src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,1979 @@
     1.4 +/*
     1.5 + * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    1.29 +#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    1.30 +
    1.31 +#include "gc_implementation/g1/concurrentMark.hpp"
    1.32 +#include "gc_implementation/g1/evacuationInfo.hpp"
    1.33 +#include "gc_implementation/g1/g1AllocRegion.hpp"
    1.34 +#include "gc_implementation/g1/g1HRPrinter.hpp"
    1.35 +#include "gc_implementation/g1/g1MonitoringSupport.hpp"
    1.36 +#include "gc_implementation/g1/g1RemSet.hpp"
    1.37 +#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    1.38 +#include "gc_implementation/g1/g1YCTypes.hpp"
    1.39 +#include "gc_implementation/g1/heapRegionSeq.hpp"
    1.40 +#include "gc_implementation/g1/heapRegionSet.hpp"
    1.41 +#include "gc_implementation/shared/hSpaceCounters.hpp"
    1.42 +#include "gc_implementation/shared/parGCAllocBuffer.hpp"
    1.43 +#include "memory/barrierSet.hpp"
    1.44 +#include "memory/memRegion.hpp"
    1.45 +#include "memory/sharedHeap.hpp"
    1.46 +#include "utilities/stack.hpp"
    1.47 +
    1.48 +// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    1.49 +// It uses the "Garbage First" heap organization and algorithm, which
    1.50 +// may combine concurrent marking with parallel, incremental compaction of
    1.51 +// heap subsets that will yield large amounts of garbage.
    1.52 +
    1.53 +// Forward declarations
    1.54 +class HeapRegion;
    1.55 +class HRRSCleanupTask;
    1.56 +class GenerationSpec;
    1.57 +class OopsInHeapRegionClosure;
    1.58 +class G1KlassScanClosure;
    1.59 +class G1ScanHeapEvacClosure;
    1.60 +class ObjectClosure;
    1.61 +class SpaceClosure;
    1.62 +class CompactibleSpaceClosure;
    1.63 +class Space;
    1.64 +class G1CollectorPolicy;
    1.65 +class GenRemSet;
    1.66 +class G1RemSet;
    1.67 +class HeapRegionRemSetIterator;
    1.68 +class ConcurrentMark;
    1.69 +class ConcurrentMarkThread;
    1.70 +class ConcurrentG1Refine;
    1.71 +class ConcurrentGCTimer;
    1.72 +class GenerationCounters;
    1.73 +class STWGCTimer;
    1.74 +class G1NewTracer;
    1.75 +class G1OldTracer;
    1.76 +class EvacuationFailedInfo;
    1.77 +class nmethod;
    1.78 +class Ticks;
    1.79 +
    1.80 +typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    1.81 +typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    1.82 +
    1.83 +typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    1.84 +typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    1.85 +
    1.86 +enum GCAllocPurpose {
    1.87 +  GCAllocForTenured,
    1.88 +  GCAllocForSurvived,
    1.89 +  GCAllocPurposeCount
    1.90 +};
    1.91 +
    1.92 +class YoungList : public CHeapObj<mtGC> {
    1.93 +private:
    1.94 +  G1CollectedHeap* _g1h;
    1.95 +
    1.96 +  HeapRegion* _head;
    1.97 +
    1.98 +  HeapRegion* _survivor_head;
    1.99 +  HeapRegion* _survivor_tail;
   1.100 +
   1.101 +  HeapRegion* _curr;
   1.102 +
   1.103 +  uint        _length;
   1.104 +  uint        _survivor_length;
   1.105 +
   1.106 +  size_t      _last_sampled_rs_lengths;
   1.107 +  size_t      _sampled_rs_lengths;
   1.108 +
   1.109 +  void         empty_list(HeapRegion* list);
   1.110 +
   1.111 +public:
   1.112 +  YoungList(G1CollectedHeap* g1h);
   1.113 +
   1.114 +  void         push_region(HeapRegion* hr);
   1.115 +  void         add_survivor_region(HeapRegion* hr);
   1.116 +
   1.117 +  void         empty_list();
   1.118 +  bool         is_empty() { return _length == 0; }
   1.119 +  uint         length() { return _length; }
   1.120 +  uint         survivor_length() { return _survivor_length; }
   1.121 +
   1.122 +  // Currently we do not keep track of the used byte sum for the
   1.123 +  // young list and the survivors and it'd be quite a lot of work to
   1.124 +  // do so. When we'll eventually replace the young list with
   1.125 +  // instances of HeapRegionLinkedList we'll get that for free. So,
   1.126 +  // we'll report the more accurate information then.
   1.127 +  size_t       eden_used_bytes() {
   1.128 +    assert(length() >= survivor_length(), "invariant");
   1.129 +    return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   1.130 +  }
   1.131 +  size_t       survivor_used_bytes() {
   1.132 +    return (size_t) survivor_length() * HeapRegion::GrainBytes;
   1.133 +  }
   1.134 +
   1.135 +  void rs_length_sampling_init();
   1.136 +  bool rs_length_sampling_more();
   1.137 +  void rs_length_sampling_next();
   1.138 +
   1.139 +  void reset_sampled_info() {
   1.140 +    _last_sampled_rs_lengths =   0;
   1.141 +  }
   1.142 +  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   1.143 +
   1.144 +  // for development purposes
   1.145 +  void reset_auxilary_lists();
   1.146 +  void clear() { _head = NULL; _length = 0; }
   1.147 +
   1.148 +  void clear_survivors() {
   1.149 +    _survivor_head    = NULL;
   1.150 +    _survivor_tail    = NULL;
   1.151 +    _survivor_length  = 0;
   1.152 +  }
   1.153 +
   1.154 +  HeapRegion* first_region() { return _head; }
   1.155 +  HeapRegion* first_survivor_region() { return _survivor_head; }
   1.156 +  HeapRegion* last_survivor_region() { return _survivor_tail; }
   1.157 +
   1.158 +  // debugging
   1.159 +  bool          check_list_well_formed();
   1.160 +  bool          check_list_empty(bool check_sample = true);
   1.161 +  void          print();
   1.162 +};
   1.163 +
   1.164 +class MutatorAllocRegion : public G1AllocRegion {
   1.165 +protected:
   1.166 +  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   1.167 +  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   1.168 +public:
   1.169 +  MutatorAllocRegion()
   1.170 +    : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   1.171 +};
   1.172 +
   1.173 +class SurvivorGCAllocRegion : public G1AllocRegion {
   1.174 +protected:
   1.175 +  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   1.176 +  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   1.177 +public:
   1.178 +  SurvivorGCAllocRegion()
   1.179 +  : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   1.180 +};
   1.181 +
   1.182 +class OldGCAllocRegion : public G1AllocRegion {
   1.183 +protected:
   1.184 +  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   1.185 +  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   1.186 +public:
   1.187 +  OldGCAllocRegion()
   1.188 +  : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   1.189 +};
   1.190 +
   1.191 +// The G1 STW is alive closure.
   1.192 +// An instance is embedded into the G1CH and used as the
   1.193 +// (optional) _is_alive_non_header closure in the STW
   1.194 +// reference processor. It is also extensively used during
   1.195 +// reference processing during STW evacuation pauses.
   1.196 +class G1STWIsAliveClosure: public BoolObjectClosure {
   1.197 +  G1CollectedHeap* _g1;
   1.198 +public:
   1.199 +  G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   1.200 +  bool do_object_b(oop p);
   1.201 +};
   1.202 +
   1.203 +class RefineCardTableEntryClosure;
   1.204 +
   1.205 +class G1CollectedHeap : public SharedHeap {
   1.206 +  friend class VM_G1CollectForAllocation;
   1.207 +  friend class VM_G1CollectFull;
   1.208 +  friend class VM_G1IncCollectionPause;
   1.209 +  friend class VMStructs;
   1.210 +  friend class MutatorAllocRegion;
   1.211 +  friend class SurvivorGCAllocRegion;
   1.212 +  friend class OldGCAllocRegion;
   1.213 +
   1.214 +  // Closures used in implementation.
   1.215 +  template <G1Barrier barrier, bool do_mark_object>
   1.216 +  friend class G1ParCopyClosure;
   1.217 +  friend class G1IsAliveClosure;
   1.218 +  friend class G1EvacuateFollowersClosure;
   1.219 +  friend class G1ParScanThreadState;
   1.220 +  friend class G1ParScanClosureSuper;
   1.221 +  friend class G1ParEvacuateFollowersClosure;
   1.222 +  friend class G1ParTask;
   1.223 +  friend class G1FreeGarbageRegionClosure;
   1.224 +  friend class RefineCardTableEntryClosure;
   1.225 +  friend class G1PrepareCompactClosure;
   1.226 +  friend class RegionSorter;
   1.227 +  friend class RegionResetter;
   1.228 +  friend class CountRCClosure;
   1.229 +  friend class EvacPopObjClosure;
   1.230 +  friend class G1ParCleanupCTTask;
   1.231 +
   1.232 +  // Other related classes.
   1.233 +  friend class G1MarkSweep;
   1.234 +
   1.235 +private:
   1.236 +  // The one and only G1CollectedHeap, so static functions can find it.
   1.237 +  static G1CollectedHeap* _g1h;
   1.238 +
   1.239 +  static size_t _humongous_object_threshold_in_words;
   1.240 +
   1.241 +  // Storage for the G1 heap.
   1.242 +  VirtualSpace _g1_storage;
   1.243 +  MemRegion    _g1_reserved;
   1.244 +
   1.245 +  // The part of _g1_storage that is currently committed.
   1.246 +  MemRegion _g1_committed;
   1.247 +
   1.248 +  // The master free list. It will satisfy all new region allocations.
   1.249 +  FreeRegionList _free_list;
   1.250 +
   1.251 +  // The secondary free list which contains regions that have been
   1.252 +  // freed up during the cleanup process. This will be appended to the
   1.253 +  // master free list when appropriate.
   1.254 +  FreeRegionList _secondary_free_list;
   1.255 +
   1.256 +  // It keeps track of the old regions.
   1.257 +  HeapRegionSet _old_set;
   1.258 +
   1.259 +  // It keeps track of the humongous regions.
   1.260 +  HeapRegionSet _humongous_set;
   1.261 +
   1.262 +  // The number of regions we could create by expansion.
   1.263 +  uint _expansion_regions;
   1.264 +
   1.265 +  // The block offset table for the G1 heap.
   1.266 +  G1BlockOffsetSharedArray* _bot_shared;
   1.267 +
   1.268 +  // Tears down the region sets / lists so that they are empty and the
   1.269 +  // regions on the heap do not belong to a region set / list. The
   1.270 +  // only exception is the humongous set which we leave unaltered. If
   1.271 +  // free_list_only is true, it will only tear down the master free
   1.272 +  // list. It is called before a Full GC (free_list_only == false) or
   1.273 +  // before heap shrinking (free_list_only == true).
   1.274 +  void tear_down_region_sets(bool free_list_only);
   1.275 +
   1.276 +  // Rebuilds the region sets / lists so that they are repopulated to
   1.277 +  // reflect the contents of the heap. The only exception is the
   1.278 +  // humongous set which was not torn down in the first place. If
   1.279 +  // free_list_only is true, it will only rebuild the master free
   1.280 +  // list. It is called after a Full GC (free_list_only == false) or
   1.281 +  // after heap shrinking (free_list_only == true).
   1.282 +  void rebuild_region_sets(bool free_list_only);
   1.283 +
   1.284 +  // The sequence of all heap regions in the heap.
   1.285 +  HeapRegionSeq _hrs;
   1.286 +
   1.287 +  // Alloc region used to satisfy mutator allocation requests.
