src/share/vm/runtime/deoptimization.cpp

Tue, 26 Apr 2011 14:04:43 -0400

author
coleenp
date
Tue, 26 Apr 2011 14:04:43 -0400
changeset 2804
01147d8aac1d
parent 2620
4f148718983e
child 2868
2e038ad0c1d0
permissions
-rw-r--r--

7009923: JSR 292: VM crash in JavaThread::last_frame
Summary: Handle stack overflow before the first frame is called, by printing out the called method and not walking the stack.
Reviewed-by: dholmes, phh, dsamersoff

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/methodOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    87 #endif
    89 bool DeoptimizationMarker::_is_active = false;
    91 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    92                                          int  caller_adjustment,
    93                                          int  number_of_frames,
    94                                          intptr_t* frame_sizes,
    95                                          address* frame_pcs,
    96                                          BasicType return_type) {
    97   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    98   _caller_adjustment         = caller_adjustment;
    99   _number_of_frames          = number_of_frames;
   100   _frame_sizes               = frame_sizes;
   101   _frame_pcs                 = frame_pcs;
   102   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
   103   _return_type               = return_type;
   104   _initial_fp                = 0;
   105   // PD (x86 only)
   106   _counter_temp              = 0;
   107   _unpack_kind               = 0;
   108   _sender_sp_temp            = 0;
   110   _total_frame_sizes         = size_of_frames();
   111 }
   114 Deoptimization::UnrollBlock::~UnrollBlock() {
   115   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
   116   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
   117   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
   118 }
   121 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   122   assert(register_number < RegisterMap::reg_count, "checking register number");
   123   return &_register_block[register_number * 2];
   124 }
   128 int Deoptimization::UnrollBlock::size_of_frames() const {
   129   // Acount first for the adjustment of the initial frame
   130   int result = _caller_adjustment;
   131   for (int index = 0; index < number_of_frames(); index++) {
   132     result += frame_sizes()[index];
   133   }
   134   return result;
   135 }
   138 void Deoptimization::UnrollBlock::print() {
   139   ttyLocker ttyl;
   140   tty->print_cr("UnrollBlock");
   141   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   142   tty->print(   "  frame_sizes: ");
   143   for (int index = 0; index < number_of_frames(); index++) {
   144     tty->print("%d ", frame_sizes()[index]);
   145   }
   146   tty->cr();
   147 }
   150 // In order to make fetch_unroll_info work properly with escape
   151 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   152 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   153 // of previously eliminated objects occurs in realloc_objects, which is
   154 // called from the method fetch_unroll_info_helper below.
   155 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   156   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   157   // but makes the entry a little slower. There is however a little dance we have to
   158   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   160   // fetch_unroll_info() is called at the beginning of the deoptimization
   161   // handler. Note this fact before we start generating temporary frames
   162   // that can confuse an asynchronous stack walker. This counter is
   163   // decremented at the end of unpack_frames().
   164   thread->inc_in_deopt_handler();
   166   return fetch_unroll_info_helper(thread);
   167 JRT_END
   170 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   171 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   173   // Note: there is a safepoint safety issue here. No matter whether we enter
   174   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   175   // the vframeArray is created.
   176   //
   178   // Allocate our special deoptimization ResourceMark
   179   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   180   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   181   thread->set_deopt_mark(dmark);
   183   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   184   RegisterMap map(thread, true);
   185   RegisterMap dummy_map(thread, false);
   186   // Now get the deoptee with a valid map
   187   frame deoptee = stub_frame.sender(&map);
   188   // Set the deoptee nmethod
   189   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   190   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   192   // Create a growable array of VFrames where each VFrame represents an inlined
   193   // Java frame.  This storage is allocated with the usual system arena.
   194   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   195   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   196   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   197   while (!vf->is_top()) {
   198     assert(vf->is_compiled_frame(), "Wrong frame type");
   199     chunk->push(compiledVFrame::cast(vf));
   200     vf = vf->sender();
   201   }
   202   assert(vf->is_compiled_frame(), "Wrong frame type");
   203   chunk->push(compiledVFrame::cast(vf));
   205 #ifdef COMPILER2
   206   // Reallocate the non-escaping objects and restore their fields. Then
   207   // relock objects if synchronization on them was eliminated.
   208   if (DoEscapeAnalysis) {
   209     if (EliminateAllocations) {
   210       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   211       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   213       // The flag return_oop() indicates call sites which return oop
   214       // in compiled code. Such sites include java method calls,
   215       // runtime calls (for example, used to allocate new objects/arrays
   216       // on slow code path) and any other calls generated in compiled code.
   217       // It is not guaranteed that we can get such information here only
   218       // by analyzing bytecode in deoptimized frames. This is why this flag
   219       // is set during method compilation (see Compile::Process_OopMap_Node()).
   220       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   221       Handle return_value;
   222       if (save_oop_result) {
   223         // Reallocation may trigger GC. If deoptimization happened on return from
   224         // call which returns oop we need to save it since it is not in oopmap.
   225         oop result = deoptee.saved_oop_result(&map);
   226         assert(result == NULL || result->is_oop(), "must be oop");
   227         return_value = Handle(thread, result);
   228         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   229         if (TraceDeoptimization) {
   230           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   231         }
   232       }
   233       bool reallocated = false;
   234       if (objects != NULL) {
   235         JRT_BLOCK
   236           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   237         JRT_END
   238       }
   239       if (reallocated) {
   240         reassign_fields(&deoptee, &map, objects);
   241 #ifndef PRODUCT
   242         if (TraceDeoptimization) {
   243           ttyLocker ttyl;
   244           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   245           print_objects(objects);
   246         }
   247 #endif
   248       }
   249       if (save_oop_result) {
   250         // Restore result.
   251         deoptee.set_saved_oop_result(&map, return_value());
   252       }
   253     }
   254     if (EliminateLocks) {
   255 #ifndef PRODUCT
   256       bool first = true;
   257 #endif
   258       for (int i = 0; i < chunk->length(); i++) {
   259         compiledVFrame* cvf = chunk->at(i);
   260         assert (cvf->scope() != NULL,"expect only compiled java frames");
   261         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   262         if (monitors->is_nonempty()) {
   263           relock_objects(monitors, thread);
   264 #ifndef PRODUCT
   265           if (TraceDeoptimization) {
   266             ttyLocker ttyl;
   267             for (int j = 0; j < monitors->length(); j++) {
   268               MonitorInfo* mi = monitors->at(j);
   269               if (mi->eliminated()) {
   270                 if (first) {
   271                   first = false;
   272                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   273                 }
   274                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   275               }
   276             }
   277           }
   278 #endif
   279         }
   280       }
   281     }
   282   }
   283 #endif // COMPILER2
   284   // Ensure that no safepoint is taken after pointers have been stored
   285   // in fields of rematerialized objects.  If a safepoint occurs from here on
   286   // out the java state residing in the vframeArray will be missed.
   287   No_Safepoint_Verifier no_safepoint;
   289   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   291   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   292   thread->set_vframe_array_head(array);
   294   // Now that the vframeArray has been created if we have any deferred local writes
   295   // added by jvmti then we can free up that structure as the data is now in the
   296   // vframeArray
   298   if (thread->deferred_locals() != NULL) {
   299     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   300     int i = 0;
   301     do {
   302       // Because of inlining we could have multiple vframes for a single frame
   303       // and several of the vframes could have deferred writes. Find them all.
   304       if (list->at(i)->id() == array->original().id()) {
   305         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   306         list->remove_at(i);
   307         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   308         delete dlv;
   309       } else {
   310         i++;
   311       }
   312     } while ( i < list->length() );
   313     if (list->length() == 0) {
   314       thread->set_deferred_locals(NULL);
   315       // free the list and elements back to C heap.
   316       delete list;
   317     }
   319   }
   321 #ifndef SHARK
   322   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   323   CodeBlob* cb = stub_frame.cb();
   324   // Verify we have the right vframeArray
   325   assert(cb->frame_size() >= 0, "Unexpected frame size");
   326   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   328   // If the deopt call site is a MethodHandle invoke call site we have
   329   // to adjust the unpack_sp.
   330   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   331   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   332     unpack_sp = deoptee.unextended_sp();
   334 #ifdef ASSERT
   335   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   336   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   337 #endif
   338 #else
   339   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   340 #endif // !SHARK
   342   // This is a guarantee instead of an assert because if vframe doesn't match
   343   // we will unpack the wrong deoptimized frame and wind up in strange places
   344   // where it will be very difficult to figure out what went wrong. Better
   345   // to die an early death here than some very obscure death later when the
   346   // trail is cold.
   347   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   348   // in that it will fail to detect a problem when there is one. This needs
   349   // more work in tiger timeframe.
   350   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   352   int number_of_frames = array->frames();
   354   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   355   // virtual activation, which is the reverse of the elements in the vframes array.
   356   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   357   // +1 because we always have an interpreter return address for the final slot.
   358   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   359   int callee_parameters = 0;
   360   int callee_locals = 0;
   361   int popframe_extra_args = 0;
   362   // Create an interpreter return address for the stub to use as its return
   363   // address so the skeletal frames are perfectly walkable
   364   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   366   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   367   // activation be put back on the expression stack of the caller for reexecution
   368   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   369     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   370   }
   372   //
   373   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   374   // frame_sizes/frame_pcs[1] next oldest frame (int)
   375   // frame_sizes/frame_pcs[n] youngest frame (int)
   376   //
   377   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   378   // owns the space for the return address to it's caller).  Confusing ain't it.
   379   //
   380   // The vframe array can address vframes with indices running from
   381   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   382   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   383   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   384   // so things look a little strange in this loop.
   385   //
   386   for (int index = 0; index < array->frames(); index++ ) {
   387     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   388     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   389     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   390     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   391                                                                                                     callee_locals,
   392                                                                                                     index == 0,
   393                                                                                                     popframe_extra_args);
   394     // This pc doesn't have to be perfect just good enough to identify the frame
   395     // as interpreted so the skeleton frame will be walkable
   396     // The correct pc will be set when the skeleton frame is completely filled out
   397     // The final pc we store in the loop is wrong and will be overwritten below
   398     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   400     callee_parameters = array->element(index)->method()->size_of_parameters();
   401     callee_locals = array->element(index)->method()->max_locals();
   402     popframe_extra_args = 0;
   403   }
   405   // Compute whether the root vframe returns a float or double value.
   406   BasicType return_type;
   407   {
   408     HandleMark hm;
   409     methodHandle method(thread, array->element(0)->method());
   410     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   411     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   412   }
   414   // Compute information for handling adapters and adjusting the frame size of the caller.
   415   int caller_adjustment = 0;
   417   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   418   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   419   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   420   //
   421   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   422   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   424   // Compute the amount the oldest interpreter frame will have to adjust
   425   // its caller's stack by. If the caller is a compiled frame then
   426   // we pretend that the callee has no parameters so that the
   427   // extension counts for the full amount of locals and not just
   428   // locals-parms. This is because without a c2i adapter the parm
   429   // area as created by the compiled frame will not be usable by
   430   // the interpreter. (Depending on the calling convention there
   431   // may not even be enough space).
   433   // QQQ I'd rather see this pushed down into last_frame_adjust
   434   // and have it take the sender (aka caller).
   436   if (deopt_sender.is_compiled_frame()) {
   437     caller_adjustment = last_frame_adjust(0, callee_locals);
   438   } else if (callee_locals > callee_parameters) {
   439     // The caller frame may need extending to accommodate
   440     // non-parameter locals of the first unpacked interpreted frame.
   441     // Compute that adjustment.
   442     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   443   }
   446   // If the sender is deoptimized the we must retrieve the address of the handler
   447   // since the frame will "magically" show the original pc before the deopt
   448   // and we'd undo the deopt.
   450   frame_pcs[0] = deopt_sender.raw_pc();
   452 #ifndef SHARK
   453   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   454 #endif // SHARK
   456   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   457                                       caller_adjustment * BytesPerWord,
   458                                       number_of_frames,
   459                                       frame_sizes,
   460                                       frame_pcs,
   461                                       return_type);
   462   // On some platforms, we need a way to pass fp to the unpacking code
   463   // so the skeletal frames come out correct.
   464   info->set_initial_fp((intptr_t) array->sender().fp());
   466   if (array->frames() > 1) {
   467     if (VerifyStack && TraceDeoptimization) {
   468       tty->print_cr("Deoptimizing method containing inlining");
   469     }
   470   }
   472   array->set_unroll_block(info);
   473   return info;
   474 }
   476 // Called to cleanup deoptimization data structures in normal case
   477 // after unpacking to stack and when stack overflow error occurs
   478 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   479                                         vframeArray *array) {
   481   // Get array if coming from exception
   482   if (array == NULL) {
   483     array = thread->vframe_array_head();
   484   }
   485   thread->set_vframe_array_head(NULL);
   487   // Free the previous UnrollBlock
   488   vframeArray* old_array = thread->vframe_array_last();
   489   thread->set_vframe_array_last(array);
   491   if (old_array != NULL) {
   492     UnrollBlock* old_info = old_array->unroll_block();
   493     old_array->set_unroll_block(NULL);
   494     delete old_info;
   495     delete old_array;
   496   }
   498   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   499   // inside the vframeArray (StackValueCollections)
   501   delete thread->deopt_mark();
   502   thread->set_deopt_mark(NULL);
   503   thread->set_deopt_nmethod(NULL);
   506   if (JvmtiExport::can_pop_frame()) {
   507 #ifndef CC_INTERP
   508     // Regardless of whether we entered this routine with the pending
   509     // popframe condition bit set, we should always clear it now
   510     thread->clear_popframe_condition();
   511 #else
   512     // C++ interpeter will clear has_pending_popframe when it enters
   513     // with method_resume. For deopt_resume2 we clear it now.
   514     if (thread->popframe_forcing_deopt_reexecution())
   515         thread->clear_popframe_condition();
   516 #endif /* CC_INTERP */
   517   }
   519   // unpack_frames() is called at the end of the deoptimization handler
   520   // and (in C2) at the end of the uncommon trap handler. Note this fact
   521   // so that an asynchronous stack walker can work again. This counter is
   522   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   523   // the beginning of uncommon_trap().
   524   thread->dec_in_deopt_handler();
   525 }
   528 // Return BasicType of value being returned
   529 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   531   // We are already active int he special DeoptResourceMark any ResourceObj's we
   532   // allocate will be freed at the end of the routine.
   534   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   535   // but makes the entry a little slower. There is however a little dance we have to
   536   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   537   ResetNoHandleMark rnhm; // No-op in release/product versions
   538   HandleMark hm;
   540   frame stub_frame = thread->last_frame();
   542   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   543   // must point to the vframeArray for the unpack frame.
   544   vframeArray* array = thread->vframe_array_head();
   546 #ifndef PRODUCT
   547   if (TraceDeoptimization) {
   548     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   549   }
   550 #endif
   552   UnrollBlock* info = array->unroll_block();
   554   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   555   array->unpack_to_stack(stub_frame, exec_mode);
   557   BasicType bt = info->return_type();
   559   // If we have an exception pending, claim that the return type is an oop
   560   // so the deopt_blob does not overwrite the exception_oop.
   562   if (exec_mode == Unpack_exception)
   563     bt = T_OBJECT;
   565   // Cleanup thread deopt data
   566   cleanup_deopt_info(thread, array);
   568 #ifndef PRODUCT
   569   if (VerifyStack) {
   570     ResourceMark res_mark;
   572     // Verify that the just-unpacked frames match the interpreter's
   573     // notions of expression stack and locals
   574     vframeArray* cur_array = thread->vframe_array_last();
   575     RegisterMap rm(thread, false);
   576     rm.set_include_argument_oops(false);
   577     bool is_top_frame = true;
   578     int callee_size_of_parameters = 0;
   579     int callee_max_locals = 0;
   580     for (int i = 0; i < cur_array->frames(); i++) {
   581       vframeArrayElement* el = cur_array->element(i);
   582       frame* iframe = el->iframe();
   583       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   585       // Get the oop map for this bci
   586       InterpreterOopMap mask;
   587       int cur_invoke_parameter_size = 0;
   588       bool try_next_mask = false;
   589       int next_mask_expression_stack_size = -1;
   590       int top_frame_expression_stack_adjustment = 0;
   591       methodHandle mh(thread, iframe->interpreter_frame_method());
   592       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   593       BytecodeStream str(mh);
   594       str.set_start(iframe->interpreter_frame_bci());
   595       int max_bci = mh->code_size();
   596       // Get to the next bytecode if possible
   597       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   598       // Check to see if we can grab the number of outgoing arguments
   599       // at an uncommon trap for an invoke (where the compiler
   600       // generates debug info before the invoke has executed)
   601       Bytecodes::Code cur_code = str.next();
   602       if (cur_code == Bytecodes::_invokevirtual ||
   603           cur_code == Bytecodes::_invokespecial ||
   604           cur_code == Bytecodes::_invokestatic  ||
   605           cur_code == Bytecodes::_invokeinterface) {
   606         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   607         Symbol* signature = invoke.signature();
   608         ArgumentSizeComputer asc(signature);
   609         cur_invoke_parameter_size = asc.size();
   610         if (cur_code != Bytecodes::_invokestatic) {
   611           // Add in receiver
   612           ++cur_invoke_parameter_size;
   613         }
   614       }
   615       if (str.bci() < max_bci) {
   616         Bytecodes::Code bc = str.next();
   617         if (bc >= 0) {
   618           // The interpreter oop map generator reports results before
   619           // the current bytecode has executed except in the case of
   620           // calls. It seems to be hard to tell whether the compiler
   621           // has emitted debug information matching the "state before"
   622           // a given bytecode or the state after, so we try both
   623           switch (cur_code) {
   624             case Bytecodes::_invokevirtual:
   625             case Bytecodes::_invokespecial:
   626             case Bytecodes::_invokestatic:
   627             case Bytecodes::_invokeinterface:
   628             case Bytecodes::_athrow:
   629               break;
   630             default: {
   631               InterpreterOopMap next_mask;
   632               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   633               next_mask_expression_stack_size = next_mask.expression_stack_size();
   634               // Need to subtract off the size of the result type of
   635               // the bytecode because this is not described in the
   636               // debug info but returned to the interpreter in the TOS
   637               // caching register
   638               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   639               if (bytecode_result_type != T_ILLEGAL) {
   640                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   641               }
   642               assert(top_frame_expression_stack_adjustment >= 0, "");
   643               try_next_mask = true;
   644               break;
   645             }
   646           }
   647         }
   648       }
   650       // Verify stack depth and oops in frame
   651       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   652       if (!(
   653             /* SPARC */
   654             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   655             /* x86 */
   656             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   657             (try_next_mask &&
   658              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   659                                                                     top_frame_expression_stack_adjustment))) ||
   660             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   661             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   662              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   663             )) {
   664         ttyLocker ttyl;
   666         // Print out some information that will help us debug the problem
   667         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   668         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   669         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   670                       iframe->interpreter_frame_expression_stack_size());
   671         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   672         tty->print_cr("  try_next_mask = %d", try_next_mask);
   673         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   674         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   675         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   676         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   677         tty->print_cr("  exec_mode = %d", exec_mode);
   678         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   679         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   680         tty->print_cr("  Interpreted frames:");
   681         for (int k = 0; k < cur_array->frames(); k++) {
   682           vframeArrayElement* el = cur_array->element(k);
   683           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   684         }
   685         cur_array->print_on_2(tty);
   686         guarantee(false, "wrong number of expression stack elements during deopt");
   687       }
   688       VerifyOopClosure verify;
   689       iframe->oops_interpreted_do(&verify, &rm, false);
   690       callee_size_of_parameters = mh->size_of_parameters();
   691       callee_max_locals = mh->max_locals();
   692       is_top_frame = false;
   693     }
   694   }
   695 #endif /* !PRODUCT */
   698   return bt;
   699 JRT_END
   702 int Deoptimization::deoptimize_dependents() {
   703   Threads::deoptimized_wrt_marked_nmethods();
   704   return 0;
   705 }
   708 #ifdef COMPILER2
   709 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   710   Handle pending_exception(thread->pending_exception());
   711   const char* exception_file = thread->exception_file();
   712   int exception_line = thread->exception_line();
   713   thread->clear_pending_exception();
   715   for (int i = 0; i < objects->length(); i++) {
   716     assert(objects->at(i)->is_object(), "invalid debug information");
   717     ObjectValue* sv = (ObjectValue*) objects->at(i);
   719     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   720     oop obj = NULL;
   722     if (k->oop_is_instance()) {
   723       instanceKlass* ik = instanceKlass::cast(k());
   724       obj = ik->allocate_instance(CHECK_(false));
   725     } else if (k->oop_is_typeArray()) {
   726       typeArrayKlass* ak = typeArrayKlass::cast(k());
   727       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   728       int len = sv->field_size() / type2size[ak->element_type()];
   729       obj = ak->allocate(len, CHECK_(false));
   730     } else if (k->oop_is_objArray()) {
   731       objArrayKlass* ak = objArrayKlass::cast(k());
   732       obj = ak->allocate(sv->field_size(), CHECK_(false));
   733     }
   735     assert(obj != NULL, "allocation failed");
   736     assert(sv->value().is_null(), "redundant reallocation");
   737     sv->set_value(obj);
   738   }
   740   if (pending_exception.not_null()) {
   741     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   742   }
   744   return true;
   745 }
   747 // This assumes that the fields are stored in ObjectValue in the same order
   748 // they are yielded by do_nonstatic_fields.
   749 class FieldReassigner: public FieldClosure {
   750   frame* _fr;
   751   RegisterMap* _reg_map;
   752   ObjectValue* _sv;
   753   instanceKlass* _ik;
   754   oop _obj;
   756   int _i;
   757 public:
   758   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   759     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   761   int i() const { return _i; }
   764   void do_field(fieldDescriptor* fd) {
   765     intptr_t val;
   766     StackValue* value =
   767       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   768     int offset = fd->offset();
   769     switch (fd->field_type()) {
   770     case T_OBJECT: case T_ARRAY:
   771       assert(value->type() == T_OBJECT, "Agreement.");
   772       _obj->obj_field_put(offset, value->get_obj()());
   773       break;
   775     case T_LONG: case T_DOUBLE: {
   776       assert(value->type() == T_INT, "Agreement.");
   777       StackValue* low =
   778         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   779 #ifdef _LP64
   780       jlong res = (jlong)low->get_int();
   781 #else
   782 #ifdef SPARC
   783       // For SPARC we have to swap high and low words.
   784       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   785 #else
   786       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   787 #endif //SPARC
   788 #endif
   789       _obj->long_field_put(offset, res);
   790       break;
   791     }
   792     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   793     case T_INT: case T_FLOAT: // 4 bytes.
   794       assert(value->type() == T_INT, "Agreement.");
   795       val = value->get_int();
   796       _obj->int_field_put(offset, (jint)*((jint*)&val));
   797       break;
   799     case T_SHORT: case T_CHAR: // 2 bytes
   800       assert(value->type() == T_INT, "Agreement.");
   801       val = value->get_int();
   802       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   803       break;
   805     case T_BOOLEAN: case T_BYTE: // 1 byte
   806       assert(value->type() == T_INT, "Agreement.");
   807       val = value->get_int();
   808       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   809       break;
   811     default:
   812       ShouldNotReachHere();
   813     }
   814     _i++;
   815   }
   816 };
   818 // restore elements of an eliminated type array
   819 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   820   int index = 0;
   821   intptr_t val;
   823   for (int i = 0; i < sv->field_size(); i++) {
   824     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   825     switch(type) {
   826     case T_LONG: case T_DOUBLE: {
   827       assert(value->type() == T_INT, "Agreement.");
   828       StackValue* low =
   829         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   830 #ifdef _LP64
   831       jlong res = (jlong)low->get_int();
   832 #else
   833 #ifdef SPARC
   834       // For SPARC we have to swap high and low words.
   835       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   836 #else
   837       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   838 #endif //SPARC
   839 #endif
   840       obj->long_at_put(index, res);
   841       break;
   842     }
   844     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   845     case T_INT: case T_FLOAT: // 4 bytes.
   846       assert(value->type() == T_INT, "Agreement.");
   847       val = value->get_int();
   848       obj->int_at_put(index, (jint)*((jint*)&val));
   849       break;
   851     case T_SHORT: case T_CHAR: // 2 bytes
   852       assert(value->type() == T_INT, "Agreement.");
   853       val = value->get_int();
   854       obj->short_at_put(index, (jshort)*((jint*)&val));
   855       break;
   857     case T_BOOLEAN: case T_BYTE: // 1 byte
   858       assert(value->type() == T_INT, "Agreement.");
   859       val = value->get_int();
   860       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   861       break;
   863       default:
   864         ShouldNotReachHere();
   865     }
   866     index++;
   867   }
   868 }
   871 // restore fields of an eliminated object array
   872 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   873   for (int i = 0; i < sv->field_size(); i++) {
   874     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   875     assert(value->type() == T_OBJECT, "object element expected");
   876     obj->obj_at_put(i, value->get_obj()());
   877   }
   878 }
   881 // restore fields of all eliminated objects and arrays
   882 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   883   for (int i = 0; i < objects->length(); i++) {
   884     ObjectValue* sv = (ObjectValue*) objects->at(i);
   885     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   886     Handle obj = sv->value();
   887     assert(obj.not_null(), "reallocation was missed");
   889     if (k->oop_is_instance()) {
   890       instanceKlass* ik = instanceKlass::cast(k());
   891       FieldReassigner reassign(fr, reg_map, sv, obj());
   892       ik->do_nonstatic_fields(&reassign);
   893     } else if (k->oop_is_typeArray()) {
   894       typeArrayKlass* ak = typeArrayKlass::cast(k());
   895       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   896     } else if (k->oop_is_objArray()) {
   897       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   898     }
   899   }
   900 }
   903 // relock objects for which synchronization was eliminated
   904 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   905   for (int i = 0; i < monitors->length(); i++) {
   906     MonitorInfo* mon_info = monitors->at(i);
   907     if (mon_info->eliminated()) {
   908       assert(mon_info->owner() != NULL, "reallocation was missed");
   909       Handle obj = Handle(mon_info->owner());
   910       markOop mark = obj->mark();
   911       if (UseBiasedLocking && mark->has_bias_pattern()) {
   912         // New allocated objects may have the mark set to anonymously biased.
   913         // Also the deoptimized method may called methods with synchronization
   914         // where the thread-local object is bias locked to the current thread.
   915         assert(mark->is_biased_anonymously() ||
   916                mark->biased_locker() == thread, "should be locked to current thread");
   917         // Reset mark word to unbiased prototype.
   918         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   919         obj->set_mark(unbiased_prototype);
   920       }
   921       BasicLock* lock = mon_info->lock();
   922       ObjectSynchronizer::slow_enter(obj, lock, thread);
   923     }
   924     assert(mon_info->owner()->is_locked(), "object must be locked now");
   925   }
   926 }
   929 #ifndef PRODUCT
   930 // print information about reallocated objects
   931 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   932   fieldDescriptor fd;
   934   for (int i = 0; i < objects->length(); i++) {
   935     ObjectValue* sv = (ObjectValue*) objects->at(i);
   936     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   937     Handle obj = sv->value();
   939     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   940     k->as_klassOop()->print_value();
   941     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   942     tty->cr();
   944     if (Verbose) {
   945       k->oop_print_on(obj(), tty);
   946     }
   947   }
   948 }
   949 #endif
   950 #endif // COMPILER2
   952 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   954 #ifndef PRODUCT
   955   if (TraceDeoptimization) {
   956     ttyLocker ttyl;
   957     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   958     fr.print_on(tty);
   959     tty->print_cr("     Virtual frames (innermost first):");
   960     for (int index = 0; index < chunk->length(); index++) {
   961       compiledVFrame* vf = chunk->at(index);
   962       tty->print("       %2d - ", index);
   963       vf->print_value();
   964       int bci = chunk->at(index)->raw_bci();
   965       const char* code_name;
   966       if (bci == SynchronizationEntryBCI) {
   967         code_name = "sync entry";
   968       } else {
   969         Bytecodes::Code code = vf->method()->code_at(bci);
   970         code_name = Bytecodes::name(code);
   971       }
   972       tty->print(" - %s", code_name);
   973       tty->print_cr(" @ bci %d ", bci);
   974       if (Verbose) {
   975         vf->print();
   976         tty->cr();
   977       }
   978     }
   979   }
   980 #endif
   982   // Register map for next frame (used for stack crawl).  We capture
   983   // the state of the deopt'ing frame's caller.  Thus if we need to
   984   // stuff a C2I adapter we can properly fill in the callee-save
   985   // register locations.
   986   frame caller = fr.sender(reg_map);
   987   int frame_size = caller.sp() - fr.sp();
   989   frame sender = caller;
   991   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   992   // the vframeArray containing the unpacking information is allocated in the C heap.
   993   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   994   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   996   // Compare the vframeArray to the collected vframes
   997   assert(array->structural_compare(thread, chunk), "just checking");
   998   Events::log("# vframes = %d", (intptr_t)chunk->length());
  1000 #ifndef PRODUCT
  1001   if (TraceDeoptimization) {
  1002     ttyLocker ttyl;
  1003     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1005 #endif // PRODUCT
  1007   return array;
  1011 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1012   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1013   for (int i = 0; i < monitors->length(); i++) {
  1014     MonitorInfo* mon_info = monitors->at(i);
  1015     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1016       objects_to_revoke->append(Handle(mon_info->owner()));
  1022 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1023   if (!UseBiasedLocking) {
  1024     return;
  1027   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1029   // Unfortunately we don't have a RegisterMap available in most of
  1030   // the places we want to call this routine so we need to walk the
  1031   // stack again to update the register map.
  1032   if (map == NULL || !map->update_map()) {
  1033     StackFrameStream sfs(thread, true);
  1034     bool found = false;
  1035     while (!found && !sfs.is_done()) {
  1036       frame* cur = sfs.current();
  1037       sfs.next();
  1038       found = cur->id() == fr.id();
  1040     assert(found, "frame to be deoptimized not found on target thread's stack");
  1041     map = sfs.register_map();
  1044   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1045   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1046   // Revoke monitors' biases in all scopes
  1047   while (!cvf->is_top()) {
  1048     collect_monitors(cvf, objects_to_revoke);
  1049     cvf = compiledVFrame::cast(cvf->sender());
  1051   collect_monitors(cvf, objects_to_revoke);
  1053   if (SafepointSynchronize::is_at_safepoint()) {
  1054     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1055   } else {
  1056     BiasedLocking::revoke(objects_to_revoke);
  1061 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1062   if (!UseBiasedLocking) {
  1063     return;
  1066   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1067   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1068   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1069     if (jt->has_last_Java_frame()) {
  1070       StackFrameStream sfs(jt, true);
  1071       while (!sfs.is_done()) {
  1072         frame* cur = sfs.current();
  1073         if (cb->contains(cur->pc())) {
  1074           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1075           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1076           // Revoke monitors' biases in all scopes
  1077           while (!cvf->is_top()) {
  1078             collect_monitors(cvf, objects_to_revoke);
  1079             cvf = compiledVFrame::cast(cvf->sender());
  1081           collect_monitors(cvf, objects_to_revoke);
  1083         sfs.next();
  1087   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1091 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1092   assert(fr.can_be_deoptimized(), "checking frame type");
  1094   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1096   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1098   // Patch the nmethod so that when execution returns to it we will
  1099   // deopt the execution state and return to the interpreter.
  1100   fr.deoptimize(thread);
  1103 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1104   // Deoptimize only if the frame comes from compile code.
  1105   // Do not deoptimize the frame which is already patched
  1106   // during the execution of the loops below.
  1107   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1108     return;
  1110   ResourceMark rm;
  1111   DeoptimizationMarker dm;
  1112   if (UseBiasedLocking) {
  1113     revoke_biases_of_monitors(thread, fr, map);
  1115   deoptimize_single_frame(thread, fr);
  1120 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1121   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1122          "can only deoptimize other thread at a safepoint");
  1123   // Compute frame and register map based on thread and sp.
  1124   RegisterMap reg_map(thread, UseBiasedLocking);
  1125   frame fr = thread->last_frame();
  1126   while (fr.id() != id) {
  1127     fr = fr.sender(&reg_map);
  1129   deoptimize(thread, fr, &reg_map);
  1133 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1134   if (thread == Thread::current()) {
  1135     Deoptimization::deoptimize_frame_internal(thread, id);
  1136   } else {
  1137     VM_DeoptimizeFrame deopt(thread, id);
  1138     VMThread::execute(&deopt);
  1143 // JVMTI PopFrame support
  1144 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1146   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1148 JRT_END
  1151 #if defined(COMPILER2) || defined(SHARK)
  1152 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1153   // in case of an unresolved klass entry, load the class.
  1154   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1155     klassOop tk = constant_pool->klass_at(index, CHECK);
  1156     return;
  1159   if (!constant_pool->tag_at(index).is_symbol()) return;
  1161   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1162   Symbol*  symbol  = constant_pool->symbol_at(index);
  1164   // class name?
  1165   if (symbol->byte_at(0) != '(') {
  1166     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1167     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1168     return;
  1171   // then it must be a signature!
  1172   ResourceMark rm(THREAD);
  1173   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1174     if (ss.is_object()) {
  1175       Symbol* class_name = ss.as_symbol(CHECK);
  1176       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1177       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1183 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1184   EXCEPTION_MARK;
  1185   load_class_by_index(constant_pool, index, THREAD);
  1186   if (HAS_PENDING_EXCEPTION) {
  1187     // Exception happened during classloading. We ignore the exception here, since it
  1188     // is going to be rethrown since the current activation is going to be deoptimzied and
  1189     // the interpreter will re-execute the bytecode.
  1190     CLEAR_PENDING_EXCEPTION;
  1194 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1195   HandleMark hm;
  1197   // uncommon_trap() is called at the beginning of the uncommon trap
  1198   // handler. Note this fact before we start generating temporary frames
  1199   // that can confuse an asynchronous stack walker. This counter is
  1200   // decremented at the end of unpack_frames().
  1201   thread->inc_in_deopt_handler();
  1203   // We need to update the map if we have biased locking.
  1204   RegisterMap reg_map(thread, UseBiasedLocking);
  1205   frame stub_frame = thread->last_frame();
  1206   frame fr = stub_frame.sender(&reg_map);
  1207   // Make sure the calling nmethod is not getting deoptimized and removed
  1208   // before we are done with it.
  1209   nmethodLocker nl(fr.pc());
  1212     ResourceMark rm;
  1214     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1215     revoke_biases_of_monitors(thread, fr, &reg_map);
  1217     DeoptReason reason = trap_request_reason(trap_request);
  1218     DeoptAction action = trap_request_action(trap_request);
  1219     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1221     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1222     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1223     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1225     nmethod* nm = cvf->code();
  1227     ScopeDesc*      trap_scope  = cvf->scope();
  1228     methodHandle    trap_method = trap_scope->method();
  1229     int             trap_bci    = trap_scope->bci();
  1230     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1232     // Record this event in the histogram.
  1233     gather_statistics(reason, action, trap_bc);
  1235     // Ensure that we can record deopt. history:
  1236     bool create_if_missing = ProfileTraps;
  1238     methodDataHandle trap_mdo
  1239       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1241     // Print a bunch of diagnostics, if requested.
  1242     if (TraceDeoptimization || LogCompilation) {
  1243       ResourceMark rm;
  1244       ttyLocker ttyl;
  1245       char buf[100];
  1246       if (xtty != NULL) {
  1247         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1248                          os::current_thread_id(),
  1249                          format_trap_request(buf, sizeof(buf), trap_request));
  1250         nm->log_identity(xtty);
  1252       Symbol* class_name = NULL;
  1253       bool unresolved = false;
  1254       if (unloaded_class_index >= 0) {
  1255         constantPoolHandle constants (THREAD, trap_method->constants());
  1256         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1257           class_name = constants->klass_name_at(unloaded_class_index);
  1258           unresolved = true;
  1259           if (xtty != NULL)
  1260             xtty->print(" unresolved='1'");
  1261         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1262           class_name = constants->symbol_at(unloaded_class_index);
  1264         if (xtty != NULL)
  1265           xtty->name(class_name);
  1267       if (xtty != NULL && trap_mdo.not_null()) {
  1268         // Dump the relevant MDO state.
  1269         // This is the deopt count for the current reason, any previous
  1270         // reasons or recompiles seen at this point.
  1271         int dcnt = trap_mdo->trap_count(reason);
  1272         if (dcnt != 0)
  1273           xtty->print(" count='%d'", dcnt);
  1274         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1275         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1276         if (dos != 0) {
  1277           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1278           if (trap_state_is_recompiled(dos)) {
  1279             int recnt2 = trap_mdo->overflow_recompile_count();
  1280             if (recnt2 != 0)
  1281               xtty->print(" recompiles2='%d'", recnt2);
  1285       if (xtty != NULL) {
  1286         xtty->stamp();
  1287         xtty->end_head();
  1289       if (TraceDeoptimization) {  // make noise on the tty
  1290         tty->print("Uncommon trap occurred in");
  1291         nm->method()->print_short_name(tty);
  1292         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1293                    fr.pc(),
  1294                    (int) os::current_thread_id(),
  1295                    trap_reason_name(reason),
  1296                    trap_action_name(action),
  1297                    unloaded_class_index);
  1298         if (class_name != NULL) {
  1299           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1300           class_name->print_symbol_on(tty);
  1302         tty->cr();
  1304       if (xtty != NULL) {
  1305         // Log the precise location of the trap.
  1306         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1307           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1308           xtty->method(sd->method());
  1309           xtty->end_elem();
  1310           if (sd->is_top())  break;
  1312         xtty->tail("uncommon_trap");
  1315     // (End diagnostic printout.)
  1317     // Load class if necessary
  1318     if (unloaded_class_index >= 0) {
  1319       constantPoolHandle constants(THREAD, trap_method->constants());
  1320       load_class_by_index(constants, unloaded_class_index);
  1323     // Flush the nmethod if necessary and desirable.
  1324     //
  1325     // We need to avoid situations where we are re-flushing the nmethod
  1326     // because of a hot deoptimization site.  Repeated flushes at the same
  1327     // point need to be detected by the compiler and avoided.  If the compiler
  1328     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1329     // module must take measures to avoid an infinite cycle of recompilation
  1330     // and deoptimization.  There are several such measures:
  1331     //
  1332     //   1. If a recompilation is ordered a second time at some site X
  1333     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1334     //   to give the interpreter time to exercise the method more thoroughly.
  1335     //   If this happens, the method's overflow_recompile_count is incremented.
  1336     //
  1337     //   2. If the compiler fails to reduce the deoptimization rate, then
  1338     //   the method's overflow_recompile_count will begin to exceed the set
  1339     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1340     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1341     //   to the interpreter.  This is a performance hit for hot methods,
  1342     //   but is better than a disastrous infinite cycle of recompilations.
  1343     //   (Actually, only the method containing the site X is abandoned.)
  1344     //
  1345     //   3. In parallel with the previous measures, if the total number of
  1346     //   recompilations of a method exceeds the much larger set limit
  1347     //   PerMethodRecompilationCutoff, the method is abandoned.
  1348     //   This should only happen if the method is very large and has
  1349     //   many "lukewarm" deoptimizations.  The code which enforces this
  1350     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1351     //
  1352     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1353     // to recompile at each bytecode independently of the per-BCI cutoff.
  1354     //
  1355     // The decision to update code is up to the compiler, and is encoded
  1356     // in the Action_xxx code.  If the compiler requests Action_none
  1357     // no trap state is changed, no compiled code is changed, and the
  1358     // computation suffers along in the interpreter.
  1359     //
  1360     // The other action codes specify various tactics for decompilation
  1361     // and recompilation.  Action_maybe_recompile is the loosest, and
  1362     // allows the compiled code to stay around until enough traps are seen,
  1363     // and until the compiler gets around to recompiling the trapping method.
  1364     //
  1365     // The other actions cause immediate removal of the present code.
  1367     bool update_trap_state = true;
  1368     bool make_not_entrant = false;
  1369     bool make_not_compilable = false;
  1370     bool reprofile = false;
  1371     switch (action) {
  1372     case Action_none:
  1373       // Keep the old code.
  1374       update_trap_state = false;
  1375       break;
  1376     case Action_maybe_recompile:
  1377       // Do not need to invalidate the present code, but we can
  1378       // initiate another
  1379       // Start compiler without (necessarily) invalidating the nmethod.
  1380       // The system will tolerate the old code, but new code should be
  1381       // generated when possible.
  1382       break;
  1383     case Action_reinterpret:
  1384       // Go back into the interpreter for a while, and then consider
  1385       // recompiling form scratch.
  1386       make_not_entrant = true;
  1387       // Reset invocation counter for outer most method.
  1388       // This will allow the interpreter to exercise the bytecodes
  1389       // for a while before recompiling.
  1390       // By contrast, Action_make_not_entrant is immediate.
  1391       //
  1392       // Note that the compiler will track null_check, null_assert,
  1393       // range_check, and class_check events and log them as if they
  1394       // had been traps taken from compiled code.  This will update
  1395       // the MDO trap history so that the next compilation will
  1396       // properly detect hot trap sites.
  1397       reprofile = true;
  1398       break;
  1399     case Action_make_not_entrant:
  1400       // Request immediate recompilation, and get rid of the old code.
  1401       // Make them not entrant, so next time they are called they get
  1402       // recompiled.  Unloaded classes are loaded now so recompile before next
  1403       // time they are called.  Same for uninitialized.  The interpreter will
  1404       // link the missing class, if any.
  1405       make_not_entrant = true;
  1406       break;
  1407     case Action_make_not_compilable:
  1408       // Give up on compiling this method at all.
  1409       make_not_entrant = true;
  1410       make_not_compilable = true;
  1411       break;
  1412     default:
  1413       ShouldNotReachHere();
  1416     // Setting +ProfileTraps fixes the following, on all platforms:
  1417     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1418     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1419     // recompile relies on a methodDataOop to record heroic opt failures.
  1421     // Whether the interpreter is producing MDO data or not, we also need
  1422     // to use the MDO to detect hot deoptimization points and control
  1423     // aggressive optimization.
  1424     bool inc_recompile_count = false;
  1425     ProfileData* pdata = NULL;
  1426     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1427       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1428       uint this_trap_count = 0;
  1429       bool maybe_prior_trap = false;
  1430       bool maybe_prior_recompile = false;
  1431       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1432                                    //outputs:
  1433                                    this_trap_count,
  1434                                    maybe_prior_trap,
  1435                                    maybe_prior_recompile);
  1436       // Because the interpreter also counts null, div0, range, and class
  1437       // checks, these traps from compiled code are double-counted.
  1438       // This is harmless; it just means that the PerXTrapLimit values
  1439       // are in effect a little smaller than they look.
  1441       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1442       if (per_bc_reason != Reason_none) {
  1443         // Now take action based on the partially known per-BCI history.
  1444         if (maybe_prior_trap
  1445             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1446           // If there are too many traps at this BCI, force a recompile.
  1447           // This will allow the compiler to see the limit overflow, and
  1448           // take corrective action, if possible.  The compiler generally
  1449           // does not use the exact PerBytecodeTrapLimit value, but instead
  1450           // changes its tactics if it sees any traps at all.  This provides
  1451           // a little hysteresis, delaying a recompile until a trap happens
  1452           // several times.
  1453           //
  1454           // Actually, since there is only one bit of counter per BCI,
  1455           // the possible per-BCI counts are {0,1,(per-method count)}.
  1456           // This produces accurate results if in fact there is only
  1457           // one hot trap site, but begins to get fuzzy if there are
  1458           // many sites.  For example, if there are ten sites each
  1459           // trapping two or more times, they each get the blame for
  1460           // all of their traps.
  1461           make_not_entrant = true;
  1464         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1465         if (make_not_entrant && maybe_prior_recompile) {
  1466           // More than one recompile at this point.
  1467           inc_recompile_count = maybe_prior_trap;
  1469       } else {
  1470         // For reasons which are not recorded per-bytecode, we simply
  1471         // force recompiles unconditionally.
  1472         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1473         make_not_entrant = true;
  1476       // Go back to the compiler if there are too many traps in this method.
  1477       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1478         // If there are too many traps in this method, force a recompile.
  1479         // This will allow the compiler to see the limit overflow, and
  1480         // take corrective action, if possible.
  1481         // (This condition is an unlikely backstop only, because the
  1482         // PerBytecodeTrapLimit is more likely to take effect first,
  1483         // if it is applicable.)
  1484         make_not_entrant = true;
  1487       // Here's more hysteresis:  If there has been a recompile at
  1488       // this trap point already, run the method in the interpreter
  1489       // for a while to exercise it more thoroughly.
  1490       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1491         reprofile = true;
  1496     // Take requested actions on the method:
  1498     // Recompile
  1499     if (make_not_entrant) {
  1500       if (!nm->make_not_entrant()) {
  1501         return; // the call did not change nmethod's state
  1504       if (pdata != NULL) {
  1505         // Record the recompilation event, if any.
  1506         int tstate0 = pdata->trap_state();
  1507         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1508         if (tstate1 != tstate0)
  1509           pdata->set_trap_state(tstate1);
  1513     if (inc_recompile_count) {
  1514       trap_mdo->inc_overflow_recompile_count();
  1515       if ((uint)trap_mdo->overflow_recompile_count() >
  1516           (uint)PerBytecodeRecompilationCutoff) {
  1517         // Give up on the method containing the bad BCI.
  1518         if (trap_method() == nm->method()) {
  1519           make_not_compilable = true;
  1520         } else {
  1521           trap_method->set_not_compilable(CompLevel_full_optimization);
  1522           // But give grace to the enclosing nm->method().
  1527     // Reprofile
  1528     if (reprofile) {
  1529       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1532     // Give up compiling
  1533     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1534       assert(make_not_entrant, "consistent");
  1535       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1538   } // Free marked resources
  1541 JRT_END
  1543 methodDataOop
  1544 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1545                                 bool create_if_missing) {
  1546   Thread* THREAD = thread;
  1547   methodDataOop mdo = m()->method_data();
  1548   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1549     // Build an MDO.  Ignore errors like OutOfMemory;
  1550     // that simply means we won't have an MDO to update.
  1551     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1552     if (HAS_PENDING_EXCEPTION) {
  1553       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1554       CLEAR_PENDING_EXCEPTION;
  1556     mdo = m()->method_data();
  1558   return mdo;
  1561 ProfileData*
  1562 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1563                                          int trap_bci,
  1564                                          Deoptimization::DeoptReason reason,
  1565                                          //outputs:
  1566                                          uint& ret_this_trap_count,
  1567                                          bool& ret_maybe_prior_trap,
  1568                                          bool& ret_maybe_prior_recompile) {
  1569   uint prior_trap_count = trap_mdo->trap_count(reason);
  1570   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1572   // If the runtime cannot find a place to store trap history,
  1573   // it is estimated based on the general condition of the method.
  1574   // If the method has ever been recompiled, or has ever incurred
  1575   // a trap with the present reason , then this BCI is assumed
  1576   // (pessimistically) to be the culprit.
  1577   bool maybe_prior_trap      = (prior_trap_count != 0);
  1578   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1579   ProfileData* pdata = NULL;
  1582   // For reasons which are recorded per bytecode, we check per-BCI data.
  1583   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1584   if (per_bc_reason != Reason_none) {
  1585     // Find the profile data for this BCI.  If there isn't one,
  1586     // try to allocate one from the MDO's set of spares.
  1587     // This will let us detect a repeated trap at this point.
  1588     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1590     if (pdata != NULL) {
  1591       // Query the trap state of this profile datum.
  1592       int tstate0 = pdata->trap_state();
  1593       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1594         maybe_prior_trap = false;
  1595       if (!trap_state_is_recompiled(tstate0))
  1596         maybe_prior_recompile = false;
  1598       // Update the trap state of this profile datum.
  1599       int tstate1 = tstate0;
  1600       // Record the reason.
  1601       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1602       // Store the updated state on the MDO, for next time.
  1603       if (tstate1 != tstate0)
  1604         pdata->set_trap_state(tstate1);
  1605     } else {
  1606       if (LogCompilation && xtty != NULL) {
  1607         ttyLocker ttyl;
  1608         // Missing MDP?  Leave a small complaint in the log.
  1609         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1614   // Return results:
  1615   ret_this_trap_count = this_trap_count;
  1616   ret_maybe_prior_trap = maybe_prior_trap;
  1617   ret_maybe_prior_recompile = maybe_prior_recompile;
  1618   return pdata;
  1621 void
  1622 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1623   ResourceMark rm;
  1624   // Ignored outputs:
  1625   uint ignore_this_trap_count;
  1626   bool ignore_maybe_prior_trap;
  1627   bool ignore_maybe_prior_recompile;
  1628   query_update_method_data(trap_mdo, trap_bci,
  1629                            (DeoptReason)reason,
  1630                            ignore_this_trap_count,
  1631                            ignore_maybe_prior_trap,
  1632                            ignore_maybe_prior_recompile);
  1635 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1637   // Still in Java no safepoints
  1639     // This enters VM and may safepoint
  1640     uncommon_trap_inner(thread, trap_request);
  1642   return fetch_unroll_info_helper(thread);
  1645 // Local derived constants.
  1646 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1647 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1648 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1650 //---------------------------trap_state_reason---------------------------------
  1651 Deoptimization::DeoptReason
  1652 Deoptimization::trap_state_reason(int trap_state) {
  1653   // This assert provides the link between the width of DataLayout::trap_bits
  1654   // and the encoding of "recorded" reasons.  It ensures there are enough
  1655   // bits to store all needed reasons in the per-BCI MDO profile.
  1656   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1657   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1658   trap_state -= recompile_bit;
  1659   if (trap_state == DS_REASON_MASK) {
  1660     return Reason_many;
  1661   } else {
  1662     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1663     return (DeoptReason)trap_state;
  1666 //-------------------------trap_state_has_reason-------------------------------
  1667 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1668   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1669   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1670   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1671   trap_state -= recompile_bit;
  1672   if (trap_state == DS_REASON_MASK) {
  1673     return -1;  // true, unspecifically (bottom of state lattice)
  1674   } else if (trap_state == reason) {
  1675     return 1;   // true, definitely
  1676   } else if (trap_state == 0) {
  1677     return 0;   // false, definitely (top of state lattice)
  1678   } else {
  1679     return 0;   // false, definitely
  1682 //-------------------------trap_state_add_reason-------------------------------
  1683 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1684   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1685   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1686   trap_state -= recompile_bit;
  1687   if (trap_state == DS_REASON_MASK) {
  1688     return trap_state + recompile_bit;     // already at state lattice bottom
  1689   } else if (trap_state == reason) {
  1690     return trap_state + recompile_bit;     // the condition is already true
  1691   } else if (trap_state == 0) {
  1692     return reason + recompile_bit;          // no condition has yet been true
  1693   } else {
  1694     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1697 //-----------------------trap_state_is_recompiled------------------------------
  1698 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1699   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1701 //-----------------------trap_state_set_recompiled-----------------------------
  1702 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1703   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1704   else    return trap_state & ~DS_RECOMPILE_BIT;
  1706 //---------------------------format_trap_state---------------------------------
  1707 // This is used for debugging and diagnostics, including hotspot.log output.
  1708 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1709                                               int trap_state) {
  1710   DeoptReason reason      = trap_state_reason(trap_state);
  1711   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1712   // Re-encode the state from its decoded components.
  1713   int decoded_state = 0;
  1714   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1715     decoded_state = trap_state_add_reason(decoded_state, reason);
  1716   if (recomp_flag)
  1717     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1718   // If the state re-encodes properly, format it symbolically.
  1719   // Because this routine is used for debugging and diagnostics,
  1720   // be robust even if the state is a strange value.
  1721   size_t len;
  1722   if (decoded_state != trap_state) {
  1723     // Random buggy state that doesn't decode??
  1724     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1725   } else {
  1726     len = jio_snprintf(buf, buflen, "%s%s",
  1727                        trap_reason_name(reason),
  1728                        recomp_flag ? " recompiled" : "");
  1730   if (len >= buflen)
  1731     buf[buflen-1] = '\0';
  1732   return buf;
  1736 //--------------------------------statics--------------------------------------
  1737 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1738   = Deoptimization::Action_reinterpret;
  1739 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1740   // Note:  Keep this in sync. with enum DeoptReason.
  1741   "none",
  1742   "null_check",
  1743   "null_assert",
  1744   "range_check",
  1745   "class_check",
  1746   "array_check",
  1747   "intrinsic",
  1748   "bimorphic",
  1749   "unloaded",
  1750   "uninitialized",
  1751   "unreached",
  1752   "unhandled",
  1753   "constraint",
  1754   "div0_check",
  1755   "age",
  1756   "predicate"
  1757 };
  1758 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1759   // Note:  Keep this in sync. with enum DeoptAction.
  1760   "none",
  1761   "maybe_recompile",
  1762   "reinterpret",
  1763   "make_not_entrant",
  1764   "make_not_compilable"
  1765 };
  1767 const char* Deoptimization::trap_reason_name(int reason) {
  1768   if (reason == Reason_many)  return "many";
  1769   if ((uint)reason < Reason_LIMIT)
  1770     return _trap_reason_name[reason];
  1771   static char buf[20];
  1772   sprintf(buf, "reason%d", reason);
  1773   return buf;
  1775 const char* Deoptimization::trap_action_name(int action) {
  1776   if ((uint)action < Action_LIMIT)
  1777     return _trap_action_name[action];
  1778   static char buf[20];
  1779   sprintf(buf, "action%d", action);
  1780   return buf;
  1783 // This is used for debugging and diagnostics, including hotspot.log output.
  1784 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1785                                                 int trap_request) {
  1786   jint unloaded_class_index = trap_request_index(trap_request);
  1787   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1788   const char* action = trap_action_name(trap_request_action(trap_request));
  1789   size_t len;
  1790   if (unloaded_class_index < 0) {
  1791     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1792                        reason, action);
  1793   } else {
  1794     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1795                        reason, action, unloaded_class_index);
  1797   if (len >= buflen)
  1798     buf[buflen-1] = '\0';
  1799   return buf;
  1802 juint Deoptimization::_deoptimization_hist
  1803         [Deoptimization::Reason_LIMIT]
  1804     [1 + Deoptimization::Action_LIMIT]
  1805         [Deoptimization::BC_CASE_LIMIT]
  1806   = {0};
  1808 enum {
  1809   LSB_BITS = 8,
  1810   LSB_MASK = right_n_bits(LSB_BITS)
  1811 };
  1813 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1814                                        Bytecodes::Code bc) {
  1815   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1816   assert(action >= 0 && action < Action_LIMIT, "oob");
  1817   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1818   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1819   juint* cases = _deoptimization_hist[reason][1+action];
  1820   juint* bc_counter_addr = NULL;
  1821   juint  bc_counter      = 0;
  1822   // Look for an unused counter, or an exact match to this BC.
  1823   if (bc != Bytecodes::_illegal) {
  1824     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1825       juint* counter_addr = &cases[bc_case];
  1826       juint  counter = *counter_addr;
  1827       if ((counter == 0 && bc_counter_addr == NULL)
  1828           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1829         // this counter is either free or is already devoted to this BC
  1830         bc_counter_addr = counter_addr;
  1831         bc_counter = counter | bc;
  1835   if (bc_counter_addr == NULL) {
  1836     // Overflow, or no given bytecode.
  1837     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1838     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1840   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1843 jint Deoptimization::total_deoptimization_count() {
  1844   return _deoptimization_hist[Reason_none][0][0];
  1847 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1848   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1849   return _deoptimization_hist[reason][0][0];
  1852 void Deoptimization::print_statistics() {
  1853   juint total = total_deoptimization_count();
  1854   juint account = total;
  1855   if (total != 0) {
  1856     ttyLocker ttyl;
  1857     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1858     tty->print_cr("Deoptimization traps recorded:");
  1859     #define PRINT_STAT_LINE(name, r) \
  1860       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1861     PRINT_STAT_LINE("total", total);
  1862     // For each non-zero entry in the histogram, print the reason,
  1863     // the action, and (if specifically known) the type of bytecode.
  1864     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1865       for (int action = 0; action < Action_LIMIT; action++) {
  1866         juint* cases = _deoptimization_hist[reason][1+action];
  1867         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1868           juint counter = cases[bc_case];
  1869           if (counter != 0) {
  1870             char name[1*K];
  1871             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1872             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1873               bc = Bytecodes::_illegal;
  1874             sprintf(name, "%s/%s/%s",
  1875                     trap_reason_name(reason),
  1876                     trap_action_name(action),
  1877                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1878             juint r = counter >> LSB_BITS;
  1879             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1880             account -= r;
  1885     if (account != 0) {
  1886       PRINT_STAT_LINE("unaccounted", account);
  1888     #undef PRINT_STAT_LINE
  1889     if (xtty != NULL)  xtty->tail("statistics");
  1892 #else // COMPILER2 || SHARK
  1895 // Stubs for C1 only system.
  1896 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1897   return false;
  1900 const char* Deoptimization::trap_reason_name(int reason) {
  1901   return "unknown";
  1904 void Deoptimization::print_statistics() {
  1905   // no output
  1908 void
  1909 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1910   // no udpate
  1913 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1914   return 0;
  1917 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1918                                        Bytecodes::Code bc) {
  1919   // no update
  1922 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1923                                               int trap_state) {
  1924   jio_snprintf(buf, buflen, "#%d", trap_state);
  1925   return buf;
  1928 #endif // COMPILER2 || SHARK

mercurial