src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,662 @@
     1.4 +/*
     1.5 + * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    1.29 +#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    1.30 +
    1.31 +#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    1.32 +#include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
    1.33 +#include "memory/binaryTreeDictionary.hpp"
    1.34 +#include "memory/blockOffsetTable.inline.hpp"
    1.35 +#include "memory/freeList.hpp"
    1.36 +#include "memory/space.hpp"
    1.37 +
    1.38 +// Classes in support of keeping track of promotions into a non-Contiguous
    1.39 +// space, in this case a CompactibleFreeListSpace.
    1.40 +
    1.41 +// Forward declarations
    1.42 +class CompactibleFreeListSpace;
    1.43 +class BlkClosure;
    1.44 +class BlkClosureCareful;
    1.45 +class FreeChunk;
    1.46 +class UpwardsObjectClosure;
    1.47 +class ObjectClosureCareful;
    1.48 +class Klass;
    1.49 +
    1.50 +class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
    1.51 + public:
    1.52 +  LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
    1.53 +    _allocation_size_limit(0) {}
    1.54 +  void set(HeapWord* ptr, size_t word_size, size_t refill_size,
    1.55 +    size_t allocation_size_limit) {
    1.56 +    _ptr = ptr;
    1.57 +    _word_size = word_size;
    1.58 +    _refillSize = refill_size;
    1.59 +    _allocation_size_limit = allocation_size_limit;
    1.60 +  }
    1.61 +  HeapWord* _ptr;
    1.62 +  size_t    _word_size;
    1.63 +  size_t    _refillSize;
    1.64 +  size_t    _allocation_size_limit;  // largest size that will be allocated
    1.65 +
    1.66 +  void print_on(outputStream* st) const;
    1.67 +};
    1.68 +
    1.69 +// Concrete subclass of CompactibleSpace that implements
    1.70 +// a free list space, such as used in the concurrent mark sweep
    1.71 +// generation.
    1.72 +
    1.73 +class CompactibleFreeListSpace: public CompactibleSpace {
    1.74 +  friend class VMStructs;
    1.75 +  friend class ConcurrentMarkSweepGeneration;
    1.76 +  friend class ASConcurrentMarkSweepGeneration;
    1.77 +  friend class CMSCollector;
    1.78 +  // Local alloc buffer for promotion into this space.
    1.79 +  friend class CFLS_LAB;
    1.80 +
    1.81 +  // "Size" of chunks of work (executed during parallel remark phases
    1.82 +  // of CMS collection); this probably belongs in CMSCollector, although
    1.83 +  // it's cached here because it's used in
    1.84 +  // initialize_sequential_subtasks_for_rescan() which modifies
    1.85 +  // par_seq_tasks which also lives in Space. XXX
    1.86 +  const size_t _rescan_task_size;
    1.87 +  const size_t _marking_task_size;
    1.88 +
    1.89 +  // Yet another sequential tasks done structure. This supports
    1.90 +  // CMS GC, where we have threads dynamically
    1.91 +  // claiming sub-tasks from a larger parallel task.
    1.92 +  SequentialSubTasksDone _conc_par_seq_tasks;
    1.93 +
    1.94 +  BlockOffsetArrayNonContigSpace _bt;
    1.95 +
    1.96 +  CMSCollector* _collector;
    1.97 +  ConcurrentMarkSweepGeneration* _gen;
    1.98 +
    1.99 +  // Data structures for free blocks (used during allocation/sweeping)
   1.100 +
   1.101 +  // Allocation is done linearly from two different blocks depending on
   1.102 +  // whether the request is small or large, in an effort to reduce
   1.103 +  // fragmentation. We assume that any locking for allocation is done
   1.104 +  // by the containing generation. Thus, none of the methods in this
   1.105 +  // space are re-entrant.
