src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Fri, 17 May 2013 11:57:05 +0200

author
ehelin
date
Fri, 17 May 2013 11:57:05 +0200
changeset 5159
001ec9515f84
parent 5120
eba99d16dc6f
child 5192
14d3f71f831d
permissions
-rw-r--r--

8014277: Remove ObjectClosure as base class for BoolObjectClosure
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    35 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    36 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    37 #include "gc_implementation/shared/isGCActiveMark.hpp"
    38 #include "gc_implementation/shared/markSweep.hpp"
    39 #include "gc_implementation/shared/spaceDecorator.hpp"
    40 #include "gc_interface/gcCause.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/referencePolicy.hpp"
    43 #include "memory/referenceProcessor.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/fprofiler.hpp"
    47 #include "runtime/safepoint.hpp"
    48 #include "runtime/vmThread.hpp"
    49 #include "services/management.hpp"
    50 #include "services/memoryService.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/stack.inline.hpp"
    54 elapsedTimer        PSMarkSweep::_accumulated_time;
    55 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    56 CollectorCounters*  PSMarkSweep::_counters = NULL;
    58 void PSMarkSweep::initialize() {
    59   MemRegion mr = Universe::heap()->reserved_region();
    60   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
    61   _counters = new CollectorCounters("PSMarkSweep", 1);
    62 }
    64 // This method contains all heap specific policy for invoking mark sweep.
    65 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    66 // the heap. It will do nothing further. If we need to bail out for policy
    67 // reasons, scavenge before full gc, or any other specialized behavior, it
    68 // needs to be added here.
    69 //
    70 // Note that this method should only be called from the vm_thread while
    71 // at a safepoint!
    72 //
    73 // Note that the all_soft_refs_clear flag in the collector policy
    74 // may be true because this method can be called without intervening
    75 // activity.  For example when the heap space is tight and full measure
    76 // are being taken to free space.
    78 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    79   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    80   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    81   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    83   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    84   GCCause::Cause gc_cause = heap->gc_cause();
    85   PSAdaptiveSizePolicy* policy = heap->size_policy();
    86   IsGCActiveMark mark;
    88   if (ScavengeBeforeFullGC) {
    89     PSScavenge::invoke_no_policy();
    90   }
    92   const bool clear_all_soft_refs =
    93     heap->collector_policy()->should_clear_all_soft_refs();
    95   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
    96   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    97   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
    98 }
   100 // This method contains no policy. You should probably
   101 // be calling invoke() instead.
   102 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
   103   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
   104   assert(ref_processor() != NULL, "Sanity");
   106   if (GC_locker::check_active_before_gc()) {
   107     return false;
   108   }
   110   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   111   GCCause::Cause gc_cause = heap->gc_cause();
   112   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   113   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   115   // The scope of casr should end after code that can change
   116   // CollectorPolicy::_should_clear_all_soft_refs.
   117   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
   119   PSYoungGen* young_gen = heap->young_gen();
   120   PSOldGen* old_gen = heap->old_gen();
   122   // Increment the invocation count
   123   heap->increment_total_collections(true /* full */);
   125   // Save information needed to minimize mangling
   126   heap->record_gen_tops_before_GC();
   128   // We need to track unique mark sweep invocations as well.
   129   _total_invocations++;
   131   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   133   heap->print_heap_before_gc();
   135   // Fill in TLABs
   136   heap->accumulate_statistics_all_tlabs();
   137   heap->ensure_parsability(true);  // retire TLABs
   139   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   140     HandleMark hm;  // Discard invalid handles created during verification
   141     Universe::verify(" VerifyBeforeGC:");
   142   }
   144   // Verify object start arrays
   145   if (VerifyObjectStartArray &&
   146       VerifyBeforeGC) {
   147     old_gen->verify_object_start_array();
   148   }
   150   heap->pre_full_gc_dump();
   152   // Filled in below to track the state of the young gen after the collection.
