src/share/vm/memory/allocation.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/memory/allocation.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,804 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "memory/allocation.hpp"
    1.30 +#include "memory/allocation.inline.hpp"
    1.31 +#include "memory/genCollectedHeap.hpp"
    1.32 +#include "memory/metaspaceShared.hpp"
    1.33 +#include "memory/resourceArea.hpp"
    1.34 +#include "memory/universe.hpp"
    1.35 +#include "runtime/atomic.hpp"
    1.36 +#include "runtime/os.hpp"
    1.37 +#include "runtime/task.hpp"
    1.38 +#include "runtime/threadCritical.hpp"
    1.39 +#include "services/memTracker.hpp"
    1.40 +#include "utilities/ostream.hpp"
    1.41 +
    1.42 +#ifdef TARGET_OS_FAMILY_linux
    1.43 +# include "os_linux.inline.hpp"
    1.44 +#endif
    1.45 +#ifdef TARGET_OS_FAMILY_solaris
    1.46 +# include "os_solaris.inline.hpp"
    1.47 +#endif
    1.48 +#ifdef TARGET_OS_FAMILY_windows
    1.49 +# include "os_windows.inline.hpp"
    1.50 +#endif
    1.51 +#ifdef TARGET_OS_FAMILY_aix
    1.52 +# include "os_aix.inline.hpp"
    1.53 +#endif
    1.54 +#ifdef TARGET_OS_FAMILY_bsd
    1.55 +# include "os_bsd.inline.hpp"
    1.56 +#endif
    1.57 +
    1.58 +void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
    1.59 +void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
    1.60 +void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
    1.61 +void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
    1.62 +
    1.63 +void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
    1.64 +void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
    1.65 +void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
    1.66 +void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
    1.67 +
    1.68 +void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    1.69 +                                 size_t word_size, bool read_only,
    1.70 +                                 MetaspaceObj::Type type, TRAPS) throw() {
    1.71 +  // Klass has it's own operator new
    1.72 +  return Metaspace::allocate(loader_data, word_size, read_only,
    1.73 +                             type, CHECK_NULL);
    1.74 +}
    1.75 +
    1.76 +bool MetaspaceObj::is_shared() const {
    1.77 +  return MetaspaceShared::is_in_shared_space(this);
    1.78 +}
    1.79 +
    1.80 +bool MetaspaceObj::is_metaspace_object() const {
    1.81 +  return Metaspace::contains((void*)this);
    1.82 +}
    1.83 +
    1.84 +void MetaspaceObj::print_address_on(outputStream* st) const {
    1.85 +  st->print(" {" INTPTR_FORMAT "}", p2i(this));
    1.86 +}
    1.87 +
    1.88 +void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
    1.89 +  address res;
    1.90 +  switch (type) {
    1.91 +   case C_HEAP:
    1.92 +    res = (address)AllocateHeap(size, flags, CALLER_PC);
    1.93 +    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    1.94 +    break;
    1.95 +   case RESOURCE_AREA:
    1.96 +    // new(size) sets allocation type RESOURCE_AREA.
    1.97 +    res = (address)operator new(size);
    1.98 +    break;
    1.99 +   default:
   1.100 +    ShouldNotReachHere();
   1.101 +  }
   1.102 +  return res;
   1.103 +}
   1.104 +
   1.105 +void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
   1.106 +  return (address) operator new(size, type, flags);
   1.107 +}
   1.108 +
   1.109 +void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   1.110 +    allocation_type type, MEMFLAGS flags) throw() {
   1.111 +  //should only call this with std::nothrow, use other operator new() otherwise
   1.112 +  address res;
   1.113 +  switch (type) {
   1.114 +   case C_HEAP:
   1.115 +    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   1.116 +    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   1.117 +    break;
   1.118 +   case RESOURCE_AREA:
   1.119 +    // new(size) sets allocation type RESOURCE_AREA.
