src/share/vm/memory/defNewGeneration.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/memory/defNewGeneration.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,1097 @@
     1.4 +/*
     1.5 + * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "gc_implementation/shared/collectorCounters.hpp"
    1.30 +#include "gc_implementation/shared/gcPolicyCounters.hpp"
    1.31 +#include "gc_implementation/shared/gcHeapSummary.hpp"
    1.32 +#include "gc_implementation/shared/gcTimer.hpp"
    1.33 +#include "gc_implementation/shared/gcTraceTime.hpp"
    1.34 +#include "gc_implementation/shared/gcTrace.hpp"
    1.35 +#include "gc_implementation/shared/spaceDecorator.hpp"
    1.36 +#include "memory/defNewGeneration.inline.hpp"
    1.37 +#include "memory/gcLocker.inline.hpp"
    1.38 +#include "memory/genCollectedHeap.hpp"
    1.39 +#include "memory/genOopClosures.inline.hpp"
    1.40 +#include "memory/genRemSet.hpp"
    1.41 +#include "memory/generationSpec.hpp"
    1.42 +#include "memory/iterator.hpp"
    1.43 +#include "memory/referencePolicy.hpp"
    1.44 +#include "memory/space.inline.hpp"
    1.45 +#include "oops/instanceRefKlass.hpp"
    1.46 +#include "oops/oop.inline.hpp"
    1.47 +#include "runtime/java.hpp"
    1.48 +#include "runtime/thread.inline.hpp"
    1.49 +#include "utilities/copy.hpp"
    1.50 +#include "utilities/stack.inline.hpp"
    1.51 +
    1.52 +PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    1.53 +
    1.54 +//
    1.55 +// DefNewGeneration functions.
    1.56 +
    1.57 +// Methods of protected closure types.
    1.58 +
    1.59 +DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    1.60 +  assert(g->level() == 0, "Optimized for youngest gen.");
    1.61 +}
    1.62 +bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    1.63 +  return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    1.64 +}
    1.65 +
    1.66 +DefNewGeneration::KeepAliveClosure::
    1.67 +KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    1.68 +  GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    1.69 +  assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    1.70 +  _rs = (CardTableRS*)rs;
    1.71 +}
    1.72 +
    1.73 +void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    1.74 +void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    1.75 +
    1.76 +
    1.77 +DefNewGeneration::FastKeepAliveClosure::
    1.78 +FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    1.79 +  DefNewGeneration::KeepAliveClosure(cl) {
    1.80 +  _boundary = g->reserved().end();
    1.81 +}
    1.82 +
    1.83 +void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    1.84 +void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    1.85 +
    1.86 +DefNewGeneration::EvacuateFollowersClosure::
    1.87 +EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    1.88 +                         ScanClosure* cur, ScanClosure* older) :
    1.89 +  _gch(gch), _level(level),
    1.90 +  _scan_cur_or_nonheap(cur), _scan_older(older)
    1.91 +{}
    1.92 +
    1.93 +void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    1.94 +  do {
    1.95 +    _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    1.96 +                                       _scan_older);
    1.97 +  } while (!_gch->no_allocs_since_save_marks(_level));
    1.98 +}
    1.99 +
   1.100 +DefNewGeneration::FastEvacuateFollowersClosure::
   1.101 +FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
   1.102 +                             DefNewGeneration* gen,
   1.103 +                             FastScanClosure* cur, FastScanClosure* older) :
   1.104 +  _gch(gch), _level(level), _gen(gen),
   1.105 +  _scan_cur_or_nonheap(cur), _scan_older(older)
   1.106 +{}
   1.107 +
   1.108 +void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   1.109 +  do {
   1.110 +    _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   1.111 +                                       _scan_older);
   1.112 +  } while (!_gch->no_allocs_since_save_marks(_level));
   1.113 +  guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   1.114 +}
   1.115 +
   1.116 +ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   1.117 +    OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   1.118 +{
   1.119 +  assert(_g->level() == 0, "Optimized for youngest generation");
   1.120 +  _boundary = _g->reserved().end();
   1.121 +}
   1.122 +
   1.123 +void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   1.124 +void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   1.125 +
   1.126 +FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   1.127 +    OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   1.128 +{
   1.129 +  assert(_g->level() == 0, "Optimized for youngest generation");
   1.130 +  _boundary = _g->reserved().end();
   1.131 +}
   1.132 +
   1.133 +void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   1.134 +void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   1.135 +
   1.136 +void KlassScanClosure::do_klass(Klass* klass) {
   1.137 +#ifndef PRODUCT
   1.138 +  if (TraceScavenge) {
   1.139 +    ResourceMark rm;
   1.140 +    gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   1.141 +                           klass,
   1.142 +                           klass->external_name(),
   1.143 +                           klass->has_modified_oops() ? "true" : "false");
   1.144 +  }
   1.145 +#endif
   1.146 +
   1.147 +  // If the klass has not been dirtied we know that there's
   1.148 +  // no references into  the young gen and we can skip it.
   1.149 +  if (klass->has_modified_oops()) {
   1.150 +    if (_accumulate_modified_oops) {
   1.151 +      klass->accumulate_modified_oops();
   1.152 +    }
   1.153 +
   1.154 +    // Clear this state since we're going to scavenge all the metadata.
   1.155 +    klass->clear_modified_oops();
   1.156 +
   1.157 +    // Tell the closure which Klass is being scanned so that it can be dirtied
   1.158 +    // if oops are left pointing into the young gen.
