src/share/vm/opto/macro.cpp

Mon, 20 Aug 2012 09:07:21 -0700

author
kvn
date
Mon, 20 Aug 2012 09:07:21 -0700
changeset 4001
006050192a5a
parent 3900
d2a62e0f25eb
child 4037
da91efe96a93
permissions
-rw-r--r--

6340864: Implement vectorization optimizations in hotspot-server
Summary: Added asm encoding and mach nodes for vector arithmetic instructions on x86.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, C->root()); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144   int size = slow_call_type->domain()->cnt();
   145  CallNode *call = leaf_name
   146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   149   // Slow path call has no side-effects, uses few values
   150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   153   copy_call_debug_info(oldcall, call);
   154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   155   _igvn.replace_node(oldcall, call);
   156   transform_later(call);
   158   return call;
   159 }
   161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   162   _fallthroughproj = NULL;
   163   _fallthroughcatchproj = NULL;
   164   _ioproj_fallthrough = NULL;
   165   _ioproj_catchall = NULL;
   166   _catchallcatchproj = NULL;
   167   _memproj_fallthrough = NULL;
   168   _memproj_catchall = NULL;
   169   _resproj = NULL;
   170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   171     ProjNode *pn = call->fast_out(i)->as_Proj();
   172     switch (pn->_con) {
   173       case TypeFunc::Control:
   174       {
   175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   176         _fallthroughproj = pn;
   177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   178         const Node *cn = pn->fast_out(j);
   179         if (cn->is_Catch()) {
   180           ProjNode *cpn = NULL;
   181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   182             cpn = cn->fast_out(k)->as_Proj();
   183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   184             if (cpn->_con == CatchProjNode::fall_through_index)
   185               _fallthroughcatchproj = cpn;
   186             else {
   187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   188               _catchallcatchproj = cpn;
   189             }
   190           }
   191         }
   192         break;
   193       }
   194       case TypeFunc::I_O:
   195         if (pn->_is_io_use)
   196           _ioproj_catchall = pn;
   197         else
   198           _ioproj_fallthrough = pn;
   199         break;
   200       case TypeFunc::Memory:
   201         if (pn->_is_io_use)
   202           _memproj_catchall = pn;
   203         else
   204           _memproj_fallthrough = pn;
   205         break;
   206       case TypeFunc::Parms:
   207         _resproj = pn;
   208         break;
   209       default:
   210         assert(false, "unexpected projection from allocation node.");
   211     }
   212   }
   214 }
   216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   219   if (!UseG1GC) {
   220     // vanilla/CMS post barrier
   221     Node *shift = p2x->unique_out();
   222     Node *addp = shift->unique_out();
   223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   224       Node *mem = addp->last_out(j);
   225       if (UseCondCardMark && mem->is_Load()) {
   226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   227         // The load is checking if the card has been written so
   228         // replace it with zero to fold the test.
   229         _igvn.replace_node(mem, intcon(0));
   230         continue;
   231       }
   232       assert(mem->is_Store(), "store required");
   233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   234     }
   235   } else {
   236     // G1 pre/post barriers
   237     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
   238     // It could be only one user, URShift node, in Object.clone() instrinsic
   239     // but the new allocation is passed to arraycopy stub and it could not
   240     // be scalar replaced. So we don't check the case.
   242     // An other case of only one user (Xor) is when the value check for NULL
   243     // in G1 post barrier is folded after CCP so the code which used URShift
   244     // is removed.
   246     // Take Region node before eliminating post barrier since it also
   247     // eliminates CastP2X node when it has only one user.
   248     Node* this_region = p2x->in(0);
   249     assert(this_region != NULL, "");
   251     // Remove G1 post barrier.
   253     // Search for CastP2X->Xor->URShift->Cmp path which
   254     // checks if the store done to a different from the value's region.
   255     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   256     Node* xorx = NULL;
   257     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   258       Node* u = p2x->fast_out(i);
   259       if (u->Opcode() == Op_XorX) {
   260         xorx = u;
   261         break;
   262       }
   263     }
   264     assert(xorx != NULL, "missing G1 post barrier");
   265     Node* shift = xorx->unique_out();
   266     Node* cmpx = shift->unique_out();
   267     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   268     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   269     "missing region check in G1 post barrier");
   270     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   272     // Remove G1 pre barrier.
   274     // Search "if (marking != 0)" check and set it to "false".
   275     // There is no G1 pre barrier if previous stored value is NULL
   276     // (for example, after initialization).
   277     if (this_region->is_Region() && this_region->req() == 3) {
   278       int ind = 1;
   279       if (!this_region->in(ind)->is_IfFalse()) {
   280         ind = 2;
   281       }
   282       if (this_region->in(ind)->is_IfFalse()) {
   283         Node* bol = this_region->in(ind)->in(0)->in(1);
   284         assert(bol->is_Bool(), "");
   285         cmpx = bol->in(1);
   286         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   287             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   288             cmpx->in(1)->is_Load()) {
   289           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   290           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   291                                               PtrQueue::byte_offset_of_active());
   292           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   293               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   294               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   295             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   296           }
   297         }
   298       }
   299     }
   300     // Now CastP2X can be removed since it is used only on dead path
   301     // which currently still alive until igvn optimize it.
   302     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
   303     _igvn.replace_node(p2x, top());
   304   }
   305 }
   307 // Search for a memory operation for the specified memory slice.
   308 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   309   Node *orig_mem = mem;
   310   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   311   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   312   while (true) {
   313     if (mem == alloc_mem || mem == start_mem ) {
   314       return mem;  // hit one of our sentinels
   315     } else if (mem->is_MergeMem()) {
   316       mem = mem->as_MergeMem()->memory_at(alias_idx);
   317     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   318       Node *in = mem->in(0);
   319       // we can safely skip over safepoints, calls, locks and membars because we
   320       // already know that the object is safe to eliminate.
   321       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   322         return in;
   323       } else if (in->is_Call()) {
   324         CallNode *call = in->as_Call();
   325         if (!call->may_modify(tinst, phase)) {
   326           mem = call->in(TypeFunc::Memory);
   327         }
   328         mem = in->in(TypeFunc::Memory);
   329       } else if (in->is_MemBar()) {
   330         mem = in->in(TypeFunc::Memory);
   331       } else {
   332         assert(false, "unexpected projection");
   333       }
   334     } else if (mem->is_Store()) {
   335       const TypePtr* atype = mem->as_Store()->adr_type();
   336       int adr_idx = Compile::current()->get_alias_index(atype);
   337       if (adr_idx == alias_idx) {
   338         assert(atype->isa_oopptr(), "address type must be oopptr");
   339         int adr_offset = atype->offset();
   340         uint adr_iid = atype->is_oopptr()->instance_id();
   341         // Array elements references have the same alias_idx
   342         // but different offset and different instance_id.
   343         if (adr_offset == offset && adr_iid == alloc->_idx)
   344           return mem;
   345       } else {
   346         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   347       }
   348       mem = mem->in(MemNode::Memory);
   349     } else if (mem->is_ClearArray()) {
   350       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   351         // Can not bypass initialization of the instance
   352         // we are looking.
   353         debug_only(intptr_t offset;)
   354         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   355         InitializeNode* init = alloc->as_Allocate()->initialization();
   356         // We are looking for stored value, return Initialize node
   357         // or memory edge from Allocate node.
   358         if (init != NULL)
   359           return init;
   360         else
   361           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   362       }
   363       // Otherwise skip it (the call updated 'mem' value).
   364     } else if (mem->Opcode() == Op_SCMemProj) {
   365       assert(mem->in(0)->is_LoadStore(), "sanity");
   366       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   367       int adr_idx = Compile::current()->get_alias_index(atype);
   368       if (adr_idx == alias_idx) {
   369         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   370         return NULL;
   371       }
   372       mem = mem->in(0)->in(MemNode::Memory);
   373     } else {
   374       return mem;
   375     }
   376     assert(mem != orig_mem, "dead memory loop");
   377   }
   378 }
   380 //
   381 // Given a Memory Phi, compute a value Phi containing the values from stores
   382 // on the input paths.
   383 // Note: this function is recursive, its depth is limied by the "level" argument
   384 // Returns the computed Phi, or NULL if it cannot compute it.
   385 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   386   assert(mem->is_Phi(), "sanity");
   387   int alias_idx = C->get_alias_index(adr_t);
   388   int offset = adr_t->offset();
   389   int instance_id = adr_t->instance_id();
   391   // Check if an appropriate value phi already exists.
   392   Node* region = mem->in(0);
   393   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   394     Node* phi = region->fast_out(k);
   395     if (phi->is_Phi() && phi != mem &&
   396         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   397       return phi;
   398     }
   399   }
   400   // Check if an appropriate new value phi already exists.
