src/share/vm/oops/oop.inline.hpp

changeset 0
f90c822e73f8
child 1
2d8a650513c2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/oops/oop.inline.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,747 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
    1.29 +#define SHARE_VM_OOPS_OOP_INLINE_HPP
    1.30 +
    1.31 +#include "gc_implementation/shared/ageTable.hpp"
    1.32 +#include "gc_implementation/shared/markSweep.inline.hpp"
    1.33 +#include "gc_interface/collectedHeap.inline.hpp"
    1.34 +#include "memory/barrierSet.inline.hpp"
    1.35 +#include "memory/cardTableModRefBS.hpp"
    1.36 +#include "memory/genCollectedHeap.hpp"
    1.37 +#include "memory/generation.hpp"
    1.38 +#include "memory/specialized_oop_closures.hpp"
    1.39 +#include "oops/arrayKlass.hpp"
    1.40 +#include "oops/arrayOop.hpp"
    1.41 +#include "oops/klass.inline.hpp"
    1.42 +#include "oops/markOop.inline.hpp"
    1.43 +#include "oops/oop.hpp"
    1.44 +#include "runtime/atomic.hpp"
    1.45 +#include "runtime/os.hpp"
    1.46 +#include "utilities/macros.hpp"
    1.47 +#ifdef TARGET_ARCH_x86
    1.48 +# include "bytes_x86.hpp"
    1.49 +#endif
    1.50 +#ifdef TARGET_ARCH_sparc
    1.51 +# include "bytes_sparc.hpp"
    1.52 +#endif
    1.53 +#ifdef TARGET_ARCH_zero
    1.54 +# include "bytes_zero.hpp"
    1.55 +#endif
    1.56 +#ifdef TARGET_ARCH_arm
    1.57 +# include "bytes_arm.hpp"
    1.58 +#endif
    1.59 +#ifdef TARGET_ARCH_ppc
    1.60 +# include "bytes_ppc.hpp"
    1.61 +#endif
    1.62 +
    1.63 +// Implementation of all inlined member functions defined in oop.hpp
    1.64 +// We need a separate file to avoid circular references
    1.65 +
    1.66 +inline void oopDesc::release_set_mark(markOop m) {
    1.67 +  OrderAccess::release_store_ptr(&_mark, m);
    1.68 +}
    1.69 +
    1.70 +inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
    1.71 +  return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
    1.72 +}
    1.73 +
    1.74 +inline Klass* oopDesc::klass() const {
    1.75 +  if (UseCompressedClassPointers) {
    1.76 +    return Klass::decode_klass_not_null(_metadata._compressed_klass);
    1.77 +  } else {
    1.78 +    return _metadata._klass;
    1.79 +  }
    1.80 +}
    1.81 +
    1.82 +inline Klass* oopDesc::klass_or_null() const volatile {
    1.83 +  // can be NULL in CMS
    1.84 +  if (UseCompressedClassPointers) {
    1.85 +    return Klass::decode_klass(_metadata._compressed_klass);
    1.86 +  } else {
    1.87 +    return _metadata._klass;
    1.88 +  }
    1.89 +}
    1.90 +
    1.91 +inline int oopDesc::klass_gap_offset_in_bytes() {
    1.92 +  assert(UseCompressedClassPointers, "only applicable to compressed klass pointers");
    1.93 +  return oopDesc::klass_offset_in_bytes() + sizeof(narrowKlass);
    1.94 +}
    1.95 +
    1.96 +inline Klass** oopDesc::klass_addr() {
    1.97 +  // Only used internally and with CMS and will not work with
    1.98 +  // UseCompressedOops
    1.99 +  assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
   1.100 +  return (Klass**) &_metadata._klass;
   1.101 +}
   1.102 +
   1.103 +inline narrowKlass* oopDesc::compressed_klass_addr() {
   1.104 +  assert(UseCompressedClassPointers, "only called by compressed klass pointers");
   1.105 +  return &_metadata._compressed_klass;
   1.106 +}
   1.107 +
   1.108 +inline void oopDesc::set_klass(Klass* k) {
   1.109 +  // since klasses are promoted no store check is needed
   1.110 +  assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
   1.111 +  assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
   1.112 +  if (UseCompressedClassPointers) {
   1.113 +    *compressed_klass_addr() = Klass::encode_klass_not_null(k);
   1.114 +  } else {
   1.115 +    *klass_addr() = k;
   1.116 +  }
   1.117 +}
   1.118 +
   1.119 +inline int oopDesc::klass_gap() const {
   1.120 +  return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
   1.121 +}
   1.122 +
   1.123 +inline void oopDesc::set_klass_gap(int v) {
   1.124 +  if (UseCompressedClassPointers) {
   1.125 +    *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
   1.126 +  }
   1.127 +}
   1.128 +
   1.129 +inline void oopDesc::set_klass_to_list_ptr(oop k) {
   1.130 +  // This is only to be used during GC, for from-space objects, so no
   1.131 +  // barrier is needed.