   1.159 +    _scavenge_closure->set_scanned_klass(klass);
   1.160 +
   1.161 +    klass->oops_do(_scavenge_closure);
   1.162 +
   1.163 +    _scavenge_closure->set_scanned_klass(NULL);
   1.164 +  }
   1.165 +}
   1.166 +
   1.167 +ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   1.168 +  _g(g)
   1.169 +{
   1.170 +  assert(_g->level() == 0, "Optimized for youngest generation");
   1.171 +  _boundary = _g->reserved().end();
   1.172 +}
   1.173 +
   1.174 +void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   1.175 +void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   1.176 +
   1.177 +void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   1.178 +void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   1.179 +
   1.180 +KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   1.181 +                                   KlassRemSet* klass_rem_set)
   1.182 +    : _scavenge_closure(scavenge_closure),
   1.183 +      _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   1.184 +
   1.185 +
   1.186 +DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   1.187 +                                   size_t initial_size,
   1.188 +                                   int level,
   1.189 +                                   const char* policy)
   1.190 +  : Generation(rs, initial_size, level),
   1.191 +    _promo_failure_drain_in_progress(false),
   1.192 +    _should_allocate_from_space(false)
   1.193 +{
   1.194 +  MemRegion cmr((HeapWord*)_virtual_space.low(),
   1.195 +                (HeapWord*)_virtual_space.high());
   1.196 +  Universe::heap()->barrier_set()->resize_covered_region(cmr);
   1.197 +
   1.198 +  if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   1.199 +    _eden_space = new ConcEdenSpace(this);
   1.200 +  } else {
   1.201 +    _eden_space = new EdenSpace(this);
   1.202 +  }
   1.203 +  _from_space = new ContiguousSpace();
   1.204 +  _to_space   = new ContiguousSpace();
   1.205 +
   1.206 +  if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   1.207 +    vm_exit_during_initialization("Could not allocate a new gen space");
   1.208 +
   1.209 +  // Compute the maximum eden and survivor space sizes. These sizes
   1.210 +  // are computed assuming the entire reserved space is committed.
   1.211 +  // These values are exported as performance counters.
   1.212 +  uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
   1.213 +  uintx size = _virtual_space.reserved_size();
   1.214 +  _max_survivor_size = compute_survivor_size(size, alignment);
   1.215 +  _max_eden_size = size - (2*_max_survivor_size);
   1.216 +
   1.217 +  // allocate the performance counters
   1.218 +
   1.219 +  // Generation counters -- generation 0, 3 subspaces
   1.220 +  _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   1.221 +  _gc_counters = new CollectorCounters(policy, 0);
   1.222 +
   1.223 +  _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   1.224 +                                      _gen_counters);
   1.225 +  _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   1.226 +                                      _gen_counters);
   1.227 +  _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   1.228 +                                    _gen_counters);
   1.229 +
   1.230 +  compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   1.231 +  update_counters();
   1.232 +  _next_gen = NULL;
   1.233 +  _tenuring_threshold = MaxTenuringThreshold;
   1.234 +  _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   1.235 +
   1.236 +  _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
   1.237 +}
   1.238 +
   1.239 +void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   1.240 +                                                bool clear_space,
   1.241 +                                                bool mangle_space) {
   1.242 +  uintx alignment =
   1.243 +    GenCollectedHeap::heap()->collector_policy()->space_alignment();
   1.244 +
   1.245 +  // If the spaces are being cleared (only done at heap initialization
   1.246 +  // currently), the survivor spaces need not be empty.
   1.247 +  // Otherwise, no care is taken for used areas in the survivor spaces
   1.248 +  // so check.
   1.249 +  assert(clear_space || (to()->is_empty() && from()->is_empty()),
   1.250 +    "Initialization of the survivor spaces assumes these are empty");
   1.251 +
   1.252 +  // Compute sizes
   1.253 +  uintx size = _virtual_space.committed_size();
   1.254 +  uintx survivor_size = compute_survivor_size(size, alignment);
   1.255 +  uintx eden_size = size - (2*survivor_size);
   1.256 +  assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   1.257 +
   1.258 +  if (eden_size < minimum_eden_size) {
   1.259 +    // May happen due to 64Kb rounding, if so adjust eden size back up
   1.260 +    minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   1.261 +    uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   1.262 +    uintx unaligned_survivor_size =
   1.263 +      align_size_down(maximum_survivor_size, alignment);
   1.264 +    survivor_size = MAX2(unaligned_survivor_size, alignment);
   1.265 +    eden_size = size - (2*survivor_size);
   1.266 +    assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   1.267 +    assert(eden_size >= minimum_eden_size, "just checking");
   1.268 +  }
   1.269 +
   1.270 +  char *eden_start = _virtual_space.low();
   1.271 +  char *from_start = eden_start + eden_size;
   1.272 +  char *to_start   = from_start + survivor_size;
   1.273 +  char *to_end     = to_start   + survivor_size;
   1.274 +
   1.275 +  assert(to_end == _virtual_space.high(), "just checking");
   1.276 +  assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   1.277 +  assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   1.278 +  assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   1.279 +
   1.280 +  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   1.281 +  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   1.282 +  MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   1.283 +
   1.284 +  // A minimum eden size implies that there is a part of eden that
   1.285 +  // is being used and that affects the initialization of any
   1.286 +  // newly formed eden.
   1.287 +  bool live_in_eden = minimum_eden_size > 0;
   1.288 +
   1.289 +  // If not clearing the spaces, do some checking to verify that
   1.290 +  // the space are already mangled.
   1.291 +  if (!clear_space) {
   1.292 +    // Must check mangling before the spaces are reshaped.  Otherwise,
   1.293 +    // the bottom or end of one space may have moved into another
   1.294 +    // a failure of the check may not correctly indicate which space
   1.295 +    // is not properly mangled.
   1.296 +    if (ZapUnusedHeapArea) {
   1.297 +      HeapWord* limit = (HeapWord*) _virtual_space.high();
   1.298 +      eden()->check_mangled_unused_area(limit);
   1.299 +      from()->check_mangled_unused_area(limit);
   1.300 +        to()->check_mangled_unused_area(limit);
   1.301 +    }
   1.302 +  }
   1.303 +
   1.304 +  // Reset the spaces for their new regions.
   1.305 +  eden()->initialize(edenMR,
   1.306 +                     clear_space && !live_in_eden,
   1.307 +                     SpaceDecorator::Mangle);
   1.308 +  // If clear_space and live_in_eden, we will not have cleared any
   1.309 +  // portion of eden above its top. This can cause newly
   1.310 +  // expanded space not to be mangled if using ZapUnusedHeapArea.
   1.311 +  // We explicitly do such mangling here.
   1.312 +  if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   1.313 +    eden()->mangle_unused_area();
   1.314 +  }
   1.315 +  from()->initialize(fromMR, clear_space, mangle_space);
   1.316 +  to()->initialize(toMR, clear_space, mangle_space);
   1.317 +
   1.318 +  // Set next compaction spaces.
   1.319 +  eden()->set_next_compaction_space(from());
   1.320 +  // The to-space is normally empty before a compaction so need
   1.321 +  // not be considered.  The exception is during promotion
   1.322 +  // failure handling when to-space can contain live objects.
   1.323 +  from()->set_next_compaction_space(NULL);
   1.324 +}
   1.325 +
   1.326 +void DefNewGeneration::swap_spaces() {
   1.327 +  ContiguousSpace* s = from();
   1.328 +  _from_space        = to();
   1.329 +  _to_space          = s;
   1.330 +  eden()->set_next_compaction_space(from());
   1.331 +  // The to-space is normally empty before a compaction so need
   1.332 +  // not be considered.  The exception is during promotion
   1.333 +  // failure handling when to-space can contain live objects.
   1.334 +  from()->set_next_compaction_space(NULL);
   1.335 +
   1.336 +  if (UsePerfData) {
   1.337 +    CSpaceCounters* c = _from_counters;
   1.338 +    _from_counters = _to_counters;
   1.339 +    _to_counters = c;
   1.340 +  }
   1.341 +}
   1.342 +
   1.343 +bool DefNewGeneration::expand(size_t bytes) {
   1.344 +  MutexLocker x(ExpandHeap_lock);
   1.345 +  HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   1.346 +  bool success = _virtual_space.expand_by(bytes);
   1.347 +  if (success && ZapUnusedHeapArea) {
   1.348 +    // Mangle newly committed space immediately because it
   1.349 +    // can be done here more simply that after the new
   1.350 +    // spaces have been computed.
   1.351 +    HeapWord* new_high = (HeapWord*) _virtual_space.high();
   1.352 +    MemRegion mangle_region(prev_high, new_high);
   1.353 +    SpaceMangler::mangle_region(mangle_region);
   1.354 +  }
   1.355 +
   1.356 +  // Do not attempt an expand-to-the reserve size.  The
   1.357 +  // request should properly observe the maximum size of
   1.358 +  // the generation so an expand-to-reserve should be
   1.359 +  // unnecessary.  Also a second call to expand-to-reserve
   1.360 +  // value potentially can cause an undue expansion.
   1.361 +  // For example if the first expand fail for unknown reasons,
   1.362 +  // but the second succeeds and expands the heap to its maximum
   1.363 +  // value.
   1.364 +  if (GC_locker::is_active()) {
   1.365 +    if (PrintGC && Verbose) {
   1.366 +      gclog_or_tty->print_cr("Garbage collection disabled, "
   1.367 +        "expanded heap instead");
   1.368 +    }
   1.369 +  }
   1.370 +
   1.371 +  return success;
   1.372 +}
   1.373 +
   1.374 +
   1.375 +void DefNewGeneration::compute_new_size() {
   1.376 +  // This is called after a gc that includes the following generation
   1.377 +  // (which is required to exist.)  So from-space will normally be empty.
   1.378 +  // Note that we check both spaces, since if scavenge failed they revert roles.
   1.379 +  // If not we bail out (otherwise we would have to relocate the objects)
   1.380 +  if (!from()->is_empty() || !to()->is_empty()) {
   1.381 +    return;
   1.382 +  }
   1.383 +
   1.384 +  int next_level = level() + 1;
   1.385 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.386 +  assert(next_level < gch->_n_gens,
   1.387 +         "DefNewGeneration cannot be an oldest gen");
   1.388 +
   1.389 +  Generation* next_gen = gch->_gens[next_level];
   1.390 +  size_t old_size = next_gen->capacity();
   1.391 +  size_t new_size_before = _virtual_space.committed_size();
   1.392 +  size_t min_new_size = spec()->init_size();
   1.393 +  size_t max_new_size = reserved().byte_size();
   1.394 +  assert(min_new_size <= new_size_before &&
   1.395 +         new_size_before <= max_new_size,
   1.396 +         "just checking");
   1.397 +  // All space sizes must be multiples of Generation::GenGrain.
   1.398 +  size_t alignment = Generation::GenGrain;
   1.399 +
   1.400 +  // Compute desired new generation size based on NewRatio and
   1.401 +  // NewSizeThreadIncrease
   1.402 +  size_t desired_new_size = old_size/NewRatio;
   1.403 +  int threads_count = Threads::number_of_non_daemon_threads();
   1.404 +  size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   1.405 +  desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   1.406 +
   1.407 +  // Adjust new generation size
   1.408 +  desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   1.409 +  assert(desired_new_size <= max_new_size, "just checking");
   1.410 +
   1.411 +  bool changed = false;
   1.412 +  if (desired_new_size > new_size_before) {
   1.413 +    size_t change = desired_new_size - new_size_before;
   1.414 +    assert(change % alignment == 0, "just checking");
   1.415 +    if (expand(change)) {
   1.416 +       changed = true;
   1.417 +    }
   1.418 +    // If the heap failed to expand to the desired size,
   1.419 +    // "changed" will be false.  If the expansion failed
   1.420 +    // (and at this point it was expected to succeed),
   1.421 +    // ignore the failure (leaving "changed" as false).
