src/share/vm/opto/regmask.cpp

changeset 0
f90c822e73f8
child 1
2d8a650513c2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/regmask.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,460 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "opto/compile.hpp"
    1.30 +#include "opto/regmask.hpp"
    1.31 +#ifdef TARGET_ARCH_MODEL_x86_32
    1.32 +# include "adfiles/ad_x86_32.hpp"
    1.33 +#endif
    1.34 +#ifdef TARGET_ARCH_MODEL_x86_64
    1.35 +# include "adfiles/ad_x86_64.hpp"
    1.36 +#endif
    1.37 +#ifdef TARGET_ARCH_MODEL_sparc
    1.38 +# include "adfiles/ad_sparc.hpp"
    1.39 +#endif
    1.40 +#ifdef TARGET_ARCH_MODEL_zero
    1.41 +# include "adfiles/ad_zero.hpp"
    1.42 +#endif
    1.43 +#ifdef TARGET_ARCH_MODEL_arm
    1.44 +# include "adfiles/ad_arm.hpp"
    1.45 +#endif
    1.46 +#ifdef TARGET_ARCH_MODEL_ppc_32
    1.47 +# include "adfiles/ad_ppc_32.hpp"
    1.48 +#endif
    1.49 +#ifdef TARGET_ARCH_MODEL_ppc_64
    1.50 +# include "adfiles/ad_ppc_64.hpp"
    1.51 +#endif
    1.52 +
    1.53 +#define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
    1.54 +
    1.55 +//-------------Non-zero bit search methods used by RegMask---------------------
    1.56 +// Find lowest 1, or return 32 if empty
    1.57 +int find_lowest_bit( uint32 mask ) {
    1.58 +  int n = 0;
    1.59 +  if( (mask & 0xffff) == 0 ) {
    1.60 +    mask >>= 16;
    1.61 +    n += 16;
    1.62 +  }
    1.63 +  if( (mask & 0xff) == 0 ) {
    1.64 +    mask >>= 8;
    1.65 +    n += 8;
    1.66 +  }
    1.67 +  if( (mask & 0xf) == 0 ) {
    1.68 +    mask >>= 4;
    1.69 +    n += 4;
    1.70 +  }
    1.71 +  if( (mask & 0x3) == 0 ) {
    1.72 +    mask >>= 2;
    1.73 +    n += 2;
    1.74 +  }
    1.75 +  if( (mask & 0x1) == 0 ) {
    1.76 +    mask >>= 1;
    1.77 +     n += 1;
    1.78 +  }
    1.79 +  if( mask == 0 ) {
    1.80 +    n = 32;
    1.81 +  }
    1.82 +  return n;
    1.83 +}
    1.84 +
    1.85 +// Find highest 1, or return 32 if empty
    1.86 +int find_hihghest_bit( uint32 mask ) {
    1.87 +  int n = 0;
    1.88 +  if( mask > 0xffff ) {
    1.89 +    mask >>= 16;
    1.90 +    n += 16;
    1.91 +  }
    1.92 +  if( mask > 0xff ) {
    1.93 +    mask >>= 8;
    1.94 +    n += 8;
    1.95 +  }
    1.96 +  if( mask > 0xf ) {
    1.97 +    mask >>= 4;
    1.98 +    n += 4;
    1.99 +  }
   1.100 +  if( mask > 0x3 ) {
   1.101 +    mask >>= 2;
   1.102 +    n += 2;
   1.103 +  }
   1.104 +  if( mask > 0x1 ) {
   1.105 +    mask >>= 1;
   1.106 +    n += 1;
   1.107 +  }
   1.108 +  if( mask == 0 ) {
   1.109 +    n = 32;
   1.110 +  }
   1.111 +  return n;
   1.112 +}
   1.113 +
   1.114 +//------------------------------dump-------------------------------------------
   1.115 +
   1.116 +#ifndef PRODUCT
   1.117 +void OptoReg::dump(int r, outputStream *st) {
   1.118 +  switch (r) {
   1.119 +  case Special: st->print("r---"); break;
   1.120 +  case Bad:     st->print("rBAD"); break;
   1.121 +  default:
   1.122 +    if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
   1.123 +    else st->print("rS%d",r);
   1.124 +    break;
   1.125 +  }
   1.126 +}
   1.127 +#endif
   1.128 +
   1.129 +
   1.130 +//=============================================================================
   1.131 +const RegMask RegMask::Empty(
   1.132 +# define BODY(I) 0,
   1.133 +  FORALL_BODY
   1.134 +# undef BODY
   1.135 +  0
   1.136 +);
   1.137 +
   1.138 +//=============================================================================
   1.139 +bool RegMask::is_vector(uint ireg) {
   1.140 +  return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
   1.141 +}
   1.142 +
   1.143 +int RegMask::num_registers(uint ireg) {
   1.144 +    switch(ireg) {
   1.145 +      case Op_VecY:
   1.146 +        return 8;
   1.147 +      case Op_VecX:
   1.148 +        return 4;
   1.149 +      case Op_VecD:
   1.150 +      case Op_RegD:
   1.151 +      case Op_RegL:
   1.152 +#ifdef _LP64
   1.153 +      case Op_RegP:
   1.154 +#endif
   1.155 +        return 2;
   1.156 +    }
   1.157 +    // Op_VecS and the rest ideal registers.
   1.158 +    return 1;
   1.159 +}
   1.160 +
   1.161 +//------------------------------find_first_pair--------------------------------
   1.162 +// Find the lowest-numbered register pair in the mask.  Return the
   1.163 +// HIGHEST register number in the pair, or BAD if no pairs.
   1.164 +OptoReg::Name RegMask::find_first_pair() const {
   1.165 +  verify_pairs();
   1.166 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.167 +    if( _A[i] ) {               // Found some bits
   1.168 +      int bit = _A[i] & -_A[i]; // Extract low bit
   1.169 +      // Convert to bit number, return hi bit in pair
   1.170 +      return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
   1.171 +    }
   1.172 +  }
   1.173 +  return OptoReg::Bad;
   1.174 +}
   1.175 +
   1.176 +//------------------------------ClearToPairs-----------------------------------
   1.177 +// Clear out partial bits; leave only bit pairs
   1.178 +void RegMask::clear_to_pairs() {
   1.179 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.180 +    int bits = _A[i];
   1.181 +    bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
   1.182 +    bits |= (bits>>1);          // Smear 1 hi-bit into a pair
   1.183 +    _A[i] = bits;
   1.184 +  }
   1.185 +  verify_pairs();
   1.186 +}
   1.187 +
   1.188 +//------------------------------SmearToPairs-----------------------------------
   1.189 +// Smear out partial bits; leave only bit pairs
   1.190 +void RegMask::smear_to_pairs() {
   1.191 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.192 +    int bits = _A[i];
   1.193 +    bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
   1.194 +    bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
   1.195 +    _A[i] = bits;
   1.196 +  }
   1.197 +  verify_pairs();
   1.198 +}
   1.199 +
   1.200 +//------------------------------is_aligned_pairs-------------------------------
   1.201 +bool RegMask::is_aligned_pairs() const {
   1.202 +  // Assert that the register mask contains only bit pairs.
   1.203 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.204 +    int bits = _A[i];
   1.205 +    while( bits ) {             // Check bits for pairing
   1.206 +      int bit = bits & -bits;   // Extract low bit
   1.207 +      // Low bit is not odd means its mis-aligned.
   1.208 +      if( (bit & 0x55555555) == 0 ) return false;
   1.209 +      bits -= bit;              // Remove bit from mask
   1.210 +      // Check for aligned adjacent bit
   1.211 +      if( (bits & (bit<<1)) == 0 ) return false;
   1.212 +      bits -= (bit<<1);         // Remove other halve of pair
   1.213 +    }
   1.214 +  }
   1.215 +  return true;
   1.216 +}
   1.217 +
   1.218 +//------------------------------is_bound1--------------------------------------
   1.219 +// Return TRUE if the mask contains a single bit
   1.220 +int RegMask::is_bound1() const {
   1.221 +  if( is_AllStack() ) return false;
   1.222 +  int bit = -1;                 // Set to hold the one bit allowed
   1.223 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.224 +    if( _A[i] ) {               // Found some bits
   1.225 +      if( bit != -1 ) return false; // Already had bits, so fail
   1.226 +      bit = _A[i] & -_A[i];     // Extract 1 bit from mask
   1.227 +      if( bit != _A[i] ) return false; // Found many bits, so fail
   1.228 +    }
   1.229 +  }
   1.230 +  // True for both the empty mask and for a single bit
   1.231 +  return true;
   1.232 +}
   1.233 +
   1.234 +//------------------------------is_bound2--------------------------------------
   1.235 +// Return TRUE if the mask contains an adjacent pair of bits and no other bits.
   1.236 +int RegMask::is_bound_pair() const {
   1.237 +  if( is_AllStack() ) return false;
   1.238 +
   1.239 +  int bit = -1;                 // Set to hold the one bit allowed
   1.240 +  for( int i = 0; i < RM_SIZE; i++ ) {
   1.241 +    if( _A[i] ) {               // Found some bits
   1.242 +      if( bit != -1 ) return false; // Already had bits, so fail
   1.243 +      bit = _A[i] & -(_A[i]);   // Extract 1 bit from mask
   1.244 +      if( (bit << 1) != 0 ) {   // Bit pair stays in same word?
   1.245 +        if( (bit | (bit<<1)) != _A[i] )
   1.246 +          return false;         // Require adjacent bit pair and no more bits
   1.247 +      } else {                  // Else its a split-pair case
   1.248 +        if( bit != _A[i] ) return false; // Found many bits, so fail
   1.249 +        i++;                    // Skip iteration forward
   1.250 +        if( i >= RM_SIZE || _A[i] != 1 )
   1.251 +          return false; // Require 1 lo bit in next word
   1.252 +      }
   1.253 +    }
   1.254 +  }
   1.255 +  // True for both the empty mask and for a bit pair
   1.256 +  return true;
   1.257 +}
   1.258 +
   1.259 +static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
   1.260 +//------------------------------find_first_set---------------------------------
   1.261 +// Find the lowest-numbered register set in the mask.  Return the
   1.262 +// HIGHEST register number in the set, or BAD if no sets.
   1.263 +// Works also for size 1.
   1.264 +OptoReg::Name RegMask::find_first_set(const int size) const {
   1.265 +  verify_sets(size);
   1.266 +  for (int i = 0; i < RM_SIZE; i++) {
   1.267 +    if (_A[i]) {                // Found some bits
   1.268 +      int bit = _A[i] & -_A[i]; // Extract low bit
   1.269 +      // Convert to bit number, return hi bit in pair
   1.270 +      return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
   1.271 +    }
   1.272 +  }
   1.273 +  return OptoReg::Bad;
   1.274 +}
   1.275 +
   1.276 +//------------------------------clear_to_sets----------------------------------
   1.277 +// Clear out partial bits; leave only aligned adjacent bit pairs
   1.278 +void RegMask::clear_to_sets(const int size) {
   1.279 +  if (size == 1) return;
   1.280 +  assert(2 <= size && size <= 8, "update low bits table");
   1.281 +  assert(is_power_of_2(size), "sanity");
   1.282 +  int low_bits_mask = low_bits[size>>2];
   1.283 +  for (int i = 0; i < RM_SIZE; i++) {
   1.284 +    int bits = _A[i];
   1.285 +    int sets = (bits & low_bits_mask);
   1.286 +    for (int j = 1; j < size; j++) {
   1.287 +      sets = (bits & (sets<<1)); // filter bits which produce whole sets
   1.288 +    }
   1.289 +    sets |= (sets>>1);           // Smear 1 hi-bit into a set
   1.290 +    if (size > 2) {
   1.291 +      sets |= (sets>>2);         // Smear 2 hi-bits into a set
   1.292 +      if (size > 4) {
   1.293 +        sets |= (sets>>4);       // Smear 4 hi-bits into a set
   1.294 +      }
   1.295 +    }
   1.296 +    _A[i] = sets;
   1.297 +  }
   1.298 +  verify_sets(size);
   1.299 +}
   1.300 +
   1.301 +//------------------------------smear_to_sets----------------------------------
   1.302 +// Smear out partial bits to aligned adjacent bit sets
   1.303 +void RegMask::smear_to_sets(const int size) {
   1.304 +  if (size == 1) return;
   1.305 +  assert(2 <= size && size <= 8, "update low bits table");
   1.306 +  assert(is_power_of_2(size), "sanity");
   1.307 +  int low_bits_mask = low_bits[size>>2];
   1.308 +  for (int i = 0; i < RM_SIZE; i++) {
   1.309 +    int bits = _A[i];
   1.310 +    int sets = 0;
   1.311 +    for (int j = 0; j < size; j++) {
   1.312 +      sets |= (bits & low_bits_mask);  // collect partial bits
   1.313 +      bits  = bits>>1;
   1.314 +    }
   1.315 +    sets |= (sets<<1);           // Smear 1 lo-bit  into a set
   1.316 +    if (size > 2) {
   1.317 +      sets |= (sets<<2);         // Smear 2 lo-bits into a set
   1.318 +      if (size > 4) {
   1.319 +        sets |= (sets<<4);       // Smear 4 lo-bits into a set
   1.320 +      }
   1.321 +    }
   1.322 +    _A[i] = sets;
   1.323 +  }
   1.324 +  verify_sets(size);
   1.325 +}
   1.326 +
   1.327 +//------------------------------is_aligned_set--------------------------------
   1.328 +bool RegMask::is_aligned_sets(const int size) const {
   1.329 +  if (size == 1) return true;
   1.330 +  assert(2 <= size && size <= 8, "update low bits table");
   1.331 +  assert(is_power_of_2(size), "sanity");
   1.332 +  int low_bits_mask = low_bits[size>>2];
   1.333 +  // Assert that the register mask contains only bit sets.
   1.334 +  for (int i = 0; i < RM_SIZE; i++) {
   1.335 +    int bits = _A[i];
   1.336 +    while (bits) {              // Check bits for pairing
   1.337 +      int bit = bits & -bits;   // Extract low bit
   1.338 +      // Low bit is not odd means its mis-aligned.
   1.339 +      if ((bit & low_bits_mask) == 0) return false;
   1.340 +      // Do extra work since (bit << size) may overflow.
   1.341 +      int hi_bit = bit << (size-1); // high bit
   1.342 +      int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   1.343 +      // Check for aligned adjacent bits in this set
   1.344 +      if ((bits & set) != set) return false;
   1.345 +      bits -= set;  // Remove this set
   1.346 +    }
   1.347 +  }
   1.348 +  return true;
   1.349 +}
   1.350 +
   1.351 +//------------------------------is_bound_set-----------------------------------
   1.352 +// Return TRUE if the mask contains one adjacent set of bits and no other bits.
   1.353 +// Works also for size 1.
   1.354 +int RegMask::is_bound_set(const int size) const {
   1.355 +  if( is_AllStack() ) return false;
   1.356 +  assert(1 <= size && size <= 8, "update low bits table");
   1.357 +  int bit = -1;                 // Set to hold the one bit allowed
   1.358 +  for (int i = 0; i < RM_SIZE; i++) {
   1.359 +    if (_A[i] ) {               // Found some bits
   1.360 +      if (bit != -1)
   1.361 +       return false;            // Already had bits, so fail
   1.362 +      bit = _A[i] & -_A[i];     // Extract low bit from mask
   1.363 +      int hi_bit = bit << (size-1); // high bit
   1.364 +      if (hi_bit != 0) {        // Bit set stays in same word?
   1.365 +        int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   1.366 +        if (set != _A[i])
   1.367 +          return false;         // Require adjacent bit set and no more bits
   1.368 +      } else {                  // Else its a split-set case
   1.369 +        if (((-1) & ~(bit-1)) != _A[i])
   1.370 +          return false;         // Found many bits, so fail
   1.371 +        i++;                    // Skip iteration forward and check high part
   1.372 +        // The lower 24 bits should be 0 since it is split case and size <= 8.
   1.373 +        int set = bit>>24;
   1.374 +        set = set & -set; // Remove sign extension.
   1.375 +        set = (((set << size) - 1) >> 8);
   1.376 +        if (i >= RM_SIZE || _A[i] != set)
   1.377 +          return false; // Require expected low bits in next word
   1.378 +      }
   1.379 +    }
   1.380 +  }
   1.381 +  // True for both the empty mask and for a bit set
   1.382 +  return true;
   1.383 +}
   1.384 +
   1.385 +//------------------------------is_UP------------------------------------------
   1.386 +// UP means register only, Register plus stack, or stack only is DOWN
   1.387 +bool RegMask::is_UP() const {
   1.388 +  // Quick common case check for DOWN (any stack slot is legal)
   1.389 +  if( is_AllStack() )
   1.390 +    return false;
   1.391 +  // Slower check for any stack bits set (also DOWN)
   1.392 +  if( overlap(Matcher::STACK_ONLY_mask) )
   1.393 +    return false;
   1.394 +  // Not DOWN, so must be UP
   1.395 +  return true;
   1.396 +}
   1.397 +
   1.398 +//------------------------------Size-------------------------------------------
   1.399 +// Compute size of register mask in bits
   1.400 +uint RegMask::Size() const {
   1.401 +  extern uint8 bitsInByte[256];
   1.402 +  uint sum = 0;
   1.403 +  for( int i = 0; i < RM_SIZE; i++ )
   1.404 +    sum +=
   1.405 +      bitsInByte[(_A[i]>>24) & 0xff] +
   1.406 +      bitsInByte[(_A[i]>>16) & 0xff] +
   1.407 +      bitsInByte[(_A[i]>> 8) & 0xff] +
   1.408 +      bitsInByte[ _A[i]      & 0xff];
   1.409 +  return sum;
   1.410 +}
   1.411 +
   1.412 +#ifndef PRODUCT
   1.413 +//------------------------------print------------------------------------------
   1.414 +void RegMask::dump(outputStream *st) const {
   1.415 +  st->print("[");
   1.416 +  RegMask rm = *this;           // Structure copy into local temp
   1.417 +
   1.418 +  OptoReg::Name start = rm.find_first_elem(); // Get a register
   1.419 +  if (OptoReg::is_valid(start)) { // Check for empty mask
   1.420 +    rm.Remove(start);           // Yank from mask
   1.421 +    OptoReg::dump(start, st);   // Print register
   1.422 +    OptoReg::Name last = start;
   1.423 +
   1.424 +    // Now I have printed an initial register.
   1.425 +    // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
   1.426 +    // Begin looping over the remaining registers.
   1.427 +    while (1) {                 //
   1.428 +      OptoReg::Name reg = rm.find_first_elem(); // Get a register
   1.429 +      if (!OptoReg::is_valid(reg))
   1.430 +        break;                  // Empty mask, end loop
   1.431 +      rm.Remove(reg);           // Yank from mask
   1.432 +
   1.433 +      if (last+1 == reg) {      // See if they are adjacent
   1.434 +        // Adjacent registers just collect into long runs, no printing.
   1.435 +        last = reg;
   1.436 +      } else {                  // Ending some kind of run
   1.437 +        if (start == last) {    // 1-register run; no special printing
   1.438 +        } else if (start+1 == last) {
   1.439 +          st->print(",");       // 2-register run; print as "rX,rY"
   1.440 +          OptoReg::dump(last, st);
   1.441 +        } else {                // Multi-register run; print as "rX-rZ"
   1.442 +          st->print("-");
   1.443 +          OptoReg::dump(last, st);
   1.444 +        }
   1.445 +        st->print(",");         // Seperate start of new run
   1.446 +        start = last = reg;     // Start a new register run
   1.447 +        OptoReg::dump(start, st); // Print register
   1.448 +      } // End of if ending a register run or not
   1.449 +    } // End of while regmask not empty
   1.450 +
   1.451 +    if (start == last) {        // 1-register run; no special printing
   1.452 +    } else if (start+1 == last) {
   1.453 +      st->print(",");           // 2-register run; print as "rX,rY"
   1.454 +      OptoReg::dump(last, st);
   1.455 +    } else {                    // Multi-register run; print as "rX-rZ"
   1.456 +      st->print("-");
   1.457 +      OptoReg::dump(last, st);
   1.458 +    }
   1.459 +    if (rm.is_AllStack()) st->print("...");
   1.460 +  }
   1.461 +  st->print("]");
   1.462 +}
   1.463 +#endif

mercurial