   1.120 +    res = (address)operator new(size, std::nothrow);
   1.121 +    break;
   1.122 +   default:
   1.123 +    ShouldNotReachHere();
   1.124 +  }
   1.125 +  return res;
   1.126 +}
   1.127 +
   1.128 +void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   1.129 +    allocation_type type, MEMFLAGS flags) throw() {
   1.130 +  return (address)operator new(size, nothrow_constant, type, flags);
   1.131 +}
   1.132 +
   1.133 +void ResourceObj::operator delete(void* p) {
   1.134 +  assert(((ResourceObj *)p)->allocated_on_C_heap(),
   1.135 +         "delete only allowed for C_HEAP objects");
   1.136 +  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   1.137 +  FreeHeap(p);
   1.138 +}
   1.139 +
   1.140 +void ResourceObj::operator delete [](void* p) {
   1.141 +  operator delete(p);
   1.142 +}
   1.143 +
   1.144 +#ifdef ASSERT
   1.145 +void ResourceObj::set_allocation_type(address res, allocation_type type) {
   1.146 +    // Set allocation type in the resource object
   1.147 +    uintptr_t allocation = (uintptr_t)res;
   1.148 +    assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
   1.149 +    assert(type <= allocation_mask, "incorrect allocation type");
   1.150 +    ResourceObj* resobj = (ResourceObj *)res;
   1.151 +    resobj->_allocation_t[0] = ~(allocation + type);
   1.152 +    if (type != STACK_OR_EMBEDDED) {
   1.153 +      // Called from operator new() and CollectionSetChooser(),
   1.154 +      // set verification value.
   1.155 +      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   1.156 +    }
   1.157 +}
   1.158 +
   1.159 +ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   1.160 +    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   1.161 +    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   1.162 +}
   1.163 +
   1.164 +bool ResourceObj::is_type_set() const {
   1.165 +    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   1.166 +    return get_allocation_type()  == type &&
   1.167 +           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   1.168 +}
   1.169 +
   1.170 +ResourceObj::ResourceObj() { // default constructor
   1.171 +    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   1.172 +      // Operator new() is not called for allocations
   1.173 +      // on stack and for embedded objects.
   1.174 +      set_allocation_type((address)this, STACK_OR_EMBEDDED);
   1.175 +    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   1.176 +      // For some reason we got a value which resembles
   1.177 +      // an embedded or stack object (operator new() does not
   1.178 +      // set such type). Keep it since it is valid value
   1.179 +      // (even if it was garbage).
   1.180 +      // Ignore garbage in other fields.
   1.181 +    } else if (is_type_set()) {
   1.182 +      // Operator new() was called and type was set.
   1.183 +      assert(!allocated_on_stack(),
   1.184 +             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   1.185 +                     p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   1.186 +    } else {
   1.187 +      // Operator new() was not called.
   1.188 +      // Assume that it is embedded or stack object.
   1.189 +      set_allocation_type((address)this, STACK_OR_EMBEDDED);
   1.190 +    }
   1.191 +    _allocation_t[1] = 0; // Zap verification value
   1.192 +}
   1.193 +
   1.194 +ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   1.195 +    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   1.196 +    // Note: garbage may resembles valid value.
   1.197 +    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   1.198 +           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   1.199 +                   p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   1.200 +    set_allocation_type((address)this, STACK_OR_EMBEDDED);
   1.201 +    _allocation_t[1] = 0; // Zap verification value
   1.202 +}
   1.203 +
   1.204 +ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   1.205 +    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   1.206 +    assert(allocated_on_stack(),
   1.207 +           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   1.208 +                   p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   1.209 +    // Keep current _allocation_t value;
   1.210 +    return *this;
   1.211 +}
   1.212 +
   1.213 +ResourceObj::~ResourceObj() {
   1.214 +    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   1.215 +    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   1.216 +      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   1.217 +    }
   1.218 +}
   1.219 +#endif // ASSERT
   1.220 +
   1.221 +
   1.222 +void trace_heap_malloc(size_t size, const char* name, void* p) {
   1.223 +  // A lock is not needed here - tty uses a lock internally
   1.224 +  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
   1.225 +}
   1.226 +
   1.227 +
   1.228 +void trace_heap_free(void* p) {
   1.229 +  // A lock is not needed here - tty uses a lock internally
   1.230 +  tty->print_cr("Heap free   " INTPTR_FORMAT, p2i(p));
   1.231 +}
   1.232 +
   1.233 +//--------------------------------------------------------------------------------------
   1.234 +// ChunkPool implementation
   1.235 +
   1.236 +// MT-safe pool of chunks to reduce malloc/free thrashing
   1.237 +// NB: not using Mutex because pools are used before Threads are initialized
   1.238 +class ChunkPool: public CHeapObj<mtInternal> {
   1.239 +  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   1.240 +  size_t       _num_chunks;   // number of unused chunks in pool
   1.241 +  size_t       _num_used;     // number of chunks currently checked out
   1.242 +  const size_t _size;         // size of each chunk (must be uniform)
   1.243 +
   1.244 +  // Our four static pools
   1.245 +  static ChunkPool* _large_pool;
   1.246 +  static ChunkPool* _medium_pool;
   1.247 +  static ChunkPool* _small_pool;
   1.248 +  static ChunkPool* _tiny_pool;
   1.249 +
   1.250 +  // return first element or null
   1.251 +  void* get_first() {
   1.252 +    Chunk* c = _first;
   1.253 +    if (_first) {
   1.254 +      _first = _first->next();
   1.255 +      _num_chunks--;
   1.256 +    }
   1.257 +    return c;
   1.258 +  }
   1.259 +
   1.260 + public:
   1.261 +  // All chunks in a ChunkPool has the same size
   1.262 +   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   1.263 +
   1.264 +  // Allocate a new chunk from the pool (might expand the pool)
   1.265 +  _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   1.266 +    assert(bytes == _size, "bad size");
   1.267 +    void* p = NULL;
   1.268 +    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   1.269 +    // should be done outside ThreadCritical lock due to NMT
   1.270 +    { ThreadCritical tc;
   1.271 +      _num_used++;
   1.272 +      p = get_first();
   1.273 +    }
   1.274 +    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   1.275 +    if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   1.276 +      vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   1.277 +    }
   1.278 +    return p;
   1.279 +  }
   1.280 +
   1.281 +  // Return a chunk to the pool
   1.282 +  void free(Chunk* chunk) {
   1.283 +    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   1.284 +    ThreadCritical tc;
   1.285 +    _num_used--;
   1.286 +
   1.287 +    // Add chunk to list
   1.288 +    chunk->set_next(_first);
   1.289 +    _first = chunk;
   1.290 +    _num_chunks++;
   1.291 +  }
   1.292 +
   1.293 +  // Prune the pool
   1.294 +  void free_all_but(size_t n) {
   1.295 +    Chunk* cur = NULL;
   1.296 +    Chunk* next;
   1.297 +    {
   1.298 +    // if we have more than n chunks, free all of them
   1.299 +    ThreadCritical tc;
   1.300 +    if (_num_chunks > n) {
   1.301 +      // free chunks at end of queue, for better locality
   1.302 +        cur = _first;
   1.303 +      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   1.304 +
   1.305 +      if (cur != NULL) {
   1.306 +          next = cur->next();
   1.307 +        cur->set_next(NULL);
   1.308 +        cur = next;
   1.309 +
   1.310 +          _num_chunks = n;
   1.311 +        }
   1.312 +      }
   1.313 +    }
   1.314 +
   1.315 +    // Free all remaining chunks, outside of ThreadCritical
   1.316 +    // to avoid deadlock with NMT
   1.317 +        while(cur != NULL) {
   1.318 +          next = cur->next();
   1.319 +      os::free(cur, mtChunk);
   1.320 +          cur = next;
   1.321 +        }
   1.322 +      }
   1.323 +
   1.324 +  // Accessors to preallocated pool's
   1.325 +  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   1.326 +  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   1.327 +  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   1.328 +  static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
   1.329 +
   1.330 +  static void initialize() {
   1.331 +    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   1.332 +    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   1.333 +    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   1.334 +    _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
   1.335 +  }
   1.336 +
   1.337 +  static void clean() {
   1.338 +    enum { BlocksToKeep = 5 };
   1.339 +     _tiny_pool->free_all_but(BlocksToKeep);
   1.340 +     _small_pool->free_all_but(BlocksToKeep);
   1.341 +     _medium_pool->free_all_but(BlocksToKeep);
   1.342 +     _large_pool->free_all_but(BlocksToKeep);
   1.343 +  }
   1.344 +};
   1.345 +
   1.346 +ChunkPool* ChunkPool::_large_pool  = NULL;
   1.347 +ChunkPool* ChunkPool::_medium_pool = NULL;
   1.348 +ChunkPool* ChunkPool::_small_pool  = NULL;
   1.349 +ChunkPool* ChunkPool::_tiny_pool   = NULL;
   1.350 +
   1.351 +void chunkpool_init() {
   1.352 +  ChunkPool::initialize();
   1.353 +}
   1.354 +
   1.355 +void
   1.356 +Chunk::clean_chunk_pool() {
   1.357 +  ChunkPool::clean();
   1.358 +}
   1.359 +
   1.360 +
   1.361 +//--------------------------------------------------------------------------------------
   1.362 +// ChunkPoolCleaner implementation
   1.363 +//
   1.364 +
   1.365 +class ChunkPoolCleaner : public PeriodicTask {
   1.366 +  enum { CleaningInterval = 5000 };      // cleaning interval in ms
   1.367 +
   1.368 + public:
   1.369 +   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   1.370 +   void task() {
   1.371 +     ChunkPool::clean();
   1.372 +   }
   1.373 +};
   1.374 +
   1.375 +//--------------------------------------------------------------------------------------
   1.376 +// Chunk implementation
   1.377 +
   1.378 +void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
   1.379 +  // requested_size is equal to sizeof(Chunk) but in order for the arena
   1.380 +  // allocations to come out aligned as expected the size must be aligned
   1.381 +  // to expected arena alignment.
   1.382 +  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   1.383 +  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   1.384 +  size_t bytes = ARENA_ALIGN(requested_size) + length;
   1.385 +  switch (length) {
   1.386 +   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   1.387 +   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   1.388 +   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   1.389 +   case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
   1.390 +   default: {
   1.391 +     void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   1.392 +     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   1.393 +       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   1.394 +     }
   1.395 +     return p;
   1.396 +   }
   1.397 +  }
   1.398 +}
   1.399 +
   1.400 +void Chunk::operator delete(void* p) {
   1.401 +  Chunk* c = (Chunk*)p;
   1.402 +  switch (c->length()) {
   1.403 +   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   1.404 +   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   1.405 +   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   1.406 +   case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
   1.407 +   default:                 os::free(c, mtChunk);
   1.408 +  }
   1.409 +}
   1.410 +
   1.411 +Chunk::Chunk(size_t length) : _len(length) {
   1.412 +  _next = NULL;         // Chain on the linked list
   1.413 +}
   1.414 +
   1.415 +
   1.416 +void Chunk::chop() {
   1.417 +  Chunk *k = this;
   1.418 +  while( k ) {
   1.419 +    Chunk *tmp = k->next();
   1.420 +    // clear out this chunk (to detect allocation bugs)
   1.421 +    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   1.422 +    delete k;                   // Free chunk (was malloc'd)
   1.423 +    k = tmp;
   1.424 +  }
   1.425 +}
   1.426 +
   1.427 +void Chunk::next_chop() {
   1.428 +  _next->chop();
   1.429 +  _next = NULL;
   1.430 +}
   1.431 +
   1.432 +
   1.433 +void Chunk::start_chunk_pool_cleaner_task() {
   1.434 +#ifdef ASSERT
   1.435 +  static bool task_created = false;
   1.436 +  assert(!task_created, "should not start chuck pool cleaner twice");
   1.437 +  task_created = true;
   1.438 +#endif
   1.439 +  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   1.440 +  cleaner->enroll();
   1.441 +}
   1.442 +
   1.443 +//------------------------------Arena------------------------------------------
   1.444 +NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   1.445 +
   1.446 +Arena::Arena(size_t init_size) {
   1.447 +  size_t round_size = (sizeof (char *)) - 1;
   1.448 +  init_size = (init_size+round_size) & ~round_size;
   1.449 +  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   1.450 +  _hwm = _chunk->bottom();      // Save the cached hwm, max
   1.451 +  _max = _chunk->top();
   1.452 +  set_size_in_bytes(init_size);
   1.453 +  NOT_PRODUCT(Atomic::inc(&_instance_count);)
   1.454 +}
   1.455 +
   1.456 +Arena::Arena() {
   1.457 +  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   1.458 +  _hwm = _chunk->bottom();      // Save the cached hwm, max
   1.459 +  _max = _chunk->top();
   1.460 +  set_size_in_bytes(Chunk::init_size);
   1.461 +  NOT_PRODUCT(Atomic::inc(&_instance_count);)
   1.462 +}
   1.463 +
   1.464 +Arena *Arena::move_contents(Arena *copy) {
   1.465 +  copy->destruct_contents();
   1.466 +  copy->_chunk = _chunk;
   1.467 +  copy->_hwm   = _hwm;
   1.468 +  copy->_max   = _max;
   1.469 +  copy->_first = _first;
   1.470 +
   1.471 +  // workaround rare racing condition, which could double count
   1.472 +  // the arena size by native memory tracking
   1.473 +  size_t size = size_in_bytes();
   1.474 +  set_size_in_bytes(0);
   1.475 +  copy->set_size_in_bytes(size);
   1.476 +  // Destroy original arena
   1.477 +  reset();
   1.478 +  return copy;            // Return Arena with contents
   1.479 +}
   1.480 +
   1.481 +Arena::~Arena() {
   1.482 +  destruct_contents();
   1.483 +  NOT_PRODUCT(Atomic::dec(&_instance_count);)
   1.484 +}
   1.485 +
   1.486 +void* Arena::operator new(size_t size) throw() {
   1.487 +  assert(false, "Use dynamic memory type binding");
   1.488 +  return NULL;
   1.489 +}
   1.490 +
   1.491 +void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   1.492 +  assert(false, "Use dynamic memory type binding");
   1.493 +  return NULL;
   1.494 +}
   1.495 +
   1.496 +  // dynamic memory type binding
   1.497 +void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
   1.498 +#ifdef ASSERT
   1.499 +  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   1.500 +  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   1.501 +  return p;
   1.502 +#else
   1.503 +  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   1.504 +#endif
   1.505 +}
   1.506 +
   1.507 +void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
   1.508 +#ifdef ASSERT
   1.509 +  void* p = os::malloc(size, flags|otArena, CALLER_PC);
   1.510 +  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   1.511 +  return p;
   1.512 +#else
   1.513 +  return os::malloc(size, flags|otArena, CALLER_PC);
   1.514 +#endif
   1.515 +}
   1.516 +
   1.517 +void Arena::operator delete(void* p) {
   1.518 +  FreeHeap(p);
   1.519 +}
   1.520 +
   1.521 +// Destroy this arenas contents and reset to empty
   1.522 +void Arena::destruct_contents() {
   1.523 +  if (UseMallocOnly && _first != NULL) {
   1.524 +    char* end = _first->next() ? _first->top() : _hwm;
   1.525 +    free_malloced_objects(_first, _first->bottom(), end, _hwm);
   1.526 +  }
   1.527 +  // reset size before chop to avoid a rare racing condition
   1.528 +  // that can have total arena memory exceed total chunk memory
   1.529 +  set_size_in_bytes(0);
   1.530 +  _first->chop();
   1.531 +  reset();
   1.532 +}
   1.533 +
   1.534 +// This is high traffic method, but many calls actually don't
   1.535 +// change the size
   1.536 +void Arena::set_size_in_bytes(size_t size) {
   1.537 +  if (_size_in_bytes != size) {
   1.538 +    _size_in_bytes = size;
   1.539 +    MemTracker::record_arena_size((address)this, size);
   1.540 +  }
   1.541 +}
   1.542 +
   1.543 +// Total of all Chunks in arena
   1.544 +size_t Arena::used() const {
   1.545 +  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   1.546 +  register Chunk *k = _first;
   1.547 +  while( k != _chunk) {         // Whilst have Chunks in a row
   1.548 +    sum += k->length();         // Total size of this Chunk
   1.549 +    k = k->next();              // Bump along to next Chunk
   1.550 +  }
   1.551 +  return sum;                   // Return total consumed space.
   1.552 +}
   1.553 +
   1.554 +void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   1.555 +  vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   1.556 +}
   1.557 +
   1.558 +// Grow a new Chunk
   1.559 +void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   1.560 +  // Get minimal required size.  Either real big, or even bigger for giant objs
   1.561 +  size_t len = MAX2(x, (size_t) Chunk::size);
   1.562 +
   1.563 +  Chunk *k = _chunk;            // Get filled-up chunk address
   1.564 +  _chunk = new (alloc_failmode, len) Chunk(len);
   1.565 +
   1.566 +  if (_chunk == NULL) {
   1.567 +    _chunk = k;                 // restore the previous value of _chunk
   1.568 +    return NULL;
   1.569 +  }
   1.570 +  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   1.571 +  else _first = _chunk;
   1.572 +  _hwm  = _chunk->bottom();     // Save the cached hwm, max
   1.573 +  _max =  _chunk->top();
   1.574 +  set_size_in_bytes(size_in_bytes() + len);
   1.575 +  void* result = _hwm;
   1.576 +  _hwm += x;
   1.577 +  return result;
   1.578 +}
   1.579 +
   1.580 +
   1.581 +
   1.582 +// Reallocate storage in Arena.
   1.583 +void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   1.584 +  assert(new_size >= 0, "bad size");
   1.585 +  if (new_size == 0) return NULL;
   1.586 +#ifdef ASSERT
   1.587 +  if (UseMallocOnly) {
   1.588 +    // always allocate a new object  (otherwise we'll free this one twice)
   1.589 +    char* copy = (char*)Amalloc(new_size, alloc_failmode);
   1.590 +    if (copy == NULL) {
   1.591 +      return NULL;
   1.592 +    }
   1.593 +    size_t n = MIN2(old_size, new_size);
   1.594 +    if (n > 0) memcpy(copy, old_ptr, n);
   1.595 +    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   1.596 +    return copy;
   1.597 +  }
   1.598 +#endif
   1.599 +  char *c_old = (char*)old_ptr; // Handy name
   1.600 +  // Stupid fast special case
   1.601 +  if( new_size <= old_size ) {  // Shrink in-place
   1.602 +    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   1.603 +      _hwm = c_old+new_size;    // Adjust hwm
   1.604 +    return c_old;
   1.605 +  }
   1.606 +
   1.607 +  // make sure that new_size is legal
   1.608 +  size_t corrected_new_size = ARENA_ALIGN(new_size);
   1.609 +
   1.610 +  // See if we can resize in-place
   1.611 +  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   1.612 +      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   1.613 +    _hwm = c_old+corrected_new_size;      // Adjust hwm
   1.614 +    return c_old;               // Return old pointer
   1.615 +  }
   1.616 +
   1.617 +  // Oops, got to relocate guts
   1.618 +  void *new_ptr = Amalloc(new_size, alloc_failmode);
   1.619 +  if (new_ptr == NULL) {
   1.620 +    return NULL;
   1.621 +  }
   1.622 +  memcpy( new_ptr, c_old, old_size );
   1.623 +  Afree(c_old,old_size);        // Mostly done to keep stats accurate
   1.624 +  return new_ptr;
   1.625 +}
   1.626 +
   1.627 +
   1.628 +// Determine if pointer belongs to this Arena or not.
   1.629 +bool Arena::contains( const void *ptr ) const {
   1.630 +#ifdef ASSERT
   1.631 +  if (UseMallocOnly) {
   1.632 +    // really slow, but not easy to make fast
   1.633 +    if (_chunk == NULL) return false;
   1.634 +    char** bottom = (char**)_chunk->bottom();
   1.635 +    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   1.636 +      if (*p == ptr) return true;
   1.637 +    }
   1.638 +    for (Chunk *c = _first; c != NULL; c = c->next()) {
   1.639 +      if (c == _chunk) continue;  // current chunk has been processed
   1.640 +      char** bottom = (char**)c->bottom();
   1.641 +      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   1.642 +        if (*p == ptr) return true;
   1.643 +      }
   1.644 +    }
   1.645 +    return false;
   1.646 +  }
   1.647 +#endif
   1.648 +  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   1.649 +    return true;                // Check for in this chunk
   1.650 +  for (Chunk *c = _first; c; c = c->next()) {
   1.651 +    if (c == _chunk) continue;  // current chunk has been processed
   1.652 +    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   1.653 +      return true;              // Check for every chunk in Arena
   1.654 +    }
   1.655 +  }
   1.656 +  return false;                 // Not in any Chunk, so not in Arena
   1.657 +}
   1.658 +
   1.659 +
   1.660 +#ifdef ASSERT
   1.661 +void* Arena::malloc(size_t size) {
   1.662 +  assert(UseMallocOnly, "shouldn't call");
   1.663 +  // use malloc, but save pointer in res. area for later freeing
   1.664 +  char** save = (char**)internal_malloc_4(sizeof(char*));
   1.665 +  return (*save = (char*)os::malloc(size, mtChunk));
   1.666 +}
   1.667 +
   1.668 +// for debugging with UseMallocOnly
   1.669 +void* Arena::internal_malloc_4(size_t x) {
   1.670 +  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   1.671 +  check_for_overflow(x, "Arena::internal_malloc_4");
   1.672 +  if (_hwm + x > _max) {
   1.673 +    return grow(x);
   1.674 +  } else {
   1.675 +    char *old = _hwm;
   1.676 +    _hwm += x;
   1.677 +    return old;
   1.678 +  }
   1.679 +}
   1.680 +#endif
   1.681 +
   1.682 +
   1.683 +//--------------------------------------------------------------------------------------
   1.684 +// Non-product code
   1.685 +
   1.686 +#ifndef PRODUCT
   1.687 +// The global operator new should never be called since it will usually indicate
   1.688 +// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   1.689 +// that they're allocated on the C heap.
   1.690 +// Commented out in product version to avoid conflicts with third-party C++ native code.
   1.691 +// On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   1.692 +// from jdk source and causing data corruption. Such as
   1.693 +//  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   1.694 +// define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   1.695 +//
   1.696 +#ifndef ALLOW_OPERATOR_NEW_USAGE
   1.697 +void* operator new(size_t size) throw() {
   1.698 +  assert(false, "Should not call global operator new");
   1.699 +  return 0;
   1.700 +}
   1.701 +
   1.702 +void* operator new [](size_t size) throw() {
   1.703 +  assert(false, "Should not call global operator new[]");
   1.704 +  return 0;
   1.705 +}
   1.706 +
   1.707 +void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   1.708 +  assert(false, "Should not call global operator new");
   1.709 +  return 0;
   1.710 +}
   1.711 +
   1.712 +void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
   1.713 +  assert(false, "Should not call global operator new[]");
   1.714 +  return 0;
   1.715 +}
   1.716 +
   1.717 +void operator delete(void* p) {
   1.718 +  assert(false, "Should not call global delete");
   1.719 +}
   1.720 +
   1.721 +void operator delete [](void* p) {
   1.722 +  assert(false, "Should not call global delete []");
   1.723 +}
   1.724 +#endif // ALLOW_OPERATOR_NEW_USAGE
   1.725 +
   1.726 +void AllocatedObj::print() const       { print_on(tty); }
   1.727 +void AllocatedObj::print_value() const { print_value_on(tty); }
   1.728 +
   1.729 +void AllocatedObj::print_on(outputStream* st) const {
   1.730 +  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   1.731 +}
   1.732 +
   1.733 +void AllocatedObj::print_value_on(outputStream* st) const {
   1.734 +  st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   1.735 +}
   1.736 +
   1.737 +julong Arena::_bytes_allocated = 0;
   1.738 +
   1.739 +void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   1.740 +
   1.741 +AllocStats::AllocStats() {
   1.742 +  start_mallocs      = os::num_mallocs;
   1.743 +  start_frees        = os::num_frees;
   1.744 +  start_malloc_bytes = os::alloc_bytes;
   1.745 +  start_mfree_bytes  = os::free_bytes;
   1.746 +  start_res_bytes    = Arena::_bytes_allocated;
   1.747 +}
   1.748 +
   1.749 +julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   1.750 +julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   1.751 +julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   1.752 +julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   1.753 +julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   1.754 +void    AllocStats::print() {
   1.755 +  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   1.756 +                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   1.757 +                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   1.758 +}
   1.759 +
   1.760 +
   1.761 +// debugging code
   1.762 +inline void Arena::free_all(char** start, char** end) {
   1.763 +  for (char** p = start; p < end; p++) if (*p) os::free(*p);
   1.764 +}
   1.765 +
   1.766 +void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   1.767 +  assert(UseMallocOnly, "should not call");
   1.768 +  // free all objects malloced since resource mark was created; resource area
   1.769 +  // contains their addresses
   1.770 +  if (chunk->next()) {
   1.771 +    // this chunk is full, and some others too
   1.772 +    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   1.773 +      char* top = c->top();
   1.774 +      if (c->next() == NULL) {
   1.775 +        top = hwm2;     // last junk is only used up to hwm2
   1.776 +        assert(c->contains(hwm2), "bad hwm2");
   1.777 +      }
   1.778 +      free_all((char**)c->bottom(), (char**)top);
   1.779 +    }
   1.780 +    assert(chunk->contains(hwm), "bad hwm");
   1.781 +    assert(chunk->contains(max), "bad max");
   1.782 +    free_all((char**)hwm, (char**)max);
   1.783 +  } else {
   1.784 +    // this chunk was partially used
   1.785 +    assert(chunk->contains(hwm), "bad hwm");
   1.786 +    assert(chunk->contains(hwm2), "bad hwm2");
   1.787 +    free_all((char**)hwm, (char**)hwm2);
   1.788 +  }
   1.789 +}
   1.790 +
   1.791 +
   1.792 +ReallocMark::ReallocMark() {
   1.793 +#ifdef ASSERT
   1.794 +  Thread *thread = ThreadLocalStorage::get_thread_slow();
   1.795 +  _nesting = thread->resource_area()->nesting();
   1.796 +#endif
   1.797 +}
   1.798 +
   1.799 +void ReallocMark::check() {
   1.800 +#ifdef ASSERT
   1.801 +  if (_nesting != Thread::current()->resource_area()->nesting()) {
   1.802 +    fatal("allocation bug: array could grow within nested ResourceMark");
   1.803 +  }
   1.804 +#endif
   1.805 +}
   1.806 +
   1.807 +#endif // Non-product

mercurial