   1.288 +  MutatorAllocRegion _mutator_alloc_region;
   1.289 +
   1.290 +  // Alloc region used to satisfy allocation requests by the GC for
   1.291 +  // survivor objects.
   1.292 +  SurvivorGCAllocRegion _survivor_gc_alloc_region;
   1.293 +
   1.294 +  // PLAB sizing policy for survivors.
   1.295 +  PLABStats _survivor_plab_stats;
   1.296 +
   1.297 +  // Alloc region used to satisfy allocation requests by the GC for
   1.298 +  // old objects.
   1.299 +  OldGCAllocRegion _old_gc_alloc_region;
   1.300 +
   1.301 +  // PLAB sizing policy for tenured objects.
   1.302 +  PLABStats _old_plab_stats;
   1.303 +
   1.304 +  PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   1.305 +    PLABStats* stats = NULL;
   1.306 +
   1.307 +    switch (purpose) {
   1.308 +    case GCAllocForSurvived:
   1.309 +      stats = &_survivor_plab_stats;
   1.310 +      break;
   1.311 +    case GCAllocForTenured:
   1.312 +      stats = &_old_plab_stats;
   1.313 +      break;
   1.314 +    default:
   1.315 +      assert(false, "unrecognized GCAllocPurpose");
   1.316 +    }
   1.317 +
   1.318 +    return stats;
   1.319 +  }
   1.320 +
   1.321 +  // The last old region we allocated to during the last GC.
   1.322 +  // Typically, it is not full so we should re-use it during the next GC.
   1.323 +  HeapRegion* _retained_old_gc_alloc_region;
   1.324 +
   1.325 +  // It specifies whether we should attempt to expand the heap after a
   1.326 +  // region allocation failure. If heap expansion fails we set this to
   1.327 +  // false so that we don't re-attempt the heap expansion (it's likely
   1.328 +  // that subsequent expansion attempts will also fail if one fails).
   1.329 +  // Currently, it is only consulted during GC and it's reset at the
   1.330 +  // start of each GC.
   1.331 +  bool _expand_heap_after_alloc_failure;
   1.332 +
   1.333 +  // It resets the mutator alloc region before new allocations can take place.
   1.334 +  void init_mutator_alloc_region();
   1.335 +
   1.336 +  // It releases the mutator alloc region.
   1.337 +  void release_mutator_alloc_region();
   1.338 +
   1.339 +  // It initializes the GC alloc regions at the start of a GC.
   1.340 +  void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   1.341 +
   1.342 +  // It releases the GC alloc regions at the end of a GC.
   1.343 +  void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   1.344 +
   1.345 +  // It does any cleanup that needs to be done on the GC alloc regions
   1.346 +  // before a Full GC.
   1.347 +  void abandon_gc_alloc_regions();
   1.348 +
   1.349 +  // Helper for monitoring and management support.
   1.350 +  G1MonitoringSupport* _g1mm;
   1.351 +
   1.352 +  // Determines PLAB size for a particular allocation purpose.
   1.353 +  size_t desired_plab_sz(GCAllocPurpose purpose);
   1.354 +
   1.355 +  // Outside of GC pauses, the number of bytes used in all regions other
   1.356 +  // than the current allocation region.
   1.357 +  size_t _summary_bytes_used;
   1.358 +
   1.359 +  // This is used for a quick test on whether a reference points into
   1.360 +  // the collection set or not. Basically, we have an array, with one
   1.361 +  // byte per region, and that byte denotes whether the corresponding
   1.362 +  // region is in the collection set or not. The entry corresponding
   1.363 +  // the bottom of the heap, i.e., region 0, is pointed to by
   1.364 +  // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   1.365 +  // biased so that it actually points to address 0 of the address
   1.366 +  // space, to make the test as fast as possible (we can simply shift
   1.367 +  // the address to address into it, instead of having to subtract the
   1.368 +  // bottom of the heap from the address before shifting it; basically
   1.369 +  // it works in the same way the card table works).
   1.370 +  bool* _in_cset_fast_test;
   1.371 +
   1.372 +  // The allocated array used for the fast test on whether a reference
   1.373 +  // points into the collection set or not. This field is also used to
   1.374 +  // free the array.
   1.375 +  bool* _in_cset_fast_test_base;
   1.376 +
   1.377 +  // The length of the _in_cset_fast_test_base array.
   1.378 +  uint _in_cset_fast_test_length;
   1.379 +
   1.380 +  volatile unsigned _gc_time_stamp;
   1.381 +
   1.382 +  size_t* _surviving_young_words;
   1.383 +
   1.384 +  G1HRPrinter _hr_printer;
   1.385 +
   1.386 +  void setup_surviving_young_words();
   1.387 +  void update_surviving_young_words(size_t* surv_young_words);
   1.388 +  void cleanup_surviving_young_words();
   1.389 +
   1.390 +  // It decides whether an explicit GC should start a concurrent cycle
   1.391 +  // instead of doing a STW GC. Currently, a concurrent cycle is
   1.392 +  // explicitly started if:
   1.393 +  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   1.394 +  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   1.395 +  // (c) cause == _g1_humongous_allocation
   1.396 +  bool should_do_concurrent_full_gc(GCCause::Cause cause);
   1.397 +
   1.398 +  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   1.399 +  // concurrent cycles) we have started.
   1.400 +  volatile unsigned int _old_marking_cycles_started;
   1.401 +
   1.402 +  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   1.403 +  // concurrent cycles) we have completed.
   1.404 +  volatile unsigned int _old_marking_cycles_completed;
   1.405 +
   1.406 +  bool _concurrent_cycle_started;
   1.407 +
   1.408 +  // This is a non-product method that is helpful for testing. It is
   1.409 +  // called at the end of a GC and artificially expands the heap by
   1.410 +  // allocating a number of dead regions. This way we can induce very
   1.411 +  // frequent marking cycles and stress the cleanup / concurrent
   1.412 +  // cleanup code more (as all the regions that will be allocated by
   1.413 +  // this method will be found dead by the marking cycle).
   1.414 +  void allocate_dummy_regions() PRODUCT_RETURN;
   1.415 +
   1.416 +  // Clear RSets after a compaction. It also resets the GC time stamps.
   1.417 +  void clear_rsets_post_compaction();
   1.418 +
   1.419 +  // If the HR printer is active, dump the state of the regions in the
   1.420 +  // heap after a compaction.
   1.421 +  void print_hrs_post_compaction();
   1.422 +
   1.423 +  double verify(bool guard, const char* msg);
   1.424 +  void verify_before_gc();
   1.425 +  void verify_after_gc();
   1.426 +
   1.427 +  void log_gc_header();
   1.428 +  void log_gc_footer(double pause_time_sec);
   1.429 +
   1.430 +  // These are macros so that, if the assert fires, we get the correct
   1.431 +  // line number, file, etc.
   1.432 +
   1.433 +#define heap_locking_asserts_err_msg(_extra_message_)                         \
   1.434 +  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   1.435 +          (_extra_message_),                                                  \
   1.436 +          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   1.437 +          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   1.438 +          BOOL_TO_STR(Thread::current()->is_VM_thread()))
   1.439 +
   1.440 +#define assert_heap_locked()                                                  \
   1.441 +  do {                                                                        \
   1.442 +    assert(Heap_lock->owned_by_self(),                                        \
   1.443 +           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   1.444 +  } while (0)
   1.445 +
   1.446 +#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   1.447 +  do {                                                                        \
   1.448 +    assert(Heap_lock->owned_by_self() ||                                      \
   1.449 +           (SafepointSynchronize::is_at_safepoint() &&                        \
   1.450 +             ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   1.451 +           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   1.452 +                                        "should be at a safepoint"));         \
   1.453 +  } while (0)
   1.454 +
   1.455 +#define assert_heap_locked_and_not_at_safepoint()                             \
   1.456 +  do {                                                                        \
   1.457 +    assert(Heap_lock->owned_by_self() &&                                      \
   1.458 +                                    !SafepointSynchronize::is_at_safepoint(), \
   1.459 +          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   1.460 +                                       "should not be at a safepoint"));      \
   1.461 +  } while (0)
   1.462 +
   1.463 +#define assert_heap_not_locked()                                              \
   1.464 +  do {                                                                        \
   1.465 +    assert(!Heap_lock->owned_by_self(),                                       \
   1.466 +        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   1.467 +  } while (0)
   1.468 +
   1.469 +#define assert_heap_not_locked_and_not_at_safepoint()                         \
   1.470 +  do {                                                                        \
   1.471 +    assert(!Heap_lock->owned_by_self() &&                                     \
   1.472 +                                    !SafepointSynchronize::is_at_safepoint(), \
   1.473 +      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   1.474 +                                   "should not be at a safepoint"));          \
   1.475 +  } while (0)
   1.476 +
   1.477 +#define assert_at_safepoint(_should_be_vm_thread_)                            \
   1.478 +  do {                                                                        \
   1.479 +    assert(SafepointSynchronize::is_at_safepoint() &&                         \
   1.480 +              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   1.481 +           heap_locking_asserts_err_msg("should be at a safepoint"));         \
   1.482 +  } while (0)
   1.483 +
   1.484 +#define assert_not_at_safepoint()                                             \
   1.485 +  do {                                                                        \
   1.486 +    assert(!SafepointSynchronize::is_at_safepoint(),                          \
   1.487 +           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   1.488 +  } while (0)
   1.489 +
   1.490 +protected:
   1.491 +
   1.492 +  // The young region list.
   1.493 +  YoungList*  _young_list;
   1.494 +
   1.495 +  // The current policy object for the collector.
   1.496 +  G1CollectorPolicy* _g1_policy;
   1.497 +
   1.498 +  // This is the second level of trying to allocate a new region. If
   1.499 +  // new_region() didn't find a region on the free_list, this call will
   1.500 +  // check whether there's anything available on the
   1.501 +  // secondary_free_list and/or wait for more regions to appear on
   1.502 +  // that list, if _free_regions_coming is set.
   1.503 +  HeapRegion* new_region_try_secondary_free_list(bool is_old);
   1.504 +
   1.505 +  // Try to allocate a single non-humongous HeapRegion sufficient for
   1.506 +  // an allocation of the given word_size. If do_expand is true,
   1.507 +  // attempt to expand the heap if necessary to satisfy the allocation
   1.508 +  // request. If the region is to be used as an old region or for a
   1.509 +  // humongous object, set is_old to true. If not, to false.
   1.510 +  HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   1.511 +
   1.512 +  // Attempt to satisfy a humongous allocation request of the given
   1.513 +  // size by finding a contiguous set of free regions of num_regions
   1.514 +  // length and remove them from the master free list. Return the
   1.515 +  // index of the first region or G1_NULL_HRS_INDEX if the search
   1.516 +  // was unsuccessful.
   1.517 +  uint humongous_obj_allocate_find_first(uint num_regions,
   1.518 +                                         size_t word_size);
   1.519 +
   1.520 +  // Initialize a contiguous set of free regions of length num_regions
   1.521 +  // and starting at index first so that they appear as a single
   1.522 +  // humongous region.
   1.523 +  HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   1.524 +                                                      uint num_regions,
   1.525 +                                                      size_t word_size);
   1.526 +
   1.527 +  // Attempt to allocate a humongous object of the given size. Return
   1.528 +  // NULL if unsuccessful.
   1.529 +  HeapWord* humongous_obj_allocate(size_t word_size);
   1.530 +
   1.531 +  // The following two methods, allocate_new_tlab() and
   1.532 +  // mem_allocate(), are the two main entry points from the runtime
   1.533 +  // into the G1's allocation routines. They have the following
   1.534 +  // assumptions:
   1.535 +  //
   1.536 +  // * They should both be called outside safepoints.
   1.537 +  //
   1.538 +  // * They should both be called without holding the Heap_lock.
   1.539 +  //
   1.540 +  // * All allocation requests for new TLABs should go to
   1.541 +  //   allocate_new_tlab().
   1.542 +  //
   1.543 +  // * All non-TLAB allocation requests should go to mem_allocate().
   1.544 +  //
   1.545 +  // * If either call cannot satisfy the allocation request using the
   1.546 +  //   current allocating region, they will try to get a new one. If
   1.547 +  //   this fails, they will attempt to do an evacuation pause and
   1.548 +  //   retry the allocation.
   1.549 +  //
   1.550 +  // * If all allocation attempts fail, even after trying to schedule
   1.551 +  //   an evacuation pause, allocate_new_tlab() will return NULL,
   1.552 +  //   whereas mem_allocate() will attempt a heap expansion and/or
   1.553 +  //   schedule a Full GC.
   1.554 +  //
   1.555 +  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   1.556 +  //   should never be called with word_size being humongous. All
   1.557 +  //   humongous allocation requests should go to mem_allocate() which
   1.558 +  //   will satisfy them with a special path.
   1.559 +
   1.560 +  virtual HeapWord* allocate_new_tlab(size_t word_size);
   1.561 +
   1.562 +  virtual HeapWord* mem_allocate(size_t word_size,
   1.563 +                                 bool*  gc_overhead_limit_was_exceeded);
   1.564 +
   1.565 +  // The following three methods take a gc_count_before_ret
   1.566 +  // parameter which is used to return the GC count if the method
   1.567 +  // returns NULL. Given that we are required to read the GC count
   1.568 +  // while holding the Heap_lock, and these paths will take the
   1.569 +  // Heap_lock at some point, it's easier to get them to read the GC
   1.570 +  // count while holding the Heap_lock before they return NULL instead
   1.571 +  // of the caller (namely: mem_allocate()) having to also take the
   1.572 +  // Heap_lock just to read the GC count.
   1.573 +
   1.574 +  // First-level mutator allocation attempt: try to allocate out of
   1.575 +  // the mutator alloc region without taking the Heap_lock. This
   1.576 +  // should only be used for non-humongous allocations.
   1.577 +  inline HeapWord* attempt_allocation(size_t word_size,
   1.578 +                                      unsigned int* gc_count_before_ret,
   1.579 +                                      int* gclocker_retry_count_ret);
   1.580 +
   1.581 +  // Second-level mutator allocation attempt: take the Heap_lock and
   1.582 +  // retry the allocation attempt, potentially scheduling a GC
   1.583 +  // pause. This should only be used for non-humongous allocations.
   1.584 +  HeapWord* attempt_allocation_slow(size_t word_size,
   1.585 +                                    unsigned int* gc_count_before_ret,
   1.586 +                                    int* gclocker_retry_count_ret);
   1.587 +
   1.588 +  // Takes the Heap_lock and attempts a humongous allocation. It can
   1.589 +  // potentially schedule a GC pause.
   1.590 +  HeapWord* attempt_allocation_humongous(size_t word_size,
   1.591 +                                         unsigned int* gc_count_before_ret,
   1.592 +                                         int* gclocker_retry_count_ret);
   1.593 +
   1.594 +  // Allocation attempt that should be called during safepoints (e.g.,
   1.595 +  // at the end of a successful GC). expect_null_mutator_alloc_region
   1.596 +  // specifies whether the mutator alloc region is expected to be NULL
   1.597 +  // or not.
   1.598 +  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   1.599 +                                       bool expect_null_mutator_alloc_region);
   1.600 +
   1.601 +  // It dirties the cards that cover the block so that so that the post
   1.602 +  // write barrier never queues anything when updating objects on this
   1.603 +  // block. It is assumed (and in fact we assert) that the block
   1.604 +  // belongs to a young region.
   1.605 +  inline void dirty_young_block(HeapWord* start, size_t word_size);
   1.606 +
   1.607 +  // Allocate blocks during garbage collection. Will ensure an
   1.608 +  // allocation region, either by picking one or expanding the
   1.609 +  // heap, and then allocate a block of the given size. The block
   1.610 +  // may not be a humongous - it must fit into a single heap region.
   1.611 +  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   1.612 +
   1.613 +  HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   1.614 +                                    HeapRegion*    alloc_region,
   1.615 +                                    bool           par,
   1.616 +                                    size_t         word_size);
   1.617 +
   1.618 +  // Ensure that no further allocations can happen in "r", bearing in mind
   1.619 +  // that parallel threads might be attempting allocations.
   1.620 +  void par_allocate_remaining_space(HeapRegion* r);
   1.621 +
   1.622 +  // Allocation attempt during GC for a survivor object / PLAB.
   1.623 +  inline HeapWord* survivor_attempt_allocation(size_t word_size);
   1.624 +
   1.625 +  // Allocation attempt during GC for an old object / PLAB.
   1.626 +  inline HeapWord* old_attempt_allocation(size_t word_size);
   1.627 +
   1.628 +  // These methods are the "callbacks" from the G1AllocRegion class.
   1.629 +
   1.630 +  // For mutator alloc regions.
   1.631 +  HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   1.632 +  void retire_mutator_alloc_region(HeapRegion* alloc_region,
   1.633 +                                   size_t allocated_bytes);
   1.634 +
   1.635 +  // For GC alloc regions.
   1.636 +  HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   1.637 +                                  GCAllocPurpose ap);
   1.638 +  void retire_gc_alloc_region(HeapRegion* alloc_region,
   1.639 +                              size_t allocated_bytes, GCAllocPurpose ap);
   1.640 +
   1.641 +  // - if explicit_gc is true, the GC is for a System.gc() or a heap
   1.642 +  //   inspection request and should collect the entire heap
   1.643 +  // - if clear_all_soft_refs is true, all soft references should be
   1.644 +  //   cleared during the GC
   1.645 +  // - if explicit_gc is false, word_size describes the allocation that
   1.646 +  //   the GC should attempt (at least) to satisfy
   1.647 +  // - it returns false if it is unable to do the collection due to the
   1.648 +  //   GC locker being active, true otherwise
   1.649 +  bool do_collection(bool explicit_gc,
   1.650 +                     bool clear_all_soft_refs,
   1.651 +                     size_t word_size);
   1.652 +
   1.653 +  // Callback from VM_G1CollectFull operation.
   1.654 +  // Perform a full collection.
   1.655 +  virtual void do_full_collection(bool clear_all_soft_refs);
   1.656 +
   1.657 +  // Resize the heap if necessary after a full collection.  If this is
   1.658 +  // after a collect-for allocation, "word_size" is the allocation size,
   1.659 +  // and will be considered part of the used portion of the heap.
   1.660 +  void resize_if_necessary_after_full_collection(size_t word_size);
   1.661 +
   1.662 +  // Callback from VM_G1CollectForAllocation operation.
   1.663 +  // This function does everything necessary/possible to satisfy a
   1.664 +  // failed allocation request (including collection, expansion, etc.)
   1.665 +  HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   1.666 +
   1.667 +  // Attempting to expand the heap sufficiently
   1.668 +  // to support an allocation of the given "word_size".  If
   1.669 +  // successful, perform the allocation and return the address of the
   1.670 +  // allocated block, or else "NULL".
   1.671 +  HeapWord* expand_and_allocate(size_t word_size);
   1.672 +
   1.673 +  // Process any reference objects discovered during
   1.674 +  // an incremental evacuation pause.
   1.675 +  void process_discovered_references(uint no_of_gc_workers);
   1.676 +
   1.677 +  // Enqueue any remaining discovered references
   1.678 +  // after processing.
   1.679 +  void enqueue_discovered_references(uint no_of_gc_workers);
   1.680 +
   1.681 +public:
   1.682 +
   1.683 +  G1MonitoringSupport* g1mm() {
   1.684 +    assert(_g1mm != NULL, "should have been initialized");
   1.685 +    return _g1mm;
   1.686 +  }
   1.687 +
   1.688 +  // Expand the garbage-first heap by at least the given size (in bytes!).
   1.689 +  // Returns true if the heap was expanded by the requested amount;
   1.690 +  // false otherwise.
   1.691 +  // (Rounds up to a HeapRegion boundary.)
   1.692 +  bool expand(size_t expand_bytes);
   1.693 +
   1.694 +  // Do anything common to GC's.
   1.695 +  virtual void gc_prologue(bool full);
   1.696 +  virtual void gc_epilogue(bool full);
   1.697 +
   1.698 +  // We register a region with the fast "in collection set" test. We
   1.699 +  // simply set to true the array slot corresponding to this region.
   1.700 +  void register_region_with_in_cset_fast_test(HeapRegion* r) {
   1.701 +    assert(_in_cset_fast_test_base != NULL, "sanity");
   1.702 +    assert(r->in_collection_set(), "invariant");
   1.703 +    uint index = r->hrs_index();
   1.704 +    assert(index < _in_cset_fast_test_length, "invariant");
   1.705 +    assert(!_in_cset_fast_test_base[index], "invariant");
   1.706 +    _in_cset_fast_test_base[index] = true;
   1.707 +  }
   1.708 +
   1.709 +  // This is a fast test on whether a reference points into the
   1.710 +  // collection set or not. Assume that the reference
   1.711 +  // points into the heap.
   1.712 +  inline bool in_cset_fast_test(oop obj);
   1.713 +
   1.714 +  void clear_cset_fast_test() {
   1.715 +    assert(_in_cset_fast_test_base != NULL, "sanity");
   1.716 +    memset(_in_cset_fast_test_base, false,
   1.717 +           (size_t) _in_cset_fast_test_length * sizeof(bool));
   1.718 +  }
   1.719 +
   1.720 +  // This is called at the start of either a concurrent cycle or a Full
   1.721 +  // GC to update the number of old marking cycles started.
   1.722 +  void increment_old_marking_cycles_started();
   1.723 +
   1.724 +  // This is called at the end of either a concurrent cycle or a Full
   1.725 +  // GC to update the number of old marking cycles completed. Those two
   1.726 +  // can happen in a nested fashion, i.e., we start a concurrent
   1.727 +  // cycle, a Full GC happens half-way through it which ends first,
   1.728 +  // and then the cycle notices that a Full GC happened and ends
   1.729 +  // too. The concurrent parameter is a boolean to help us do a bit
   1.730 +  // tighter consistency checking in the method. If concurrent is
   1.731 +  // false, the caller is the inner caller in the nesting (i.e., the
   1.732 +  // Full GC). If concurrent is true, the caller is the outer caller
   1.733 +  // in this nesting (i.e., the concurrent cycle). Further nesting is
   1.734 +  // not currently supported. The end of this call also notifies
   1.735 +  // the FullGCCount_lock in case a Java thread is waiting for a full
   1.736 +  // GC to happen (e.g., it called System.gc() with
   1.737 +  // +ExplicitGCInvokesConcurrent).
   1.738 +  void increment_old_marking_cycles_completed(bool concurrent);
   1.739 +
   1.740 +  unsigned int old_marking_cycles_completed() {
   1.741 +    return _old_marking_cycles_completed;
   1.742 +  }
   1.743 +
   1.744 +  void register_concurrent_cycle_start(const Ticks& start_time);
   1.745 +  void register_concurrent_cycle_end();
   1.746 +  void trace_heap_after_concurrent_cycle();
   1.747 +
   1.748 +  G1YCType yc_type();
   1.749 +
   1.750 +  G1HRPrinter* hr_printer() { return &_hr_printer; }
   1.751 +
   1.752 +  // Frees a non-humongous region by initializing its contents and
   1.753 +  // adding it to the free list that's passed as a parameter (this is
   1.754 +  // usually a local list which will be appended to the master free
   1.755 +  // list later). The used bytes of freed regions are accumulated in
   1.756 +  // pre_used. If par is true, the region's RSet will not be freed
   1.757 +  // up. The assumption is that this will be done later.
