src/share/vm/opto/optoreg.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/optoreg.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,200 @@
     1.4 +/*
     1.5 + * Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_OPTO_OPTOREG_HPP
    1.29 +#define SHARE_VM_OPTO_OPTOREG_HPP
    1.30 +
    1.31 +//------------------------------OptoReg----------------------------------------
    1.32 +// We eventually need Registers for the Real World.  Registers are essentially
    1.33 +// non-SSA names.  A Register is represented as a number.  Non-regular values
    1.34 +// (e.g., Control, Memory, I/O) use the Special register.  The actual machine
    1.35 +// registers (as described in the ADL file for a machine) start at zero.
    1.36 +// Stack-slots (spill locations) start at the nest Chunk past the last machine
    1.37 +// register.
    1.38 +//
    1.39 +// Note that stack spill-slots are treated as a very large register set.
    1.40 +// They have all the correct properties for a Register: not aliased (unique
    1.41 +// named).  There is some simple mapping from a stack-slot register number
    1.42 +// to the actual location on the stack; this mapping depends on the calling
    1.43 +// conventions and is described in the ADL.
    1.44 +//
    1.45 +// Note that Name is not enum. C++ standard defines that the range of enum
    1.46 +// is the range of smallest bit-field that can represent all enumerators
    1.47 +// declared in the enum. The result of assigning a value to enum is undefined
    1.48 +// if the value is outside the enumeration's valid range. OptoReg::Name is
    1.49 +// typedef'ed as int, because it needs to be able to represent spill-slots.
    1.50 +//
    1.51 +class OptoReg VALUE_OBJ_CLASS_SPEC {
    1.52 +
    1.53 + friend class C2Compiler;
    1.54 + public:
    1.55 +  typedef int Name;
    1.56 +  enum {
    1.57 +    // Chunk 0
    1.58 +    Physical = AdlcVMDeps::Physical, // Start of physical regs
    1.59 +    // A few oddballs at the edge of the world
    1.60 +    Special = -2,               // All special (not allocated) values
    1.61 +    Bad = -1                    // Not a register
    1.62 +  };
    1.63 +
    1.64 + private:
    1.65 +
    1.66 + static const VMReg opto2vm[REG_COUNT];
    1.67 + static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
    1.68 +
    1.69 + public:
    1.70 +
    1.71 +  // Stack pointer register
    1.72 +  static OptoReg::Name c_frame_pointer;
    1.73 +
    1.74 +
    1.75 +
    1.76 +  // Increment a register number.  As in:
    1.77 +  //    "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
    1.78 +  static Name add( Name x, int y ) { return Name(x+y); }
    1.79 +
    1.80 +  // (We would like to have an operator+ for RegName, but it is not
    1.81 +  // a class, so this would be illegal in C++.)
    1.82 +
    1.83 +  static void dump(int, outputStream *st = tty);
    1.84 +
    1.85 +  // Get the stack slot number of an OptoReg::Name
    1.86 +  static unsigned int reg2stack( OptoReg::Name r) {
    1.87 +    assert( r >= stack0(), " must be");
    1.88 +    return r - stack0();
    1.89 +  }
    1.90 +
    1.91 +  // convert a stack slot number into an OptoReg::Name
    1.92 +  static OptoReg::Name stack2reg( int idx) {
    1.93 +    return Name(stack0() + idx);
    1.94 +  }
    1.95 +
    1.96 +  static bool is_stack(Name n) {
    1.97 +    return n >= stack0();
    1.98 +  }
    1.99 +
   1.100 +  static bool is_valid(Name n) {
   1.101 +    return (n != Bad);
   1.102 +  }
   1.103 +
   1.104 +  static bool is_reg(Name n) {
   1.105 +    return  is_valid(n) && !is_stack(n);
   1.106 +  }
   1.107 +
   1.108 +  static VMReg as_VMReg(OptoReg::Name n) {
   1.109 +    if (is_reg(n)) {
   1.110 +      // Must use table, it'd be nice if Bad was indexable...
   1.111 +      return opto2vm[n];
   1.112 +    } else {
   1.113 +      assert(!is_stack(n), "must un warp");
   1.114 +      return VMRegImpl::Bad();
   1.115 +    }
   1.116 +  }
   1.117 +
   1.118 +  // Can un-warp a stack slot or convert a register or Bad
   1.119 +  static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
   1.120 +    if (is_reg(n)) {
   1.121 +      // Must use table, it'd be nice if Bad was indexable...
   1.122 +      return opto2vm[n];
   1.123 +    } else if (is_stack(n)) {
   1.124 +      int stack_slot = reg2stack(n);
   1.125 +      if (stack_slot < arg_count) {
   1.126 +        return VMRegImpl::stack2reg(stack_slot + frame_size);
   1.127 +      }
   1.128 +      return VMRegImpl::stack2reg(stack_slot - arg_count);
   1.129 +      // return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
   1.130 +    } else {
   1.131 +      return VMRegImpl::Bad();
   1.132 +    }
   1.133 +  }
   1.134 +
   1.135 +  static OptoReg::Name as_OptoReg(VMReg r) {
   1.136 +    if (r->is_stack()) {
   1.137 +      assert(false, "must warp");
   1.138 +      return stack2reg(r->reg2stack());
   1.139 +    } else if (r->is_valid()) {
   1.140 +      // Must use table, it'd be nice if Bad was indexable...
   1.141 +      return vm2opto[r->value()];
   1.142 +    } else {
   1.143 +      return Bad;
   1.144 +    }
   1.145 +  }
   1.146 +
   1.147 +  static OptoReg::Name stack0() {
   1.148 +    return VMRegImpl::stack0->value();
   1.149 +  }
   1.150 +
   1.151 +  static const char* regname(OptoReg::Name n) {
   1.152 +    return as_VMReg(n)->name();
   1.153 +  }
   1.154 +
   1.155 +};
   1.156 +
   1.157 +//---------------------------OptoRegPair-------------------------------------------
   1.158 +// Pairs of 32-bit registers for the allocator.
   1.159 +// This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
   1.160 +// via the calling convention code which is shared between the compilers.
   1.161 +// Since C2 uses OptoRegs for register allocation it is more efficient to use
   1.162 +// VMRegPair internally for nodes that can contain a pair of OptoRegs rather
   1.163 +// than use VMRegPair and continually be converting back and forth. So normally
   1.164 +// C2 will take in a VMRegPair from the calling convention code and immediately
   1.165 +// convert them to an OptoRegPair and stay in the OptoReg world. The only over
   1.166 +// conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
   1.167 +// is not a high bandwidth spot and so it is not an issue.
   1.168 +// Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
   1.169 +// is that there are "physical" OptoRegs that are not representable in the VMReg
   1.170 +// world, notably flags. [ But by design there is "space" in the VMReg world
   1.171 +// for such registers they just may not be concrete ]. So if we were to use VMRegPair
   1.172 +// then the VMReg world would have to have a representation for these registers
   1.173 +// so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
   1.174 +// stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
   1.175 +// and converting that will return OptoReg::Bad losing the identity of the OptoReg.
   1.176 +
   1.177 +class OptoRegPair {
   1.178 +  friend class VMStructs;
   1.179 +private:
   1.180 +  short _second;
   1.181 +  short _first;
   1.182 +public:
   1.183 +  void set_bad (                   ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
   1.184 +  void set1    ( OptoReg::Name n  ) { _second = OptoReg::Bad; _first = n; }
   1.185 +  void set2    ( OptoReg::Name n  ) { _second = n + 1;       _first = n; }
   1.186 +  void set_pair( OptoReg::Name second, OptoReg::Name first    ) { _second= second;    _first= first; }
   1.187 +  void set_ptr ( OptoReg::Name ptr ) {
   1.188 +#ifdef _LP64
   1.189 +    _second = ptr+1;
   1.190 +#else
   1.191 +    _second = OptoReg::Bad;
   1.192 +#endif
   1.193 +    _first = ptr;
   1.194 +  }
   1.195 +
   1.196 +  OptoReg::Name second() const { return _second; }
   1.197 +  OptoReg::Name first() const { return _first; }
   1.198 +  OptoRegPair(OptoReg::Name second, OptoReg::Name first) {  _second = second; _first = first; }
   1.199 +  OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
   1.200 +  OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
   1.201 +};
   1.202 +
   1.203 +#endif // SHARE_VM_OPTO_OPTOREG_HPP

mercurial