   153   bool eden_empty;
   154   bool survivors_empty;
   155   bool young_gen_empty;
   157   {
   158     HandleMark hm;
   160     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   161     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   162     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
   163     TraceCollectorStats tcs(counters());
   164     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
   166     if (TraceGen1Time) accumulated_time()->start();
   168     // Let the size policy know we're starting
   169     size_policy->major_collection_begin();
   171     CodeCache::gc_prologue();
   172     Threads::gc_prologue();
   173     BiasedLocking::preserve_marks();
   175     // Capture heap size before collection for printing.
   176     size_t prev_used = heap->used();
   178     // Capture metadata size before collection for sizing.
   179     size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
   181     // For PrintGCDetails
   182     size_t old_gen_prev_used = old_gen->used_in_bytes();
   183     size_t young_gen_prev_used = young_gen->used_in_bytes();
   185     allocate_stacks();
   187     COMPILER2_PRESENT(DerivedPointerTable::clear());
   189     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   190     ref_processor()->setup_policy(clear_all_softrefs);
   192     mark_sweep_phase1(clear_all_softrefs);
   194     mark_sweep_phase2();
   196     // Don't add any more derived pointers during phase3
   197     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   198     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   200     mark_sweep_phase3();
   202     mark_sweep_phase4();
   204     restore_marks();
   206     deallocate_stacks();
   208     if (ZapUnusedHeapArea) {
   209       // Do a complete mangle (top to end) because the usage for
   210       // scratch does not maintain a top pointer.
   211       young_gen->to_space()->mangle_unused_area_complete();
   212     }
   214     eden_empty = young_gen->eden_space()->is_empty();
   215     if (!eden_empty) {
   216       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   217     }
   219     // Update heap occupancy information which is used as
   220     // input to soft ref clearing policy at the next gc.
   221     Universe::update_heap_info_at_gc();
   223     survivors_empty = young_gen->from_space()->is_empty() &&
   224                       young_gen->to_space()->is_empty();
   225     young_gen_empty = eden_empty && survivors_empty;
   227     BarrierSet* bs = heap->barrier_set();
   228     if (bs->is_a(BarrierSet::ModRef)) {
   229       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   230       MemRegion old_mr = heap->old_gen()->reserved();
   231       if (young_gen_empty) {
   232         modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
   233       } else {
   234         modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
   235       }
   236     }
   238     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   239     ClassLoaderDataGraph::purge();
   240     MetaspaceAux::verify_metrics();
   242     BiasedLocking::restore_marks();
   243     Threads::gc_epilogue();
   244     CodeCache::gc_epilogue();
   245     JvmtiExport::gc_epilogue();
   247     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   249     ref_processor()->enqueue_discovered_references(NULL);
   251     // Update time of last GC
   252     reset_millis_since_last_gc();
   254     // Let the size policy know we're done
   255     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   257     if (UseAdaptiveSizePolicy) {
   259       if (PrintAdaptiveSizePolicy) {
   260         gclog_or_tty->print("AdaptiveSizeStart: ");
   261         gclog_or_tty->stamp();
   262         gclog_or_tty->print_cr(" collection: %d ",
   263                        heap->total_collections());
   264         if (Verbose) {
   265           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
   266             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
   267         }
   268       }
   270       // Don't check if the size_policy is ready here.  Let
   271       // the size_policy check that internally.
   272       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   273           ((gc_cause != GCCause::_java_lang_system_gc) ||
   274             UseAdaptiveSizePolicyWithSystemGC)) {
   275         // Calculate optimal free space amounts
   276         assert(young_gen->max_size() >
   277           young_gen->from_space()->capacity_in_bytes() +
   278           young_gen->to_space()->capacity_in_bytes(),
   279           "Sizes of space in young gen are out-of-bounds");
   281         size_t young_live = young_gen->used_in_bytes();
   282         size_t eden_live = young_gen->eden_space()->used_in_bytes();
   283         size_t old_live = old_gen->used_in_bytes();
   284         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
   285         size_t max_old_gen_size = old_gen->max_gen_size();
   286         size_t max_eden_size = young_gen->max_size() -
   287           young_gen->from_space()->capacity_in_bytes() -
   288           young_gen->to_space()->capacity_in_bytes();
   290         // Used for diagnostics
   291         size_policy->clear_generation_free_space_flags();
   293         size_policy->compute_generation_free_space(young_live,
   294                                                    eden_live,
   295                                                    old_live,
   296                                                    cur_eden,
   297                                                    max_old_gen_size,
   298                                                    max_eden_size,
   299                                                    true /* full gc*/);
   301         size_policy->check_gc_overhead_limit(young_live,
   302                                              eden_live,
   303                                              max_old_gen_size,
   304                                              max_eden_size,
   305                                              true /* full gc*/,
   306                                              gc_cause,
   307                                              heap->collector_policy());
   309         size_policy->decay_supplemental_growth(true /* full gc*/);
   311         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   313         // Don't resize the young generation at an major collection.  A
   314         // desired young generation size may have been calculated but
   315         // resizing the young generation complicates the code because the
   316         // resizing of the old generation may have moved the boundary
   317         // between the young generation and the old generation.  Let the
   318         // young generation resizing happen at the minor collections.
   319       }
   320       if (PrintAdaptiveSizePolicy) {
   321         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   322                        heap->total_collections());
   323       }
   324     }
   326     if (UsePerfData) {
   327       heap->gc_policy_counters()->update_counters();
   328       heap->gc_policy_counters()->update_old_capacity(
   329         old_gen->capacity_in_bytes());
   330       heap->gc_policy_counters()->update_young_capacity(
   331         young_gen->capacity_in_bytes());
   332     }
   334     heap->resize_all_tlabs();
   336     // We collected the heap, recalculate the metaspace capacity
   337     MetaspaceGC::compute_new_size();
   339     if (TraceGen1Time) accumulated_time()->stop();
   341     if (PrintGC) {
   342       if (PrintGCDetails) {
   343         // Don't print a GC timestamp here.  This is after the GC so
   344         // would be confusing.
   345         young_gen->print_used_change(young_gen_prev_used);
   346         old_gen->print_used_change(old_gen_prev_used);
   347       }
   348       heap->print_heap_change(prev_used);
   349       if (PrintGCDetails) {
   350         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   351       }
   352     }
   354     // Track memory usage and detect low memory
   355     MemoryService::track_memory_usage();
   356     heap->update_counters();
   357   }
   359   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   360     HandleMark hm;  // Discard invalid handles created during verification
   361     Universe::verify(" VerifyAfterGC:");
   362   }
   364   // Re-verify object start arrays
   365   if (VerifyObjectStartArray &&
   366       VerifyAfterGC) {
   367     old_gen->verify_object_start_array();
   368   }
   370   if (ZapUnusedHeapArea) {
   371     old_gen->object_space()->check_mangled_unused_area_complete();
   372   }
   374   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   376   heap->print_heap_after_gc();
   378   heap->post_full_gc_dump();
   380 #ifdef TRACESPINNING
   381   ParallelTaskTerminator::print_termination_counts();
   382 #endif
   384   return true;
   385 }
   387 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   388                                              PSYoungGen* young_gen,
   389                                              PSOldGen* old_gen) {
   390   MutableSpace* const eden_space = young_gen->eden_space();
   391   assert(!eden_space->is_empty(), "eden must be non-empty");
   392   assert(young_gen->virtual_space()->alignment() ==
   393          old_gen->virtual_space()->alignment(), "alignments do not match");
   395   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   396     return false;
   397   }
   399   // Both generations must be completely committed.
   400   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   401     return false;
   402   }
   403   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   404     return false;
   405   }
   407   // Figure out how much to take from eden.  Include the average amount promoted
   408   // in the total; otherwise the next young gen GC will simply bail out to a
   409   // full GC.
   410   const size_t alignment = old_gen->virtual_space()->alignment();
   411   const size_t eden_used = eden_space->used_in_bytes();
   412   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   413   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   414   const size_t eden_capacity = eden_space->capacity_in_bytes();
   416   if (absorb_size >= eden_capacity) {
   417     return false; // Must leave some space in eden.
   418   }
   420   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   421   if (new_young_size < young_gen->min_gen_size()) {
   422     return false; // Respect young gen minimum size.
   423   }
   425   if (TraceAdaptiveGCBoundary && Verbose) {
   426     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   427                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   428                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   429                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   430                         absorb_size / K,
   431                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   432                         young_gen->from_space()->used_in_bytes() / K,
   433                         young_gen->to_space()->used_in_bytes() / K,
   434                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   435   }
   437   // Fill the unused part of the old gen.
   438   MutableSpace* const old_space = old_gen->object_space();
   439   HeapWord* const unused_start = old_space->top();
   440   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   442   if (unused_words > 0) {
   443     if (unused_words < CollectedHeap::min_fill_size()) {
   444       return false;  // If the old gen cannot be filled, must give up.
   445     }
   446     CollectedHeap::fill_with_objects(unused_start, unused_words);
   447   }
   449   // Take the live data from eden and set both top and end in the old gen to
   450   // eden top.  (Need to set end because reset_after_change() mangles the region
   451   // from end to virtual_space->high() in debug builds).
   452   HeapWord* const new_top = eden_space->top();
   453   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   454                                         absorb_size);
   455   young_gen->reset_after_change();
   456   old_space->set_top(new_top);
   457   old_space->set_end(new_top);
   458   old_gen->reset_after_change();
   460   // Update the object start array for the filler object and the data from eden.
   461   ObjectStartArray* const start_array = old_gen->start_array();
   462   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   463     start_array->allocate_block(p);
   464   }
   466   // Could update the promoted average here, but it is not typically updated at
   467   // full GCs and the value to use is unclear.  Something like
   468   //
   469   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   471   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   472   return true;
   473 }
   475 void PSMarkSweep::allocate_stacks() {
   476   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   477   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   479   PSYoungGen* young_gen = heap->young_gen();
   481   MutableSpace* to_space = young_gen->to_space();
   482   _preserved_marks = (PreservedMark*)to_space->top();
   483   _preserved_count = 0;
   485   // We want to calculate the size in bytes first.
   486   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   487   // Now divide by the size of a PreservedMark
   488   _preserved_count_max /= sizeof(PreservedMark);
   489 }
   492 void PSMarkSweep::deallocate_stacks() {
   493   _preserved_mark_stack.clear(true);
   494   _preserved_oop_stack.clear(true);
   495   _marking_stack.clear();
   496   _objarray_stack.clear(true);
   497 }
   499 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   500   // Recursively traverse all live objects and mark them
   501   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
   502   trace(" 1");
   504   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   505   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   507   // Need to clear claim bits before the tracing starts.
   508   ClassLoaderDataGraph::clear_claimed_marks();
   510   // General strong roots.
   511   {
   512     ParallelScavengeHeap::ParStrongRootsScope psrs;
   513     Universe::oops_do(mark_and_push_closure());
   514     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   515     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
   516     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
   517     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
   518     ObjectSynchronizer::oops_do(mark_and_push_closure());
   519     FlatProfiler::oops_do(mark_and_push_closure());
   520     Management::oops_do(mark_and_push_closure());
   521     JvmtiExport::oops_do(mark_and_push_closure());
   522     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   523     ClassLoaderDataGraph::always_strong_oops_do(mark_and_push_closure(), follow_klass_closure(), true);
   524     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   525     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   526   }
   528   // Flush marking stack.
   529   follow_stack();
   531   // Process reference objects found during marking
   532   {
   533     ref_processor()->setup_policy(clear_all_softrefs);
   534     ref_processor()->process_discovered_references(
   535       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
   536   }
   538   // This is the point where the entire marking should have completed.