   1.758 +  // The locked parameter indicates if the caller has already taken
   1.759 +  // care of proper synchronization. This may allow some optimizations.
   1.760 +  void free_region(HeapRegion* hr,
   1.761 +                   FreeRegionList* free_list,
   1.762 +                   bool par,
   1.763 +                   bool locked = false);
   1.764 +
   1.765 +  // Frees a humongous region by collapsing it into individual regions
   1.766 +  // and calling free_region() for each of them. The freed regions
   1.767 +  // will be added to the free list that's passed as a parameter (this
   1.768 +  // is usually a local list which will be appended to the master free
   1.769 +  // list later). The used bytes of freed regions are accumulated in
   1.770 +  // pre_used. If par is true, the region's RSet will not be freed
   1.771 +  // up. The assumption is that this will be done later.
   1.772 +  void free_humongous_region(HeapRegion* hr,
   1.773 +                             FreeRegionList* free_list,
   1.774 +                             bool par);
   1.775 +protected:
   1.776 +
   1.777 +  // Shrink the garbage-first heap by at most the given size (in bytes!).
   1.778 +  // (Rounds down to a HeapRegion boundary.)
   1.779 +  virtual void shrink(size_t expand_bytes);
   1.780 +  void shrink_helper(size_t expand_bytes);
   1.781 +
   1.782 +  #if TASKQUEUE_STATS
   1.783 +  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   1.784 +  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   1.785 +  void reset_taskqueue_stats();
   1.786 +  #endif // TASKQUEUE_STATS
   1.787 +
   1.788 +  // Schedule the VM operation that will do an evacuation pause to
   1.789 +  // satisfy an allocation request of word_size. *succeeded will
   1.790 +  // return whether the VM operation was successful (it did do an
   1.791 +  // evacuation pause) or not (another thread beat us to it or the GC
   1.792 +  // locker was active). Given that we should not be holding the
   1.793 +  // Heap_lock when we enter this method, we will pass the
   1.794 +  // gc_count_before (i.e., total_collections()) as a parameter since
   1.795 +  // it has to be read while holding the Heap_lock. Currently, both
   1.796 +  // methods that call do_collection_pause() release the Heap_lock
   1.797 +  // before the call, so it's easy to read gc_count_before just before.
   1.798 +  HeapWord* do_collection_pause(size_t         word_size,
   1.799 +                                unsigned int   gc_count_before,
   1.800 +                                bool*          succeeded,
   1.801 +                                GCCause::Cause gc_cause);
   1.802 +
   1.803 +  // The guts of the incremental collection pause, executed by the vm
   1.804 +  // thread. It returns false if it is unable to do the collection due
   1.805 +  // to the GC locker being active, true otherwise
   1.806 +  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   1.807 +
   1.808 +  // Actually do the work of evacuating the collection set.
   1.809 +  void evacuate_collection_set(EvacuationInfo& evacuation_info);
   1.810 +
   1.811 +  // The g1 remembered set of the heap.
   1.812 +  G1RemSet* _g1_rem_set;
   1.813 +
   1.814 +  // A set of cards that cover the objects for which the Rsets should be updated
   1.815 +  // concurrently after the collection.
   1.816 +  DirtyCardQueueSet _dirty_card_queue_set;
   1.817 +
   1.818 +  // The closure used to refine a single card.
   1.819 +  RefineCardTableEntryClosure* _refine_cte_cl;
   1.820 +
   1.821 +  // A function to check the consistency of dirty card logs.
   1.822 +  void check_ct_logs_at_safepoint();
   1.823 +
   1.824 +  // A DirtyCardQueueSet that is used to hold cards that contain
   1.825 +  // references into the current collection set. This is used to
   1.826 +  // update the remembered sets of the regions in the collection
   1.827 +  // set in the event of an evacuation failure.
   1.828 +  DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   1.829 +
   1.830 +  // After a collection pause, make the regions in the CS into free
   1.831 +  // regions.
   1.832 +  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   1.833 +
   1.834 +  // Abandon the current collection set without recording policy
   1.835 +  // statistics or updating free lists.
   1.836 +  void abandon_collection_set(HeapRegion* cs_head);
   1.837 +
   1.838 +  // Applies "scan_non_heap_roots" to roots outside the heap,
   1.839 +  // "scan_rs" to roots inside the heap (having done "set_region" to
   1.840 +  // indicate the region in which the root resides),
   1.841 +  // and does "scan_metadata" If "scan_rs" is
   1.842 +  // NULL, then this step is skipped.  The "worker_i"
   1.843 +  // param is for use with parallel roots processing, and should be
   1.844 +  // the "i" of the calling parallel worker thread's work(i) function.
   1.845 +  // In the sequential case this param will be ignored.
   1.846 +  void g1_process_strong_roots(bool is_scavenging,
   1.847 +                               ScanningOption so,
   1.848 +                               OopClosure* scan_non_heap_roots,
   1.849 +                               OopsInHeapRegionClosure* scan_rs,
   1.850 +                               G1KlassScanClosure* scan_klasses,
   1.851 +                               uint worker_i);
   1.852 +
   1.853 +  // Apply "blk" to all the weak roots of the system.  These include
   1.854 +  // JNI weak roots, the code cache, system dictionary, symbol table,
   1.855 +  // string table, and referents of reachable weak refs.
   1.856 +  void g1_process_weak_roots(OopClosure* root_closure);
   1.857 +
   1.858 +  // Notifies all the necessary spaces that the committed space has
   1.859 +  // been updated (either expanded or shrunk). It should be called
   1.860 +  // after _g1_storage is updated.
   1.861 +  void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   1.862 +
   1.863 +  // The concurrent marker (and the thread it runs in.)
   1.864 +  ConcurrentMark* _cm;
   1.865 +  ConcurrentMarkThread* _cmThread;
   1.866 +  bool _mark_in_progress;
   1.867 +
   1.868 +  // The concurrent refiner.
   1.869 +  ConcurrentG1Refine* _cg1r;
   1.870 +
   1.871 +  // The parallel task queues
   1.872 +  RefToScanQueueSet *_task_queues;
   1.873 +
   1.874 +  // True iff a evacuation has failed in the current collection.
   1.875 +  bool _evacuation_failed;
   1.876 +
   1.877 +  EvacuationFailedInfo* _evacuation_failed_info_array;
   1.878 +
   1.879 +  // Failed evacuations cause some logical from-space objects to have
   1.880 +  // forwarding pointers to themselves.  Reset them.
   1.881 +  void remove_self_forwarding_pointers();
   1.882 +
   1.883 +  // Together, these store an object with a preserved mark, and its mark value.
   1.884 +  Stack<oop, mtGC>     _objs_with_preserved_marks;
   1.885 +  Stack<markOop, mtGC> _preserved_marks_of_objs;
   1.886 +
   1.887 +  // Preserve the mark of "obj", if necessary, in preparation for its mark
   1.888 +  // word being overwritten with a self-forwarding-pointer.
   1.889 +  void preserve_mark_if_necessary(oop obj, markOop m);
   1.890 +
   1.891 +  // The stack of evac-failure objects left to be scanned.
   1.892 +  GrowableArray<oop>*    _evac_failure_scan_stack;
   1.893 +  // The closure to apply to evac-failure objects.
   1.894 +
   1.895 +  OopsInHeapRegionClosure* _evac_failure_closure;
   1.896 +  // Set the field above.
   1.897 +  void
   1.898 +  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   1.899 +    _evac_failure_closure = evac_failure_closure;
   1.900 +  }
   1.901 +
   1.902 +  // Push "obj" on the scan stack.
   1.903 +  void push_on_evac_failure_scan_stack(oop obj);
   1.904 +  // Process scan stack entries until the stack is empty.
   1.905 +  void drain_evac_failure_scan_stack();
   1.906 +  // True iff an invocation of "drain_scan_stack" is in progress; to
   1.907 +  // prevent unnecessary recursion.
   1.908 +  bool _drain_in_progress;
   1.909 +
   1.910 +  // Do any necessary initialization for evacuation-failure handling.
   1.911 +  // "cl" is the closure that will be used to process evac-failure
   1.912 +  // objects.
   1.913 +  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   1.914 +  // Do any necessary cleanup for evacuation-failure handling data
   1.915 +  // structures.
   1.916 +  void finalize_for_evac_failure();
   1.917 +
   1.918 +  // An attempt to evacuate "obj" has failed; take necessary steps.
   1.919 +  oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   1.920 +  void handle_evacuation_failure_common(oop obj, markOop m);
   1.921 +
   1.922 +#ifndef PRODUCT
   1.923 +  // Support for forcing evacuation failures. Analogous to
   1.924 +  // PromotionFailureALot for the other collectors.
   1.925 +
   1.926 +  // Records whether G1EvacuationFailureALot should be in effect
   1.927 +  // for the current GC
   1.928 +  bool _evacuation_failure_alot_for_current_gc;
   1.929 +
   1.930 +  // Used to record the GC number for interval checking when
   1.931 +  // determining whether G1EvaucationFailureALot is in effect
   1.932 +  // for the current GC.
   1.933 +  size_t _evacuation_failure_alot_gc_number;
   1.934 +
   1.935 +  // Count of the number of evacuations between failures.
   1.936 +  volatile size_t _evacuation_failure_alot_count;
   1.937 +
   1.938 +  // Set whether G1EvacuationFailureALot should be in effect
   1.939 +  // for the current GC (based upon the type of GC and which
   1.940 +  // command line flags are set);
   1.941 +  inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   1.942 +                                                  bool during_initial_mark,
   1.943 +                                                  bool during_marking);
   1.944 +
   1.945 +  inline void set_evacuation_failure_alot_for_current_gc();
   1.946 +
   1.947 +  // Return true if it's time to cause an evacuation failure.
   1.948 +  inline bool evacuation_should_fail();
   1.949 +
   1.950 +  // Reset the G1EvacuationFailureALot counters.  Should be called at
   1.951 +  // the end of an evacuation pause in which an evacuation failure occurred.
   1.952 +  inline void reset_evacuation_should_fail();
   1.953 +#endif // !PRODUCT
   1.954 +
   1.955 +  // ("Weak") Reference processing support.
   1.956 +  //
   1.957 +  // G1 has 2 instances of the reference processor class. One
   1.958 +  // (_ref_processor_cm) handles reference object discovery
   1.959 +  // and subsequent processing during concurrent marking cycles.
   1.960 +  //
   1.961 +  // The other (_ref_processor_stw) handles reference object
   1.962 +  // discovery and processing during full GCs and incremental
   1.963 +  // evacuation pauses.
   1.964 +  //
   1.965 +  // During an incremental pause, reference discovery will be
   1.966 +  // temporarily disabled for _ref_processor_cm and will be
   1.967 +  // enabled for _ref_processor_stw. At the end of the evacuation
   1.968 +  // pause references discovered by _ref_processor_stw will be
   1.969 +  // processed and discovery will be disabled. The previous
   1.970 +  // setting for reference object discovery for _ref_processor_cm
   1.971 +  // will be re-instated.
   1.972 +  //
   1.973 +  // At the start of marking:
   1.974 +  //  * Discovery by the CM ref processor is verified to be inactive
   1.975 +  //    and it's discovered lists are empty.
   1.976 +  //  * Discovery by the CM ref processor is then enabled.
   1.977 +  //
   1.978 +  // At the end of marking:
   1.979 +  //  * Any references on the CM ref processor's discovered
   1.980 +  //    lists are processed (possibly MT).