   1.422 +  }
   1.423 +  if (desired_new_size < new_size_before && eden()->is_empty()) {
   1.424 +    // bail out of shrinking if objects in eden
   1.425 +    size_t change = new_size_before - desired_new_size;
   1.426 +    assert(change % alignment == 0, "just checking");
   1.427 +    _virtual_space.shrink_by(change);
   1.428 +    changed = true;
   1.429 +  }
   1.430 +  if (changed) {
   1.431 +    // The spaces have already been mangled at this point but
   1.432 +    // may not have been cleared (set top = bottom) and should be.
   1.433 +    // Mangling was done when the heap was being expanded.
   1.434 +    compute_space_boundaries(eden()->used(),
   1.435 +                             SpaceDecorator::Clear,
   1.436 +                             SpaceDecorator::DontMangle);
   1.437 +    MemRegion cmr((HeapWord*)_virtual_space.low(),
   1.438 +                  (HeapWord*)_virtual_space.high());
   1.439 +    Universe::heap()->barrier_set()->resize_covered_region(cmr);
   1.440 +    if (Verbose && PrintGC) {
   1.441 +      size_t new_size_after  = _virtual_space.committed_size();
   1.442 +      size_t eden_size_after = eden()->capacity();
   1.443 +      size_t survivor_size_after = from()->capacity();
   1.444 +      gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   1.445 +        SIZE_FORMAT "K [eden="
   1.446 +        SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   1.447 +        new_size_before/K, new_size_after/K,
   1.448 +        eden_size_after/K, survivor_size_after/K);
   1.449 +      if (WizardMode) {
   1.450 +        gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   1.451 +          thread_increase_size/K, threads_count);
   1.452 +      }
   1.453 +      gclog_or_tty->cr();
   1.454 +    }
   1.455 +  }
   1.456 +}
   1.457 +
   1.458 +void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   1.459 +  assert(false, "NYI -- are you sure you want to call this?");
   1.460 +}
   1.461 +
   1.462 +
   1.463 +size_t DefNewGeneration::capacity() const {
   1.464 +  return eden()->capacity()
   1.465 +       + from()->capacity();  // to() is only used during scavenge
   1.466 +}
   1.467 +
   1.468 +
   1.469 +size_t DefNewGeneration::used() const {
   1.470 +  return eden()->used()
   1.471 +       + from()->used();      // to() is only used during scavenge
   1.472 +}
   1.473 +
   1.474 +
   1.475 +size_t DefNewGeneration::free() const {
   1.476 +  return eden()->free()
   1.477 +       + from()->free();      // to() is only used during scavenge
   1.478 +}
   1.479 +
   1.480 +size_t DefNewGeneration::max_capacity() const {
   1.481 +  const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
   1.482 +  const size_t reserved_bytes = reserved().byte_size();
   1.483 +  return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   1.484 +}
   1.485 +
   1.486 +size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   1.487 +  return eden()->free();
   1.488 +}
   1.489 +
   1.490 +size_t DefNewGeneration::capacity_before_gc() const {
   1.491 +  return eden()->capacity();
   1.492 +}
   1.493 +
   1.494 +size_t DefNewGeneration::contiguous_available() const {
   1.495 +  return eden()->free();
   1.496 +}
   1.497 +
   1.498 +
   1.499 +HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   1.500 +HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   1.501 +
   1.502 +void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   1.503 +  eden()->object_iterate(blk);
   1.504 +  from()->object_iterate(blk);
   1.505 +}
   1.506 +
   1.507 +
   1.508 +void DefNewGeneration::space_iterate(SpaceClosure* blk,
   1.509 +                                     bool usedOnly) {
   1.510 +  blk->do_space(eden());
   1.511 +  blk->do_space(from());
   1.512 +  blk->do_space(to());
   1.513 +}
   1.514 +
   1.515 +// The last collection bailed out, we are running out of heap space,
   1.516 +// so we try to allocate the from-space, too.
   1.517 +HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   1.518 +  HeapWord* result = NULL;
   1.519 +  if (Verbose && PrintGCDetails) {
   1.520 +    gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   1.521 +                        "  will_fail: %s"
   1.522 +                        "  heap_lock: %s"
   1.523 +                        "  free: " SIZE_FORMAT,
   1.524 +                        size,
   1.525 +                        GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   1.526 +                          "true" : "false",
   1.527 +                        Heap_lock->is_locked() ? "locked" : "unlocked",
   1.528 +                        from()->free());
   1.529 +  }
   1.530 +  if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   1.531 +    if (Heap_lock->owned_by_self() ||
   1.532 +        (SafepointSynchronize::is_at_safepoint() &&
   1.533 +         Thread::current()->is_VM_thread())) {
   1.534 +      // If the Heap_lock is not locked by this thread, this will be called
   1.535 +      // again later with the Heap_lock held.
   1.536 +      result = from()->allocate(size);
   1.537 +    } else if (PrintGC && Verbose) {
   1.538 +      gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   1.539 +    }
   1.540 +  } else if (PrintGC && Verbose) {
   1.541 +    gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   1.542 +  }
   1.543 +  if (PrintGC && Verbose) {
   1.544 +    gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   1.545 +  }
   1.546 +  return result;
   1.547 +}
   1.548 +
   1.549 +HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   1.550 +                                                bool   is_tlab,
   1.551 +                                                bool   parallel) {
   1.552 +  // We don't attempt to expand the young generation (but perhaps we should.)
   1.553 +  return allocate(size, is_tlab);
   1.554 +}
   1.555 +
   1.556 +void DefNewGeneration::adjust_desired_tenuring_threshold() {
   1.557 +  // Set the desired survivor size to half the real survivor space
   1.558 +  _tenuring_threshold =
   1.559 +    age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   1.560 +}
   1.561 +
   1.562 +void DefNewGeneration::collect(bool   full,
   1.563 +                               bool   clear_all_soft_refs,
   1.564 +                               size_t size,
   1.565 +                               bool   is_tlab) {
   1.566 +  assert(full || size > 0, "otherwise we don't want to collect");
   1.567 +
   1.568 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.569 +
   1.570 +  _gc_timer->register_gc_start();
   1.571 +  DefNewTracer gc_tracer;
   1.572 +  gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   1.573 +
   1.574 +  _next_gen = gch->next_gen(this);
   1.575 +
   1.576 +  // If the next generation is too full to accommodate promotion
   1.577 +  // from this generation, pass on collection; let the next generation
   1.578 +  // do it.
   1.579 +  if (!collection_attempt_is_safe()) {
   1.580 +    if (Verbose && PrintGCDetails) {
   1.581 +      gclog_or_tty->print(" :: Collection attempt not safe :: ");
   1.582 +    }
   1.583 +    gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   1.584 +    return;
   1.585 +  }
   1.586 +  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   1.587 +
   1.588 +  init_assuming_no_promotion_failure();
   1.589 +
   1.590 +  GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
   1.591 +  // Capture heap used before collection (for printing).
   1.592 +  size_t gch_prev_used = gch->used();
   1.593 +
   1.594 +  gch->trace_heap_before_gc(&gc_tracer);
   1.595 +
   1.596 +  SpecializationStats::clear();
   1.597 +
   1.598 +  // These can be shared for all code paths
   1.599 +  IsAliveClosure is_alive(this);
   1.600 +  ScanWeakRefClosure scan_weak_ref(this);
   1.601 +
   1.602 +  age_table()->clear();
   1.603 +  to()->clear(SpaceDecorator::Mangle);
   1.604 +
   1.605 +  gch->rem_set()->prepare_for_younger_refs_iterate(false);
   1.606 +
   1.607 +  assert(gch->no_allocs_since_save_marks(0),
   1.608 +         "save marks have not been newly set.");
   1.609 +
   1.610 +  // Not very pretty.
   1.611 +  CollectorPolicy* cp = gch->collector_policy();
   1.612 +
   1.613 +  FastScanClosure fsc_with_no_gc_barrier(this, false);
   1.614 +  FastScanClosure fsc_with_gc_barrier(this, true);
   1.615 +
   1.616 +  KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   1.617 +                                      gch->rem_set()->klass_rem_set());
   1.618 +
   1.619 +  set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   1.620 +  FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   1.621 +                                                  &fsc_with_no_gc_barrier,
   1.622 +                                                  &fsc_with_gc_barrier);
   1.623 +
   1.624 +  assert(gch->no_allocs_since_save_marks(0),
   1.625 +         "save marks have not been newly set.");
   1.626 +
   1.627 +  int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   1.628 +
   1.629 +  gch->gen_process_strong_roots(_level,
   1.630 +                                true,  // Process younger gens, if any,
   1.631 +                                       // as strong roots.
   1.632 +                                true,  // activate StrongRootsScope
   1.633 +                                true,  // is scavenging
   1.634 +                                SharedHeap::ScanningOption(so),
   1.635 +                                &fsc_with_no_gc_barrier,
   1.636 +                                true,   // walk *all* scavengable nmethods
   1.637 +                                &fsc_with_gc_barrier,
   1.638 +                                &klass_scan_closure);
   1.639 +
   1.640 +  // "evacuate followers".
   1.641 +  evacuate_followers.do_void();
   1.642 +
   1.643 +  FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   1.644 +  ReferenceProcessor* rp = ref_processor();
   1.645 +  rp->setup_policy(clear_all_soft_refs);
   1.646 +  const ReferenceProcessorStats& stats =
   1.647 +  rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   1.648 +                                    NULL, _gc_timer);
   1.649 +  gc_tracer.report_gc_reference_stats(stats);
   1.650 +
   1.651 +  if (!_promotion_failed) {
   1.652 +    // Swap the survivor spaces.
   1.653 +    eden()->clear(SpaceDecorator::Mangle);
   1.654 +    from()->clear(SpaceDecorator::Mangle);
   1.655 +    if (ZapUnusedHeapArea) {
   1.656 +      // This is now done here because of the piece-meal mangling which
   1.657 +      // can check for valid mangling at intermediate points in the
   1.658 +      // collection(s).  When a minor collection fails to collect
   1.659 +      // sufficient space resizing of the young generation can occur
   1.660 +      // an redistribute the spaces in the young generation.  Mangle
   1.661 +      // here so that unzapped regions don't get distributed to
   1.662 +      // other spaces.
   1.663 +      to()->mangle_unused_area();
   1.664 +    }
   1.665 +    swap_spaces();
   1.666 +
   1.667 +    assert(to()->is_empty(), "to space should be empty now");
   1.668 +
   1.669 +    adjust_desired_tenuring_threshold();
   1.670 +
   1.671 +    // A successful scavenge should restart the GC time limit count which is
   1.672 +    // for full GC's.
   1.673 +    AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   1.674 +    size_policy->reset_gc_overhead_limit_count();
   1.675 +    if (PrintGC && !PrintGCDetails) {
   1.676 +      gch->print_heap_change(gch_prev_used);
   1.677 +    }
   1.678 +    assert(!gch->incremental_collection_failed(), "Should be clear");
   1.679 +  } else {
   1.680 +    assert(_promo_failure_scan_stack.is_empty(), "post condition");
   1.681 +    _promo_failure_scan_stack.clear(true); // Clear cached segments.
   1.682 +
   1.683 +    remove_forwarding_pointers();
   1.684 +    if (PrintGCDetails) {
   1.685 +      gclog_or_tty->print(" (promotion failed) ");
   1.686 +    }
   1.687 +    // Add to-space to the list of space to compact
   1.688 +    // when a promotion failure has occurred.  In that
   1.689 +    // case there can be live objects in to-space
   1.690 +    // as a result of a partial evacuation of eden
   1.691 +    // and from-space.
   1.692 +    swap_spaces();   // For uniformity wrt ParNewGeneration.
   1.693 +    from()->set_next_compaction_space(to());
   1.694 +    gch->set_incremental_collection_failed();
   1.695 +
   1.696 +    // Inform the next generation that a promotion failure occurred.
   1.697 +    _next_gen->promotion_failure_occurred();
   1.698 +    gc_tracer.report_promotion_failed(_promotion_failed_info);
   1.699 +
   1.700 +    // Reset the PromotionFailureALot counters.
   1.701 +    NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   1.702 +  }
   1.703 +  // set new iteration safe limit for the survivor spaces
   1.704 +  from()->set_concurrent_iteration_safe_limit(from()->top());
   1.705 +  to()->set_concurrent_iteration_safe_limit(to()->top());
   1.706 +  SpecializationStats::print();
   1.707 +
   1.708 +  // We need to use a monotonically non-decreasing time in ms
   1.709 +  // or we will see time-warp warnings and os::javaTimeMillis()
   1.710 +  // does not guarantee monotonicity.
   1.711 +  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   1.712 +  update_time_of_last_gc(now);
   1.713 +
   1.714 +  gch->trace_heap_after_gc(&gc_tracer);
   1.715 +  gc_tracer.report_tenuring_threshold(tenuring_threshold());
   1.716 +
   1.717 +  _gc_timer->register_gc_end();
   1.718 +
   1.719 +  gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   1.720 +}
   1.721 +
   1.722 +class RemoveForwardPointerClosure: public ObjectClosure {
   1.723 +public:
   1.724 +  void do_object(oop obj) {
   1.725 +    obj->init_mark();
   1.726 +  }
   1.727 +};
   1.728 +
   1.729 +void DefNewGeneration::init_assuming_no_promotion_failure() {
   1.730 +  _promotion_failed = false;
   1.731 +  _promotion_failed_info.reset();
   1.732 +  from()->set_next_compaction_space(NULL);
   1.733 +}
   1.734 +
   1.735 +void DefNewGeneration::remove_forwarding_pointers() {
   1.736 +  RemoveForwardPointerClosure rspc;
   1.737 +  eden()->object_iterate(&rspc);
   1.738 +  from()->object_iterate(&rspc);
   1.739 +
   1.740 +  // Now restore saved marks, if any.
   1.741 +  assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   1.742 +         "should be the same");
   1.743 +  while (!_objs_with_preserved_marks.is_empty()) {
   1.744 +    oop obj   = _objs_with_preserved_marks.pop();
   1.745 +    markOop m = _preserved_marks_of_objs.pop();
   1.746 +    obj->set_mark(m);
   1.747 +  }
   1.748 +  _objs_with_preserved_marks.clear(true);
   1.749 +  _preserved_marks_of_objs.clear(true);
   1.750 +}
   1.751 +
   1.752 +void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   1.753 +  assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
   1.754 +         "Oversaving!");
   1.755 +  _objs_with_preserved_marks.push(obj);
   1.756 +  _preserved_marks_of_objs.push(m);
   1.757 +}
   1.758 +
   1.759 +void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   1.760 +  if (m->must_be_preserved_for_promotion_failure(obj)) {
   1.761 +    preserve_mark(obj, m);
   1.762 +  }
   1.763 +}
   1.764 +
   1.765 +void DefNewGeneration::handle_promotion_failure(oop old) {
   1.766 +  if (PrintPromotionFailure && !_promotion_failed) {
   1.767 +    gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   1.768 +                        old->size());
   1.769 +  }
   1.770 +  _promotion_failed = true;
   1.771 +  _promotion_failed_info.register_copy_failure(old->size());
   1.772 +  preserve_mark_if_necessary(old, old->mark());
   1.773 +  // forward to self
   1.774 +  old->forward_to(old);
   1.775 +
   1.776 +  _promo_failure_scan_stack.push(old);
   1.777 +
   1.778 +  if (!_promo_failure_drain_in_progress) {
   1.779 +    // prevent recursion in copy_to_survivor_space()
   1.780 +    _promo_failure_drain_in_progress = true;
   1.781 +    drain_promo_failure_scan_stack();
   1.782 +    _promo_failure_drain_in_progress = false;
   1.783 +  }
   1.784 +}
   1.785 +
   1.786 +oop DefNewGeneration::copy_to_survivor_space(oop old) {
   1.787 +  assert(is_in_reserved(old) && !old->is_forwarded(),
   1.788 +         "shouldn't be scavenging this oop");
   1.789 +  size_t s = old->size();
   1.790 +  oop obj = NULL;
   1.791 +
   1.792 +  // Try allocating obj in to-space (unless too old)
   1.793 +  if (old->age() < tenuring_threshold()) {
   1.794 +    obj = (oop) to()->allocate(s);
   1.795 +  }
   1.796 +
   1.797 +  // Otherwise try allocating obj tenured
   1.798 +  if (obj == NULL) {
   1.799 +    obj = _next_gen->promote(old, s);
   1.800 +    if (obj == NULL) {
   1.801 +      handle_promotion_failure(old);
   1.802 +      return old;
   1.803 +    }
   1.804 +  } else {
   1.805 +    // Prefetch beyond obj
   1.806 +    const intx interval = PrefetchCopyIntervalInBytes;
   1.807 +    Prefetch::write(obj, interval);
   1.808 +
   1.809 +    // Copy obj
   1.810 +    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   1.811 +
   1.812 +    // Increment age if obj still in new generation
   1.813 +    obj->incr_age();
   1.814 +    age_table()->add(obj, s);
   1.815 +  }
   1.816 +
   1.817 +  // Done, insert forward pointer to obj in this header
   1.818 +  old->forward_to(obj);
   1.819 +
   1.820 +  return obj;
   1.821 +}
   1.822 +
   1.823 +void DefNewGeneration::drain_promo_failure_scan_stack() {
   1.824 +  while (!_promo_failure_scan_stack.is_empty()) {
   1.825 +     oop obj = _promo_failure_scan_stack.pop();
   1.826 +     obj->oop_iterate(_promo_failure_scan_stack_closure);
   1.827 +  }
   1.828 +}
   1.829 +
   1.830 +void DefNewGeneration::save_marks() {
   1.831 +  eden()->set_saved_mark();
   1.832 +  to()->set_saved_mark();
   1.833 +  from()->set_saved_mark();
   1.834 +}
   1.835 +
   1.836 +
   1.837 +void DefNewGeneration::reset_saved_marks() {
   1.838 +  eden()->reset_saved_mark();
   1.839 +  to()->reset_saved_mark();
   1.840 +  from()->reset_saved_mark();
   1.841 +}
   1.842 +
   1.843 +
   1.844 +bool DefNewGeneration::no_allocs_since_save_marks() {
   1.845 +  assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   1.846 +  assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   1.847 +  return to()->saved_mark_at_top();
   1.848 +}
   1.849 +
   1.850 +#define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   1.851 +                                                                \
   1.852 +void DefNewGeneration::                                         \
   1.853 +oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   1.854 +  cl->set_generation(this);                                     \
   1.855 +  eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   1.856 +  to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   1.857 +  from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   1.858 +  cl->reset_generation();                                       \
   1.859 +  save_marks();                                                 \
   1.860 +}
   1.861 +
   1.862 +ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   1.863 +
   1.864 +#undef DefNew_SINCE_SAVE_MARKS_DEFN
   1.865 +
   1.866 +void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   1.867 +                                         size_t max_alloc_words) {
   1.868 +  if (requestor == this || _promotion_failed) return;
   1.869 +  assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   1.870 +
   1.871 +  /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   1.872 +  if (to_space->top() > to_space->bottom()) {
   1.873 +    trace("to_space not empty when contribute_scratch called");
   1.874 +  }
   1.875 +  */
   1.876 +
   1.877 +  ContiguousSpace* to_space = to();
   1.878 +  assert(to_space->end() >= to_space->top(), "pointers out of order");
   1.879 +  size_t free_words = pointer_delta(to_space->end(), to_space->top());
   1.880 +  if (free_words >= MinFreeScratchWords) {
   1.881 +    ScratchBlock* sb = (ScratchBlock*)to_space->top();
   1.882 +    sb->num_words = free_words;
   1.883 +    sb->next = list;
   1.884 +    list = sb;
   1.885 +  }
   1.886 +}
   1.887 +
   1.888 +void DefNewGeneration::reset_scratch() {
   1.889 +  // If contributing scratch in to_space, mangle all of
   1.890 +  // to_space if ZapUnusedHeapArea.  This is needed because
   1.891 +  // top is not maintained while using to-space as scratch.
   1.892 +  if (ZapUnusedHeapArea) {
   1.893 +    to()->mangle_unused_area_complete();
   1.894 +  }
   1.895 +}
   1.896 +
   1.897 +bool DefNewGeneration::collection_attempt_is_safe() {
   1.898 +  if (!to()->is_empty()) {
   1.899 +    if (Verbose && PrintGCDetails) {
   1.900 +      gclog_or_tty->print(" :: to is not empty :: ");
   1.901 +    }
   1.902 +    return false;
   1.903 +  }
   1.904 +  if (_next_gen == NULL) {
   1.905 +    GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.906 +    _next_gen = gch->next_gen(this);
   1.907 +  }
   1.908 +  return _next_gen->promotion_attempt_is_safe(used());
   1.909 +}
   1.910 +
   1.911 +void DefNewGeneration::gc_epilogue(bool full) {
   1.912 +  DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   1.913 +
   1.914 +  assert(!GC_locker::is_active(), "We should not be executing here");
   1.915 +  // Check if the heap is approaching full after a collection has
   1.916 +  // been done.  Generally the young generation is empty at
   1.917 +  // a minimum at the end of a collection.  If it is not, then
   1.918 +  // the heap is approaching full.
   1.919 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.920 +  if (full) {
   1.921 +    DEBUG_ONLY(seen_incremental_collection_failed = false;)
   1.922 +    if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   1.923 +      if (Verbose && PrintGCDetails) {
   1.924 +        gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   1.925 +                            GCCause::to_string(gch->gc_cause()));
   1.926 +      }
   1.927 +      gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   1.928 +      set_should_allocate_from_space(); // we seem to be running out of space
   1.929 +    } else {
   1.930 +      if (Verbose && PrintGCDetails) {
   1.931 +        gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   1.932 +                            GCCause::to_string(gch->gc_cause()));
   1.933 +      }
   1.934 +      gch->clear_incremental_collection_failed(); // We just did a full collection
   1.935 +      clear_should_allocate_from_space(); // if set
   1.936 +    }
   1.937 +  } else {
   1.938 +#ifdef ASSERT
   1.939 +    // It is possible that incremental_collection_failed() == true
   1.940 +    // here, because an attempted scavenge did not succeed. The policy
   1.941 +    // is normally expected to cause a full collection which should
   1.942 +    // clear that condition, so we should not be here twice in a row
   1.943 +    // with incremental_collection_failed() == true without having done
   1.944 +    // a full collection in between.