   401   Node* new_phi = value_phis->find(mem->_idx);
   402   if (new_phi != NULL)
   403     return new_phi;
   405   if (level <= 0) {
   406     return NULL; // Give up: phi tree too deep
   407   }
   408   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   409   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   411   uint length = mem->req();
   412   GrowableArray <Node *> values(length, length, NULL, false);
   414   // create a new Phi for the value
   415   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   416   transform_later(phi);
   417   value_phis->push(phi, mem->_idx);
   419   for (uint j = 1; j < length; j++) {
   420     Node *in = mem->in(j);
   421     if (in == NULL || in->is_top()) {
   422       values.at_put(j, in);
   423     } else  {
   424       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   425       if (val == start_mem || val == alloc_mem) {
   426         // hit a sentinel, return appropriate 0 value
   427         values.at_put(j, _igvn.zerocon(ft));
   428         continue;
   429       }
   430       if (val->is_Initialize()) {
   431         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   432       }
   433       if (val == NULL) {
   434         return NULL;  // can't find a value on this path
   435       }
   436       if (val == mem) {
   437         values.at_put(j, mem);
   438       } else if (val->is_Store()) {
   439         values.at_put(j, val->in(MemNode::ValueIn));
   440       } else if(val->is_Proj() && val->in(0) == alloc) {
   441         values.at_put(j, _igvn.zerocon(ft));
   442       } else if (val->is_Phi()) {
   443         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   444         if (val == NULL) {
   445           return NULL;
   446         }
   447         values.at_put(j, val);
   448       } else if (val->Opcode() == Op_SCMemProj) {
   449         assert(val->in(0)->is_LoadStore(), "sanity");
   450         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   451         return NULL;
   452       } else {
   453 #ifdef ASSERT
   454         val->dump();
   455         assert(false, "unknown node on this path");
   456 #endif
   457         return NULL;  // unknown node on this path
   458       }
   459     }
   460   }
   461   // Set Phi's inputs
   462   for (uint j = 1; j < length; j++) {
   463     if (values.at(j) == mem) {
   464       phi->init_req(j, phi);
   465     } else {
   466       phi->init_req(j, values.at(j));
   467     }
   468   }
   469   return phi;
   470 }
   472 // Search the last value stored into the object's field.
   473 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   474   assert(adr_t->is_known_instance_field(), "instance required");
   475   int instance_id = adr_t->instance_id();
   476   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   478   int alias_idx = C->get_alias_index(adr_t);
   479   int offset = adr_t->offset();
   480   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   481   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   482   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   483   Arena *a = Thread::current()->resource_area();
   484   VectorSet visited(a);
   487   bool done = sfpt_mem == alloc_mem;
   488   Node *mem = sfpt_mem;
   489   while (!done) {
   490     if (visited.test_set(mem->_idx)) {
   491       return NULL;  // found a loop, give up
   492     }
   493     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   494     if (mem == start_mem || mem == alloc_mem) {
   495       done = true;  // hit a sentinel, return appropriate 0 value
   496     } else if (mem->is_Initialize()) {
   497       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   498       if (mem == NULL) {
   499         done = true; // Something go wrong.
   500       } else if (mem->is_Store()) {
   501         const TypePtr* atype = mem->as_Store()->adr_type();
   502         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   503         done = true;
   504       }
   505     } else if (mem->is_Store()) {
   506       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   507       assert(atype != NULL, "address type must be oopptr");
   508       assert(C->get_alias_index(atype) == alias_idx &&
   509              atype->is_known_instance_field() && atype->offset() == offset &&
   510              atype->instance_id() == instance_id, "store is correct memory slice");
   511       done = true;
   512     } else if (mem->is_Phi()) {
   513       // try to find a phi's unique input
   514       Node *unique_input = NULL;
   515       Node *top = C->top();
   516       for (uint i = 1; i < mem->req(); i++) {
   517         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   518         if (n == NULL || n == top || n == mem) {
   519           continue;
   520         } else if (unique_input == NULL) {
   521           unique_input = n;
   522         } else if (unique_input != n) {
   523           unique_input = top;
   524           break;
   525         }
   526       }
   527       if (unique_input != NULL && unique_input != top) {
   528         mem = unique_input;
   529       } else {
   530         done = true;
   531       }
   532     } else {
   533       assert(false, "unexpected node");
   534     }
   535   }
   536   if (mem != NULL) {
   537     if (mem == start_mem || mem == alloc_mem) {
   538       // hit a sentinel, return appropriate 0 value
   539       return _igvn.zerocon(ft);
   540     } else if (mem->is_Store()) {
   541       return mem->in(MemNode::ValueIn);
   542     } else if (mem->is_Phi()) {
   543       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   544       Node_Stack value_phis(a, 8);
   545       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   546       if (phi != NULL) {
   547         return phi;
   548       } else {
   549         // Kill all new Phis
   550         while(value_phis.is_nonempty()) {
   551           Node* n = value_phis.node();
   552           _igvn.replace_node(n, C->top());
   553           value_phis.pop();
   554         }
   555       }
   556     }
   557   }
   558   // Something go wrong.
   559   return NULL;
   560 }
   562 // Check the possibility of scalar replacement.
   563 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   564   //  Scan the uses of the allocation to check for anything that would
   565   //  prevent us from eliminating it.
   566   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   567   DEBUG_ONLY( Node* disq_node = NULL; )
   568   bool  can_eliminate = true;
   570   Node* res = alloc->result_cast();
   571   const TypeOopPtr* res_type = NULL;
   572   if (res == NULL) {
   573     // All users were eliminated.
   574   } else if (!res->is_CheckCastPP()) {
   575     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   576     can_eliminate = false;
   577   } else {
   578     res_type = _igvn.type(res)->isa_oopptr();
   579     if (res_type == NULL) {
   580       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   581       can_eliminate = false;
   582     } else if (res_type->isa_aryptr()) {
   583       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   584       if (length < 0) {
   585         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   586         can_eliminate = false;
   587       }
   588     }
   589   }
   591   if (can_eliminate && res != NULL) {
   592     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   593                                j < jmax && can_eliminate; j++) {
   594       Node* use = res->fast_out(j);
   596       if (use->is_AddP()) {
   597         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   598         int offset = addp_type->offset();
   600         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   601           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   602           can_eliminate = false;
   603           break;
   604         }
   605         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   606                                    k < kmax && can_eliminate; k++) {
   607           Node* n = use->fast_out(k);
   608           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   609             DEBUG_ONLY(disq_node = n;)
   610             if (n->is_Load() || n->is_LoadStore()) {
   611               NOT_PRODUCT(fail_eliminate = "Field load";)
   612             } else {
   613               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   614             }
   615             can_eliminate = false;
   616           }
   617         }
   618       } else if (use->is_SafePoint()) {
   619         SafePointNode* sfpt = use->as_SafePoint();
   620         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   621           // Object is passed as argument.
   622           DEBUG_ONLY(disq_node = use;)
   623           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   624           can_eliminate = false;
   625         }
   626         Node* sfptMem = sfpt->memory();
   627         if (sfptMem == NULL || sfptMem->is_top()) {
   628           DEBUG_ONLY(disq_node = use;)
   629           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   630           can_eliminate = false;
   631         } else {
   632           safepoints.append_if_missing(sfpt);
   633         }
   634       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   635         if (use->is_Phi()) {
   636           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   637             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   638           } else {
   639             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   640           }
   641           DEBUG_ONLY(disq_node = use;)
   642         } else {
   643           if (use->Opcode() == Op_Return) {
   644             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   645           }else {
   646             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   647           }
   648           DEBUG_ONLY(disq_node = use;)
   649         }
   650         can_eliminate = false;
   651       }
   652     }
   653   }
   655 #ifndef PRODUCT
   656   if (PrintEliminateAllocations) {
   657     if (can_eliminate) {
   658       tty->print("Scalar ");
   659       if (res == NULL)
   660         alloc->dump();
   661       else
   662         res->dump();
   663     } else {
   664       tty->print("NotScalar (%s)", fail_eliminate);
   665       if (res == NULL)
   666         alloc->dump();
   667       else
   668         res->dump();
   669 #ifdef ASSERT
   670       if (disq_node != NULL) {
   671           tty->print("  >>>> ");
   672           disq_node->dump();
   673       }
   674 #endif /*ASSERT*/
   675     }
   676   }
   677 #endif
   678   return can_eliminate;
   679 }
   681 // Do scalar replacement.
   682 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   683   GrowableArray <SafePointNode *> safepoints_done;
   685   ciKlass* klass = NULL;
   686   ciInstanceKlass* iklass = NULL;
   687   int nfields = 0;
   688   int array_base;
   689   int element_size;
   690   BasicType basic_elem_type;
   691   ciType* elem_type;
   693   Node* res = alloc->result_cast();
   694   const TypeOopPtr* res_type = NULL;
   695   if (res != NULL) { // Could be NULL when there are no users
   696     res_type = _igvn.type(res)->isa_oopptr();
   697   }
   699   if (res != NULL) {
   700     klass = res_type->klass();
   701     if (res_type->isa_instptr()) {
   702       // find the fields of the class which will be needed for safepoint debug information
   703       assert(klass->is_instance_klass(), "must be an instance klass.");
   704       iklass = klass->as_instance_klass();
   705       nfields = iklass->nof_nonstatic_fields();
   706     } else {
   707       // find the array's elements which will be needed for safepoint debug information
   708       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   709       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   710       elem_type = klass->as_array_klass()->element_type();
   711       basic_elem_type = elem_type->basic_type();
   712       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   713       element_size = type2aelembytes(basic_elem_type);
   714     }
   715   }
   716   //
   717   // Process the safepoint uses
   718   //
   719   while (safepoints.length() > 0) {
   720     SafePointNode* sfpt = safepoints.pop();
   721     Node* mem = sfpt->memory();
   722     uint first_ind = sfpt->req();
   723     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   724 #ifdef ASSERT
   725                                                  alloc,
   726 #endif
   727                                                  first_ind, nfields);
   728     sobj->init_req(0, C->root());
   729     transform_later(sobj);
   731     // Scan object's fields adding an input to the safepoint for each field.
   732     for (int j = 0; j < nfields; j++) {
   733       intptr_t offset;
   734       ciField* field = NULL;
   735       if (iklass != NULL) {
   736         field = iklass->nonstatic_field_at(j);
   737         offset = field->offset();
   738         elem_type = field->type();
   739         basic_elem_type = field->layout_type();
   740       } else {
   741         offset = array_base + j * (intptr_t)element_size;
   742       }
   744       const Type *field_type;
   745       // The next code is taken from Parse::do_get_xxx().