   1.981 +  //
   1.982 +  // At the start of full GC we:
   1.983 +  //  * Disable discovery by the CM ref processor and
   1.984 +  //    empty CM ref processor's discovered lists
   1.985 +  //    (without processing any entries).
   1.986 +  //  * Verify that the STW ref processor is inactive and it's
   1.987 +  //    discovered lists are empty.
   1.988 +  //  * Temporarily set STW ref processor discovery as single threaded.
   1.989 +  //  * Temporarily clear the STW ref processor's _is_alive_non_header
   1.990 +  //    field.
   1.991 +  //  * Finally enable discovery by the STW ref processor.
   1.992 +  //
   1.993 +  // The STW ref processor is used to record any discovered
   1.994 +  // references during the full GC.
   1.995 +  //
   1.996 +  // At the end of a full GC we:
   1.997 +  //  * Enqueue any reference objects discovered by the STW ref processor
   1.998 +  //    that have non-live referents. This has the side-effect of
   1.999 +  //    making the STW ref processor inactive by disabling discovery.
  1.1000 +  //  * Verify that the CM ref processor is still inactive
  1.1001 +  //    and no references have been placed on it's discovered
  1.1002 +  //    lists (also checked as a precondition during initial marking).
  1.1003 +
  1.1004 +  // The (stw) reference processor...
  1.1005 +  ReferenceProcessor* _ref_processor_stw;
  1.1006 +
  1.1007 +  STWGCTimer* _gc_timer_stw;
  1.1008 +  ConcurrentGCTimer* _gc_timer_cm;
  1.1009 +
  1.1010 +  G1OldTracer* _gc_tracer_cm;
  1.1011 +  G1NewTracer* _gc_tracer_stw;
  1.1012 +
  1.1013 +  // During reference object discovery, the _is_alive_non_header
  1.1014 +  // closure (if non-null) is applied to the referent object to
  1.1015 +  // determine whether the referent is live. If so then the
  1.1016 +  // reference object does not need to be 'discovered' and can
  1.1017 +  // be treated as a regular oop. This has the benefit of reducing
  1.1018 +  // the number of 'discovered' reference objects that need to
  1.1019 +  // be processed.
  1.1020 +  //
  1.1021 +  // Instance of the is_alive closure for embedding into the
  1.1022 +  // STW reference processor as the _is_alive_non_header field.
  1.1023 +  // Supplying a value for the _is_alive_non_header field is
  1.1024 +  // optional but doing so prevents unnecessary additions to
  1.1025 +  // the discovered lists during reference discovery.
  1.1026 +  G1STWIsAliveClosure _is_alive_closure_stw;
  1.1027 +
  1.1028 +  // The (concurrent marking) reference processor...
  1.1029 +  ReferenceProcessor* _ref_processor_cm;
  1.1030 +
  1.1031 +  // Instance of the concurrent mark is_alive closure for embedding
  1.1032 +  // into the Concurrent Marking reference processor as the
  1.1033 +  // _is_alive_non_header field. Supplying a value for the
  1.1034 +  // _is_alive_non_header field is optional but doing so prevents
  1.1035 +  // unnecessary additions to the discovered lists during reference
  1.1036 +  // discovery.
  1.1037 +  G1CMIsAliveClosure _is_alive_closure_cm;
  1.1038 +
  1.1039 +  // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1.1040 +  HeapRegion** _worker_cset_start_region;
  1.1041 +
  1.1042 +  // Time stamp to validate the regions recorded in the cache
  1.1043 +  // used by G1CollectedHeap::start_cset_region_for_worker().
  1.1044 +  // The heap region entry for a given worker is valid iff
  1.1045 +  // the associated time stamp value matches the current value
  1.1046 +  // of G1CollectedHeap::_gc_time_stamp.
  1.1047 +  unsigned int* _worker_cset_start_region_time_stamp;
  1.1048 +
  1.1049 +  enum G1H_process_strong_roots_tasks {
  1.1050 +    G1H_PS_filter_satb_buffers,
  1.1051 +    G1H_PS_refProcessor_oops_do,
  1.1052 +    // Leave this one last.
  1.1053 +    G1H_PS_NumElements
  1.1054 +  };
  1.1055 +
  1.1056 +  SubTasksDone* _process_strong_tasks;
  1.1057 +
  1.1058 +  volatile bool _free_regions_coming;
  1.1059 +
  1.1060 +public:
  1.1061 +
  1.1062 +  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1.1063 +
  1.1064 +  void set_refine_cte_cl_concurrency(bool concurrent);
  1.1065 +
  1.1066 +  RefToScanQueue *task_queue(int i) const;
  1.1067 +
  1.1068 +  // A set of cards where updates happened during the GC
  1.1069 +  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1.1070 +
  1.1071 +  // A DirtyCardQueueSet that is used to hold cards that contain
  1.1072 +  // references into the current collection set. This is used to
  1.1073 +  // update the remembered sets of the regions in the collection
  1.1074 +  // set in the event of an evacuation failure.
  1.1075 +  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1.1076 +        { return _into_cset_dirty_card_queue_set; }
  1.1077 +
  1.1078 +  // Create a G1CollectedHeap with the specified policy.
  1.1079 +  // Must call the initialize method afterwards.
  1.1080 +  // May not return if something goes wrong.
  1.1081 +  G1CollectedHeap(G1CollectorPolicy* policy);
  1.1082 +
  1.1083 +  // Initialize the G1CollectedHeap to have the initial and
  1.1084 +  // maximum sizes and remembered and barrier sets
  1.1085 +  // specified by the policy object.
  1.1086 +  jint initialize();
  1.1087 +
  1.1088 +  virtual void stop();
  1.1089 +
  1.1090 +  // Return the (conservative) maximum heap alignment for any G1 heap
  1.1091 +  static size_t conservative_max_heap_alignment();
  1.1092 +
  1.1093 +  // Initialize weak reference processing.
  1.1094 +  virtual void ref_processing_init();
  1.1095 +
  1.1096 +  void set_par_threads(uint t) {
  1.1097 +    SharedHeap::set_par_threads(t);
  1.1098 +    // Done in SharedHeap but oddly there are
  1.1099 +    // two _process_strong_tasks's in a G1CollectedHeap
  1.1100 +    // so do it here too.
  1.1101 +    _process_strong_tasks->set_n_threads(t);
  1.1102 +  }
  1.1103 +
  1.1104 +  // Set _n_par_threads according to a policy TBD.
  1.1105 +  void set_par_threads();
  1.1106 +
  1.1107 +  void set_n_termination(int t) {
  1.1108 +    _process_strong_tasks->set_n_threads(t);
  1.1109 +  }
  1.1110 +
  1.1111 +  virtual CollectedHeap::Name kind() const {
  1.1112 +    return CollectedHeap::G1CollectedHeap;
  1.1113 +  }
  1.1114 +
  1.1115 +  // The current policy object for the collector.
  1.1116 +  G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1.1117 +
  1.1118 +  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1.1119 +
  1.1120 +  // Adaptive size policy.  No such thing for g1.
  1.1121 +  virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1.1122 +
  1.1123 +  // The rem set and barrier set.
  1.1124 +  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1.1125 +
  1.1126 +  unsigned get_gc_time_stamp() {
  1.1127 +    return _gc_time_stamp;
  1.1128 +  }
  1.1129 +
  1.1130 +  void reset_gc_time_stamp() {
  1.1131 +    _gc_time_stamp = 0;
  1.1132 +    OrderAccess::fence();
  1.1133 +    // Clear the cached CSet starting regions and time stamps.
  1.1134 +    // Their validity is dependent on the GC timestamp.
  1.1135 +    clear_cset_start_regions();
  1.1136 +  }
  1.1137 +
  1.1138 +  void check_gc_time_stamps() PRODUCT_RETURN;
  1.1139 +
  1.1140 +  void increment_gc_time_stamp() {
  1.1141 +    ++_gc_time_stamp;
  1.1142 +    OrderAccess::fence();
  1.1143 +  }
  1.1144 +
  1.1145 +  // Reset the given region's GC timestamp. If it's starts humongous,
  1.1146 +  // also reset the GC timestamp of its corresponding
  1.1147 +  // continues humongous regions too.
  1.1148 +  void reset_gc_time_stamps(HeapRegion* hr);
  1.1149 +
  1.1150 +  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1.1151 +                                  DirtyCardQueue* into_cset_dcq,
  1.1152 +                                  bool concurrent, uint worker_i);
  1.1153 +
  1.1154 +  // The shared block offset table array.
  1.1155 +  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1.1156 +
  1.1157 +  // Reference Processing accessors
  1.1158 +
  1.1159 +  // The STW reference processor....
  1.1160 +  ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1.1161 +
  1.1162 +  // The Concurrent Marking reference processor...
  1.1163 +  ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1.1164 +
  1.1165 +  ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1.1166 +  G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1.1167 +
  1.1168 +  virtual size_t capacity() const;
  1.1169 +  virtual size_t used() const;
  1.1170 +  // This should be called when we're not holding the heap lock. The
  1.1171 +  // result might be a bit inaccurate.
  1.1172 +  size_t used_unlocked() const;
  1.1173 +  size_t recalculate_used() const;
  1.1174 +
  1.1175 +  // These virtual functions do the actual allocation.
  1.1176 +  // Some heaps may offer a contiguous region for shared non-blocking
  1.1177 +  // allocation, via inlined code (by exporting the address of the top and
  1.1178 +  // end fields defining the extent of the contiguous allocation region.)
  1.1179 +  // But G1CollectedHeap doesn't yet support this.
  1.1180 +
  1.1181 +  // Return an estimate of the maximum allocation that could be performed
  1.1182 +  // without triggering any collection or expansion activity.  In a
  1.1183 +  // generational collector, for example, this is probably the largest
  1.1184 +  // allocation that could be supported (without expansion) in the youngest
  1.1185 +  // generation.  It is "unsafe" because no locks are taken; the result
  1.1186 +  // should be treated as an approximation, not a guarantee, for use in
  1.1187 +  // heuristic resizing decisions.
  1.1188 +  virtual size_t unsafe_max_alloc();
  1.1189 +
  1.1190 +  virtual bool is_maximal_no_gc() const {
  1.1191 +    return _g1_storage.uncommitted_size() == 0;
  1.1192 +  }
  1.1193 +
  1.1194 +  // The total number of regions in the heap.
  1.1195 +  uint n_regions() { return _hrs.length(); }
  1.1196 +
  1.1197 +  // The max number of regions in the heap.
  1.1198 +  uint max_regions() { return _hrs.max_length(); }
  1.1199 +
  1.1200 +  // The number of regions that are completely free.
  1.1201 +  uint free_regions() { return _free_list.length(); }
  1.1202 +
  1.1203 +  // The number of regions that are not completely free.
  1.1204 +  uint used_regions() { return n_regions() - free_regions(); }
  1.1205 +
  1.1206 +  // The number of regions available for "regular" expansion.
  1.1207 +  uint expansion_regions() { return _expansion_regions; }
  1.1208 +
  1.1209 +  // Factory method for HeapRegion instances. It will return NULL if
  1.1210 +  // the allocation fails.
  1.1211 +  HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1.1212 +
  1.1213 +  void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1.1214 +  void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1.1215 +  void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1.1216 +  void verify_dirty_young_regions() PRODUCT_RETURN;
  1.1217 +
  1.1218 +  // verify_region_sets() performs verification over the region
  1.1219 +  // lists. It will be compiled in the product code to be used when
  1.1220 +  // necessary (i.e., during heap verification).