   1.106 +  enum SomeConstants {
   1.107 +    SmallForLinearAlloc = 16,        // size < this then use _sLAB
   1.108 +    SmallForDictionary  = 257,       // size < this then use _indexedFreeList
   1.109 +    IndexSetSize        = SmallForDictionary  // keep this odd-sized
   1.110 +  };
   1.111 +  static size_t IndexSetStart;
   1.112 +  static size_t IndexSetStride;
   1.113 +
   1.114 + private:
   1.115 +  enum FitStrategyOptions {
   1.116 +    FreeBlockStrategyNone = 0,
   1.117 +    FreeBlockBestFitFirst
   1.118 +  };
   1.119 +
   1.120 +  PromotionInfo _promoInfo;
   1.121 +
   1.122 +  // helps to impose a global total order on freelistLock ranks;
   1.123 +  // assumes that CFLSpace's are allocated in global total order
   1.124 +  static int   _lockRank;
   1.125 +
   1.126 +  // a lock protecting the free lists and free blocks;
   1.127 +  // mutable because of ubiquity of locking even for otherwise const methods
   1.128 +  mutable Mutex _freelistLock;
   1.129 +  // locking verifier convenience function
   1.130 +  void assert_locked() const PRODUCT_RETURN;
   1.131 +  void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
   1.132 +
   1.133 +  // Linear allocation blocks
   1.134 +  LinearAllocBlock _smallLinearAllocBlock;
   1.135 +
   1.136 +  FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
   1.137 +  AFLBinaryTreeDictionary* _dictionary;    // ptr to dictionary for large size blocks
   1.138 +
   1.139 +  AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
   1.140 +                                       // indexed array for small size blocks
   1.141 +  // allocation stategy
   1.142 +  bool       _fitStrategy;      // Use best fit strategy.
   1.143 +  bool       _adaptive_freelists; // Use adaptive freelists
   1.144 +
   1.145 +  // This is an address close to the largest free chunk in the heap.
   1.146 +  // It is currently assumed to be at the end of the heap.  Free
   1.147 +  // chunks with addresses greater than nearLargestChunk are coalesced
   1.148 +  // in an effort to maintain a large chunk at the end of the heap.
   1.149 +  HeapWord*  _nearLargestChunk;
   1.150 +
   1.151 +  // Used to keep track of limit of sweep for the space
   1.152 +  HeapWord* _sweep_limit;
   1.153 +
   1.154 +  // Support for compacting cms
   1.155 +  HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   1.156 +  HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
   1.157 +
   1.158 +  // Initialization helpers.
   1.159 +  void initializeIndexedFreeListArray();
   1.160 +
   1.161 +  // Extra stuff to manage promotion parallelism.
   1.162 +
   1.163 +  // a lock protecting the dictionary during par promotion allocation.
   1.164 +  mutable Mutex _parDictionaryAllocLock;
   1.165 +  Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
   1.166 +
   1.167 +  // Locks protecting the exact lists during par promotion allocation.
   1.168 +  Mutex* _indexedFreeListParLocks[IndexSetSize];
   1.169 +
   1.170 +  // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
   1.171 +  // required to be smaller than "IndexSetSize".)  If successful,
   1.172 +  // adds them to "fl", which is required to be an empty free list.
   1.173 +  // If the count of "fl" is negative, it's absolute value indicates a
   1.174 +  // number of free chunks that had been previously "borrowed" from global
   1.175 +  // list of size "word_sz", and must now be decremented.
   1.176 +  void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
   1.177 +
   1.178 +  // Allocation helper functions
   1.179 +  // Allocate using a strategy that takes from the indexed free lists
   1.180 +  // first.  This allocation strategy assumes a companion sweeping
   1.181 +  // strategy that attempts to keep the needed number of chunks in each
   1.182 +  // indexed free lists.
   1.183 +  HeapWord* allocate_adaptive_freelists(size_t size);
   1.184 +  // Allocate from the linear allocation buffers first.  This allocation
   1.185 +  // strategy assumes maximal coalescing can maintain chunks large enough
   1.186 +  // to be used as linear allocation buffers.
   1.187 +  HeapWord* allocate_non_adaptive_freelists(size_t size);
   1.188 +
   1.189 +  // Gets a chunk from the linear allocation block (LinAB).  If there
   1.190 +  // is not enough space in the LinAB, refills it.
   1.191 +  HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
   1.192 +  HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
   1.193 +  // Get a chunk from the space remaining in the linear allocation block.  Do
   1.194 +  // not attempt to refill if the space is not available, return NULL.  Do the
   1.195 +  // repairs on the linear allocation block as appropriate.
   1.196 +  HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
   1.197 +  inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
   1.198 +
   1.199 +  // Helper function for getChunkFromIndexedFreeList.
   1.200 +  // Replenish the indexed free list for this "size".  Do not take from an
   1.201 +  // underpopulated size.
   1.202 +  FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
   1.203 +
   1.204 +  // Get a chunk from the indexed free list.  If the indexed free list
   1.205 +  // does not have a free chunk, try to replenish the indexed free list
   1.206 +  // then get the free chunk from the replenished indexed free list.
   1.207 +  inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
   1.208 +
   1.209 +  // The returned chunk may be larger than requested (or null).
   1.210 +  FreeChunk* getChunkFromDictionary(size_t size);
   1.211 +  // The returned chunk is the exact size requested (or null).
   1.212 +  FreeChunk* getChunkFromDictionaryExact(size_t size);
   1.213 +
   1.214 +  // Find a chunk in the indexed free list that is the best
   1.215 +  // fit for size "numWords".
   1.216 +  FreeChunk* bestFitSmall(size_t numWords);
   1.217 +  // For free list "fl" of chunks of size > numWords,
   1.218 +  // remove a chunk, split off a chunk of size numWords
   1.219 +  // and return it.  The split off remainder is returned to
   1.220 +  // the free lists.  The old name for getFromListGreater
   1.221 +  // was lookInListGreater.
   1.222 +  FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
   1.223 +  // Get a chunk in the indexed free list or dictionary,
   1.224 +  // by considering a larger chunk and splitting it.
   1.225 +  FreeChunk* getChunkFromGreater(size_t numWords);
   1.226 +  //  Verify that the given chunk is in the indexed free lists.
   1.227 +  bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
   1.228 +  // Remove the specified chunk from the indexed free lists.
   1.229 +  void       removeChunkFromIndexedFreeList(FreeChunk* fc);
   1.230 +  // Remove the specified chunk from the dictionary.
   1.231 +  void       removeChunkFromDictionary(FreeChunk* fc);
   1.232 +  // Split a free chunk into a smaller free chunk of size "new_size".
   1.233 +  // Return the smaller free chunk and return the remainder to the
   1.234 +  // free lists.
   1.235 +  FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
   1.236 +  // Add a chunk to the free lists.
   1.237 +  void       addChunkToFreeLists(HeapWord* chunk, size_t size);
   1.238 +  // Add a chunk to the free lists, preferring to suffix it
   1.239 +  // to the last free chunk at end of space if possible, and
   1.240 +  // updating the block census stats as well as block offset table.
   1.241 +  // Take any locks as appropriate if we are multithreaded.
   1.242 +  void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
   1.243 +  // Add a free chunk to the indexed free lists.
   1.244 +  void       returnChunkToFreeList(FreeChunk* chunk);
   1.245 +  // Add a free chunk to the dictionary.
   1.246 +  void       returnChunkToDictionary(FreeChunk* chunk);
   1.247 +
   1.248 +  // Functions for maintaining the linear allocation buffers (LinAB).
   1.249 +  // Repairing a linear allocation block refers to operations
   1.250 +  // performed on the remainder of a LinAB after an allocation
   1.251 +  // has been made from it.
   1.252 +  void       repairLinearAllocationBlocks();
   1.253 +  void       repairLinearAllocBlock(LinearAllocBlock* blk);
   1.254 +  void       refillLinearAllocBlock(LinearAllocBlock* blk);
   1.255 +  void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
   1.256 +  void       refillLinearAllocBlocksIfNeeded();
   1.257 +
   1.258 +  void       verify_objects_initialized() const;
   1.259 +
   1.260 +  // Statistics reporting helper functions
   1.261 +  void       reportFreeListStatistics() const;
   1.262 +  void       reportIndexedFreeListStatistics() const;
   1.263 +  size_t     maxChunkSizeInIndexedFreeLists() const;
   1.264 +  size_t     numFreeBlocksInIndexedFreeLists() const;
   1.265 +  // Accessor
   1.266 +  HeapWord* unallocated_block() const {
   1.267 +    if (BlockOffsetArrayUseUnallocatedBlock) {
   1.268 +      HeapWord* ub = _bt.unallocated_block();
   1.269 +      assert(ub >= bottom() &&
   1.270 +             ub <= end(), "space invariant");
   1.271 +      return ub;
   1.272 +    } else {
   1.273 +      return end();
   1.274 +    }
   1.275 +  }
   1.276 +  void freed(HeapWord* start, size_t size) {
   1.277 +    _bt.freed(start, size);
   1.278 +  }
   1.279 +
   1.280 + protected:
   1.281 +  // reset the indexed free list to its initial empty condition.
   1.282 +  void resetIndexedFreeListArray();
   1.283 +  // reset to an initial state with a single free block described
   1.284 +  // by the MemRegion parameter.
   1.285 +  void reset(MemRegion mr);
   1.286 +  // Return the total number of words in the indexed free lists.
   1.287 +  size_t     totalSizeInIndexedFreeLists() const;
   1.288 +
   1.289 + public:
   1.290 +  // Constructor...
   1.291 +  CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
   1.292 +                           bool use_adaptive_freelists,
   1.293 +                           FreeBlockDictionary<FreeChunk>::DictionaryChoice);
   1.294 +  // accessors
   1.295 +  bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
   1.296 +  FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
   1.297 +  HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
   1.298 +  void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
   1.299 +
   1.300 +  // Set CMS global values
   1.301 +  static void set_cms_values();
   1.302 +
   1.303 +  // Return the free chunk at the end of the space.  If no such
   1.304 +  // chunk exists, return NULL.
   1.305 +  FreeChunk* find_chunk_at_end();
   1.306 +
   1.307 +  bool adaptive_freelists() const { return _adaptive_freelists; }
   1.308 +
   1.309 +  void set_collector(CMSCollector* collector) { _collector = collector; }
   1.310 +
   1.311 +  // Support for parallelization of rescan and marking
   1.312 +  const size_t rescan_task_size()  const { return _rescan_task_size;  }
   1.313 +  const size_t marking_task_size() const { return _marking_task_size; }
   1.314 +  SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
   1.315 +  void initialize_sequential_subtasks_for_rescan(int n_threads);
   1.316 +  void initialize_sequential_subtasks_for_marking(int n_threads,
   1.317 +         HeapWord* low = NULL);
   1.318 +
   1.319 +  // Space enquiries
   1.320 +  size_t used() const;
   1.321 +  size_t free() const;
   1.322 +  size_t max_alloc_in_words() const;
   1.323 +  // XXX: should have a less conservative used_region() than that of
   1.324 +  // Space; we could consider keeping track of highest allocated
   1.325 +  // address and correcting that at each sweep, as the sweeper
   1.326 +  // goes through the entire allocated part of the generation. We
   1.327 +  // could also use that information to keep the sweeper from
   1.328 +  // sweeping more than is necessary. The allocator and sweeper will
   1.329 +  // of course need to synchronize on this, since the sweeper will
   1.330 +  // try to bump down the address and the allocator will try to bump it up.
   1.331 +  // For now, however, we'll just use the default used_region()
   1.332 +  // which overestimates the region by returning the entire
   1.333 +  // committed region (this is safe, but inefficient).
   1.334 +
   1.335 +  // Returns a subregion of the space containing all the objects in
   1.336 +  // the space.
   1.337 +  MemRegion used_region() const {
   1.338 +    return MemRegion(bottom(),
   1.339 +                     BlockOffsetArrayUseUnallocatedBlock ?
   1.340 +                     unallocated_block() : end());
   1.341 +  }
   1.342 +
   1.343 +  bool is_in(const void* p) const {
   1.344 +    return used_region().contains(p);
   1.345 +  }
   1.346 +
   1.347 +  virtual bool is_free_block(const HeapWord* p) const;
   1.348 +
   1.349 +  // Resizing support
   1.350 +  void set_end(HeapWord* value);  // override
   1.351 +
   1.352 +  // mutual exclusion support
   1.353 +  Mutex* freelistLock() const { return &_freelistLock; }
   1.354 +
   1.355 +  // Iteration support
   1.356 +  void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
   1.357 +  void oop_iterate(ExtendedOopClosure* cl);
   1.358 +
   1.359 +  void object_iterate(ObjectClosure* blk);
   1.360 +  // Apply the closure to each object in the space whose references
   1.361 +  // point to objects in the heap.  The usage of CompactibleFreeListSpace
   1.362 +  // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
   1.363 +  // objects in the space with references to objects that are no longer
   1.364 +  // valid.  For example, an object may reference another object
   1.365 +  // that has already been sweep up (collected).  This method uses
   1.366 +  // obj_is_alive() to determine whether it is safe to iterate of
   1.367 +  // an object.
   1.368 +  void safe_object_iterate(ObjectClosure* blk);
   1.369 +  void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   1.370 +
   1.371 +  // Requires that "mr" be entirely within the space.
   1.372 +  // Apply "cl->do_object" to all objects that intersect with "mr".
   1.373 +  // If the iteration encounters an unparseable portion of the region,
   1.374 +  // terminate the iteration and return the address of the start of the
   1.375 +  // subregion that isn't done.  Return of "NULL" indicates that the
   1.376 +  // interation completed.
   1.377 +  virtual HeapWord*
   1.378 +       object_iterate_careful_m(MemRegion mr,
   1.379 +                                ObjectClosureCareful* cl);
   1.380 +  virtual HeapWord*
   1.381 +       object_iterate_careful(ObjectClosureCareful* cl);
   1.382 +
   1.383 +  // Override: provides a DCTO_CL specific to this kind of space.
   1.384 +  DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   1.385 +                                     CardTableModRefBS::PrecisionStyle precision,
   1.386 +                                     HeapWord* boundary);
   1.387 +
   1.388 +  void blk_iterate(BlkClosure* cl);
   1.389 +  void blk_iterate_careful(BlkClosureCareful* cl);
   1.390 +  HeapWord* block_start_const(const void* p) const;
   1.391 +  HeapWord* block_start_careful(const void* p) const;
   1.392 +  size_t block_size(const HeapWord* p) const;
   1.393 +  size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
   1.394 +  bool block_is_obj(const HeapWord* p) const;
   1.395 +  bool obj_is_alive(const HeapWord* p) const;
   1.396 +  size_t block_size_nopar(const HeapWord* p) const;
   1.397 +  bool block_is_obj_nopar(const HeapWord* p) const;
   1.398 +
   1.399 +  // iteration support for promotion
   1.400 +  void save_marks();
   1.401 +  bool no_allocs_since_save_marks();
   1.402 +
   1.403 +  // iteration support for sweeping
   1.404 +  void save_sweep_limit() {
   1.405 +    _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
   1.406 +                   unallocated_block() : end();
   1.407 +    if (CMSTraceSweeper) {
   1.408 +      gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
   1.409 +                             "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
   1.410 +                             p2i(_sweep_limit), p2i(bottom()), p2i(end()));
   1.411 +    }
   1.412 +  }
   1.413 +  NOT_PRODUCT(
   1.414 +    void clear_sweep_limit() { _sweep_limit = NULL; }
   1.415 +  )
   1.416 +  HeapWord* sweep_limit() { return _sweep_limit; }
   1.417 +
   1.418 +  // Apply "blk->do_oop" to the addresses of all reference fields in objects
   1.419 +  // promoted into this generation since the most recent save_marks() call.
   1.420 +  // Fields in objects allocated by applications of the closure
   1.421 +  // *are* included in the iteration. Thus, when the iteration completes
   1.422 +  // there should be no further such objects remaining.