   746       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   747         if (!elem_type->is_loaded()) {
   748           field_type = TypeInstPtr::BOTTOM;
   749         } else if (field != NULL && field->is_constant() && field->is_static()) {
   750           // This can happen if the constant oop is non-perm.
   751           ciObject* con = field->constant_value().as_object();
   752           // Do not "join" in the previous type; it doesn't add value,
   753           // and may yield a vacuous result if the field is of interface type.
   754           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   755           assert(field_type != NULL, "field singleton type must be consistent");
   756         } else {
   757           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   758         }
   759         if (UseCompressedOops) {
   760           field_type = field_type->make_narrowoop();
   761           basic_elem_type = T_NARROWOOP;
   762         }
   763       } else {
   764         field_type = Type::get_const_basic_type(basic_elem_type);
   765       }
   767       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   769       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   770       if (field_val == NULL) {
   771         // We weren't able to find a value for this field,
   772         // give up on eliminating this allocation.
   774         // Remove any extra entries we added to the safepoint.
   775         uint last = sfpt->req() - 1;
   776         for (int k = 0;  k < j; k++) {
   777           sfpt->del_req(last--);
   778         }
   779         // rollback processed safepoints
   780         while (safepoints_done.length() > 0) {
   781           SafePointNode* sfpt_done = safepoints_done.pop();
   782           // remove any extra entries we added to the safepoint
   783           last = sfpt_done->req() - 1;
   784           for (int k = 0;  k < nfields; k++) {
   785             sfpt_done->del_req(last--);
   786           }
   787           JVMState *jvms = sfpt_done->jvms();
   788           jvms->set_endoff(sfpt_done->req());
   789           // Now make a pass over the debug information replacing any references
   790           // to SafePointScalarObjectNode with the allocated object.
   791           int start = jvms->debug_start();
   792           int end   = jvms->debug_end();
   793           for (int i = start; i < end; i++) {
   794             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   795               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   796               if (scobj->first_index() == sfpt_done->req() &&
   797                   scobj->n_fields() == (uint)nfields) {
   798                 assert(scobj->alloc() == alloc, "sanity");
   799                 sfpt_done->set_req(i, res);
   800               }
   801             }
   802           }
   803         }
   804 #ifndef PRODUCT
   805         if (PrintEliminateAllocations) {
   806           if (field != NULL) {
   807             tty->print("=== At SafePoint node %d can't find value of Field: ",
   808                        sfpt->_idx);
   809             field->print();
   810             int field_idx = C->get_alias_index(field_addr_type);
   811             tty->print(" (alias_idx=%d)", field_idx);
   812           } else { // Array's element
   813             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   814                        sfpt->_idx, j);
   815           }
   816           tty->print(", which prevents elimination of: ");
   817           if (res == NULL)
   818             alloc->dump();
   819           else
   820             res->dump();
   821         }
   822 #endif
   823         return false;
   824       }
   825       if (UseCompressedOops && field_type->isa_narrowoop()) {
   826         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   827         // to be able scalar replace the allocation.
   828         if (field_val->is_EncodeP()) {
   829           field_val = field_val->in(1);
   830         } else {
   831           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   832         }
   833       }
   834       sfpt->add_req(field_val);
   835     }
   836     JVMState *jvms = sfpt->jvms();
   837     jvms->set_endoff(sfpt->req());
   838     // Now make a pass over the debug information replacing any references
   839     // to the allocated object with "sobj"
   840     int start = jvms->debug_start();
   841     int end   = jvms->debug_end();
   842     for (int i = start; i < end; i++) {
   843       if (sfpt->in(i) == res) {
   844         sfpt->set_req(i, sobj);
   845       }
   846     }
   847     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   848   }
   849   return true;
   850 }
   852 // Process users of eliminated allocation.
   853 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   854   Node* res = alloc->result_cast();
   855   if (res != NULL) {
   856     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   857       Node *use = res->last_out(j);
   858       uint oc1 = res->outcnt();
   860       if (use->is_AddP()) {
   861         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   862           Node *n = use->last_out(k);
   863           uint oc2 = use->outcnt();
   864           if (n->is_Store()) {
   865 #ifdef ASSERT
   866             // Verify that there is no dependent MemBarVolatile nodes,
   867             // they should be removed during IGVN, see MemBarNode::Ideal().
   868             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   869                                        p < pmax; p++) {
   870               Node* mb = n->fast_out(p);
   871               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   872                      mb->req() <= MemBarNode::Precedent ||
   873                      mb->in(MemBarNode::Precedent) != n,
   874                      "MemBarVolatile should be eliminated for non-escaping object");
   875             }
   876 #endif
   877             _igvn.replace_node(n, n->in(MemNode::Memory));
   878           } else {
   879             eliminate_card_mark(n);
   880           }
   881           k -= (oc2 - use->outcnt());
   882         }
   883       } else {
   884         eliminate_card_mark(use);
   885       }
   886       j -= (oc1 - res->outcnt());
   887     }
   888     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   889     _igvn.remove_dead_node(res);
   890   }
   892   //
   893   // Process other users of allocation's projections
   894   //
   895   if (_resproj != NULL && _resproj->outcnt() != 0) {
   896     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   897       Node *use = _resproj->last_out(j);
   898       uint oc1 = _resproj->outcnt();
   899       if (use->is_Initialize()) {
   900         // Eliminate Initialize node.
   901         InitializeNode *init = use->as_Initialize();
   902         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   903         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   904         if (ctrl_proj != NULL) {
   905            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   906           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   907         }
   908         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   909         if (mem_proj != NULL) {
   910           Node *mem = init->in(TypeFunc::Memory);
   911 #ifdef ASSERT
   912           if (mem->is_MergeMem()) {
   913             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   914           } else {
   915             assert(mem == _memproj_fallthrough, "allocation memory projection");
   916           }
   917 #endif
   918           _igvn.replace_node(mem_proj, mem);
   919         }
   920       } else if (use->is_AddP()) {
   921         // raw memory addresses used only by the initialization
   922         _igvn.replace_node(use, C->top());
   923       } else  {
   924         assert(false, "only Initialize or AddP expected");
   925       }
   926       j -= (oc1 - _resproj->outcnt());
   927     }
   928   }
   929   if (_fallthroughcatchproj != NULL) {
   930     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   931   }
   932   if (_memproj_fallthrough != NULL) {
   933     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   934   }
   935   if (_memproj_catchall != NULL) {
   936     _igvn.replace_node(_memproj_catchall, C->top());
   937   }
   938   if (_ioproj_fallthrough != NULL) {
   939     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   940   }
   941   if (_ioproj_catchall != NULL) {
   942     _igvn.replace_node(_ioproj_catchall, C->top());
   943   }
   944   if (_catchallcatchproj != NULL) {
   945     _igvn.replace_node(_catchallcatchproj, C->top());
   946   }
   947 }
   949 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   951   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   952     return false;
   953   }
   955   extract_call_projections(alloc);
   957   GrowableArray <SafePointNode *> safepoints;
   958   if (!can_eliminate_allocation(alloc, safepoints)) {
   959     return false;
   960   }
   962   if (!scalar_replacement(alloc, safepoints)) {
   963     return false;
   964   }
   966   CompileLog* log = C->log();
   967   if (log != NULL) {
   968     Node* klass = alloc->in(AllocateNode::KlassNode);
   969     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   970     log->head("eliminate_allocation type='%d'",
   971               log->identify(tklass->klass()));
   972     JVMState* p = alloc->jvms();
   973     while (p != NULL) {
   974       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   975       p = p->caller();
   976     }
   977     log->tail("eliminate_allocation");
   978   }
   980   process_users_of_allocation(alloc);
   982 #ifndef PRODUCT
   983   if (PrintEliminateAllocations) {
   984     if (alloc->is_AllocateArray())
   985       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   986     else
   987       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   988   }
   989 #endif
   991   return true;
   992 }
   995 //---------------------------set_eden_pointers-------------------------
   996 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   997   if (UseTLAB) {                // Private allocation: load from TLS
   998     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   999     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
  1000     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
  1001     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
  1002     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  1003   } else {                      // Shared allocation: load from globals
  1004     CollectedHeap* ch = Universe::heap();
  1005     address top_adr = (address)ch->top_addr();
  1006     address end_adr = (address)ch->end_addr();
  1007     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1008     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1013 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1014   Node* adr = basic_plus_adr(base, offset);
  1015   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1016   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1017   transform_later(value);
  1018   return value;
  1022 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1023   Node* adr = basic_plus_adr(base, offset);
  1024   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1025   transform_later(mem);
  1026   return mem;
  1029 //=============================================================================
  1030 //
  1031 //                              A L L O C A T I O N
  1032 //
  1033 // Allocation attempts to be fast in the case of frequent small objects.
  1034 // It breaks down like this:
  1035 //
  1036 // 1) Size in doublewords is computed.  This is a constant for objects and
  1037 // variable for most arrays.  Doubleword units are used to avoid size
  1038 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1039 // rounding.
  1040 //
  1041 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1042 // the slow path into the VM.  The slow path can throw any required
  1043 // exceptions, and does all the special checks for very large arrays.  The
  1044 // size test can constant-fold away for objects.  For objects with
  1045 // finalizers it constant-folds the otherway: you always go slow with
  1046 // finalizers.
  1047 //
  1048 // 3) If NOT using TLABs, this is the contended loop-back point.
  1049 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1050 //
  1051 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1052 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1053 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1054 // enough that there's always space between the eden max and 4Gig (old space is
  1055 // there so it's quite large) and large enough that the cost of entering the VM
  1056 // is dwarfed by the cost to initialize the space.
  1057 //
  1058 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1059 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1060 // adjusted heap top back down; there is no contention.
  1061 //
  1062 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1063 // fields.
  1064 //
  1065 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1066 // oop flavor.
  1067 //
  1068 //=============================================================================
  1069 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1070 // Allocations bigger than this always go the slow route.
  1071 // This value must be small enough that allocation attempts that need to
  1072 // trigger exceptions go the slow route.  Also, it must be small enough so
  1073 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1074 //=============================================================================j//
  1075 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1076 // The allocator will coalesce int->oop copies away.  See comment in
  1077 // coalesce.cpp about how this works.  It depends critically on the exact
  1078 // code shape produced here, so if you are changing this code shape
  1079 // make sure the GC info for the heap-top is correct in and around the
  1080 // slow-path call.
  1081 //
  1083 void PhaseMacroExpand::expand_allocate_common(
  1084             AllocateNode* alloc, // allocation node to be expanded
  1085             Node* length,  // array length for an array allocation
  1086             const TypeFunc* slow_call_type, // Type of slow call
  1087             address slow_call_address  // Address of slow call
  1091   Node* ctrl = alloc->in(TypeFunc::Control);
  1092   Node* mem  = alloc->in(TypeFunc::Memory);
  1093   Node* i_o  = alloc->in(TypeFunc::I_O);
  1094   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1095   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1096   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1098   Node* storestore = alloc->storestore();
  1099   if (storestore != NULL) {
  1100     // Break this link that is no longer useful and confuses register allocation
  1101     storestore->set_req(MemBarNode::Precedent, top());
  1104   assert(ctrl != NULL, "must have control");
  1105   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1106   // they will not be used if "always_slow" is set
  1107   enum { slow_result_path = 1, fast_result_path = 2 };
  1108   Node *result_region;
  1109   Node *result_phi_rawmem;
  1110   Node *result_phi_rawoop;
  1111   Node *result_phi_i_o;
  1113   // The initial slow comparison is a size check, the comparison
  1114   // we want to do is a BoolTest::gt
  1115   bool always_slow = false;
  1116   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1117   if (tv >= 0) {
  1118     always_slow = (tv == 1);
  1119     initial_slow_test = NULL;
  1120   } else {
  1121     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1124   if (C->env()->dtrace_alloc_probes() ||
  1125       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1126                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1127     // Force slow-path allocation
  1128     always_slow = true;
  1129     initial_slow_test = NULL;
  1133   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1134   Node *slow_region = NULL;
  1135   Node *toobig_false = ctrl;
  1137   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1138   // generate the initial test if necessary
  1139   if (initial_slow_test != NULL ) {
  1140     slow_region = new (C, 3) RegionNode(3);
  1142     // Now make the initial failure test.  Usually a too-big test but
  1143     // might be a TRUE for finalizers or a fancy class check for
  1144     // newInstance0.
  1145     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1146     transform_later(toobig_iff);
  1147     // Plug the failing-too-big test into the slow-path region
  1148     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1149     transform_later(toobig_true);
  1150     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1151     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1152     transform_later(toobig_false);
  1153   } else {         // No initial test, just fall into next case
  1154     toobig_false = ctrl;
  1155     debug_only(slow_region = NodeSentinel);
  1158   Node *slow_mem = mem;  // save the current memory state for slow path
  1159   // generate the fast allocation code unless we know that the initial test will always go slow
  1160   if (!always_slow) {
  1161     // Fast path modifies only raw memory.
  1162     if (mem->is_MergeMem()) {
  1163       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1166     Node* eden_top_adr;
  1167     Node* eden_end_adr;
  1169     set_eden_pointers(eden_top_adr, eden_end_adr);
  1171     // Load Eden::end.  Loop invariant and hoisted.
  1172     //
  1173     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1174     //       a TLAB to work around a bug where these values were being moved across
  1175     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1176     //       map, but they can be changed by a GC.   The proper way to fix this would
  1177     //       be to set the raw memory state when generating a  SafepointNode.  However
  1178     //       this will require extensive changes to the loop optimization in order to
  1179     //       prevent a degradation of the optimization.
  1180     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1181     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1183     // allocate the Region and Phi nodes for the result
  1184     result_region = new (C, 3) RegionNode(3);
  1185     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1186     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1187     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1189     // We need a Region for the loop-back contended case.
  1190     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1191     Node *contended_region;
  1192     Node *contended_phi_rawmem;
  1193     if (UseTLAB) {
  1194       contended_region = toobig_false;
  1195       contended_phi_rawmem = mem;
  1196     } else {
  1197       contended_region = new (C, 3) RegionNode(3);
  1198       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1199       // Now handle the passing-too-big test.  We fall into the contended
  1200       // loop-back merge point.
  1201       contended_region    ->init_req(fall_in_path, toobig_false);
  1202       contended_phi_rawmem->init_req(fall_in_path, mem);
  1203       transform_later(contended_region);
  1204       transform_later(contended_phi_rawmem);
  1207     // Load(-locked) the heap top.
  1208     // See note above concerning the control input when using a TLAB
  1209     Node *old_eden_top = UseTLAB
  1210       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1211       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1213     transform_later(old_eden_top);
  1214     // Add to heap top to get a new heap top
  1215     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
  1216     transform_later(new_eden_top);
  1217     // Check for needing a GC; compare against heap end
  1218     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
  1219     transform_later(needgc_cmp);
  1220     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
  1221     transform_later(needgc_bol);
  1222     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1223     transform_later(needgc_iff);
  1225     // Plug the failing-heap-space-need-gc test into the slow-path region
  1226     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
  1227     transform_later(needgc_true);
  1228     if (initial_slow_test) {
  1229       slow_region->init_req(need_gc_path, needgc_true);
  1230       // This completes all paths into the slow merge point
  1231       transform_later(slow_region);
  1232     } else {                      // No initial slow path needed!
  1233       // Just fall from the need-GC path straight into the VM call.
  1234       slow_region = needgc_true;
  1236     // No need for a GC.  Setup for the Store-Conditional
  1237     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
  1238     transform_later(needgc_false);
  1240     // Grab regular I/O before optional prefetch may change it.
  1241     // Slow-path does no I/O so just set it to the original I/O.
  1242     result_phi_i_o->init_req(slow_result_path, i_o);
  1244     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1245                               old_eden_top, new_eden_top, length);
  1247     // Name successful fast-path variables
  1248     Node* fast_oop = old_eden_top;
  1249     Node* fast_oop_ctrl;
  1250     Node* fast_oop_rawmem;
  1252     // Store (-conditional) the modified eden top back down.
  1253     // StorePConditional produces flags for a test PLUS a modified raw
  1254     // memory state.
  1255     if (UseTLAB) {
  1256       Node* store_eden_top =
  1257         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1258                               TypeRawPtr::BOTTOM, new_eden_top);
  1259       transform_later(store_eden_top);
  1260       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1261       fast_oop_rawmem = store_eden_top;
  1262     } else {
  1263       Node* store_eden_top =
  1264         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1265                                          new_eden_top, fast_oop/*old_eden_top*/);
  1266       transform_later(store_eden_top);
  1267       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
  1268       transform_later(contention_check);
  1269       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1270       transform_later(store_eden_top);
  1272       // If not using TLABs, check to see if there was contention.
  1273       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1274       transform_later(contention_iff);
  1275       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
  1276       transform_later(contention_true);
  1277       // If contention, loopback and try again.
  1278       contended_region->init_req(contended_loopback_path, contention_true);
  1279       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1281       // Fast-path succeeded with no contention!
  1282       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
  1283       transform_later(contention_false);
  1284       fast_oop_ctrl = contention_false;
  1286       // Bump total allocated bytes for this thread
  1287       Node* thread = new (C, 1) ThreadLocalNode();
  1288       transform_later(thread);
  1289       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1290                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1291       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1292                                     0, TypeLong::LONG, T_LONG);
  1293 #ifdef _LP64
  1294       Node* alloc_size = size_in_bytes;
  1295 #else
  1296       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
  1297       transform_later(alloc_size);
  1298 #endif
  1299       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
  1300       transform_later(new_alloc_bytes);
  1301       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1302                                    0, new_alloc_bytes, T_LONG);
  1305     InitializeNode* init = alloc->initialization();
  1306     fast_oop_rawmem = initialize_object(alloc,
  1307                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1308                                         klass_node, length, size_in_bytes);
  1310     // If initialization is performed by an array copy, any required
  1311     // MemBarStoreStore was already added. If the object does not
  1312     // escape no need for a MemBarStoreStore. Otherwise we need a
  1313     // MemBarStoreStore so that stores that initialize this object
  1314     // can't be reordered with a subsequent store that makes this
  1315     // object accessible by other threads.
  1316     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
  1317       if (init == NULL || init->req() < InitializeNode::RawStores) {
  1318         // No InitializeNode or no stores captured by zeroing
  1319         // elimination. Simply add the MemBarStoreStore after object
  1320         // initialization.
  1321         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot, fast_oop_rawmem);
  1322         transform_later(mb);
  1324         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
  1325         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
  1326         fast_oop_ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
  1327         transform_later(fast_oop_ctrl);
  1328         fast_oop_rawmem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
  1329         transform_later(fast_oop_rawmem);
  1330       } else {
  1331         // Add the MemBarStoreStore after the InitializeNode so that
  1332         // all stores performing the initialization that were moved
  1333         // before the InitializeNode happen before the storestore
  1334         // barrier.
  1336         Node* init_ctrl = init->proj_out(TypeFunc::Control);
  1337         Node* init_mem = init->proj_out(TypeFunc::Memory);
  1339         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1340         transform_later(mb);
  1342         Node* ctrl = new (C, 1) ProjNode(init,TypeFunc::Control);
  1343         transform_later(ctrl);
  1344         Node* mem = new (C, 1) ProjNode(init,TypeFunc::Memory);
  1345         transform_later(mem);
  1347         // The MemBarStoreStore depends on control and memory coming
  1348         // from the InitializeNode
  1349         mb->init_req(TypeFunc::Memory, mem);
  1350         mb->init_req(TypeFunc::Control, ctrl);
  1352         ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
  1353         transform_later(ctrl);
  1354         mem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
  1355         transform_later(mem);
  1357         // All nodes that depended on the InitializeNode for control
  1358         // and memory must now depend on the MemBarNode that itself
  1359         // depends on the InitializeNode
  1360         _igvn.replace_node(init_ctrl, ctrl);
  1361         _igvn.replace_node(init_mem, mem);
  1365     if (C->env()->dtrace_extended_probes()) {
  1366       // Slow-path call
  1367       int size = TypeFunc::Parms + 2;
  1368       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1369                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1370                                                       "dtrace_object_alloc",
  1371                                                       TypeRawPtr::BOTTOM);
  1373       // Get base of thread-local storage area
  1374       Node* thread = new (C, 1) ThreadLocalNode();
  1375       transform_later(thread);
  1377       call->init_req(TypeFunc::Parms+0, thread);
  1378       call->init_req(TypeFunc::Parms+1, fast_oop);
  1379       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1380       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1381       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1382       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1383       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1384       transform_later(call);
  1385       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1386       transform_later(fast_oop_ctrl);
  1387       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1388       transform_later(fast_oop_rawmem);
  1391     // Plug in the successful fast-path into the result merge point
  1392     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1393     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1394     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1395     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1396   } else {
  1397     slow_region = ctrl;
  1398     result_phi_i_o = i_o; // Rename it to use in the following code.
  1401   // Generate slow-path call
  1402   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1403     CallStaticJavaNode(slow_call_type, slow_call_address,
  1404                        OptoRuntime::stub_name(slow_call_address),
  1405                        alloc->jvms()->bci(),
  1406                        TypePtr::BOTTOM);
  1407   call->init_req( TypeFunc::Control, slow_region );
  1408   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1409   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1410   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1411   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1413   call->init_req(TypeFunc::Parms+0, klass_node);
  1414   if (length != NULL) {
  1415     call->init_req(TypeFunc::Parms+1, length);
  1418   // Copy debug information and adjust JVMState information, then replace
  1419   // allocate node with the call
  1420   copy_call_debug_info((CallNode *) alloc,  call);
  1421   if (!always_slow) {
  1422     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1423   } else {
  1424     // Hook i_o projection to avoid its elimination during allocation
  1425     // replacement (when only a slow call is generated).
  1426     call->set_req(TypeFunc::I_O, result_phi_i_o);
  1428   _igvn.replace_node(alloc, call);
  1429   transform_later(call);
  1431   // Identify the output projections from the allocate node and
  1432   // adjust any references to them.
  1433   // The control and io projections look like:
  1434   //
  1435   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1436   //  Allocate                   Catch
  1437   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1438   //
  1439   //  We are interested in the CatchProj nodes.
  1440   //
  1441   extract_call_projections(call);
  1443   // An allocate node has separate memory projections for the uses on
  1444   // the control and i_o paths. Replace the control memory projection with
  1445   // result_phi_rawmem (unless we are only generating a slow call when
  1446   // both memory projections are combined)
  1447   if (!always_slow && _memproj_fallthrough != NULL) {
  1448     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1449       Node *use = _memproj_fallthrough->fast_out(i);
  1450       _igvn.rehash_node_delayed(use);
  1451       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1452       // back up iterator
  1453       --i;
  1456   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
  1457   // _memproj_catchall so we end up with a call that has only 1 memory projection.
  1458   if (_memproj_catchall != NULL ) {
  1459     if (_memproj_fallthrough == NULL) {
  1460       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1461       transform_later(_memproj_fallthrough);
  1463     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1464       Node *use = _memproj_catchall->fast_out(i);
  1465       _igvn.rehash_node_delayed(use);
  1466       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1467       // back up iterator
  1468       --i;
  1470     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
  1471     _igvn.remove_dead_node(_memproj_catchall);
  1474   // An allocate node has separate i_o projections for the uses on the control
  1475   // and i_o paths. Always replace the control i_o projection with result i_o
  1476   // otherwise incoming i_o become dead when only a slow call is generated
  1477   // (it is different from memory projections where both projections are
  1478   // combined in such case).
  1479   if (_ioproj_fallthrough != NULL) {
  1480     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1481       Node *use = _ioproj_fallthrough->fast_out(i);
  1482       _igvn.rehash_node_delayed(use);
  1483       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1484       // back up iterator
  1485       --i;
  1488   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
  1489   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
  1490   if (_ioproj_catchall != NULL ) {
  1491     if (_ioproj_fallthrough == NULL) {
  1492       _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1493       transform_later(_ioproj_fallthrough);
  1495     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1496       Node *use = _ioproj_catchall->fast_out(i);
  1497       _igvn.rehash_node_delayed(use);
  1498       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1499       // back up iterator
  1500       --i;
  1502     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
  1503     _igvn.remove_dead_node(_ioproj_catchall);
  1506   // if we generated only a slow call, we are done
  1507   if (always_slow) {
  1508     // Now we can unhook i_o.
  1509     if (result_phi_i_o->outcnt() > 1) {
  1510       call->set_req(TypeFunc::I_O, top());
  1511     } else {
  1512       assert(result_phi_i_o->unique_ctrl_out() == call, "");
  1513       // Case of new array with negative size known during compilation.
  1514       // AllocateArrayNode::Ideal() optimization disconnect unreachable
  1515       // following code since call to runtime will throw exception.
  1516       // As result there will be no users of i_o after the call.
  1517       // Leave i_o attached to this call to avoid problems in preceding graph.
  1519     return;
  1523   if (_fallthroughcatchproj != NULL) {
  1524     ctrl = _fallthroughcatchproj->clone();
  1525     transform_later(ctrl);
  1526     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1527   } else {
  1528     ctrl = top();
  1530   Node *slow_result;
  1531   if (_resproj == NULL) {
  1532     // no uses of the allocation result
  1533     slow_result = top();
  1534   } else {
  1535     slow_result = _resproj->clone();
  1536     transform_later(slow_result);
  1537     _igvn.replace_node(_resproj, result_phi_rawoop);
  1540   // Plug slow-path into result merge point
  1541   result_region    ->init_req( slow_result_path, ctrl );
  1542   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1543   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1544   transform_later(result_region);
  1545   transform_later(result_phi_rawoop);
  1546   transform_later(result_phi_rawmem);
  1547   transform_later(result_phi_i_o);
  1548   // This completes all paths into the result merge point
  1552 // Helper for PhaseMacroExpand::expand_allocate_common.
  1553 // Initializes the newly-allocated storage.
  1554 Node*
  1555 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1556                                     Node* control, Node* rawmem, Node* object,
  1557                                     Node* klass_node, Node* length,
  1558                                     Node* size_in_bytes) {
  1559   InitializeNode* init = alloc->initialization();
  1560   // Store the klass & mark bits
  1561   Node* mark_node = NULL;
  1562   // For now only enable fast locking for non-array types
  1563   if (UseBiasedLocking && (length == NULL)) {
  1564     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
  1565   } else {
  1566     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1568   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1570   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1571   int header_size = alloc->minimum_header_size();  // conservatively small
  1573   // Array length
  1574   if (length != NULL) {         // Arrays need length field
  1575     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1576     // conservatively small header size:
  1577     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1578     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1579     if (k->is_array_klass())    // we know the exact header size in most cases:
  1580       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1583   // Clear the object body, if necessary.
  1584   if (init == NULL) {
  1585     // The init has somehow disappeared; be cautious and clear everything.
  1586     //
  1587     // This can happen if a node is allocated but an uncommon trap occurs
  1588     // immediately.  In this case, the Initialize gets associated with the
  1589     // trap, and may be placed in a different (outer) loop, if the Allocate
  1590     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1591     // there can be two Allocates to one Initialize.  The answer in all these
  1592     // edge cases is safety first.  It is always safe to clear immediately
  1593     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1594     if (!ZeroTLAB)
  1595       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1596                                             header_size, size_in_bytes,
  1597                                             &_igvn);
  1598   } else {
  1599     if (!init->is_complete()) {
  1600       // Try to win by zeroing only what the init does not store.
  1601       // We can also try to do some peephole optimizations,
  1602       // such as combining some adjacent subword stores.
  1603       rawmem = init->complete_stores(control, rawmem, object,
  1604                                      header_size, size_in_bytes, &_igvn);
  1606     // We have no more use for this link, since the AllocateNode goes away:
  1607     init->set_req(InitializeNode::RawAddress, top());
  1608     // (If we keep the link, it just confuses the register allocator,
  1609     // who thinks he sees a real use of the address by the membar.)
  1612   return rawmem;
  1615 // Generate prefetch instructions for next allocations.
  1616 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1617                                         Node*& contended_phi_rawmem,
  1618                                         Node* old_eden_top, Node* new_eden_top,
  1619                                         Node* length) {
  1620    enum { fall_in_path = 1, pf_path = 2 };
  1621    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1622       // Generate prefetch allocation with watermark check.
  1623       // As an allocation hits the watermark, we will prefetch starting
  1624       // at a "distance" away from watermark.
  1626       Node *pf_region = new (C, 3) RegionNode(3);
  1627       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1628                                                 TypeRawPtr::BOTTOM );
  1629       // I/O is used for Prefetch
  1630       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1632       Node *thread = new (C, 1) ThreadLocalNode();
  1633       transform_later(thread);
  1635       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1636                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1637       transform_later(eden_pf_adr);
  1639       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1640                                    contended_phi_rawmem, eden_pf_adr,
  1641                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1642       transform_later(old_pf_wm);
  1644       // check against new_eden_top
  1645       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1646       transform_later(need_pf_cmp);
  1647       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1648       transform_later(need_pf_bol);
  1649       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1650                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1651       transform_later(need_pf_iff);
  1653       // true node, add prefetchdistance
  1654       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1655       transform_later(need_pf_true);
  1657       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1658       transform_later(need_pf_false);
  1660       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1661                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1662       transform_later(new_pf_wmt );
  1663       new_pf_wmt->set_req(0, need_pf_true);
  1665       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1666                                        contended_phi_rawmem, eden_pf_adr,
  1667                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1668       transform_later(store_new_wmt);
  1670       // adding prefetches
  1671       pf_phi_abio->init_req( fall_in_path, i_o );
  1673       Node *prefetch_adr;
  1674       Node *prefetch;
  1675       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1676       uint step_size = AllocatePrefetchStepSize;
  1677       uint distance = 0;
  1679       for ( uint i = 0; i < lines; i++ ) {
  1680         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1681                                             _igvn.MakeConX(distance) );
  1682         transform_later(prefetch_adr);
  1683         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
  1684         transform_later(prefetch);
  1685         distance += step_size;
  1686         i_o = prefetch;
  1688       pf_phi_abio->set_req( pf_path, i_o );
  1690       pf_region->init_req( fall_in_path, need_pf_false );
  1691       pf_region->init_req( pf_path, need_pf_true );
  1693       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1694       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1696       transform_later(pf_region);
  1697       transform_later(pf_phi_rawmem);
  1698       transform_later(pf_phi_abio);
  1700       needgc_false = pf_region;
  1701       contended_phi_rawmem = pf_phi_rawmem;
  1702       i_o = pf_phi_abio;
  1703    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1704       // Insert a prefetch for each allocation.
  1705       // This code is used for Sparc with BIS.
  1706       Node *pf_region = new (C, 3) RegionNode(3);
  1707       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1708                                                 TypeRawPtr::BOTTOM );
  1710       // Generate several prefetch instructions.
  1711       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1712       uint step_size = AllocatePrefetchStepSize;
  1713       uint distance = AllocatePrefetchDistance;
  1715       // Next cache address.
  1716       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1717                                             _igvn.MakeConX(distance));
  1718       transform_later(cache_adr);
  1719       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1720       transform_later(cache_adr);
  1721       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1722       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1723       transform_later(cache_adr);
  1724       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1725       transform_later(cache_adr);
  1727       // Prefetch
  1728       Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
  1729       prefetch->set_req(0, needgc_false);
  1730       transform_later(prefetch);
  1731       contended_phi_rawmem = prefetch;
  1732       Node *prefetch_adr;
  1733       distance = step_size;
  1734       for ( uint i = 1; i < lines; i++ ) {
  1735         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1736                                             _igvn.MakeConX(distance) );
  1737         transform_later(prefetch_adr);
  1738         prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
  1739         transform_later(prefetch);
  1740         distance += step_size;
  1741         contended_phi_rawmem = prefetch;
  1743    } else if( AllocatePrefetchStyle > 0 ) {
  1744       // Insert a prefetch for each allocation only on the fast-path
  1745       Node *prefetch_adr;
  1746       Node *prefetch;
  1747       // Generate several prefetch instructions.
  1748       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1749       uint step_size = AllocatePrefetchStepSize;
  1750       uint distance = AllocatePrefetchDistance;
  1751       for ( uint i = 0; i < lines; i++ ) {
  1752         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1753                                             _igvn.MakeConX(distance) );
  1754         transform_later(prefetch_adr);
  1755         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
  1756         // Do not let it float too high, since if eden_top == eden_end,
  1757         // both might be null.
  1758         if( i == 0 ) { // Set control for first prefetch, next follows it
  1759           prefetch->init_req(0, needgc_false);
  1761         transform_later(prefetch);
  1762         distance += step_size;
  1763         i_o = prefetch;
  1766    return i_o;
  1770 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1771   expand_allocate_common(alloc, NULL,
  1772                          OptoRuntime::new_instance_Type(),
  1773                          OptoRuntime::new_instance_Java());
  1776 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1777   Node* length = alloc->in(AllocateNode::ALength);
  1778   InitializeNode* init = alloc->initialization();
  1779   Node* klass_node = alloc->in(AllocateNode::KlassNode);
  1780   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1781   address slow_call_address;  // Address of slow call
  1782   if (init != NULL && init->is_complete_with_arraycopy() &&
  1783       k->is_type_array_klass()) {
  1784     // Don't zero type array during slow allocation in VM since
  1785     // it will be initialized later by arraycopy in compiled code.
  1786     slow_call_address = OptoRuntime::new_array_nozero_Java();
  1787   } else {
  1788     slow_call_address = OptoRuntime::new_array_Java();
  1790   expand_allocate_common(alloc, length,
  1791                          OptoRuntime::new_array_Type(),
  1792                          slow_call_address);
  1795 //-------------------mark_eliminated_box----------------------------------
  1796 //
  1797 // During EA obj may point to several objects but after few ideal graph
  1798 // transformations (CCP) it may point to only one non escaping object
  1799 // (but still using phi), corresponding locks and unlocks will be marked
  1800 // for elimination. Later obj could be replaced with a new node (new phi)
  1801 // and which does not have escape information. And later after some graph
  1802 // reshape other locks and unlocks (which were not marked for elimination
  1803 // before) are connected to this new obj (phi) but they still will not be
  1804 // marked for elimination since new obj has no escape information.
  1805 // Mark all associated (same box and obj) lock and unlock nodes for
  1806 // elimination if some of them marked already.
  1807 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
  1808   if (oldbox->as_BoxLock()->is_eliminated())
  1809     return; // This BoxLock node was processed already.
  1811   // New implementation (EliminateNestedLocks) has separate BoxLock
  1812   // node for each locked region so mark all associated locks/unlocks as
  1813   // eliminated even if different objects are referenced in one locked region
  1814   // (for example, OSR compilation of nested loop inside locked scope).
  1815   if (EliminateNestedLocks ||
  1816       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
  1817     // Box is used only in one lock region. Mark this box as eliminated.
  1818     _igvn.hash_delete(oldbox);
  1819     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
  1820     _igvn.hash_insert(oldbox);
  1822     for (uint i = 0; i < oldbox->outcnt(); i++) {
  1823       Node* u = oldbox->raw_out(i);
  1824       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
  1825         AbstractLockNode* alock = u->as_AbstractLock();
  1826         // Check lock's box since box could be referenced by Lock's debug info.
  1827         if (alock->box_node() == oldbox) {
  1828           // Mark eliminated all related locks and unlocks.
  1829           alock->set_non_esc_obj();
  1833     return;
  1836   // Create new "eliminated" BoxLock node and use it in monitor debug info
  1837   // instead of oldbox for the same object.
  1838   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1840   // Note: BoxLock node is marked eliminated only here and it is used
  1841   // to indicate that all associated lock and unlock nodes are marked
  1842   // for elimination.
  1843   newbox->set_eliminated();
  1844   transform_later(newbox);
  1846   // Replace old box node with new box for all users of the same object.
  1847   for (uint i = 0; i < oldbox->outcnt();) {
  1848     bool next_edge = true;
  1850     Node* u = oldbox->raw_out(i);
  1851     if (u->is_AbstractLock()) {
  1852       AbstractLockNode* alock = u->as_AbstractLock();
  1853       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
  1854         // Replace Box and mark eliminated all related locks and unlocks.
  1855         alock->set_non_esc_obj();
  1856         _igvn.rehash_node_delayed(alock);
  1857         alock->set_box_node(newbox);
  1858         next_edge = false;
  1861     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
  1862       FastLockNode* flock = u->as_FastLock();
  1863       assert(flock->box_node() == oldbox, "sanity");
  1864       _igvn.rehash_node_delayed(flock);
  1865       flock->set_box_node(newbox);
  1866       next_edge = false;
  1869     // Replace old box in monitor debug info.
  1870     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1871       SafePointNode* sfn = u->as_SafePoint();
  1872       JVMState* youngest_jvms = sfn->jvms();
  1873       int max_depth = youngest_jvms->depth();
  1874       for (int depth = 1; depth <= max_depth; depth++) {
  1875         JVMState* jvms = youngest_jvms->of_depth(depth);
  1876         int num_mon  = jvms->nof_monitors();
  1877         // Loop over monitors
  1878         for (int idx = 0; idx < num_mon; idx++) {
  1879           Node* obj_node = sfn->monitor_obj(jvms, idx);
  1880           Node* box_node = sfn->monitor_box(jvms, idx);
  1881           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
  1882             int j = jvms->monitor_box_offset(idx);
  1883             _igvn.replace_input_of(u, j, newbox);
  1884             next_edge = false;
  1889     if (next_edge) i++;
  1893 //-----------------------mark_eliminated_locking_nodes-----------------------
  1894 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1895   if (EliminateNestedLocks) {
  1896     if (alock->is_nested()) {
  1897        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
  1898        return;
  1899     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
  1900       // Only Lock node has JVMState needed here.
  1901       if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
  1902         // Mark eliminated related nested locks and unlocks.
  1903         Node* obj = alock->obj_node();
  1904         BoxLockNode* box_node = alock->box_node()->as_BoxLock();
  1905         assert(!box_node->is_eliminated(), "should not be marked yet");
  1906         // Note: BoxLock node is marked eliminated only here
  1907         // and it is used to indicate that all associated lock
  1908         // and unlock nodes are marked for elimination.
  1909         box_node->set_eliminated(); // Box's hash is always NO_HASH here
  1910         for (uint i = 0; i < box_node->outcnt(); i++) {
  1911           Node* u = box_node->raw_out(i);
  1912           if (u->is_AbstractLock()) {
  1913             alock = u->as_AbstractLock();
  1914             if (alock->box_node() == box_node) {
  1915               // Verify that this Box is referenced only by related locks.
  1916               assert(alock->obj_node()->eqv_uncast(obj), "");
  1917               // Mark all related locks and unlocks.
  1918               alock->set_nested();
  1923       return;
  1925     // Process locks for non escaping object
  1926     assert(alock->is_non_esc_obj(), "");
  1927   } // EliminateNestedLocks
  1929   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
  1930     // Look for all locks of this object and mark them and
  1931     // corresponding BoxLock nodes as eliminated.
  1932     Node* obj = alock->obj_node();
  1933     for (uint j = 0; j < obj->outcnt(); j++) {
  1934       Node* o = obj->raw_out(j);
  1935       if (o->is_AbstractLock() &&
  1936           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
  1937         alock = o->as_AbstractLock();
  1938         Node* box = alock->box_node();
  1939         // Replace old box node with new eliminated box for all users
  1940         // of the same object and mark related locks as eliminated.
  1941         mark_eliminated_box(box, obj);
  1947 // we have determined that this lock/unlock can be eliminated, we simply
  1948 // eliminate the node without expanding it.
  1949 //
  1950 // Note:  The membar's associated with the lock/unlock are currently not
  1951 //        eliminated.  This should be investigated as a future enhancement.
  1952 //
  1953 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1955   if (!alock->is_eliminated()) {
  1956     return false;
  1958 #ifdef ASSERT
  1959   if (!alock->is_coarsened()) {
  1960     // Check that new "eliminated" BoxLock node is created.
  1961     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1962     assert(oldbox->is_eliminated(), "should be done already");
  1964 #endif
  1965   CompileLog* log = C->log();
  1966   if (log != NULL) {
  1967     log->head("eliminate_lock lock='%d'",
  1968               alock->is_Lock());
  1969     JVMState* p = alock->jvms();
  1970     while (p != NULL) {
  1971       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1972       p = p->caller();
  1974     log->tail("eliminate_lock");
  1977   #ifndef PRODUCT
  1978   if (PrintEliminateLocks) {
  1979     if (alock->is_Lock()) {
  1980       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
  1981     } else {
  1982       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
  1985   #endif
  1987   Node* mem  = alock->in(TypeFunc::Memory);
  1988   Node* ctrl = alock->in(TypeFunc::Control);
  1990   extract_call_projections(alock);
  1991   // There are 2 projections from the lock.  The lock node will
  1992   // be deleted when its last use is subsumed below.
  1993   assert(alock->outcnt() == 2 &&
  1994          _fallthroughproj != NULL &&
  1995          _memproj_fallthrough != NULL,
  1996          "Unexpected projections from Lock/Unlock");
  1998   Node* fallthroughproj = _fallthroughproj;
  1999   Node* memproj_fallthrough = _memproj_fallthrough;
  2001   // The memory projection from a lock/unlock is RawMem
  2002   // The input to a Lock is merged memory, so extract its RawMem input
  2003   // (unless the MergeMem has been optimized away.)
  2004   if (alock->is_Lock()) {
  2005     // Seach for MemBarAcquireLock node and delete it also.
  2006     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  2007     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
  2008     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  2009     Node* memproj = membar->proj_out(TypeFunc::Memory);
  2010     _igvn.replace_node(ctrlproj, fallthroughproj);
  2011     _igvn.replace_node(memproj, memproj_fallthrough);
  2013     // Delete FastLock node also if this Lock node is unique user
  2014     // (a loop peeling may clone a Lock node).
  2015     Node* flock = alock->as_Lock()->fastlock_node();
  2016     if (flock->outcnt() == 1) {
  2017       assert(flock->unique_out() == alock, "sanity");
  2018       _igvn.replace_node(flock, top());
  2022   // Seach for MemBarReleaseLock node and delete it also.
  2023   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  2024       ctrl->in(0)->is_MemBar()) {
  2025     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  2026     assert(membar->Opcode() == Op_MemBarReleaseLock &&
  2027            mem->is_Proj() && membar == mem->in(0), "");
  2028     _igvn.replace_node(fallthroughproj, ctrl);
  2029     _igvn.replace_node(memproj_fallthrough, mem);
  2030     fallthroughproj = ctrl;
  2031     memproj_fallthrough = mem;
  2032     ctrl = membar->in(TypeFunc::Control);
  2033     mem  = membar->in(TypeFunc::Memory);
  2036   _igvn.replace_node(fallthroughproj, ctrl);
  2037   _igvn.replace_node(memproj_fallthrough, mem);
  2038   return true;
  2042 //------------------------------expand_lock_node----------------------
  2043 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  2045   Node* ctrl = lock->in(TypeFunc::Control);
  2046   Node* mem = lock->in(TypeFunc::Memory);
  2047   Node* obj = lock->obj_node();
  2048   Node* box = lock->box_node();
  2049   Node* flock = lock->fastlock_node();
  2051   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2053   // Make the merge point
  2054   Node *region;
  2055   Node *mem_phi;
  2056   Node *slow_path;
  2058   if (UseOptoBiasInlining) {
  2059     /*
  2060      *  See the full description in MacroAssembler::biased_locking_enter().
  2062      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  2063      *    // The object is biased.
  2064      *    proto_node = klass->prototype_header;
  2065      *    o_node = thread | proto_node;
  2066      *    x_node = o_node ^ mark_word;
  2067      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  2068      *      // Done.
  2069      *    } else {
  2070      *      if( (x_node & biased_lock_mask) != 0 ) {
  2071      *        // The klass's prototype header is no longer biased.
  2072      *        cas(&mark_word, mark_word, proto_node)
  2073      *        goto cas_lock;
  2074      *      } else {
  2075      *        // The klass's prototype header is still biased.
  2076      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  2077      *          old = mark_word;
  2078      *          new = o_node;
  2079      *        } else {
  2080      *          // Different thread or anonymous biased.
  2081      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  2082      *          new = thread | old;
  2083      *        }
  2084      *        // Try to rebias.
  2085      *        if( cas(&mark_word, old, new) == 0 ) {
  2086      *          // Done.
  2087      *        } else {
  2088      *          goto slow_path; // Failed.
  2089      *        }
  2090      *      }
  2091      *    }
  2092      *  } else {
  2093      *    // The object is not biased.
  2094      *    cas_lock:
  2095      *    if( FastLock(obj) == 0 ) {
  2096      *      // Done.
  2097      *    } else {
  2098      *      slow_path:
  2099      *      OptoRuntime::complete_monitor_locking_Java(obj);
  2100      *    }
  2101      *  }
  2102      */
  2104     region  = new (C, 5) RegionNode(5);
  2105     // create a Phi for the memory state
  2106     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2108     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  2109     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2111     // First, check mark word for the biased lock pattern.
  2112     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2114     // Get fast path - mark word has the biased lock pattern.
  2115     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  2116                          markOopDesc::biased_lock_mask_in_place,
  2117                          markOopDesc::biased_lock_pattern, true);
  2118     // fast_lock_region->in(1) is set to slow path.
  2119     fast_lock_mem_phi->init_req(1, mem);
  2121     // Now check that the lock is biased to the current thread and has
  2122     // the same epoch and bias as Klass::_prototype_header.
  2124     // Special-case a fresh allocation to avoid building nodes:
  2125     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  2126     if (klass_node == NULL) {
  2127       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  2128       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  2129 #ifdef _LP64
  2130       if (UseCompressedOops && klass_node->is_DecodeN()) {
  2131         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  2132         klass_node->in(1)->init_req(0, ctrl);
  2133       } else
  2134 #endif
  2135       klass_node->init_req(0, ctrl);
  2137     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
  2139     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  2140     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2141     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  2142     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  2144     // Get slow path - mark word does NOT match the value.
  2145     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  2146                                       (~markOopDesc::age_mask_in_place), 0);
  2147     // region->in(3) is set to fast path - the object is biased to the current thread.
  2148     mem_phi->init_req(3, mem);
  2151     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  2154     // First, check biased pattern.
  2155     // Get fast path - _prototype_header has the same biased lock pattern.
  2156     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  2157                           markOopDesc::biased_lock_mask_in_place, 0, true);
  2159     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  2160     // fast_lock_region->in(2) - the prototype header is no longer biased
  2161     // and we have to revoke the bias on this object.
  2162     // We are going to try to reset the mark of this object to the prototype
  2163     // value and fall through to the CAS-based locking scheme.
  2164     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  2165     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  2166                                                  proto_node, mark_node);
  2167     transform_later(cas);
  2168     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2169     fast_lock_mem_phi->init_req(2, proj);
  2172     // Second, check epoch bits.
  2173     Node* rebiased_region  = new (C, 3) RegionNode(3);
  2174     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  2175     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  2177     // Get slow path - mark word does NOT match epoch bits.
  2178     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  2179                                       markOopDesc::epoch_mask_in_place, 0);
  2180     // The epoch of the current bias is not valid, attempt to rebias the object
  2181     // toward the current thread.
  2182     rebiased_region->init_req(2, epoch_ctrl);
  2183     old_phi->init_req(2, mark_node);
  2184     new_phi->init_req(2, o_node);
  2186     // rebiased_region->in(1) is set to fast path.
  2187     // The epoch of the current bias is still valid but we know
  2188     // nothing about the owner; it might be set or it might be clear.
  2189     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2190                              markOopDesc::age_mask_in_place |
  2191                              markOopDesc::epoch_mask_in_place);
  2192     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  2193     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2194     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  2195     old_phi->init_req(1, old);
  2196     new_phi->init_req(1, new_mark);
  2198     transform_later(rebiased_region);
  2199     transform_later(old_phi);
  2200     transform_later(new_phi);
  2202     // Try to acquire the bias of the object using an atomic operation.
  2203     // If this fails we will go in to the runtime to revoke the object's bias.
  2204     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  2205                                            new_phi, old_phi);
  2206     transform_later(cas);
  2207     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2209     // Get slow path - Failed to CAS.
  2210     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2211     mem_phi->init_req(4, proj);
  2212     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2214     // Failed to CAS.
  2215     slow_path  = new (C, 3) RegionNode(3);
  2216     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2218     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2219     slow_mem->init_req(1, proj);
  2221     // Call CAS-based locking scheme (FastLock node).
  2223     transform_later(fast_lock_region);
  2224     transform_later(fast_lock_mem_phi);
  2226     // Get slow path - FastLock failed to lock the object.
  2227     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2228     mem_phi->init_req(2, fast_lock_mem_phi);
  2229     // region->in(2) is set to fast path - the object is locked to the current thread.
  2231     slow_path->init_req(2, ctrl); // Capture slow-control
  2232     slow_mem->init_req(2, fast_lock_mem_phi);
  2234     transform_later(slow_path);
  2235     transform_later(slow_mem);
  2236     // Reset lock's memory edge.
  2237     lock->set_req(TypeFunc::Memory, slow_mem);
  2239   } else {
  2240     region  = new (C, 3) RegionNode(3);
  2241     // create a Phi for the memory state
  2242     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2244     // Optimize test; set region slot 2
  2245     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2246     mem_phi->init_req(2, mem);
  2249   // Make slow path call
  2250   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2252   extract_call_projections(call);
  2254   // Slow path can only throw asynchronous exceptions, which are always
  2255   // de-opted.  So the compiler thinks the slow-call can never throw an
  2256   // exception.  If it DOES throw an exception we would need the debug
  2257   // info removed first (since if it throws there is no monitor).
  2258   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2259            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2261   // Capture slow path
  2262   // disconnect fall-through projection from call and create a new one
  2263   // hook up users of fall-through projection to region
  2264   Node *slow_ctrl = _fallthroughproj->clone();
  2265   transform_later(slow_ctrl);
  2266   _igvn.hash_delete(_fallthroughproj);
  2267   _fallthroughproj->disconnect_inputs(NULL);
  2268   region->init_req(1, slow_ctrl);
  2269   // region inputs are now complete
  2270   transform_later(region);
  2271   _igvn.replace_node(_fallthroughproj, region);
  2273   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2274   mem_phi->init_req(1, memproj );
  2275   transform_later(mem_phi);
  2276   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2279 //------------------------------expand_unlock_node----------------------
  2280 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2282   Node* ctrl = unlock->in(TypeFunc::Control);
  2283   Node* mem = unlock->in(TypeFunc::Memory);
  2284   Node* obj = unlock->obj_node();
  2285   Node* box = unlock->box_node();
  2287   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
  2289   // No need for a null check on unlock
  2291   // Make the merge point
  2292   Node *region;
  2293   Node *mem_phi;
  2295   if (UseOptoBiasInlining) {
  2296     // Check for biased locking unlock case, which is a no-op.
  2297     // See the full description in MacroAssembler::biased_locking_exit().
  2298     region  = new (C, 4) RegionNode(4);
  2299     // create a Phi for the memory state
  2300     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2301     mem_phi->init_req(3, mem);
  2303     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2304     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2305                          markOopDesc::biased_lock_mask_in_place,
  2306                          markOopDesc::biased_lock_pattern);
  2307   } else {
  2308     region  = new (C, 3) RegionNode(3);
  2309     // create a Phi for the memory state
  2310     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2313   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2314   funlock = transform_later( funlock )->as_FastUnlock();
  2315   // Optimize test; set region slot 2
  2316   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2318   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2320   extract_call_projections(call);
  2322   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2323            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2325   // No exceptions for unlocking
  2326   // Capture slow path
  2327   // disconnect fall-through projection from call and create a new one
  2328   // hook up users of fall-through projection to region
  2329   Node *slow_ctrl = _fallthroughproj->clone();
  2330   transform_later(slow_ctrl);
  2331   _igvn.hash_delete(_fallthroughproj);
  2332   _fallthroughproj->disconnect_inputs(NULL);
  2333   region->init_req(1, slow_ctrl);
  2334   // region inputs are now complete
  2335   transform_later(region);
  2336   _igvn.replace_node(_fallthroughproj, region);
  2338   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2339   mem_phi->init_req(1, memproj );
  2340   mem_phi->init_req(2, mem);
  2341   transform_later(mem_phi);
  2342   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2345 //---------------------------eliminate_macro_nodes----------------------
  2346 // Eliminate scalar replaced allocations and associated locks.
  2347 void PhaseMacroExpand::eliminate_macro_nodes() {
  2348   if (C->macro_count() == 0)
  2349     return;
  2351   // First, attempt to eliminate locks
  2352   int cnt = C->macro_count();
  2353   for (int i=0; i < cnt; i++) {
  2354     Node *n = C->macro_node(i);
  2355     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2356       // Before elimination mark all associated (same box and obj)
  2357       // lock and unlock nodes.
  2358       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2361   bool progress = true;
  2362   while (progress) {
  2363     progress = false;
  2364     for (int i = C->macro_count(); i > 0; i--) {
  2365       Node * n = C->macro_node(i-1);
  2366       bool success = false;
  2367       debug_only(int old_macro_count = C->macro_count(););
  2368       if (n->is_AbstractLock()) {
  2369         success = eliminate_locking_node(n->as_AbstractLock());
  2371       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2372       progress = progress || success;
  2375   // Next, attempt to eliminate allocations
  2376   progress = true;
  2377   while (progress) {
  2378     progress = false;
  2379     for (int i = C->macro_count(); i > 0; i--) {
  2380       Node * n = C->macro_node(i-1);
  2381       bool success = false;
  2382       debug_only(int old_macro_count = C->macro_count(););
  2383       switch (n->class_id()) {
  2384       case Node::Class_Allocate:
  2385       case Node::Class_AllocateArray:
  2386         success = eliminate_allocate_node(n->as_Allocate());
  2387         break;
  2388       case Node::Class_Lock:
  2389       case Node::Class_Unlock:
  2390         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2391         break;
  2392       default:
  2393         assert(n->Opcode() == Op_LoopLimit ||
  2394                n->Opcode() == Op_Opaque1   ||
  2395                n->Opcode() == Op_Opaque2, "unknown node type in macro list");
  2397       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2398       progress = progress || success;
  2403 //------------------------------expand_macro_nodes----------------------
  2404 //  Returns true if a failure occurred.
  2405 bool PhaseMacroExpand::expand_macro_nodes() {
  2406   // Last attempt to eliminate macro nodes.
  2407   eliminate_macro_nodes();
  2409   // Make sure expansion will not cause node limit to be exceeded.
  2410   // Worst case is a macro node gets expanded into about 50 nodes.
  2411   // Allow 50% more for optimization.
  2412   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2413     return true;
  2415   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
  2416   bool progress = true;
  2417   while (progress) {
  2418     progress = false;
  2419     for (int i = C->macro_count(); i > 0; i--) {
  2420       Node * n = C->macro_node(i-1);
  2421       bool success = false;
  2422       debug_only(int old_macro_count = C->macro_count(););
  2423       if (n->Opcode() == Op_LoopLimit) {
  2424         // Remove it from macro list and put on IGVN worklist to optimize.
  2425         C->remove_macro_node(n);
  2426         _igvn._worklist.push(n);
  2427         success = true;
  2428       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2429         _igvn.replace_node(n, n->in(1));
  2430         success = true;
  2432       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2433       progress = progress || success;
  2437   // expand "macro" nodes
  2438   // nodes are removed from the macro list as they are processed
  2439   while (C->macro_count() > 0) {
  2440     int macro_count = C->macro_count();
  2441     Node * n = C->macro_node(macro_count-1);
  2442     assert(n->is_macro(), "only macro nodes expected here");
  2443     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2444       // node is unreachable, so don't try to expand it
  2445       C->remove_macro_node(n);
  2446       continue;
  2448     switch (n->class_id()) {
  2449     case Node::Class_Allocate:
  2450       expand_allocate(n->as_Allocate());
  2451       break;
  2452     case Node::Class_AllocateArray:
  2453       expand_allocate_array(n->as_AllocateArray());
  2454       break;
  2455     case Node::Class_Lock:
  2456       expand_lock_node(n->as_Lock());
  2457       break;
  2458     case Node::Class_Unlock:
  2459       expand_unlock_node(n->as_Unlock());
  2460       break;
  2461     default:
  2462       assert(false, "unknown node type in macro list");
  2464     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2465     if (C->failing())  return true;
  2468   _igvn.set_delay_transform(false);
  2469   _igvn.optimize();
  2470   if (C->failing())  return true;
  2471   return false;

mercurial