   1.132 +  if (UseCompressedClassPointers) {
   1.133 +    _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
   1.134 +  } else {
   1.135 +    _metadata._klass = (Klass*)(address)k;
   1.136 +  }
   1.137 +}
   1.138 +
   1.139 +inline oop oopDesc::list_ptr_from_klass() {
   1.140 +  // This is only to be used during GC, for from-space objects.
   1.141 +  if (UseCompressedClassPointers) {
   1.142 +    return decode_heap_oop((narrowOop)_metadata._compressed_klass);
   1.143 +  } else {
   1.144 +    // Special case for GC
   1.145 +    return (oop)(address)_metadata._klass;
   1.146 +  }
   1.147 +}
   1.148 +
   1.149 +inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
   1.150 +
   1.151 +inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
   1.152 +
   1.153 +inline bool oopDesc::is_instance()           const { return klass()->oop_is_instance(); }
   1.154 +inline bool oopDesc::is_instanceMirror()     const { return klass()->oop_is_instanceMirror(); }
   1.155 +inline bool oopDesc::is_instanceRef()        const { return klass()->oop_is_instanceRef(); }
   1.156 +inline bool oopDesc::is_array()              const { return klass()->oop_is_array(); }
   1.157 +inline bool oopDesc::is_objArray()           const { return klass()->oop_is_objArray(); }
   1.158 +inline bool oopDesc::is_typeArray()          const { return klass()->oop_is_typeArray(); }
   1.159 +
   1.160 +inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
   1.161 +
   1.162 +template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
   1.163 +inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
   1.164 +inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
   1.165 +inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
   1.166 +inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
   1.167 +inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
   1.168 +inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
   1.169 +inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
   1.170 +inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
   1.171 +inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
   1.172 +inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
   1.173 +
   1.174 +
   1.175 +// Functions for getting and setting oops within instance objects.
   1.176 +// If the oops are compressed, the type passed to these overloaded functions
   1.177 +// is narrowOop.  All functions are overloaded so they can be called by
   1.178 +// template functions without conditionals (the compiler instantiates via
   1.179 +// the right type and inlines the appopriate code).
   1.180 +
   1.181 +inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
   1.182 +inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
   1.183 +
   1.184 +// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
   1.185 +// offset from the heap base.  Saving the check for null can save instructions
   1.186 +// in inner GC loops so these are separated.
   1.187 +
   1.188 +inline bool check_obj_alignment(oop obj) {
   1.189 +  return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
   1.190 +}
   1.191 +
   1.192 +inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
   1.193 +  assert(!is_null(v), "oop value can never be zero");
   1.194 +  assert(check_obj_alignment(v), "Address not aligned");
   1.195 +  assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
   1.196 +  address base = Universe::narrow_oop_base();
   1.197 +  int    shift = Universe::narrow_oop_shift();
   1.198 +  uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
   1.199 +  assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
   1.200 +  uint64_t result = pd >> shift;
   1.201 +  assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
   1.202 +  assert(decode_heap_oop(result) == v, "reversibility");
   1.203 +  return (narrowOop)result;
   1.204 +}
   1.205 +
   1.206 +inline narrowOop oopDesc::encode_heap_oop(oop v) {
   1.207 +  return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
   1.208 +}
   1.209 +
   1.210 +inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
   1.211 +  assert(!is_null(v), "narrow oop value can never be zero");
   1.212 +  address base = Universe::narrow_oop_base();
   1.213 +  int    shift = Universe::narrow_oop_shift();
   1.214 +  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
   1.215 +  assert(check_obj_alignment(result), err_msg("address not aligned: " INTPTR_FORMAT, p2i((void*) result)));
   1.216 +  return result;
   1.217 +}
   1.218 +
   1.219 +inline oop oopDesc::decode_heap_oop(narrowOop v) {
   1.220 +  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
   1.221 +}
   1.222 +
   1.223 +inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
   1.224 +inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
   1.225 +
   1.226 +// Load an oop out of the Java heap as is without decoding.
   1.227 +// Called by GC to check for null before decoding.
   1.228 +inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
   1.229 +inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
   1.230 +
   1.231 +// Load and decode an oop out of the Java heap into a wide oop.
   1.232 +inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
   1.233 +inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
   1.234 +  return decode_heap_oop_not_null(*p);
   1.235 +}
   1.236 +
   1.237 +// Load and decode an oop out of the heap accepting null
   1.238 +inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
   1.239 +inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
   1.240 +  return decode_heap_oop(*p);
   1.241 +}
   1.242 +
   1.243 +// Store already encoded heap oop into the heap.
   1.244 +inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
   1.245 +inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
   1.246 +
   1.247 +// Encode and store a heap oop.
   1.248 +inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
   1.249 +  *p = encode_heap_oop_not_null(v);
   1.250 +}
   1.251 +inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
   1.252 +
   1.253 +// Encode and store a heap oop allowing for null.
   1.254 +inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
   1.255 +  *p = encode_heap_oop(v);
   1.256 +}
   1.257 +inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
   1.258 +
   1.259 +// Store heap oop as is for volatile fields.
   1.260 +inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
   1.261 +  OrderAccess::release_store_ptr(p, v);
   1.262 +}
   1.263 +inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
   1.264 +                                            narrowOop v) {
   1.265 +  OrderAccess::release_store(p, v);
   1.266 +}
   1.267 +
   1.268 +inline void oopDesc::release_encode_store_heap_oop_not_null(
   1.269 +                                                volatile narrowOop* p, oop v) {
   1.270 +  // heap oop is not pointer sized.
   1.271 +  OrderAccess::release_store(p, encode_heap_oop_not_null(v));
   1.272 +}
   1.273 +
   1.274 +inline void oopDesc::release_encode_store_heap_oop_not_null(
   1.275 +                                                      volatile oop* p, oop v) {
   1.276 +  OrderAccess::release_store_ptr(p, v);
   1.277 +}
   1.278 +
   1.279 +inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
   1.280 +                                                           oop v) {
   1.281 +  OrderAccess::release_store_ptr(p, v);
   1.282 +}
   1.283 +inline void oopDesc::release_encode_store_heap_oop(
   1.284 +                                                volatile narrowOop* p, oop v) {
   1.285 +  OrderAccess::release_store(p, encode_heap_oop(v));
   1.286 +}
   1.287 +
   1.288 +
   1.289 +// These functions are only used to exchange oop fields in instances,
   1.290 +// not headers.
   1.291 +inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
   1.292 +  if (UseCompressedOops) {
   1.293 +    // encode exchange value from oop to T
   1.294 +    narrowOop val = encode_heap_oop(exchange_value);
   1.295 +    narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
   1.296 +    // decode old from T to oop
   1.297 +    return decode_heap_oop(old);
   1.298 +  } else {
   1.299 +    return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
   1.300 +  }
   1.301 +}
   1.302 +
   1.303 +// In order to put or get a field out of an instance, must first check
   1.304 +// if the field has been compressed and uncompress it.
   1.305 +inline oop oopDesc::obj_field(int offset) const {
   1.306 +  return UseCompressedOops ?
   1.307 +    load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
   1.308 +    load_decode_heap_oop(obj_field_addr<oop>(offset));
   1.309 +}
   1.310 +inline volatile oop oopDesc::obj_field_volatile(int offset) const {
   1.311 +  volatile oop value = obj_field(offset);
   1.312 +  OrderAccess::acquire();
   1.313 +  return value;
   1.314 +}
   1.315 +inline void oopDesc::obj_field_put(int offset, oop value) {
   1.316 +  UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
   1.317 +                      oop_store(obj_field_addr<oop>(offset),       value);
   1.318 +}
   1.319 +
   1.320 +inline Metadata* oopDesc::metadata_field(int offset) const {
   1.321 +  return *metadata_field_addr(offset);
   1.322 +}
   1.323 +
   1.324 +inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
   1.325 +  *metadata_field_addr(offset) = value;
   1.326 +}
   1.327 +
   1.328 +inline void oopDesc::obj_field_put_raw(int offset, oop value) {
   1.329 +  UseCompressedOops ?
   1.330 +    encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
   1.331 +    encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
   1.332 +}
   1.333 +inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
   1.334 +  OrderAccess::release();
   1.335 +  obj_field_put(offset, value);
   1.336 +  OrderAccess::fence();
   1.337 +}
   1.338 +
   1.339 +inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
   1.340 +inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
   1.341 +
   1.342 +inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
   1.343 +inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
   1.344 +
   1.345 +inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
   1.346 +inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
   1.347 +
   1.348 +inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
   1.349 +inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
   1.350 +
   1.351 +inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
   1.352 +inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
   1.353 +
   1.354 +inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
   1.355 +inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
   1.356 +
   1.357 +inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
   1.358 +inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
   1.359 +
   1.360 +inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
   1.361 +inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
   1.362 +
   1.363 +inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
   1.364 +inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
   1.365 +
   1.366 +inline oop oopDesc::obj_field_acquire(int offset) const {
   1.367 +  return UseCompressedOops ?
   1.368 +             decode_heap_oop((narrowOop)
   1.369 +               OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
   1.370 +           : decode_heap_oop((oop)
   1.371 +               OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
   1.372 +}
   1.373 +inline void oopDesc::release_obj_field_put(int offset, oop value) {
   1.374 +  UseCompressedOops ?
   1.375 +    oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
   1.376 +    oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
   1.377 +}
   1.378 +
   1.379 +inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
   1.380 +inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
   1.381 +
   1.382 +inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
   1.383 +inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
   1.384 +
   1.385 +inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
   1.386 +inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
   1.387 +
   1.388 +inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
   1.389 +inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
   1.390 +
   1.391 +inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
   1.392 +inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
   1.393 +
   1.394 +inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
   1.395 +inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
   1.396 +
   1.397 +inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
   1.398 +inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
   1.399 +
   1.400 +inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
   1.401 +inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
   1.402 +
   1.403 +inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
   1.404 +inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
   1.405 +
   1.406 +inline int oopDesc::size_given_klass(Klass* klass)  {
   1.407 +  int lh = klass->layout_helper();
   1.408 +  int s;
   1.409 +
   1.410 +  // lh is now a value computed at class initialization that may hint
   1.411 +  // at the size.  For instances, this is positive and equal to the
   1.412 +  // size.  For arrays, this is negative and provides log2 of the
   1.413 +  // array element size.  For other oops, it is zero and thus requires
   1.414 +  // a virtual call.
   1.415 +  //
   1.416 +  // We go to all this trouble because the size computation is at the
   1.417 +  // heart of phase 2 of mark-compaction, and called for every object,
   1.418 +  // alive or dead.  So the speed here is equal in importance to the
   1.419 +  // speed of allocation.