   1.945 +    if (!seen_incremental_collection_failed &&
   1.946 +        gch->incremental_collection_failed()) {
   1.947 +      if (Verbose && PrintGCDetails) {
   1.948 +        gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   1.949 +                            GCCause::to_string(gch->gc_cause()));
   1.950 +      }
   1.951 +      seen_incremental_collection_failed = true;
   1.952 +    } else if (seen_incremental_collection_failed) {
   1.953 +      if (Verbose && PrintGCDetails) {
   1.954 +        gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   1.955 +                            GCCause::to_string(gch->gc_cause()));
   1.956 +      }
   1.957 +      assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   1.958 +             (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   1.959 +             !gch->incremental_collection_failed(),
   1.960 +             "Twice in a row");
   1.961 +      seen_incremental_collection_failed = false;
   1.962 +    }
   1.963 +#endif // ASSERT
   1.964 +  }
   1.965 +
   1.966 +  if (ZapUnusedHeapArea) {
   1.967 +    eden()->check_mangled_unused_area_complete();
   1.968 +    from()->check_mangled_unused_area_complete();
   1.969 +    to()->check_mangled_unused_area_complete();
   1.970 +  }
   1.971 +
   1.972 +  if (!CleanChunkPoolAsync) {
   1.973 +    Chunk::clean_chunk_pool();
   1.974 +  }
   1.975 +
   1.976 +  // update the generation and space performance counters
   1.977 +  update_counters();
   1.978 +  gch->collector_policy()->counters()->update_counters();
   1.979 +}
   1.980 +
   1.981 +void DefNewGeneration::record_spaces_top() {
   1.982 +  assert(ZapUnusedHeapArea, "Not mangling unused space");
   1.983 +  eden()->set_top_for_allocations();
   1.984 +  to()->set_top_for_allocations();
   1.985 +  from()->set_top_for_allocations();
   1.986 +}
   1.987 +
   1.988 +void DefNewGeneration::ref_processor_init() {
   1.989 +  Generation::ref_processor_init();
   1.990 +}
   1.991 +
   1.992 +
   1.993 +void DefNewGeneration::update_counters() {
   1.994 +  if (UsePerfData) {
   1.995 +    _eden_counters->update_all();
   1.996 +    _from_counters->update_all();
   1.997 +    _to_counters->update_all();
   1.998 +    _gen_counters->update_all();
   1.999 +  }
  1.1000 +}
  1.1001 +
  1.1002 +void DefNewGeneration::verify() {
  1.1003 +  eden()->verify();
  1.1004 +  from()->verify();
  1.1005 +    to()->verify();
  1.1006 +}
  1.1007 +
  1.1008 +void DefNewGeneration::print_on(outputStream* st) const {
  1.1009 +  Generation::print_on(st);
  1.1010 +  st->print("  eden");
  1.1011 +  eden()->print_on(st);
  1.1012 +  st->print("  from");
  1.1013 +  from()->print_on(st);
  1.1014 +  st->print("  to  ");
  1.1015 +  to()->print_on(st);
  1.1016 +}
  1.1017 +
  1.1018 +
  1.1019 +const char* DefNewGeneration::name() const {
  1.1020 +  return "def new generation";
  1.1021 +}
  1.1022 +
  1.1023 +// Moved from inline file as they are not called inline
  1.1024 +CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1.1025 +  return eden();
  1.1026 +}
  1.1027 +
  1.1028 +HeapWord* DefNewGeneration::allocate(size_t word_size,
  1.1029 +                                     bool is_tlab) {
  1.1030 +  // This is the slow-path allocation for the DefNewGeneration.
  1.1031 +  // Most allocations are fast-path in compiled code.
  1.1032 +  // We try to allocate from the eden.  If that works, we are happy.
  1.1033 +  // Note that since DefNewGeneration supports lock-free allocation, we
  1.1034 +  // have to use it here, as well.
  1.1035 +  HeapWord* result = eden()->par_allocate(word_size);
  1.1036 +  if (result != NULL) {
  1.1037 +    if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1.1038 +      _next_gen->sample_eden_chunk();
  1.1039 +    }
  1.1040 +    return result;
  1.1041 +  }
  1.1042 +  do {
  1.1043 +    HeapWord* old_limit = eden()->soft_end();
  1.1044 +    if (old_limit < eden()->end()) {
  1.1045 +      // Tell the next generation we reached a limit.
  1.1046 +      HeapWord* new_limit =
  1.1047 +        next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1.1048 +      if (new_limit != NULL) {
  1.1049 +        Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1.1050 +      } else {
  1.1051 +        assert(eden()->soft_end() == eden()->end(),
  1.1052 +               "invalid state after allocation_limit_reached returned null");
  1.1053 +      }
  1.1054 +    } else {
  1.1055 +      // The allocation failed and the soft limit is equal to the hard limit,
  1.1056 +      // there are no reasons to do an attempt to allocate
  1.1057 +      assert(old_limit == eden()->end(), "sanity check");
  1.1058 +      break;
  1.1059 +    }
  1.1060 +    // Try to allocate until succeeded or the soft limit can't be adjusted
  1.1061 +    result = eden()->par_allocate(word_size);
  1.1062 +  } while (result == NULL);
  1.1063 +
  1.1064 +  // If the eden is full and the last collection bailed out, we are running
  1.1065 +  // out of heap space, and we try to allocate the from-space, too.
  1.1066 +  // allocate_from_space can't be inlined because that would introduce a
  1.1067 +  // circular dependency at compile time.
  1.1068 +  if (result == NULL) {
  1.1069 +    result = allocate_from_space(word_size);
  1.1070 +  } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1.1071 +    _next_gen->sample_eden_chunk();
  1.1072 +  }
  1.1073 +  return result;
  1.1074 +}
  1.1075 +
  1.1076 +HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1.1077 +                                         bool is_tlab) {
  1.1078 +  HeapWord* res = eden()->par_allocate(word_size);
  1.1079 +  if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1.1080 +    _next_gen->sample_eden_chunk();
  1.1081 +  }
  1.1082 +  return res;
  1.1083 +}
  1.1084 +
  1.1085 +void DefNewGeneration::gc_prologue(bool full) {
  1.1086 +  // Ensure that _end and _soft_end are the same in eden space.
  1.1087 +  eden()->set_soft_end(eden()->end());
  1.1088 +}
  1.1089 +
  1.1090 +size_t DefNewGeneration::tlab_capacity() const {
  1.1091 +  return eden()->capacity();
  1.1092 +}
  1.1093 +
  1.1094 +size_t DefNewGeneration::tlab_used() const {
  1.1095 +  return eden()->used();
  1.1096 +}
  1.1097 +
  1.1098 +size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1.1099 +  return unsafe_max_alloc_nogc();
  1.1100 +}

mercurial