  1.1221 +  void verify_region_sets();
  1.1222 +
  1.1223 +  // verify_region_sets_optional() is planted in the code for
  1.1224 +  // list verification in non-product builds (and it can be enabled in
  1.1225 +  // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1.1226 +#if HEAP_REGION_SET_FORCE_VERIFY
  1.1227 +  void verify_region_sets_optional() {
  1.1228 +    verify_region_sets();
  1.1229 +  }
  1.1230 +#else // HEAP_REGION_SET_FORCE_VERIFY
  1.1231 +  void verify_region_sets_optional() { }
  1.1232 +#endif // HEAP_REGION_SET_FORCE_VERIFY
  1.1233 +
  1.1234 +#ifdef ASSERT
  1.1235 +  bool is_on_master_free_list(HeapRegion* hr) {
  1.1236 +    return hr->containing_set() == &_free_list;
  1.1237 +  }
  1.1238 +#endif // ASSERT
  1.1239 +
  1.1240 +  // Wrapper for the region list operations that can be called from
  1.1241 +  // methods outside this class.
  1.1242 +
  1.1243 +  void secondary_free_list_add(FreeRegionList* list) {
  1.1244 +    _secondary_free_list.add_ordered(list);
  1.1245 +  }
  1.1246 +
  1.1247 +  void append_secondary_free_list() {
  1.1248 +    _free_list.add_ordered(&_secondary_free_list);
  1.1249 +  }
  1.1250 +
  1.1251 +  void append_secondary_free_list_if_not_empty_with_lock() {
  1.1252 +    // If the secondary free list looks empty there's no reason to
  1.1253 +    // take the lock and then try to append it.
  1.1254 +    if (!_secondary_free_list.is_empty()) {
  1.1255 +      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1.1256 +      append_secondary_free_list();
  1.1257 +    }
  1.1258 +  }
  1.1259 +
  1.1260 +  inline void old_set_remove(HeapRegion* hr);
  1.1261 +
  1.1262 +  size_t non_young_capacity_bytes() {
  1.1263 +    return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1.1264 +  }
  1.1265 +
  1.1266 +  void set_free_regions_coming();
  1.1267 +  void reset_free_regions_coming();
  1.1268 +  bool free_regions_coming() { return _free_regions_coming; }
  1.1269 +  void wait_while_free_regions_coming();
  1.1270 +
  1.1271 +  // Determine whether the given region is one that we are using as an
  1.1272 +  // old GC alloc region.
  1.1273 +  bool is_old_gc_alloc_region(HeapRegion* hr) {
  1.1274 +    return hr == _retained_old_gc_alloc_region;
  1.1275 +  }
  1.1276 +
  1.1277 +  // Perform a collection of the heap; intended for use in implementing
  1.1278 +  // "System.gc".  This probably implies as full a collection as the
  1.1279 +  // "CollectedHeap" supports.
  1.1280 +  virtual void collect(GCCause::Cause cause);
  1.1281 +
  1.1282 +  // The same as above but assume that the caller holds the Heap_lock.
  1.1283 +  void collect_locked(GCCause::Cause cause);
  1.1284 +
  1.1285 +  // True iff an evacuation has failed in the most-recent collection.
  1.1286 +  bool evacuation_failed() { return _evacuation_failed; }
  1.1287 +
  1.1288 +  void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1.1289 +  void prepend_to_freelist(FreeRegionList* list);
  1.1290 +  void decrement_summary_bytes(size_t bytes);
  1.1291 +
  1.1292 +  // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1.1293 +  virtual bool is_in(const void* p) const;
  1.1294 +
  1.1295 +  // Return "TRUE" iff the given object address is within the collection
  1.1296 +  // set.
  1.1297 +  inline bool obj_in_cs(oop obj);
  1.1298 +
  1.1299 +  // Return "TRUE" iff the given object address is in the reserved
  1.1300 +  // region of g1.
  1.1301 +  bool is_in_g1_reserved(const void* p) const {
  1.1302 +    return _g1_reserved.contains(p);
  1.1303 +  }
  1.1304 +
  1.1305 +  // Returns a MemRegion that corresponds to the space that has been
  1.1306 +  // reserved for the heap
  1.1307 +  MemRegion g1_reserved() {
  1.1308 +    return _g1_reserved;
  1.1309 +  }
  1.1310 +
  1.1311 +  // Returns a MemRegion that corresponds to the space that has been
  1.1312 +  // committed in the heap
  1.1313 +  MemRegion g1_committed() {
  1.1314 +    return _g1_committed;
  1.1315 +  }
  1.1316 +
  1.1317 +  virtual bool is_in_closed_subset(const void* p) const;
  1.1318 +
  1.1319 +  G1SATBCardTableModRefBS* g1_barrier_set() {
  1.1320 +    return (G1SATBCardTableModRefBS*) barrier_set();
  1.1321 +  }
  1.1322 +
  1.1323 +  // This resets the card table to all zeros.  It is used after
  1.1324 +  // a collection pause which used the card table to claim cards.
  1.1325 +  void cleanUpCardTable();
  1.1326 +
  1.1327 +  // Iteration functions.
  1.1328 +
  1.1329 +  // Iterate over all the ref-containing fields of all objects, calling
  1.1330 +  // "cl.do_oop" on each.
  1.1331 +  virtual void oop_iterate(ExtendedOopClosure* cl);
  1.1332 +
  1.1333 +  // Same as above, restricted to a memory region.
  1.1334 +  void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1.1335 +
  1.1336 +  // Iterate over all objects, calling "cl.do_object" on each.
  1.1337 +  virtual void object_iterate(ObjectClosure* cl);
  1.1338 +
  1.1339 +  virtual void safe_object_iterate(ObjectClosure* cl) {
  1.1340 +    object_iterate(cl);
  1.1341 +  }
  1.1342 +
  1.1343 +  // Iterate over all spaces in use in the heap, in ascending address order.
  1.1344 +  virtual void space_iterate(SpaceClosure* cl);
  1.1345 +
  1.1346 +  // Iterate over heap regions, in address order, terminating the
  1.1347 +  // iteration early if the "doHeapRegion" method returns "true".
  1.1348 +  void heap_region_iterate(HeapRegionClosure* blk) const;
  1.1349 +
  1.1350 +  // Return the region with the given index. It assumes the index is valid.
  1.1351 +  inline HeapRegion* region_at(uint index) const;
  1.1352 +
  1.1353 +  // Divide the heap region sequence into "chunks" of some size (the number
  1.1354 +  // of regions divided by the number of parallel threads times some
  1.1355 +  // overpartition factor, currently 4).  Assumes that this will be called
  1.1356 +  // in parallel by ParallelGCThreads worker threads with discinct worker
  1.1357 +  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1.1358 +  // calls will use the same "claim_value", and that that claim value is
  1.1359 +  // different from the claim_value of any heap region before the start of
  1.1360 +  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1.1361 +  // attempting to claim the first region in each chunk, and, if
  1.1362 +  // successful, applying the closure to each region in the chunk (and
  1.1363 +  // setting the claim value of the second and subsequent regions of the
  1.1364 +  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1.1365 +  // i.e., that a closure never attempt to abort a traversal.
  1.1366 +  void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1.1367 +                                       uint worker,
  1.1368 +                                       uint no_of_par_workers,
  1.1369 +                                       jint claim_value);
  1.1370 +
  1.1371 +  // It resets all the region claim values to the default.
  1.1372 +  void reset_heap_region_claim_values();
  1.1373 +
  1.1374 +  // Resets the claim values of regions in the current
  1.1375 +  // collection set to the default.
  1.1376 +  void reset_cset_heap_region_claim_values();
  1.1377 +
  1.1378 +#ifdef ASSERT
  1.1379 +  bool check_heap_region_claim_values(jint claim_value);
  1.1380 +
  1.1381 +  // Same as the routine above but only checks regions in the
  1.1382 +  // current collection set.
  1.1383 +  bool check_cset_heap_region_claim_values(jint claim_value);
  1.1384 +#endif // ASSERT
  1.1385 +
  1.1386 +  // Clear the cached cset start regions and (more importantly)
  1.1387 +  // the time stamps. Called when we reset the GC time stamp.
  1.1388 +  void clear_cset_start_regions();
  1.1389 +
  1.1390 +  // Given the id of a worker, obtain or calculate a suitable
  1.1391 +  // starting region for iterating over the current collection set.
  1.1392 +  HeapRegion* start_cset_region_for_worker(uint worker_i);
  1.1393 +
  1.1394 +  // This is a convenience method that is used by the
  1.1395 +  // HeapRegionIterator classes to calculate the starting region for
  1.1396 +  // each worker so that they do not all start from the same region.
  1.1397 +  HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1.1398 +
  1.1399 +  // Iterate over the regions (if any) in the current collection set.
  1.1400 +  void collection_set_iterate(HeapRegionClosure* blk);
  1.1401 +
  1.1402 +  // As above but starting from region r
  1.1403 +  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1.1404 +
  1.1405 +  // Returns the first (lowest address) compactible space in the heap.
  1.1406 +  virtual CompactibleSpace* first_compactible_space();
  1.1407 +
  1.1408 +  // A CollectedHeap will contain some number of spaces.  This finds the
  1.1409 +  // space containing a given address, or else returns NULL.
  1.1410 +  virtual Space* space_containing(const void* addr) const;
  1.1411 +
  1.1412 +  // A G1CollectedHeap will contain some number of heap regions.  This
  1.1413 +  // finds the region containing a given address, or else returns NULL.
  1.1414 +  template <class T>
  1.1415 +  inline HeapRegion* heap_region_containing(const T addr) const;
  1.1416 +
  1.1417 +  // Like the above, but requires "addr" to be in the heap (to avoid a
  1.1418 +  // null-check), and unlike the above, may return an continuing humongous
  1.1419 +  // region.
  1.1420 +  template <class T>
  1.1421 +  inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1.1422 +
  1.1423 +  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1.1424 +  // each address in the (reserved) heap is a member of exactly
  1.1425 +  // one block.  The defining characteristic of a block is that it is
  1.1426 +  // possible to find its size, and thus to progress forward to the next
  1.1427 +  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1.1428 +  // represent Java objects, or they might be free blocks in a
  1.1429 +  // free-list-based heap (or subheap), as long as the two kinds are
  1.1430 +  // distinguishable and the size of each is determinable.
  1.1431 +
  1.1432 +  // Returns the address of the start of the "block" that contains the
  1.1433 +  // address "addr".  We say "blocks" instead of "object" since some heaps
  1.1434 +  // may not pack objects densely; a chunk may either be an object or a
  1.1435 +  // non-object.
  1.1436 +  virtual HeapWord* block_start(const void* addr) const;
  1.1437 +
  1.1438 +  // Requires "addr" to be the start of a chunk, and returns its size.
  1.1439 +  // "addr + size" is required to be the start of a new chunk, or the end
  1.1440 +  // of the active area of the heap.
  1.1441 +  virtual size_t block_size(const HeapWord* addr) const;
  1.1442 +
  1.1443 +  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1.1444 +  // the block is an object.
  1.1445 +  virtual bool block_is_obj(const HeapWord* addr) const;
  1.1446 +
  1.1447 +  // Does this heap support heap inspection? (+PrintClassHistogram)
  1.1448 +  virtual bool supports_heap_inspection() const { return true; }
  1.1449 +
  1.1450 +  // Section on thread-local allocation buffers (TLABs)
  1.1451 +  // See CollectedHeap for semantics.
  1.1452 +
  1.1453 +  bool supports_tlab_allocation() const;
  1.1454 +  size_t tlab_capacity(Thread* ignored) const;
  1.1455 +  size_t tlab_used(Thread* ignored) const;
  1.1456 +  size_t max_tlab_size() const;
  1.1457 +  size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1.1458 +
  1.1459 +  // Can a compiler initialize a new object without store barriers?
  1.1460 +  // This permission only extends from the creation of a new object
  1.1461 +  // via a TLAB up to the first subsequent safepoint. If such permission
  1.1462 +  // is granted for this heap type, the compiler promises to call
  1.1463 +  // defer_store_barrier() below on any slow path allocation of
  1.1464 +  // a new object for which such initializing store barriers will
  1.1465 +  // have been elided. G1, like CMS, allows this, but should be
  1.1466 +  // ready to provide a compensating write barrier as necessary
  1.1467 +  // if that storage came out of a non-young region. The efficiency
  1.1468 +  // of this implementation depends crucially on being able to
  1.1469 +  // answer very efficiently in constant time whether a piece of
  1.1470 +  // storage in the heap comes from a young region or not.
  1.1471 +  // See ReduceInitialCardMarks.
  1.1472 +  virtual bool can_elide_tlab_store_barriers() const {
  1.1473 +    return true;
  1.1474 +  }
  1.1475 +
  1.1476 +  virtual bool card_mark_must_follow_store() const {
  1.1477 +    return true;
  1.1478 +  }
  1.1479 +
  1.1480 +  inline bool is_in_young(const oop obj);
  1.1481 +
  1.1482 +#ifdef ASSERT
  1.1483 +  virtual bool is_in_partial_collection(const void* p);
  1.1484 +#endif
  1.1485 +
  1.1486 +  virtual bool is_scavengable(const void* addr);
  1.1487 +
  1.1488 +  // We don't need barriers for initializing stores to objects
  1.1489 +  // in the young gen: for the SATB pre-barrier, there is no
  1.1490 +  // pre-value that needs to be remembered; for the remembered-set
  1.1491 +  // update logging post-barrier, we don't maintain remembered set
  1.1492 +  // information for young gen objects.
  1.1493 +  virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1.1494 +
  1.1495 +  // Returns "true" iff the given word_size is "very large".
  1.1496 +  static bool isHumongous(size_t word_size) {
  1.1497 +    // Note this has to be strictly greater-than as the TLABs
  1.1498 +    // are capped at the humongous thresold and we want to
  1.1499 +    // ensure that we don't try to allocate a TLAB as
  1.1500 +    // humongous and that we don't allocate a humongous
  1.1501 +    // object in a TLAB.
  1.1502 +    return word_size > _humongous_object_threshold_in_words;
  1.1503 +  }
  1.1504 +
  1.1505 +  // Update mod union table with the set of dirty cards.
  1.1506 +  void updateModUnion();
  1.1507 +
  1.1508 +  // Set the mod union bits corresponding to the given memRegion.  Note
  1.1509 +  // that this is always a safe operation, since it doesn't clear any
  1.1510 +  // bits.
  1.1511 +  void markModUnionRange(MemRegion mr);
  1.1512 +
  1.1513 +  // Records the fact that a marking phase is no longer in progress.
  1.1514 +  void set_marking_complete() {
  1.1515 +    _mark_in_progress = false;
  1.1516 +  }
  1.1517 +  void set_marking_started() {
  1.1518 +    _mark_in_progress = true;
  1.1519 +  }
  1.1520 +  bool mark_in_progress() {
  1.1521 +    return _mark_in_progress;
  1.1522 +  }
  1.1523 +
  1.1524 +  // Print the maximum heap capacity.
  1.1525 +  virtual size_t max_capacity() const;
  1.1526 +
  1.1527 +  virtual jlong millis_since_last_gc();
  1.1528 +
  1.1529 +
  1.1530 +  // Convenience function to be used in situations where the heap type can be
  1.1531 +  // asserted to be this type.
  1.1532 +  static G1CollectedHeap* heap();
  1.1533 +
  1.1534 +  void set_region_short_lived_locked(HeapRegion* hr);
  1.1535 +  // add appropriate methods for any other surv rate groups
  1.1536 +
  1.1537 +  YoungList* young_list() const { return _young_list; }
  1.1538 +
  1.1539 +  // debugging
  1.1540 +  bool check_young_list_well_formed() {
  1.1541 +    return _young_list->check_list_well_formed();
  1.1542 +  }
  1.1543 +
  1.1544 +  bool check_young_list_empty(bool check_heap,
  1.1545 +                              bool check_sample = true);
  1.1546 +
  1.1547 +  // *** Stuff related to concurrent marking.  It's not clear to me that so
  1.1548 +  // many of these need to be public.
  1.1549 +
  1.1550 +  // The functions below are helper functions that a subclass of
  1.1551 +  // "CollectedHeap" can use in the implementation of its virtual
  1.1552 +  // functions.
  1.1553 +  // This performs a concurrent marking of the live objects in a
  1.1554 +  // bitmap off to the side.
  1.1555 +  void doConcurrentMark();
  1.1556 +
  1.1557 +  bool isMarkedPrev(oop obj) const;
  1.1558 +  bool isMarkedNext(oop obj) const;
  1.1559 +
  1.1560 +  // Determine if an object is dead, given the object and also
  1.1561 +  // the region to which the object belongs. An object is dead
  1.1562 +  // iff a) it was not allocated since the last mark and b) it
  1.1563 +  // is not marked.
  1.1564 +
  1.1565 +  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1.1566 +    return
  1.1567 +      !hr->obj_allocated_since_prev_marking(obj) &&
  1.1568 +      !isMarkedPrev(obj);
  1.1569 +  }
  1.1570 +
  1.1571 +  // This function returns true when an object has been
  1.1572 +  // around since the previous marking and hasn't yet
  1.1573 +  // been marked during this marking.
  1.1574 +
  1.1575 +  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1.1576 +    return
  1.1577 +      !hr->obj_allocated_since_next_marking(obj) &&
  1.1578 +      !isMarkedNext(obj);
  1.1579 +  }
  1.1580 +
  1.1581 +  // Determine if an object is dead, given only the object itself.
  1.1582 +  // This will find the region to which the object belongs and
  1.1583 +  // then call the region version of the same function.
  1.1584 +
  1.1585 +  // Added if it is NULL it isn't dead.
  1.1586 +
  1.1587 +  inline bool is_obj_dead(const oop obj) const;
  1.1588 +
  1.1589 +  inline bool is_obj_ill(const oop obj) const;
  1.1590 +
  1.1591 +  bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1.1592 +  HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1.1593 +  bool is_marked(oop obj, VerifyOption vo);
  1.1594 +  const char* top_at_mark_start_str(VerifyOption vo);
  1.1595 +
  1.1596 +  ConcurrentMark* concurrent_mark() const { return _cm; }
  1.1597 +
  1.1598 +  // Refinement
  1.1599 +
  1.1600 +  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1.1601 +
  1.1602 +  // The dirty cards region list is used to record a subset of regions
  1.1603 +  // whose cards need clearing. The list if populated during the
  1.1604 +  // remembered set scanning and drained during the card table
  1.1605 +  // cleanup. Although the methods are reentrant, population/draining
  1.1606 +  // phases must not overlap. For synchronization purposes the last
  1.1607 +  // element on the list points to itself.
  1.1608 +  HeapRegion* _dirty_cards_region_list;
  1.1609 +  void push_dirty_cards_region(HeapRegion* hr);
  1.1610 +  HeapRegion* pop_dirty_cards_region();
  1.1611 +
  1.1612 +  // Optimized nmethod scanning support routines
  1.1613 +
  1.1614 +  // Register the given nmethod with the G1 heap
  1.1615 +  virtual void register_nmethod(nmethod* nm);
  1.1616 +
  1.1617 +  // Unregister the given nmethod from the G1 heap
  1.1618 +  virtual void unregister_nmethod(nmethod* nm);
  1.1619 +
  1.1620 +  // Migrate the nmethods in the code root lists of the regions
  1.1621 +  // in the collection set to regions in to-space. In the event
  1.1622 +  // of an evacuation failure, nmethods that reference objects
  1.1623 +  // that were not successfullly evacuated are not migrated.
  1.1624 +  void migrate_strong_code_roots();
  1.1625 +
  1.1626 +  // Free up superfluous code root memory.
  1.1627 +  void purge_code_root_memory();
  1.1628 +
  1.1629 +  // During an initial mark pause, mark all the code roots that
  1.1630 +  // point into regions *not* in the collection set.
  1.1631 +  void mark_strong_code_roots(uint worker_id);
  1.1632 +
  1.1633 +  // Rebuild the stong code root lists for each region
  1.1634 +  // after a full GC
  1.1635 +  void rebuild_strong_code_roots();
  1.1636 +
  1.1637 +  // Delete entries for dead interned string and clean up unreferenced symbols
  1.1638 +  // in symbol table, possibly in parallel.
  1.1639 +  void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1.1640 +
  1.1641 +  // Redirty logged cards in the refinement queue.
  1.1642 +  void redirty_logged_cards();
  1.1643 +  // Verification
  1.1644 +
  1.1645 +  // The following is just to alert the verification code
  1.1646 +  // that a full collection has occurred and that the
  1.1647 +  // remembered sets are no longer up to date.
  1.1648 +  bool _full_collection;
  1.1649 +  void set_full_collection() { _full_collection = true;}
  1.1650 +  void clear_full_collection() {_full_collection = false;}
  1.1651 +  bool full_collection() {return _full_collection;}
  1.1652 +
  1.1653 +  // Perform any cleanup actions necessary before allowing a verification.
  1.1654 +  virtual void prepare_for_verify();
  1.1655 +
  1.1656 +  // Perform verification.
  1.1657 +
  1.1658 +  // vo == UsePrevMarking  -> use "prev" marking information,
  1.1659 +  // vo == UseNextMarking -> use "next" marking information
  1.1660 +  // vo == UseMarkWord    -> use the mark word in the object header
  1.1661 +  //
  1.1662 +  // NOTE: Only the "prev" marking information is guaranteed to be
  1.1663 +  // consistent most of the time, so most calls to this should use
  1.1664 +  // vo == UsePrevMarking.
  1.1665 +  // Currently, there is only one case where this is called with
  1.1666 +  // vo == UseNextMarking, which is to verify the "next" marking
  1.1667 +  // information at the end of remark.
  1.1668 +  // Currently there is only one place where this is called with
  1.1669 +  // vo == UseMarkWord, which is to verify the marking during a
  1.1670 +  // full GC.
  1.1671 +  void verify(bool silent, VerifyOption vo);
  1.1672 +
  1.1673 +  // Override; it uses the "prev" marking information
  1.1674 +  virtual void verify(bool silent);
  1.1675 +
  1.1676 +  // The methods below are here for convenience and dispatch the
  1.1677 +  // appropriate method depending on value of the given VerifyOption
  1.1678 +  // parameter. The values for that parameter, and their meanings,
  1.1679 +  // are the same as those above.
  1.1680 +
  1.1681 +  bool is_obj_dead_cond(const oop obj,
  1.1682 +                        const HeapRegion* hr,
  1.1683 +                        const VerifyOption vo) const;
  1.1684 +
  1.1685 +  bool is_obj_dead_cond(const oop obj,
  1.1686 +                        const VerifyOption vo) const;
  1.1687 +
  1.1688 +  // Printing
  1.1689 +
  1.1690 +  virtual void print_on(outputStream* st) const;
  1.1691 +  virtual void print_extended_on(outputStream* st) const;
  1.1692 +  virtual void print_on_error(outputStream* st) const;
  1.1693 +
  1.1694 +  virtual void print_gc_threads_on(outputStream* st) const;
  1.1695 +  virtual void gc_threads_do(ThreadClosure* tc) const;
  1.1696 +
  1.1697 +  // Override
  1.1698 +  void print_tracing_info() const;
  1.1699 +
  1.1700 +  // The following two methods are helpful for debugging RSet issues.
  1.1701 +  void print_cset_rsets() PRODUCT_RETURN;
  1.1702 +  void print_all_rsets() PRODUCT_RETURN;
  1.1703 +
  1.1704 +public:
  1.1705 +  size_t pending_card_num();
  1.1706 +  size_t cards_scanned();
  1.1707 +
  1.1708 +protected:
  1.1709 +  size_t _max_heap_capacity;
  1.1710 +};
  1.1711 +
  1.1712 +class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1.1713 +private:
  1.1714 +  bool        _retired;
  1.1715 +
  1.1716 +public:
  1.1717 +  G1ParGCAllocBuffer(size_t gclab_word_size);
  1.1718 +
  1.1719 +  void set_buf(HeapWord* buf) {
  1.1720 +    ParGCAllocBuffer::set_buf(buf);
  1.1721 +    _retired = false;
  1.1722 +  }
  1.1723 +
  1.1724 +  void retire(bool end_of_gc, bool retain) {
  1.1725 +    if (_retired)
  1.1726 +      return;
  1.1727 +    ParGCAllocBuffer::retire(end_of_gc, retain);
  1.1728 +    _retired = true;
  1.1729 +  }
  1.1730 +};
  1.1731 +
  1.1732 +class G1ParScanThreadState : public StackObj {
  1.1733 +protected:
  1.1734 +  G1CollectedHeap* _g1h;
  1.1735 +  RefToScanQueue*  _refs;
  1.1736 +  DirtyCardQueue   _dcq;
  1.1737 +  G1SATBCardTableModRefBS* _ct_bs;
  1.1738 +  G1RemSet* _g1_rem;
  1.1739 +
  1.1740 +  G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1.1741 +  G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1.1742 +  G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1.1743 +  ageTable            _age_table;
  1.1744 +
  1.1745 +  G1ParScanClosure    _scanner;
  1.1746 +
  1.1747 +  size_t           _alloc_buffer_waste;
  1.1748 +  size_t           _undo_waste;
  1.1749 +
  1.1750 +  OopsInHeapRegionClosure*      _evac_failure_cl;
  1.1751 +
  1.1752 +  int  _hash_seed;
  1.1753 +  uint _queue_num;
  1.1754 +
  1.1755 +  size_t _term_attempts;
  1.1756 +
  1.1757 +  double _start;
  1.1758 +  double _start_strong_roots;
  1.1759 +  double _strong_roots_time;
  1.1760 +  double _start_term;
  1.1761 +  double _term_time;
  1.1762 +
  1.1763 +  // Map from young-age-index (0 == not young, 1 is youngest) to
  1.1764 +  // surviving words. base is what we get back from the malloc call
  1.1765 +  size_t* _surviving_young_words_base;
  1.1766 +  // this points into the array, as we use the first few entries for padding
  1.1767 +  size_t* _surviving_young_words;
  1.1768 +
  1.1769 +#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1.1770 +
  1.1771 +  void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1.1772 +
  1.1773 +  void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1.1774 +
  1.1775 +  DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1.1776 +  G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
  1.1777 +
  1.1778 +  template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
  1.1779 +
  1.1780 +  template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1.1781 +    // If the new value of the field points to the same region or
  1.1782 +    // is the to-space, we don't need to include it in the Rset updates.
  1.1783 +    if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1.1784 +      size_t card_index = ctbs()->index_for(p);
  1.1785 +      // If the card hasn't been added to the buffer, do it.
  1.1786 +      if (ctbs()->mark_card_deferred(card_index)) {
  1.1787 +        dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1.1788 +      }
  1.1789 +    }
  1.1790 +  }
  1.1791 +
  1.1792 +public:
  1.1793 +  G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
  1.1794 +
  1.1795 +  ~G1ParScanThreadState() {
  1.1796 +    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1.1797 +  }
  1.1798 +
  1.1799 +  RefToScanQueue*   refs()            { return _refs;             }
  1.1800 +  ageTable*         age_table()       { return &_age_table;       }
  1.1801 +
  1.1802 +  G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1.1803 +    return _alloc_buffers[purpose];
  1.1804 +  }
  1.1805 +
  1.1806 +  size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1.1807 +  size_t undo_waste() const                      { return _undo_waste; }
  1.1808 +
  1.1809 +#ifdef ASSERT
  1.1810 +  bool verify_ref(narrowOop* ref) const;
  1.1811 +  bool verify_ref(oop* ref) const;
  1.1812 +  bool verify_task(StarTask ref) const;
  1.1813 +#endif // ASSERT
  1.1814 +
  1.1815 +  template <class T> void push_on_queue(T* ref) {
  1.1816 +    assert(verify_ref(ref), "sanity");
  1.1817 +    refs()->push(ref);
  1.1818 +  }
  1.1819 +
  1.1820 +  template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
  1.1821 +
  1.1822 +  HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1.1823 +    HeapWord* obj = NULL;
  1.1824 +    size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1.1825 +    if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1.1826 +      G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1.1827 +      add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1.1828 +      alloc_buf->retire(false /* end_of_gc */, false /* retain */);
  1.1829 +
  1.1830 +      HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1.1831 +      if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1.1832 +      // Otherwise.
  1.1833 +      alloc_buf->set_word_size(gclab_word_size);
  1.1834 +      alloc_buf->set_buf(buf);
  1.1835 +
  1.1836 +      obj = alloc_buf->allocate(word_sz);
  1.1837 +      assert(obj != NULL, "buffer was definitely big enough...");
  1.1838 +    } else {
  1.1839 +      obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1.1840 +    }
  1.1841 +    return obj;
  1.1842 +  }
  1.1843 +
  1.1844 +  HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1.1845 +    HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1.1846 +    if (obj != NULL) return obj;
  1.1847 +    return allocate_slow(purpose, word_sz);
  1.1848 +  }
  1.1849 +
  1.1850 +  void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1.1851 +    if (alloc_buffer(purpose)->contains(obj)) {
  1.1852 +      assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1.1853 +             "should contain whole object");
  1.1854 +      alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1.1855 +    } else {
  1.1856 +      CollectedHeap::fill_with_object(obj, word_sz);
  1.1857 +      add_to_undo_waste(word_sz);
  1.1858 +    }
  1.1859 +  }
  1.1860 +
  1.1861 +  void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1.1862 +    _evac_failure_cl = evac_failure_cl;
  1.1863 +  }
  1.1864 +  OopsInHeapRegionClosure* evac_failure_closure() {
  1.1865 +    return _evac_failure_cl;
  1.1866 +  }
  1.1867 +
  1.1868 +  int* hash_seed() { return &_hash_seed; }
  1.1869 +  uint queue_num() { return _queue_num; }
  1.1870 +
  1.1871 +  size_t term_attempts() const  { return _term_attempts; }
  1.1872 +  void note_term_attempt() { _term_attempts++; }
  1.1873 +
  1.1874 +  void start_strong_roots() {
  1.1875 +    _start_strong_roots = os::elapsedTime();
  1.1876 +  }
  1.1877 +  void end_strong_roots() {
  1.1878 +    _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1.1879 +  }
  1.1880 +  double strong_roots_time() const { return _strong_roots_time; }
  1.1881 +
  1.1882 +  void start_term_time() {
  1.1883 +    note_term_attempt();
  1.1884 +    _start_term = os::elapsedTime();
  1.1885 +  }
  1.1886 +  void end_term_time() {
  1.1887 +    _term_time += (os::elapsedTime() - _start_term);
  1.1888 +  }
  1.1889 +  double term_time() const { return _term_time; }
  1.1890 +
  1.1891 +  double elapsed_time() const {
  1.1892 +    return os::elapsedTime() - _start;
  1.1893 +  }
  1.1894 +
  1.1895 +  static void
  1.1896 +    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1.1897 +  void
  1.1898 +    print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1.1899 +
  1.1900 +  size_t* surviving_young_words() {
  1.1901 +    // We add on to hide entry 0 which accumulates surviving words for
  1.1902 +    // age -1 regions (i.e. non-young ones)
  1.1903 +    return _surviving_young_words;
  1.1904 +  }
  1.1905 +
  1.1906 +  void retire_alloc_buffers() {
  1.1907 +    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1.1908 +      size_t waste = _alloc_buffers[ap]->words_remaining();
  1.1909 +      add_to_alloc_buffer_waste(waste);
  1.1910 +      _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1.1911 +                                                 true /* end_of_gc */,
  1.1912 +                                                 false /* retain */);
  1.1913 +    }
  1.1914 +  }
  1.1915 +private:
  1.1916 +  #define G1_PARTIAL_ARRAY_MASK 0x2
  1.1917 +
  1.1918 +  inline bool has_partial_array_mask(oop* ref) const {
  1.1919 +    return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
  1.1920 +  }
  1.1921 +
  1.1922 +  // We never encode partial array oops as narrowOop*, so return false immediately.
  1.1923 +  // This allows the compiler to create optimized code when popping references from
  1.1924 +  // the work queue.
  1.1925 +  inline bool has_partial_array_mask(narrowOop* ref) const {
  1.1926 +    assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
  1.1927 +    return false;
  1.1928 +  }
  1.1929 +
  1.1930 +  // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
  1.1931 +  // We always encode partial arrays as regular oop, to allow the
  1.1932 +  // specialization for has_partial_array_mask() for narrowOops above.
  1.1933 +  // This means that unintentional use of this method with narrowOops are caught
  1.1934 +  // by the compiler.
  1.1935 +  inline oop* set_partial_array_mask(oop obj) const {
  1.1936 +    assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
  1.1937 +    return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
  1.1938 +  }
  1.1939 +
  1.1940 +  inline oop clear_partial_array_mask(oop* ref) const {
  1.1941 +    return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
  1.1942 +  }
  1.1943 +
  1.1944 +  inline void do_oop_partial_array(oop* p);
  1.1945 +
  1.1946 +  // This method is applied to the fields of the objects that have just been copied.
  1.1947 +  template <class T> void do_oop_evac(T* p, HeapRegion* from) {
  1.1948 +    assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
  1.1949 +           "Reference should not be NULL here as such are never pushed to the task queue.");
  1.1950 +    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
  1.1951 +
  1.1952 +    // Although we never intentionally push references outside of the collection
  1.1953 +    // set, due to (benign) races in the claim mechanism during RSet scanning more
  1.1954 +    // than one thread might claim the same card. So the same card may be
  1.1955 +    // processed multiple times. So redo this check.
  1.1956 +    if (_g1h->in_cset_fast_test(obj)) {
  1.1957 +      oop forwardee;
  1.1958 +      if (obj->is_forwarded()) {
  1.1959 +        forwardee = obj->forwardee();
  1.1960 +      } else {
  1.1961 +        forwardee = copy_to_survivor_space(obj);
  1.1962 +      }
  1.1963 +      assert(forwardee != NULL, "forwardee should not be NULL");
  1.1964 +      oopDesc::encode_store_heap_oop(p, forwardee);
  1.1965 +    }
  1.1966 +
  1.1967 +    assert(obj != NULL, "Must be");
  1.1968 +    update_rs(from, p, queue_num());
  1.1969 +  }
  1.1970 +public:
  1.1971 +
  1.1972 +  oop copy_to_survivor_space(oop const obj);
  1.1973 +
  1.1974 +  template <class T> inline void deal_with_reference(T* ref_to_scan);
  1.1975 +
  1.1976 +  inline void deal_with_reference(StarTask ref);
  1.1977 +
  1.1978 +public:
  1.1979 +  void trim_queue();
  1.1980 +};
  1.1981 +
  1.1982 +#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial