src/cpu/x86/vm/macroAssembler_x86.hpp

Thu, 03 Jan 2013 15:09:55 -0800

author
kvn
date
Thu, 03 Jan 2013 15:09:55 -0800
changeset 4410
00af3a3a8df4
parent 4356
18d56ca3e901
child 4413
038dd2875b94
permissions
-rw-r--r--

8005522: use fast-string instructions on x86 for zeroing
Summary: use 'rep stosb' instead of 'rep stosq' when fast-string operations are available.
Reviewed-by: twisti, roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
    28 #include "asm/assembler.hpp"
    31 // MacroAssembler extends Assembler by frequently used macros.
    32 //
    33 // Instructions for which a 'better' code sequence exists depending
    34 // on arguments should also go in here.
    36 class MacroAssembler: public Assembler {
    37   friend class LIR_Assembler;
    38   friend class Runtime1;      // as_Address()
    40  protected:
    42   Address as_Address(AddressLiteral adr);
    43   Address as_Address(ArrayAddress adr);
    45   // Support for VM calls
    46   //
    47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
    48   // may customize this version by overriding it for its purposes (e.g., to save/restore
    49   // additional registers when doing a VM call).
    50 #ifdef CC_INTERP
    51   // c++ interpreter never wants to use interp_masm version of call_VM
    52   #define VIRTUAL
    53 #else
    54   #define VIRTUAL virtual
    55 #endif
    57   VIRTUAL void call_VM_leaf_base(
    58     address entry_point,               // the entry point
    59     int     number_of_arguments        // the number of arguments to pop after the call
    60   );
    62   // This is the base routine called by the different versions of call_VM. The interpreter
    63   // may customize this version by overriding it for its purposes (e.g., to save/restore
    64   // additional registers when doing a VM call).
    65   //
    66   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
    67   // returns the register which contains the thread upon return. If a thread register has been
    68   // specified, the return value will correspond to that register. If no last_java_sp is specified
    69   // (noreg) than rsp will be used instead.
    70   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    71     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    72     Register java_thread,              // the thread if computed before     ; use noreg otherwise
    73     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    74     address  entry_point,              // the entry point
    75     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    76     bool     check_exceptions          // whether to check for pending exceptions after return
    77   );
    79   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
    80   // The implementation is only non-empty for the InterpreterMacroAssembler,
    81   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
    82   virtual void check_and_handle_popframe(Register java_thread);
    83   virtual void check_and_handle_earlyret(Register java_thread);
    85   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
    87   // helpers for FPU flag access
    88   // tmp is a temporary register, if none is available use noreg
    89   void save_rax   (Register tmp);
    90   void restore_rax(Register tmp);
    92  public:
    93   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
    95   // Support for NULL-checks
    96   //
    97   // Generates code that causes a NULL OS exception if the content of reg is NULL.
    98   // If the accessed location is M[reg + offset] and the offset is known, provide the
    99   // offset. No explicit code generation is needed if the offset is within a certain
   100   // range (0 <= offset <= page_size).
   102   void null_check(Register reg, int offset = -1);
   103   static bool needs_explicit_null_check(intptr_t offset);
   105   // Required platform-specific helpers for Label::patch_instructions.
   106   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   107   void pd_patch_instruction(address branch, address target) {
   108     unsigned char op = branch[0];
   109     assert(op == 0xE8 /* call */ ||
   110         op == 0xE9 /* jmp */ ||
   111         op == 0xEB /* short jmp */ ||
   112         (op & 0xF0) == 0x70 /* short jcc */ ||
   113         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
   114         "Invalid opcode at patch point");
   116     if (op == 0xEB || (op & 0xF0) == 0x70) {
   117       // short offset operators (jmp and jcc)
   118       char* disp = (char*) &branch[1];
   119       int imm8 = target - (address) &disp[1];
   120       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
   121       *disp = imm8;
   122     } else {
   123       int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
   124       int imm32 = target - (address) &disp[1];
   125       *disp = imm32;
   126     }
   127   }
   129   // The following 4 methods return the offset of the appropriate move instruction
   131   // Support for fast byte/short loading with zero extension (depending on particular CPU)
   132   int load_unsigned_byte(Register dst, Address src);
   133   int load_unsigned_short(Register dst, Address src);
   135   // Support for fast byte/short loading with sign extension (depending on particular CPU)
   136   int load_signed_byte(Register dst, Address src);
   137   int load_signed_short(Register dst, Address src);
   139   // Support for sign-extension (hi:lo = extend_sign(lo))
   140   void extend_sign(Register hi, Register lo);
   142   // Load and store values by size and signed-ness
   143   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
   144   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
   146   // Support for inc/dec with optimal instruction selection depending on value
   148   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
   149   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
   151   void decrementl(Address dst, int value = 1);
   152   void decrementl(Register reg, int value = 1);
   154   void decrementq(Register reg, int value = 1);
   155   void decrementq(Address dst, int value = 1);
   157   void incrementl(Address dst, int value = 1);
   158   void incrementl(Register reg, int value = 1);
   160   void incrementq(Register reg, int value = 1);
   161   void incrementq(Address dst, int value = 1);
   164   // Support optimal SSE move instructions.
   165   void movflt(XMMRegister dst, XMMRegister src) {
   166     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
   167     else                       { movss (dst, src); return; }
   168   }
   169   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
   170   void movflt(XMMRegister dst, AddressLiteral src);
   171   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
   173   void movdbl(XMMRegister dst, XMMRegister src) {
   174     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
   175     else                       { movsd (dst, src); return; }
   176   }
   178   void movdbl(XMMRegister dst, AddressLiteral src);
   180   void movdbl(XMMRegister dst, Address src) {
   181     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
   182     else                         { movlpd(dst, src); return; }
   183   }
   184   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
   186   void incrementl(AddressLiteral dst);
   187   void incrementl(ArrayAddress dst);
   189   // Alignment
   190   void align(int modulus);
   192   // A 5 byte nop that is safe for patching (see patch_verified_entry)
   193   void fat_nop();
   195   // Stack frame creation/removal
   196   void enter();
   197   void leave();
   199   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
   200   // The pointer will be loaded into the thread register.
   201   void get_thread(Register thread);
   204   // Support for VM calls
   205   //
   206   // It is imperative that all calls into the VM are handled via the call_VM macros.
   207   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   208   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   211   void call_VM(Register oop_result,
   212                address entry_point,
   213                bool check_exceptions = true);
   214   void call_VM(Register oop_result,
   215                address entry_point,
   216                Register arg_1,
   217                bool check_exceptions = true);
   218   void call_VM(Register oop_result,
   219                address entry_point,
   220                Register arg_1, Register arg_2,
   221                bool check_exceptions = true);
   222   void call_VM(Register oop_result,
   223                address entry_point,
   224                Register arg_1, Register arg_2, Register arg_3,
   225                bool check_exceptions = true);
   227   // Overloadings with last_Java_sp
   228   void call_VM(Register oop_result,
   229                Register last_java_sp,
   230                address entry_point,
   231                int number_of_arguments = 0,
   232                bool check_exceptions = true);
   233   void call_VM(Register oop_result,
   234                Register last_java_sp,
   235                address entry_point,
   236                Register arg_1, bool
   237                check_exceptions = true);
   238   void call_VM(Register oop_result,
   239                Register last_java_sp,
   240                address entry_point,
   241                Register arg_1, Register arg_2,
   242                bool check_exceptions = true);
   243   void call_VM(Register oop_result,
   244                Register last_java_sp,
   245                address entry_point,
   246                Register arg_1, Register arg_2, Register arg_3,
   247                bool check_exceptions = true);
   249   void get_vm_result  (Register oop_result, Register thread);
   250   void get_vm_result_2(Register metadata_result, Register thread);
   252   // These always tightly bind to MacroAssembler::call_VM_base
   253   // bypassing the virtual implementation
   254   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
   255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
   256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
   257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
   258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
   260   void call_VM_leaf(address entry_point,
   261                     int number_of_arguments = 0);
   262   void call_VM_leaf(address entry_point,
   263                     Register arg_1);
   264   void call_VM_leaf(address entry_point,
   265                     Register arg_1, Register arg_2);
   266   void call_VM_leaf(address entry_point,
   267                     Register arg_1, Register arg_2, Register arg_3);
   269   // These always tightly bind to MacroAssembler::call_VM_leaf_base
   270   // bypassing the virtual implementation
   271   void super_call_VM_leaf(address entry_point);
   272   void super_call_VM_leaf(address entry_point, Register arg_1);
   273   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
   274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
   275   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
   277   // last Java Frame (fills frame anchor)
   278   void set_last_Java_frame(Register thread,
   279                            Register last_java_sp,
   280                            Register last_java_fp,
   281                            address last_java_pc);
   283   // thread in the default location (r15_thread on 64bit)
   284   void set_last_Java_frame(Register last_java_sp,
   285                            Register last_java_fp,
   286                            address last_java_pc);
   288   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
   290   // thread in the default location (r15_thread on 64bit)
   291   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
   293   // Stores
   294   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
   295   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
   297 #ifndef SERIALGC
   299   void g1_write_barrier_pre(Register obj,
   300                             Register pre_val,
   301                             Register thread,
   302                             Register tmp,
   303                             bool tosca_live,
   304                             bool expand_call);
   306   void g1_write_barrier_post(Register store_addr,
   307                              Register new_val,
   308                              Register thread,
   309                              Register tmp,
   310                              Register tmp2);
   312 #endif // SERIALGC
   314   // split store_check(Register obj) to enhance instruction interleaving
   315   void store_check_part_1(Register obj);
   316   void store_check_part_2(Register obj);
   318   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
   319   void c2bool(Register x);
   321   // C++ bool manipulation
   323   void movbool(Register dst, Address src);
   324   void movbool(Address dst, bool boolconst);
   325   void movbool(Address dst, Register src);
   326   void testbool(Register dst);
   328   // oop manipulations
   329   void load_klass(Register dst, Register src);
   330   void store_klass(Register dst, Register src);
   332   void load_heap_oop(Register dst, Address src);
   333   void load_heap_oop_not_null(Register dst, Address src);
   334   void store_heap_oop(Address dst, Register src);
   335   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
   337   // Used for storing NULL. All other oop constants should be
   338   // stored using routines that take a jobject.
   339   void store_heap_oop_null(Address dst);
   341   void load_prototype_header(Register dst, Register src);
   343 #ifdef _LP64
   344   void store_klass_gap(Register dst, Register src);
   346   // This dummy is to prevent a call to store_heap_oop from
   347   // converting a zero (like NULL) into a Register by giving
   348   // the compiler two choices it can't resolve
   350   void store_heap_oop(Address dst, void* dummy);
   352   void encode_heap_oop(Register r);
   353   void decode_heap_oop(Register r);
   354   void encode_heap_oop_not_null(Register r);
   355   void decode_heap_oop_not_null(Register r);
   356   void encode_heap_oop_not_null(Register dst, Register src);
   357   void decode_heap_oop_not_null(Register dst, Register src);
   359   void set_narrow_oop(Register dst, jobject obj);
   360   void set_narrow_oop(Address dst, jobject obj);
   361   void cmp_narrow_oop(Register dst, jobject obj);
   362   void cmp_narrow_oop(Address dst, jobject obj);
   364   void encode_klass_not_null(Register r);
   365   void decode_klass_not_null(Register r);
   366   void encode_klass_not_null(Register dst, Register src);
   367   void decode_klass_not_null(Register dst, Register src);
   368   void set_narrow_klass(Register dst, Klass* k);
   369   void set_narrow_klass(Address dst, Klass* k);
   370   void cmp_narrow_klass(Register dst, Klass* k);
   371   void cmp_narrow_klass(Address dst, Klass* k);
   373   // if heap base register is used - reinit it with the correct value
   374   void reinit_heapbase();
   376   DEBUG_ONLY(void verify_heapbase(const char* msg);)
   378 #endif // _LP64
   380   // Int division/remainder for Java
   381   // (as idivl, but checks for special case as described in JVM spec.)
   382   // returns idivl instruction offset for implicit exception handling
   383   int corrected_idivl(Register reg);
   385   // Long division/remainder for Java
   386   // (as idivq, but checks for special case as described in JVM spec.)
   387   // returns idivq instruction offset for implicit exception handling
   388   int corrected_idivq(Register reg);
   390   void int3();
   392   // Long operation macros for a 32bit cpu
   393   // Long negation for Java
   394   void lneg(Register hi, Register lo);
   396   // Long multiplication for Java
   397   // (destroys contents of eax, ebx, ecx and edx)
   398   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
   400   // Long shifts for Java
   401   // (semantics as described in JVM spec.)
   402   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
   403   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
   405   // Long compare for Java
   406   // (semantics as described in JVM spec.)
   407   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
   410   // misc
   412   // Sign extension
   413   void sign_extend_short(Register reg);
   414   void sign_extend_byte(Register reg);
   416   // Division by power of 2, rounding towards 0
   417   void division_with_shift(Register reg, int shift_value);
   419   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
   420   //
   421   // CF (corresponds to C0) if x < y
   422   // PF (corresponds to C2) if unordered
   423   // ZF (corresponds to C3) if x = y
   424   //
   425   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   426   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
   427   void fcmp(Register tmp);
   428   // Variant of the above which allows y to be further down the stack
   429   // and which only pops x and y if specified. If pop_right is
   430   // specified then pop_left must also be specified.
   431   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
   433   // Floating-point comparison for Java
   434   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
   435   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   436   // (semantics as described in JVM spec.)
   437   void fcmp2int(Register dst, bool unordered_is_less);
   438   // Variant of the above which allows y to be further down the stack
   439   // and which only pops x and y if specified. If pop_right is
   440   // specified then pop_left must also be specified.
   441   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
   443   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
   444   // tmp is a temporary register, if none is available use noreg
   445   void fremr(Register tmp);
   448   // same as fcmp2int, but using SSE2
   449   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   450   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   452   // Inlined sin/cos generator for Java; must not use CPU instruction
   453   // directly on Intel as it does not have high enough precision
   454   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
   455   // number of FPU stack slots in use; all but the topmost will
   456   // require saving if a slow case is necessary. Assumes argument is
   457   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
   458   // this code.
   459   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
   461   // branch to L if FPU flag C2 is set/not set
   462   // tmp is a temporary register, if none is available use noreg
   463   void jC2 (Register tmp, Label& L);
   464   void jnC2(Register tmp, Label& L);
   466   // Pop ST (ffree & fincstp combined)
   467   void fpop();
   469   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
   470   void push_fTOS();
   472   // pops double TOS element from CPU stack and pushes on FPU stack
   473   void pop_fTOS();
   475   void empty_FPU_stack();
   477   void push_IU_state();
   478   void pop_IU_state();
   480   void push_FPU_state();
   481   void pop_FPU_state();
   483   void push_CPU_state();
   484   void pop_CPU_state();
   486   // Round up to a power of two
   487   void round_to(Register reg, int modulus);
   489   // Callee saved registers handling
   490   void push_callee_saved_registers();
   491   void pop_callee_saved_registers();
   493   // allocation
   494   void eden_allocate(
   495     Register obj,                      // result: pointer to object after successful allocation
   496     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   497     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   498     Register t1,                       // temp register
   499     Label&   slow_case                 // continuation point if fast allocation fails
   500   );
   501   void tlab_allocate(
   502     Register obj,                      // result: pointer to object after successful allocation
   503     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   504     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   505     Register t1,                       // temp register
   506     Register t2,                       // temp register
   507     Label&   slow_case                 // continuation point if fast allocation fails
   508   );
   509   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
   510   void incr_allocated_bytes(Register thread,
   511                             Register var_size_in_bytes, int con_size_in_bytes,
   512                             Register t1 = noreg);
   514   // interface method calling
   515   void lookup_interface_method(Register recv_klass,
   516                                Register intf_klass,
   517                                RegisterOrConstant itable_index,
   518                                Register method_result,
   519                                Register scan_temp,
   520                                Label& no_such_interface);
   522   // virtual method calling
   523   void lookup_virtual_method(Register recv_klass,
   524                              RegisterOrConstant vtable_index,
   525                              Register method_result);
   527   // Test sub_klass against super_klass, with fast and slow paths.
   529   // The fast path produces a tri-state answer: yes / no / maybe-slow.
   530   // One of the three labels can be NULL, meaning take the fall-through.
   531   // If super_check_offset is -1, the value is loaded up from super_klass.
   532   // No registers are killed, except temp_reg.
   533   void check_klass_subtype_fast_path(Register sub_klass,
   534                                      Register super_klass,
   535                                      Register temp_reg,
   536                                      Label* L_success,
   537                                      Label* L_failure,
   538                                      Label* L_slow_path,
   539                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
   541   // The rest of the type check; must be wired to a corresponding fast path.
   542   // It does not repeat the fast path logic, so don't use it standalone.
   543   // The temp_reg and temp2_reg can be noreg, if no temps are available.
   544   // Updates the sub's secondary super cache as necessary.
   545   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
   546   void check_klass_subtype_slow_path(Register sub_klass,
   547                                      Register super_klass,
   548                                      Register temp_reg,
   549                                      Register temp2_reg,
   550                                      Label* L_success,
   551                                      Label* L_failure,
   552                                      bool set_cond_codes = false);
   554   // Simplified, combined version, good for typical uses.
   555   // Falls through on failure.
   556   void check_klass_subtype(Register sub_klass,
   557                            Register super_klass,
   558                            Register temp_reg,
   559                            Label& L_success);
   561   // method handles (JSR 292)
   562   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
   564   //----
   565   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
   567   // Debugging
   569   // only if +VerifyOops
   570   // TODO: Make these macros with file and line like sparc version!
   571   void verify_oop(Register reg, const char* s = "broken oop");
   572   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
   574   // TODO: verify method and klass metadata (compare against vptr?)
   575   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
   576   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
   578 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
   579 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
   581   // only if +VerifyFPU
   582   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
   584   // prints msg, dumps registers and stops execution
   585   void stop(const char* msg);
   587   // prints msg and continues
   588   void warn(const char* msg);
   590   // dumps registers and other state
   591   void print_state();
   593   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
   594   static void debug64(char* msg, int64_t pc, int64_t regs[]);
   595   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
   596   static void print_state64(int64_t pc, int64_t regs[]);
   598   void os_breakpoint();
   600   void untested()                                { stop("untested"); }
   602   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
   604   void should_not_reach_here()                   { stop("should not reach here"); }
   606   void print_CPU_state();
   608   // Stack overflow checking
   609   void bang_stack_with_offset(int offset) {
   610     // stack grows down, caller passes positive offset
   611     assert(offset > 0, "must bang with negative offset");
   612     movl(Address(rsp, (-offset)), rax);
   613   }
   615   // Writes to stack successive pages until offset reached to check for
   616   // stack overflow + shadow pages.  Also, clobbers tmp
   617   void bang_stack_size(Register size, Register tmp);
   619   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
   620                                                 Register tmp,
   621                                                 int offset);
   623   // Support for serializing memory accesses between threads
   624   void serialize_memory(Register thread, Register tmp);
   626   void verify_tlab();
   628   // Biased locking support
   629   // lock_reg and obj_reg must be loaded up with the appropriate values.
   630   // swap_reg must be rax, and is killed.
   631   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
   632   // be killed; if not supplied, push/pop will be used internally to
   633   // allocate a temporary (inefficient, avoid if possible).
   634   // Optional slow case is for implementations (interpreter and C1) which branch to
   635   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
   636   // Returns offset of first potentially-faulting instruction for null
   637   // check info (currently consumed only by C1). If
   638   // swap_reg_contains_mark is true then returns -1 as it is assumed
   639   // the calling code has already passed any potential faults.
   640   int biased_locking_enter(Register lock_reg, Register obj_reg,
   641                            Register swap_reg, Register tmp_reg,
   642                            bool swap_reg_contains_mark,
   643                            Label& done, Label* slow_case = NULL,
   644                            BiasedLockingCounters* counters = NULL);
   645   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
   648   Condition negate_condition(Condition cond);
   650   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
   651   // operands. In general the names are modified to avoid hiding the instruction in Assembler
   652   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
   653   // here in MacroAssembler. The major exception to this rule is call
   655   // Arithmetics
   658   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
   659   void addptr(Address dst, Register src);
   661   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
   662   void addptr(Register dst, int32_t src);
   663   void addptr(Register dst, Register src);
   664   void addptr(Register dst, RegisterOrConstant src) {
   665     if (src.is_constant()) addptr(dst, (int) src.as_constant());
   666     else                   addptr(dst,       src.as_register());
   667   }
   669   void andptr(Register dst, int32_t src);
   670   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
   672   void cmp8(AddressLiteral src1, int imm);
   674   // renamed to drag out the casting of address to int32_t/intptr_t
   675   void cmp32(Register src1, int32_t imm);
   677   void cmp32(AddressLiteral src1, int32_t imm);
   678   // compare reg - mem, or reg - &mem
   679   void cmp32(Register src1, AddressLiteral src2);
   681   void cmp32(Register src1, Address src2);
   683 #ifndef _LP64
   684   void cmpklass(Address dst, Metadata* obj);
   685   void cmpklass(Register dst, Metadata* obj);
   686   void cmpoop(Address dst, jobject obj);
   687   void cmpoop(Register dst, jobject obj);
   688 #endif // _LP64
   690   // NOTE src2 must be the lval. This is NOT an mem-mem compare
   691   void cmpptr(Address src1, AddressLiteral src2);
   693   void cmpptr(Register src1, AddressLiteral src2);
   695   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   696   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   697   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   699   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   700   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   702   // cmp64 to avoild hiding cmpq
   703   void cmp64(Register src1, AddressLiteral src);
   705   void cmpxchgptr(Register reg, Address adr);
   707   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
   710   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
   713   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
   715   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
   717   void shlptr(Register dst, int32_t shift);
   718   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
   720   void shrptr(Register dst, int32_t shift);
   721   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
   723   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
   724   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
   726   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   728   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   729   void subptr(Register dst, int32_t src);
   730   // Force generation of a 4 byte immediate value even if it fits into 8bit
   731   void subptr_imm32(Register dst, int32_t src);
   732   void subptr(Register dst, Register src);
   733   void subptr(Register dst, RegisterOrConstant src) {
   734     if (src.is_constant()) subptr(dst, (int) src.as_constant());
   735     else                   subptr(dst,       src.as_register());
   736   }
   738   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   739   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   741   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   742   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   744   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
   748   // Helper functions for statistics gathering.
   749   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
   750   void cond_inc32(Condition cond, AddressLiteral counter_addr);
   751   // Unconditional atomic increment.
   752   void atomic_incl(AddressLiteral counter_addr);
   754   void lea(Register dst, AddressLiteral adr);
   755   void lea(Address dst, AddressLiteral adr);
   756   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
   758   void leal32(Register dst, Address src) { leal(dst, src); }
   760   // Import other testl() methods from the parent class or else
   761   // they will be hidden by the following overriding declaration.
   762   using Assembler::testl;
   763   void testl(Register dst, AddressLiteral src);
   765   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   766   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   767   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   769   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
   770   void testptr(Register src1, Register src2);
   772   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   773   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   775   // Calls
   777   void call(Label& L, relocInfo::relocType rtype);
   778   void call(Register entry);
   780   // NOTE: this call tranfers to the effective address of entry NOT
   781   // the address contained by entry. This is because this is more natural
   782   // for jumps/calls.
   783   void call(AddressLiteral entry);
   785   // Emit the CompiledIC call idiom
   786   void ic_call(address entry);
   788   // Jumps
   790   // NOTE: these jumps tranfer to the effective address of dst NOT
   791   // the address contained by dst. This is because this is more natural
   792   // for jumps/calls.
   793   void jump(AddressLiteral dst);
   794   void jump_cc(Condition cc, AddressLiteral dst);
   796   // 32bit can do a case table jump in one instruction but we no longer allow the base
   797   // to be installed in the Address class. This jump will tranfers to the address
   798   // contained in the location described by entry (not the address of entry)
   799   void jump(ArrayAddress entry);
   801   // Floating
   803   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
   804   void andpd(XMMRegister dst, AddressLiteral src);
   806   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
   807   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
   808   void andps(XMMRegister dst, AddressLiteral src);
   810   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
   811   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
   812   void comiss(XMMRegister dst, AddressLiteral src);
   814   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
   815   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
   816   void comisd(XMMRegister dst, AddressLiteral src);
   818   void fadd_s(Address src)        { Assembler::fadd_s(src); }
   819   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
   821   void fldcw(Address src) { Assembler::fldcw(src); }
   822   void fldcw(AddressLiteral src);
   824   void fld_s(int index)   { Assembler::fld_s(index); }
   825   void fld_s(Address src) { Assembler::fld_s(src); }
   826   void fld_s(AddressLiteral src);
   828   void fld_d(Address src) { Assembler::fld_d(src); }
   829   void fld_d(AddressLiteral src);
   831   void fld_x(Address src) { Assembler::fld_x(src); }
   832   void fld_x(AddressLiteral src);
   834   void fmul_s(Address src)        { Assembler::fmul_s(src); }
   835   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
   837   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
   838   void ldmxcsr(AddressLiteral src);
   840   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
   841   // all corner cases and may result in NaN and require fallback to a
   842   // runtime call.
   843   void fast_pow();
   844   void fast_exp();
   845   void increase_precision();
   846   void restore_precision();
   848   // computes exp(x). Fallback to runtime call included.
   849   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
   850   // computes pow(x,y). Fallback to runtime call included.
   851   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
   853 private:
   855   // call runtime as a fallback for trig functions and pow/exp.
   856   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
   858   // computes 2^(Ylog2X); Ylog2X in ST(0)
   859   void pow_exp_core_encoding();
   861   // computes pow(x,y) or exp(x). Fallback to runtime call included.
   862   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
   864   // these are private because users should be doing movflt/movdbl
   866   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
   867   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
   868   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
   869   void movss(XMMRegister dst, AddressLiteral src);
   871   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
   872   void movlpd(XMMRegister dst, AddressLiteral src);
   874 public:
   876   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
   877   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
   878   void addsd(XMMRegister dst, AddressLiteral src);
   880   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
   881   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
   882   void addss(XMMRegister dst, AddressLiteral src);
   884   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
   885   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
   886   void divsd(XMMRegister dst, AddressLiteral src);
   888   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
   889   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
   890   void divss(XMMRegister dst, AddressLiteral src);
   892   // Move Unaligned Double Quadword
   893   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   894   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
   895   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   896   void movdqu(XMMRegister dst, AddressLiteral src);
   898   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
   899   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
   900   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
   901   void movsd(XMMRegister dst, AddressLiteral src);
   903   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
   904   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
   905   void mulsd(XMMRegister dst, AddressLiteral src);
   907   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
   908   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
   909   void mulss(XMMRegister dst, AddressLiteral src);
   911   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
   912   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
   913   void sqrtsd(XMMRegister dst, AddressLiteral src);
   915   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
   916   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
   917   void sqrtss(XMMRegister dst, AddressLiteral src);
   919   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
   920   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
   921   void subsd(XMMRegister dst, AddressLiteral src);
   923   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
   924   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
   925   void subss(XMMRegister dst, AddressLiteral src);
   927   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
   928   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
   929   void ucomiss(XMMRegister dst, AddressLiteral src);
   931   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
   932   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
   933   void ucomisd(XMMRegister dst, AddressLiteral src);
   935   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
   936   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
   937   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
   938   void xorpd(XMMRegister dst, AddressLiteral src);
   940   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
   941   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
   942   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
   943   void xorps(XMMRegister dst, AddressLiteral src);
   945   // Shuffle Bytes
   946   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
   947   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
   948   void pshufb(XMMRegister dst, AddressLiteral src);
   949   // AVX 3-operands instructions
   951   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
   952   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
   953   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   955   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
   956   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
   957   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   959   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
   960   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
   961   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   963   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
   964   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
   965   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   967   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
   968   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
   969   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   971   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
   972   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
   973   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   975   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
   976   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
   977   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   979   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
   980   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
   981   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   983   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
   984   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
   985   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   987   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
   988   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
   989   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   991   // AVX Vector instructions
   993   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
   994   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
   995   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   997   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
   998   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
   999   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1001   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  1002     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1003       Assembler::vpxor(dst, nds, src, vector256);
  1004     else
  1005       Assembler::vxorpd(dst, nds, src, vector256);
  1007   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  1008     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1009       Assembler::vpxor(dst, nds, src, vector256);
  1010     else
  1011       Assembler::vxorpd(dst, nds, src, vector256);
  1014   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  1015   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1016     if (UseAVX > 1) // vinserti128h is available only in AVX2
  1017       Assembler::vinserti128h(dst, nds, src);
  1018     else
  1019       Assembler::vinsertf128h(dst, nds, src);
  1022   // Data
  1024   void cmov32( Condition cc, Register dst, Address  src);
  1025   void cmov32( Condition cc, Register dst, Register src);
  1027   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  1029   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1030   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1032   void movoop(Register dst, jobject obj);
  1033   void movoop(Address dst, jobject obj);
  1035   void mov_metadata(Register dst, Metadata* obj);
  1036   void mov_metadata(Address dst, Metadata* obj);
  1038   void movptr(ArrayAddress dst, Register src);
  1039   // can this do an lea?
  1040   void movptr(Register dst, ArrayAddress src);
  1042   void movptr(Register dst, Address src);
  1044   void movptr(Register dst, AddressLiteral src);
  1046   void movptr(Register dst, intptr_t src);
  1047   void movptr(Register dst, Register src);
  1048   void movptr(Address dst, intptr_t src);
  1050   void movptr(Address dst, Register src);
  1052   void movptr(Register dst, RegisterOrConstant src) {
  1053     if (src.is_constant()) movptr(dst, src.as_constant());
  1054     else                   movptr(dst, src.as_register());
  1057 #ifdef _LP64
  1058   // Generally the next two are only used for moving NULL
  1059   // Although there are situations in initializing the mark word where
  1060   // they could be used. They are dangerous.
  1062   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1063   // and we have ambiguous declarations.
  1065   void movptr(Address dst, int32_t imm32);
  1066   void movptr(Register dst, int32_t imm32);
  1067 #endif // _LP64
  1069   // to avoid hiding movl
  1070   void mov32(AddressLiteral dst, Register src);
  1071   void mov32(Register dst, AddressLiteral src);
  1073   // to avoid hiding movb
  1074   void movbyte(ArrayAddress dst, int src);
  1076   // Import other mov() methods from the parent class or else
  1077   // they will be hidden by the following overriding declaration.
  1078   using Assembler::movdl;
  1079   using Assembler::movq;
  1080   void movdl(XMMRegister dst, AddressLiteral src);
  1081   void movq(XMMRegister dst, AddressLiteral src);
  1083   // Can push value or effective address
  1084   void pushptr(AddressLiteral src);
  1086   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  1087   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  1089   void pushoop(jobject obj);
  1090   void pushklass(Metadata* obj);
  1092   // sign extend as need a l to ptr sized element
  1093   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  1094   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  1096   // C2 compiled method's prolog code.
  1097   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
  1099   // clear memory of size 'cnt' qwords, starting at 'base'.
  1100   void clear_mem(Register base, Register cnt, Register rtmp);
  1102   // IndexOf strings.
  1103   // Small strings are loaded through stack if they cross page boundary.
  1104   void string_indexof(Register str1, Register str2,
  1105                       Register cnt1, Register cnt2,
  1106                       int int_cnt2,  Register result,
  1107                       XMMRegister vec, Register tmp);
  1109   // IndexOf for constant substrings with size >= 8 elements
  1110   // which don't need to be loaded through stack.
  1111   void string_indexofC8(Register str1, Register str2,
  1112                       Register cnt1, Register cnt2,
  1113                       int int_cnt2,  Register result,
  1114                       XMMRegister vec, Register tmp);
  1116     // Smallest code: we don't need to load through stack,
  1117     // check string tail.
  1119   // Compare strings.
  1120   void string_compare(Register str1, Register str2,
  1121                       Register cnt1, Register cnt2, Register result,
  1122                       XMMRegister vec1);
  1124   // Compare char[] arrays.
  1125   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  1126                           Register limit, Register result, Register chr,
  1127                           XMMRegister vec1, XMMRegister vec2);
  1129   // Fill primitive arrays
  1130   void generate_fill(BasicType t, bool aligned,
  1131                      Register to, Register value, Register count,
  1132                      Register rtmp, XMMRegister xtmp);
  1134 #undef VIRTUAL
  1136 };
  1138 /**
  1139  * class SkipIfEqual:
  1141  * Instantiating this class will result in assembly code being output that will
  1142  * jump around any code emitted between the creation of the instance and it's
  1143  * automatic destruction at the end of a scope block, depending on the value of
  1144  * the flag passed to the constructor, which will be checked at run-time.
  1145  */
  1146 class SkipIfEqual {
  1147  private:
  1148   MacroAssembler* _masm;
  1149   Label _label;
  1151  public:
  1152    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1153    ~SkipIfEqual();
  1154 };
  1156 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial