2218     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2219                   empty, longest, total, total / (double)nonempty);
  2220     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2221                   _lookups, _buckets, _equals, _hits, _compact);
  2223 #endif
  2224 };
  2227 #ifndef PRODUCT
  2229 int AdapterHandlerTable::_lookups;
  2230 int AdapterHandlerTable::_buckets;
  2231 int AdapterHandlerTable::_equals;
  2232 int AdapterHandlerTable::_hits;
  2233 int AdapterHandlerTable::_compact;
  2235 #endif
  2237 class AdapterHandlerTableIterator : public StackObj {
  2238  private:
  2239   AdapterHandlerTable* _table;
  2240   int _index;
  2241   AdapterHandlerEntry* _current;
  2243   void scan() {
  2244     while (_index < _table->table_size()) {
  2245       AdapterHandlerEntry* a = _table->bucket(_index);
  2246       _index++;
  2247       if (a != NULL) {
  2248         _current = a;
  2249         return;
  2254  public:
  2255   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2256     scan();
  2258   bool has_next() {
  2259     return _current != NULL;
  2261   AdapterHandlerEntry* next() {
  2262     if (_current != NULL) {
  2263       AdapterHandlerEntry* result = _current;
  2264       _current = _current->next();
  2265       if (_current == NULL) scan();
  2266       return result;
  2267     } else {
  2268       return NULL;
  2271 };
  2274 // ---------------------------------------------------------------------------
  2275 // Implementation of AdapterHandlerLibrary
  2276 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2277 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2278 const int AdapterHandlerLibrary_size = 16*K;
  2279 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2281 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2282   // Should be called only when AdapterHandlerLibrary_lock is active.
  2283   if (_buffer == NULL) // Initialize lazily
  2284       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2285   return _buffer;
  2288 void AdapterHandlerLibrary::initialize() {
  2289   if (_adapters != NULL) return;
  2290   _adapters = new AdapterHandlerTable();
  2292   // Create a special handler for abstract methods.  Abstract methods
  2293   // are never compiled so an i2c entry is somewhat meaningless, but
  2294   // fill it in with something appropriate just in case.  Pass handle
  2295   // wrong method for the c2i transitions.
  2296   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2297   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2298                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2299                                                               wrong_method, wrong_method);
  2302 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2303                                                       address i2c_entry,
  2304                                                       address c2i_entry,
  2305                                                       address c2i_unverified_entry) {
  2306   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2309 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2310   // Use customized signature handler.  Need to lock around updates to
  2311   // the AdapterHandlerTable (it is not safe for concurrent readers
  2312   // and a single writer: this could be fixed if it becomes a
  2313   // problem).
  2315   // Get the address of the ic_miss handlers before we grab the
  2316   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2317   // was caused by the initialization of the stubs happening
  2318   // while we held the lock and then notifying jvmti while
  2319   // holding it. This just forces the initialization to be a little
  2320   // earlier.
  2321   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2322   assert(ic_miss != NULL, "must have handler");
  2324   ResourceMark rm;
  2326   NOT_PRODUCT(int insts_size);
  2327   AdapterBlob* B = NULL;
  2328   AdapterHandlerEntry* entry = NULL;
  2329   AdapterFingerPrint* fingerprint = NULL;
  2331     MutexLocker mu(AdapterHandlerLibrary_lock);
  2332     // make sure data structure is initialized
  2333     initialize();
  2335     if (method->is_abstract()) {
  2336       return _abstract_method_handler;
  2339     // Fill in the signature array, for the calling-convention call.