   1.420 +
   1.421 +  if (lh > Klass::_lh_neutral_value) {
   1.422 +    if (!Klass::layout_helper_needs_slow_path(lh)) {
   1.423 +      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
   1.424 +    } else {
   1.425 +      s = klass->oop_size(this);
   1.426 +    }
   1.427 +  } else if (lh <= Klass::_lh_neutral_value) {
   1.428 +    // The most common case is instances; fall through if so.
   1.429 +    if (lh < Klass::_lh_neutral_value) {
   1.430 +      // Second most common case is arrays.  We have to fetch the
   1.431 +      // length of the array, shift (multiply) it appropriately,
   1.432 +      // up to wordSize, add the header, and align to object size.
   1.433 +      size_t size_in_bytes;
   1.434 +#ifdef _M_IA64
   1.435 +      // The Windows Itanium Aug 2002 SDK hoists this load above
   1.436 +      // the check for s < 0.  An oop at the end of the heap will
   1.437 +      // cause an access violation if this load is performed on a non
   1.438 +      // array oop.  Making the reference volatile prohibits this.
   1.439 +      // (%%% please explain by what magic the length is actually fetched!)
   1.440 +      volatile int *array_length;
   1.441 +      array_length = (volatile int *)( (intptr_t)this +
   1.442 +                          arrayOopDesc::length_offset_in_bytes() );
   1.443 +      assert(array_length > 0, "Integer arithmetic problem somewhere");
   1.444 +      // Put into size_t to avoid overflow.
   1.445 +      size_in_bytes = (size_t) array_length;
   1.446 +      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
   1.447 +#else
   1.448 +      size_t array_length = (size_t) ((arrayOop)this)->length();
   1.449 +      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
   1.450 +#endif
   1.451 +      size_in_bytes += Klass::layout_helper_header_size(lh);
   1.452 +
   1.453 +      // This code could be simplified, but by keeping array_header_in_bytes
   1.454 +      // in units of bytes and doing it this way we can round up just once,
   1.455 +      // skipping the intermediate round to HeapWordSize.  Cast the result
   1.456 +      // of round_to to size_t to guarantee unsigned division == right shift.
   1.457 +      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
   1.458 +        HeapWordSize);
   1.459 +
   1.460 +      // UseParNewGC, UseParallelGC and UseG1GC can change the length field
   1.461 +      // of an "old copy" of an object array in the young gen so it indicates
   1.462 +      // the grey portion of an already copied array. This will cause the first
   1.463 +      // disjunct below to fail if the two comparands are computed across such
   1.464 +      // a concurrent change.
   1.465 +      // UseParNewGC also runs with promotion labs (which look like int
   1.466 +      // filler arrays) which are subject to changing their declared size
   1.467 +      // when finally retiring a PLAB; this also can cause the first disjunct
   1.468 +      // to fail for another worker thread that is concurrently walking the block
   1.469 +      // offset table. Both these invariant failures are benign for their
   1.470 +      // current uses; we relax the assertion checking to cover these two cases below:
   1.471 +      //     is_objArray() && is_forwarded()   // covers first scenario above
   1.472 +      //  || is_typeArray()                    // covers second scenario above
   1.473 +      // If and when UseParallelGC uses the same obj array oop stealing/chunking
   1.474 +      // technique, we will need to suitably modify the assertion.
   1.475 +      assert((s == klass->oop_size(this)) ||
   1.476 +             (Universe::heap()->is_gc_active() &&
   1.477 +              ((is_typeArray() && UseParNewGC) ||
   1.478 +               (is_objArray()  && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))),
   1.479 +             "wrong array object size");
   1.480 +    } else {
   1.481 +      // Must be zero, so bite the bullet and take the virtual call.