   539   assert(_marking_stack.is_empty(), "Marking should have completed");
   541   // Unload classes and purge the SystemDictionary.
   542   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   544   // Unload nmethods.
   545   CodeCache::do_unloading(is_alive_closure(), purged_class);
   547   // Prune dead klasses from subklass/sibling/implementor lists.
   548   Klass::clean_weak_klass_links(is_alive_closure());
   550   // Delete entries for dead interned strings.
   551   StringTable::unlink(is_alive_closure());
   553   // Clean up unreferenced symbols in symbol table.
   554   SymbolTable::unlink();
   555 }
   558 void PSMarkSweep::mark_sweep_phase2() {
   559   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
   560   trace("2");
   562   // Now all live objects are marked, compute the new object addresses.
   564   // It is not required that we traverse spaces in the same order in
   565   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   566   // tracking expects us to do so. See comment under phase4.
   568   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   569   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   571   PSOldGen* old_gen = heap->old_gen();
   573   // Begin compacting into the old gen
   574   PSMarkSweepDecorator::set_destination_decorator_tenured();
   576   // This will also compact the young gen spaces.
   577   old_gen->precompact();
   578 }
   580 // This should be moved to the shared markSweep code!
   581 class PSAlwaysTrueClosure: public BoolObjectClosure {
   582 public:
   583   bool do_object_b(oop p) { return true; }
   584 };
   585 static PSAlwaysTrueClosure always_true;
   587 void PSMarkSweep::mark_sweep_phase3() {
   588   // Adjust the pointers to reflect the new locations
   589   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
   590   trace("3");
   592   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   593   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   595   PSYoungGen* young_gen = heap->young_gen();
   596   PSOldGen* old_gen = heap->old_gen();
   598   // Need to clear claim bits before the tracing starts.
   599   ClassLoaderDataGraph::clear_claimed_marks();
   601   // General strong roots.
   602   Universe::oops_do(adjust_pointer_closure());
   603   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
   604   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
   605   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
   606   ObjectSynchronizer::oops_do(adjust_pointer_closure());
   607   FlatProfiler::oops_do(adjust_pointer_closure());
   608   Management::oops_do(adjust_pointer_closure());
   609   JvmtiExport::oops_do(adjust_pointer_closure());
   610   // SO_AllClasses
   611   SystemDictionary::oops_do(adjust_pointer_closure());
   612   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
   614   // Now adjust pointers in remaining weak roots.  (All of which should
   615   // have been cleared if they pointed to non-surviving objects.)
   616   // Global (weak) JNI handles
   617   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
   619   CodeCache::oops_do(adjust_pointer_closure());
   620   StringTable::oops_do(adjust_pointer_closure());
   621   ref_processor()->weak_oops_do(adjust_pointer_closure());
   622   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
   624   adjust_marks();
   626   young_gen->adjust_pointers();
   627   old_gen->adjust_pointers();
   628 }
   630 void PSMarkSweep::mark_sweep_phase4() {
   631   EventMark m("4 compact heap");
   632   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
   633   trace("4");
   635   // All pointers are now adjusted, move objects accordingly
   637   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   638   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   640   PSYoungGen* young_gen = heap->young_gen();
   641   PSOldGen* old_gen = heap->old_gen();
   643   old_gen->compact();
   644   young_gen->compact();
   645 }
   647 jlong PSMarkSweep::millis_since_last_gc() {
   648   // We need a monotonically non-deccreasing time in ms but
   649   // os::javaTimeMillis() does not guarantee monotonicity.
   650   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   651   jlong ret_val = now - _time_of_last_gc;
   652   // XXX See note in genCollectedHeap::millis_since_last_gc().
   653   if (ret_val < 0) {
   654     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
   655     return 0;
   656   }
   657   return ret_val;
   658 }
   660 void PSMarkSweep::reset_millis_since_last_gc() {
   661   // We need a monotonically non-deccreasing time in ms but
   662   // os::javaTimeMillis() does not guarantee monotonicity.
   663   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   664 }

mercurial