  2340     int total_args_passed = method->size_of_parameters(); // All args on stack
  2342     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2343     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2344     int i = 0;
  2345     if (!method->is_static())  // Pass in receiver first
  2346       sig_bt[i++] = T_OBJECT;
  2347     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2348       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2349       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2350         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2352     assert(i == total_args_passed, "");
  2354     // Lookup method signature's fingerprint
  2355     entry = _adapters->lookup(total_args_passed, sig_bt);
  2357 #ifdef ASSERT
  2358     AdapterHandlerEntry* shared_entry = NULL;
  2359     if (VerifyAdapterSharing && entry != NULL) {
  2360       shared_entry = entry;
  2361       entry = NULL;
  2363 #endif
  2365     if (entry != NULL) {
  2366       return entry;
  2369     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2370     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2372     // Make a C heap allocated version of the fingerprint to store in the adapter
  2373     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2375     // Create I2C & C2I handlers
  2377     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2378     if (buf != NULL) {
  2379       CodeBuffer buffer(buf);
  2380       short buffer_locs[20];
  2381       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2382                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2383       MacroAssembler _masm(&buffer);
  2385       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2386                                                      total_args_passed,
  2387                                                      comp_args_on_stack,
  2388                                                      sig_bt,
  2389                                                      regs,
  2390                                                      fingerprint);
  2392 #ifdef ASSERT
  2393       if (VerifyAdapterSharing) {
  2394         if (shared_entry != NULL) {
  2395           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2396                  "code must match");
  2397           // Release the one just created and return the original
  2398           _adapters->free_entry(entry);
  2399           return shared_entry;
  2400         } else  {
  2401           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2404 #endif
  2406       B = AdapterBlob::create(&buffer);
  2407       NOT_PRODUCT(insts_size = buffer.insts_size());
  2409     if (B == NULL) {
  2410       // CodeCache is full, disable compilation
  2411       // Ought to log this but compile log is only per compile thread
  2412       // and we're some non descript Java thread.
  2413       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2414       CompileBroker::handle_full_code_cache();
  2415       return NULL; // Out of CodeCache space
  2417     entry->relocate(B->content_begin());
  2418 #ifndef PRODUCT
  2419     // debugging suppport
  2420     if (PrintAdapterHandlers) {
  2421       tty->cr();
  2422       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2423                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2424                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
  2425       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2426       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
  2428 #endif
  2430     _adapters->add(entry);
  2432   // Outside of the lock
  2433   if (B != NULL) {
  2434     char blob_id[256];
  2435     jio_snprintf(blob_id,
  2436                  sizeof(blob_id),
  2437                  "%s(%s)@" PTR_FORMAT,
  2438                  B->name(),
  2439                  fingerprint->as_string(),
  2440                  B->content_begin());
  2441     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2443     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2444       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2447   return entry;
  2450 void AdapterHandlerEntry::relocate(address new_base) {
  2451     ptrdiff_t delta = new_base - _i2c_entry;
  2452     _i2c_entry += delta;
  2453     _c2i_entry += delta;
  2454     _c2i_unverified_entry += delta;
  2458 void AdapterHandlerEntry::deallocate() {
  2459   delete _fingerprint;
  2460 #ifdef ASSERT
  2461   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2462   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2463 #endif
  2467 #ifdef ASSERT
  2468 // Capture the code before relocation so that it can be compared
  2469 // against other versions.  If the code is captured after relocation
  2470 // then relative instructions won't be equivalent.
  2471 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2472   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2473   _code_length = length;
  2474   memcpy(_saved_code, buffer, length);
  2475   _total_args_passed = total_args_passed;
  2476   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2477   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2481 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2482   if (length != _code_length) {
  2483     return false;
  2485   for (int i = 0; i < length; i++) {
  2486     if (buffer[i] != _saved_code[i]) {
  2487       return false;
  2490   return true;
  2492 #endif
  2495 // Create a native wrapper for this native method.  The wrapper converts the
  2496 // java compiled calling convention to the native convention, handlizes
  2497 // arguments, and transitions to native.  On return from the native we transition
  2498 // back to java blocking if a safepoint is in progress.
  2499 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2500   ResourceMark rm;
  2501   nmethod* nm = NULL;
  2503   assert(method->has_native_function(), "must have something valid to call!");
  2506     // perform the work while holding the lock, but perform any printing outside the lock
  2507     MutexLocker mu(AdapterHandlerLibrary_lock);
  2508     // See if somebody beat us to it
  2509     nm = method->code();
  2510     if (nm) {
  2511       return nm;
  2514     ResourceMark rm;
  2516     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2517     if (buf != NULL) {
  2518       CodeBuffer buffer(buf);
  2519       double locs_buf[20];
  2520       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2521       MacroAssembler _masm(&buffer);
  2523       // Fill in the signature array, for the calling-convention call.
  2524       int total_args_passed = method->size_of_parameters();
  2526       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2527       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2528       int i=0;
  2529       if( !method->is_static() )  // Pass in receiver first
  2530         sig_bt[i++] = T_OBJECT;
  2531       SignatureStream ss(method->signature());
  2532       for( ; !ss.at_return_type(); ss.next()) {
  2533         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2534         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2535           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2537       assert( i==total_args_passed, "" );
  2538       BasicType ret_type = ss.type();
  2540       // Now get the compiled-Java layout as input arguments
  2541       int comp_args_on_stack;
  2542       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2544       // Generate the compiled-to-native wrapper code
  2545       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2546                                                   method,
  2547                                                   compile_id,
  2548                                                   total_args_passed,
  2549                                                   comp_args_on_stack,
  2550                                                   sig_bt,regs,
  2551                                                   ret_type);
  2555   // Must unlock before calling set_code
  2557   // Install the generated code.
  2558   if (nm != NULL) {
  2559     if (PrintCompilation) {
  2560       ttyLocker ttyl;
  2561       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2563     method->set_code(method, nm);
  2564     nm->post_compiled_method_load_event();
  2565   } else {
  2566     // CodeCache is full, disable compilation
  2567     CompileBroker::handle_full_code_cache();
  2569   return nm;
  2572 #ifdef HAVE_DTRACE_H
  2573 // Create a dtrace nmethod for this method.  The wrapper converts the
  2574 // java compiled calling convention to the native convention, makes a dummy call
  2575 // (actually nops for the size of the call instruction, which become a trap if
  2576 // probe is enabled). The returns to the caller. Since this all looks like a
  2577 // leaf no thread transition is needed.
  2579 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2580   ResourceMark rm;
  2581   nmethod* nm = NULL;
  2583   if (PrintCompilation) {
  2584     ttyLocker ttyl;
  2585     tty->print("---   n%s  ");
  2586     method->print_short_name(tty);
  2587     if (method->is_static()) {
  2588       tty->print(" (static)");
  2590     tty->cr();
  2594     // perform the work while holding the lock, but perform any printing
  2595     // outside the lock
  2596     MutexLocker mu(AdapterHandlerLibrary_lock);
  2597     // See if somebody beat us to it
  2598     nm = method->code();
  2599     if (nm) {
  2600       return nm;
  2603     ResourceMark rm;
  2605     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2606     if (buf != NULL) {
  2607       CodeBuffer buffer(buf);
  2608       // Need a few relocation entries
  2609       double locs_buf[20];
  2610       buffer.insts()->initialize_shared_locs(
  2611         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2612       MacroAssembler _masm(&buffer);
  2614       // Generate the compiled-to-native wrapper code
  2615       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2618   return nm;
  2621 // the dtrace method needs to convert java lang string to utf8 string.
  2622 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2623   typeArrayOop jlsValue  = java_lang_String::value(src);
  2624   int          jlsOffset = java_lang_String::offset(src);
  2625   int          jlsLen    = java_lang_String::length(src);
  2626   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2627                                            jlsValue->char_at_addr(jlsOffset);
  2628   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2629   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2631 #endif // ndef HAVE_DTRACE_H
  2633 // -------------------------------------------------------------------------
  2634 // Java-Java calling convention
  2635 // (what you use when Java calls Java)
  2637 //------------------------------name_for_receiver----------------------------------
  2638 // For a given signature, return the VMReg for parameter 0.
  2639 VMReg SharedRuntime::name_for_receiver() {
  2640   VMRegPair regs;
  2641   BasicType sig_bt = T_OBJECT;
  2642   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2643   // Return argument 0 register.  In the LP64 build pointers
  2644   // take 2 registers, but the VM wants only the 'main' name.
  2645   return regs.first();
  2648 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2649   // This method is returning a data structure allocating as a
  2650   // ResourceObject, so do not put any ResourceMarks in here.
  2651   char *s = sig->as_C_string();
  2652   int len = (int)strlen(s);
  2653   *s++; len--;                  // Skip opening paren
  2654   char *t = s+len;
  2655   while( *(--t) != ')' ) ;      // Find close paren
  2657   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2658   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2659   int cnt = 0;
  2660   if (has_receiver) {
  2661     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2664   while( s < t ) {
  2665     switch( *s++ ) {            // Switch on signature character
  2666     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2667     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2668     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2669     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2670     case 'I': sig_bt[cnt++] = T_INT;     break;
  2671     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2672     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2673     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2674     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2675     case 'L':                   // Oop
  2676       while( *s++ != ';'  ) ;   // Skip signature
  2677       sig_bt[cnt++] = T_OBJECT;
  2678       break;
  2679     case '[': {                 // Array
  2680       do {                      // Skip optional size
  2681         while( *s >= '0' && *s <= '9' ) s++;
  2682       } while( *s++ == '[' );   // Nested arrays?
  2683       // Skip element type
  2684       if( s[-1] == 'L' )
  2685         while( *s++ != ';'  ) ; // Skip signature
  2686       sig_bt[cnt++] = T_ARRAY;
  2687       break;
  2689     default : ShouldNotReachHere();
  2692   assert( cnt < 256, "grow table size" );
  2694   int comp_args_on_stack;
  2695   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2697   // the calling convention doesn't count out_preserve_stack_slots so
  2698   // we must add that in to get "true" stack offsets.
  2700   if (comp_args_on_stack) {
  2701     for (int i = 0; i < cnt; i++) {
  2702       VMReg reg1 = regs[i].first();
  2703       if( reg1->is_stack()) {
  2704         // Yuck
  2705         reg1 = reg1->bias(out_preserve_stack_slots());
  2707       VMReg reg2 = regs[i].second();
  2708       if( reg2->is_stack()) {
  2709         // Yuck
  2710         reg2 = reg2->bias(out_preserve_stack_slots());
  2712       regs[i].set_pair(reg2, reg1);
  2716   // results
  2717   *arg_size = cnt;
  2718   return regs;
  2721 // OSR Migration Code
  2722 //
  2723 // This code is used convert interpreter frames into compiled frames.  It is
  2724 // called from very start of a compiled OSR nmethod.  A temp array is
  2725 // allocated to hold the interesting bits of the interpreter frame.  All
  2726 // active locks are inflated to allow them to move.  The displaced headers and
  2727 // active interpeter locals are copied into the temp buffer.  Then we return
  2728 // back to the compiled code.  The compiled code then pops the current
  2729 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2730 // copies the interpreter locals and displaced headers where it wants.
  2731 // Finally it calls back to free the temp buffer.
  2732 //
  2733 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2735 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2737 #ifdef IA64
  2738   ShouldNotReachHere(); // NYI
  2739 #endif /* IA64 */
  2741   //
  2742   // This code is dependent on the memory layout of the interpreter local
  2743   // array and the monitors. On all of our platforms the layout is identical
  2744   // so this code is shared. If some platform lays the their arrays out
  2745   // differently then this code could move to platform specific code or
  2746   // the code here could be modified to copy items one at a time using
  2747   // frame accessor methods and be platform independent.
  2749   frame fr = thread->last_frame();
  2750   assert( fr.is_interpreted_frame(), "" );
  2751   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2753   // Figure out how many monitors are active.
  2754   int active_monitor_count = 0;
  2755   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2756        kptr < fr.interpreter_frame_monitor_begin();
  2757        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2758     if( kptr->obj() != NULL ) active_monitor_count++;
  2761   // QQQ we could place number of active monitors in the array so that compiled code
  2762   // could double check it.
  2764   methodOop moop = fr.interpreter_frame_method();
  2765   int max_locals = moop->max_locals();
  2766   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2767   int buf_size_words = max_locals + active_monitor_count*2;
  2768   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2770   // Copy the locals.  Order is preserved so that loading of longs works.
  2771   // Since there's no GC I can copy the oops blindly.
  2772   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2773   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2774                        (HeapWord*)&buf[0],
  2775                        max_locals);
  2777   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2778   int i = max_locals;
  2779   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2780        kptr2 < fr.interpreter_frame_monitor_begin();
  2781        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2782     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2783       BasicLock *lock = kptr2->lock();
  2784       // Inflate so the displaced header becomes position-independent
  2785       if (lock->displaced_header()->is_unlocked())
  2786         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2787       // Now the displaced header is free to move
  2788       buf[i++] = (intptr_t)lock->displaced_header();
  2789       buf[i++] = (intptr_t)kptr2->obj();
  2792   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2794   return buf;
  2795 JRT_END
  2797 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2798   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2799 JRT_END
  2801 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2802   AdapterHandlerTableIterator iter(_adapters);
  2803   while (iter.has_next()) {
  2804     AdapterHandlerEntry* a = iter.next();
  2805     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2807   return false;
  2810 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2811   AdapterHandlerTableIterator iter(_adapters);
  2812   while (iter.has_next()) {
  2813     AdapterHandlerEntry* a = iter.next();
  2814     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2815       st->print("Adapter for signature: ");
  2816       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2817                    a->fingerprint()->as_string(),
  2818                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2820       return;
  2823   assert(false, "Should have found handler");
  2826 #ifndef PRODUCT
  2828 void AdapterHandlerLibrary::print_statistics() {
  2829   _adapters->print_statistics();
  2832 #endif /* PRODUCT */

mercurial