   1.482 +      s = klass->oop_size(this);
   1.483 +    }
   1.484 +  }
   1.485 +
   1.486 +  assert(s % MinObjAlignment == 0, "alignment check");
   1.487 +  assert(s > 0, "Bad size calculated");
   1.488 +  return s;
   1.489 +}
   1.490 +
   1.491 +
   1.492 +inline int oopDesc::size()  {
   1.493 +  return size_given_klass(klass());
   1.494 +}
   1.495 +
   1.496 +inline void update_barrier_set(void* p, oop v, bool release = false) {
   1.497 +  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
   1.498 +  oopDesc::bs()->write_ref_field(p, v, release);
   1.499 +}
   1.500 +
   1.501 +template <class T> inline void update_barrier_set_pre(T* p, oop v) {
   1.502 +  oopDesc::bs()->write_ref_field_pre(p, v);
   1.503 +}
   1.504 +
   1.505 +template <class T> inline void oop_store(T* p, oop v) {
   1.506 +  if (always_do_update_barrier) {
   1.507 +    oop_store((volatile T*)p, v);
   1.508 +  } else {
   1.509 +    update_barrier_set_pre(p, v);
   1.510 +    oopDesc::encode_store_heap_oop(p, v);
   1.511 +    // always_do_update_barrier == false =>
   1.512 +    // Either we are at a safepoint (in GC) or CMS is not used. In both
   1.513 +    // cases it's unnecessary to mark the card as dirty with release sematics.
   1.514 +    update_barrier_set((void*)p, v, false /* release */);  // cast away type
   1.515 +  }
   1.516 +}
   1.517 +
   1.518 +template <class T> inline void oop_store(volatile T* p, oop v) {
   1.519 +  update_barrier_set_pre((T*)p, v);   // cast away volatile
   1.520 +  // Used by release_obj_field_put, so use release_store_ptr.
   1.521 +  oopDesc::release_encode_store_heap_oop(p, v);
   1.522 +  // When using CMS we must mark the card corresponding to p as dirty
   1.523 +  // with release sematics to prevent that CMS sees the dirty card but
   1.524 +  // not the new value v at p due to reordering of the two
   1.525 +  // stores. Note that CMS has a concurrent precleaning phase, where
   1.526 +  // it reads the card table while the Java threads are running.
   1.527 +  update_barrier_set((void*)p, v, true /* release */);    // cast away type
   1.528 +}
   1.529 +
   1.530 +// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
   1.531 +// (without having to remember the function name this calls).
   1.532 +inline void oop_store_raw(HeapWord* addr, oop value) {
   1.533 +  if (UseCompressedOops) {
   1.534 +    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
   1.535 +  } else {
   1.536 +    oopDesc::encode_store_heap_oop((oop*)addr, value);
   1.537 +  }
   1.538 +}
   1.539 +
   1.540 +inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
   1.541 +                                                volatile HeapWord *dest,
   1.542 +                                                oop compare_value,
   1.543 +                                                bool prebarrier) {
   1.544 +  if (UseCompressedOops) {
   1.545 +    if (prebarrier) {
   1.546 +      update_barrier_set_pre((narrowOop*)dest, exchange_value);
   1.547 +    }
   1.548 +    // encode exchange and compare value from oop to T
   1.549 +    narrowOop val = encode_heap_oop(exchange_value);
   1.550 +    narrowOop cmp = encode_heap_oop(compare_value);
   1.551 +
   1.552 +    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
   1.553 +    // decode old from T to oop
   1.554 +    return decode_heap_oop(old);
   1.555 +  } else {
   1.556 +    if (prebarrier) {
   1.557 +      update_barrier_set_pre((oop*)dest, exchange_value);
   1.558 +    }
   1.559 +    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
   1.560 +  }
   1.561 +}
   1.562 +
   1.563 +// Used only for markSweep, scavenging
   1.564 +inline bool oopDesc::is_gc_marked() const {
   1.565 +  return mark()->is_marked();
   1.566 +}
   1.567 +
   1.568 +inline bool oopDesc::is_locked() const {
   1.569 +  return mark()->is_locked();
   1.570 +}
   1.571 +
   1.572 +inline bool oopDesc::is_unlocked() const {
   1.573 +  return mark()->is_unlocked();
   1.574 +}
   1.575 +
   1.576 +inline bool oopDesc::has_bias_pattern() const {
   1.577 +  return mark()->has_bias_pattern();
   1.578 +}
   1.579 +
   1.580 +
   1.581 +// used only for asserts
   1.582 +inline bool oopDesc::is_oop(bool ignore_mark_word) const {
   1.583 +  oop obj = (oop) this;
   1.584 +  if (!check_obj_alignment(obj)) return false;
   1.585 +  if (!Universe::heap()->is_in_reserved(obj)) return false;
   1.586 +  // obj is aligned and accessible in heap
   1.587 +  if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
   1.588 +
   1.589 +  // Header verification: the mark is typically non-NULL. If we're
   1.590 +  // at a safepoint, it must not be null.
   1.591 +  // Outside of a safepoint, the header could be changing (for example,
   1.592 +  // another thread could be inflating a lock on this object).
   1.593 +  if (ignore_mark_word) {
   1.594 +    return true;
   1.595 +  }
   1.596 +  if (mark() != NULL) {
   1.597 +    return true;
   1.598 +  }
   1.599 +  return !SafepointSynchronize::is_at_safepoint();
   1.600 +}
   1.601 +
   1.602 +
   1.603 +// used only for asserts
   1.604 +inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
   1.605 +  return this == NULL ? true : is_oop(ignore_mark_word);
   1.606 +}
   1.607 +
   1.608 +#ifndef PRODUCT
   1.609 +// used only for asserts
   1.610 +inline bool oopDesc::is_unlocked_oop() const {
   1.611 +  if (!Universe::heap()->is_in_reserved(this)) return false;
   1.612 +  return mark()->is_unlocked();
   1.613 +}
   1.614 +#endif // PRODUCT
   1.615 +
   1.616 +inline void oopDesc::follow_contents(void) {
   1.617 +  assert (is_gc_marked(), "should be marked");
   1.618 +  klass()->oop_follow_contents(this);
   1.619 +}
   1.620 +
   1.621 +// Used by scavengers
   1.622 +
   1.623 +inline bool oopDesc::is_forwarded() const {
   1.624 +  // The extra heap check is needed since the obj might be locked, in which case the
   1.625 +  // mark would point to a stack location and have the sentinel bit cleared
   1.626 +  return mark()->is_marked();
   1.627 +}
   1.628 +
   1.629 +// Used by scavengers
   1.630 +inline void oopDesc::forward_to(oop p) {
   1.631 +  assert(check_obj_alignment(p),
   1.632 +         "forwarding to something not aligned");
   1.633 +  assert(Universe::heap()->is_in_reserved(p),
   1.634 +         "forwarding to something not in heap");
   1.635 +  markOop m = markOopDesc::encode_pointer_as_mark(p);
   1.636 +  assert(m->decode_pointer() == p, "encoding must be reversable");
   1.637 +  set_mark(m);
   1.638 +}
   1.639 +
   1.640 +// Used by parallel scavengers
   1.641 +inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
   1.642 +  assert(check_obj_alignment(p),
   1.643 +         "forwarding to something not aligned");
   1.644 +  assert(Universe::heap()->is_in_reserved(p),
   1.645 +         "forwarding to something not in heap");
   1.646 +  markOop m = markOopDesc::encode_pointer_as_mark(p);
   1.647 +  assert(m->decode_pointer() == p, "encoding must be reversable");
   1.648 +  return cas_set_mark(m, compare) == compare;
   1.649 +}
   1.650 +
   1.651 +// Note that the forwardee is not the same thing as the displaced_mark.
   1.652 +// The forwardee is used when copying during scavenge and mark-sweep.
   1.653 +// It does need to clear the low two locking- and GC-related bits.
   1.654 +inline oop oopDesc::forwardee() const {
   1.655 +  return (oop) mark()->decode_pointer();
   1.656 +}
   1.657 +
   1.658 +inline bool oopDesc::has_displaced_mark() const {
   1.659 +  return mark()->has_displaced_mark_helper();
   1.660 +}
   1.661 +
   1.662 +inline markOop oopDesc::displaced_mark() const {
   1.663 +  return mark()->displaced_mark_helper();
   1.664 +}
   1.665 +
   1.666 +inline void oopDesc::set_displaced_mark(markOop m) {
   1.667 +  mark()->set_displaced_mark_helper(m);
   1.668 +}
   1.669 +
   1.670 +// The following method needs to be MT safe.
   1.671 +inline uint oopDesc::age() const {
   1.672 +  assert(!is_forwarded(), "Attempt to read age from forwarded mark");
   1.673 +  if (has_displaced_mark()) {
   1.674 +    return displaced_mark()->age();
   1.675 +  } else {
   1.676 +    return mark()->age();
   1.677 +  }
   1.678 +}
   1.679 +
   1.680 +inline void oopDesc::incr_age() {
   1.681 +  assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
   1.682 +  if (has_displaced_mark()) {
   1.683 +    set_displaced_mark(displaced_mark()->incr_age());
   1.684 +  } else {
   1.685 +    set_mark(mark()->incr_age());
   1.686 +  }
   1.687 +}
   1.688 +
   1.689 +
   1.690 +inline intptr_t oopDesc::identity_hash() {
   1.691 +  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
   1.692 +  // Note: The mark must be read into local variable to avoid concurrent updates.
   1.693 +  markOop mrk = mark();
   1.694 +  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
   1.695 +    return mrk->hash();
   1.696 +  } else if (mrk->is_marked()) {
   1.697 +    return mrk->hash();
   1.698 +  } else {
   1.699 +    return slow_identity_hash();
   1.700 +  }
   1.701 +}
   1.702 +
   1.703 +inline int oopDesc::adjust_pointers() {
   1.704 +  debug_only(int check_size = size());
   1.705 +  int s = klass()->oop_adjust_pointers(this);
   1.706 +  assert(s == check_size, "should be the same");
   1.707 +  return s;
   1.708 +}
   1.709 +
   1.710 +#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                        \
   1.711 +                                                                           \
   1.712 +inline int oopDesc::oop_iterate(OopClosureType* blk) {                     \
   1.713 +  SpecializationStats::record_call();                                      \
   1.714 +  return klass()->oop_oop_iterate##nv_suffix(this, blk);               \
   1.715 +}                                                                          \
   1.716 +                                                                           \
   1.717 +inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {       \
   1.718 +  SpecializationStats::record_call();                                      \
   1.719 +  return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr);       \
   1.720 +}
   1.721 +
   1.722 +
   1.723 +inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
   1.724 +  // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
   1.725 +  // the do_oop calls, but turns off all other features in ExtendedOopClosure.
   1.726 +  NoHeaderExtendedOopClosure cl(blk);
   1.727 +  return oop_iterate(&cl);
   1.728 +}
   1.729 +
   1.730 +inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
   1.731 +  NoHeaderExtendedOopClosure cl(blk);
   1.732 +  return oop_iterate(&cl, mr);
   1.733 +}
   1.734 +
   1.735 +ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_DEFN)
   1.736 +ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_DEFN)
   1.737 +
   1.738 +#if INCLUDE_ALL_GCS
   1.739 +#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)              \
   1.740 +                                                                           \
   1.741 +inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {           \
   1.742 +  SpecializationStats::record_call();                                      \
   1.743 +  return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);     \
   1.744 +}
   1.745 +
   1.746 +ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_BACKWARDS_DEFN)
   1.747 +ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_BACKWARDS_DEFN)
   1.748 +#endif // INCLUDE_ALL_GCS
   1.749 +
   1.750 +#endif // SHARE_VM_OOPS_OOP_INLINE_HPP

mercurial