   1.423 +  #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   1.424 +    void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   1.425 +  ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
   1.426 +  #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
   1.427 +
   1.428 +  // Allocation support
   1.429 +  HeapWord* allocate(size_t size);
   1.430 +  HeapWord* par_allocate(size_t size);
   1.431 +
   1.432 +  oop       promote(oop obj, size_t obj_size);
   1.433 +  void      gc_prologue();
   1.434 +  void      gc_epilogue();
   1.435 +
   1.436 +  // This call is used by a containing CMS generation / collector
   1.437 +  // to inform the CFLS space that a sweep has been completed
   1.438 +  // and that the space can do any related house-keeping functions.
   1.439 +  void      sweep_completed();
   1.440 +
   1.441 +  // For an object in this space, the mark-word's two
   1.442 +  // LSB's having the value [11] indicates that it has been
   1.443 +  // promoted since the most recent call to save_marks() on
   1.444 +  // this generation and has not subsequently been iterated
   1.445 +  // over (using oop_since_save_marks_iterate() above).
   1.446 +  // This property holds only for single-threaded collections,
   1.447 +  // and is typically used for Cheney scans; for MT scavenges,
   1.448 +  // the property holds for all objects promoted during that
   1.449 +  // scavenge for the duration of the scavenge and is used
   1.450 +  // by card-scanning to avoid scanning objects (being) promoted
   1.451 +  // during that scavenge.
   1.452 +  bool obj_allocated_since_save_marks(const oop obj) const {
   1.453 +    assert(is_in_reserved(obj), "Wrong space?");
   1.454 +    return ((PromotedObject*)obj)->hasPromotedMark();
   1.455 +  }
   1.456 +
   1.457 +  // A worst-case estimate of the space required (in HeapWords) to expand the
   1.458 +  // heap when promoting an obj of size obj_size.
   1.459 +  size_t expansionSpaceRequired(size_t obj_size) const;
   1.460 +
   1.461 +  FreeChunk* allocateScratch(size_t size);
   1.462 +
   1.463 +  // returns true if either the small or large linear allocation buffer is empty.
   1.464 +  bool       linearAllocationWouldFail() const;
   1.465 +
   1.466 +  // Adjust the chunk for the minimum size.  This version is called in
   1.467 +  // most cases in CompactibleFreeListSpace methods.
   1.468 +  inline static size_t adjustObjectSize(size_t size) {
   1.469 +    return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
   1.470 +  }
   1.471 +  // This is a virtual version of adjustObjectSize() that is called
   1.472 +  // only occasionally when the compaction space changes and the type
   1.473 +  // of the new compaction space is is only known to be CompactibleSpace.
   1.474 +  size_t adjust_object_size_v(size_t size) const {
   1.475 +    return adjustObjectSize(size);
   1.476 +  }
   1.477 +  // Minimum size of a free block.
   1.478 +  virtual size_t minimum_free_block_size() const { return MinChunkSize; }
   1.479 +  void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
   1.480 +  void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
   1.481 +              bool coalesced);
   1.482 +
   1.483 +  // Support for decisions regarding concurrent collection policy
   1.484 +  bool should_concurrent_collect() const;
   1.485 +
   1.486 +  // Support for compaction
   1.487 +  void prepare_for_compaction(CompactPoint* cp);
   1.488 +  void adjust_pointers();
   1.489 +  void compact();
   1.490 +  // reset the space to reflect the fact that a compaction of the
   1.491 +  // space has been done.
   1.492 +  virtual void reset_after_compaction();
   1.493 +
   1.494 +  // Debugging support
   1.495 +  void print()                            const;
   1.496 +  void print_on(outputStream* st)         const;
   1.497 +  void prepare_for_verify();
   1.498 +  void verify()                           const;
   1.499 +  void verifyFreeLists()                  const PRODUCT_RETURN;
   1.500 +  void verifyIndexedFreeLists()           const;
   1.501 +  void verifyIndexedFreeList(size_t size) const;
   1.502 +  // Verify that the given chunk is in the free lists:
   1.503 +  // i.e. either the binary tree dictionary, the indexed free lists
   1.504 +  // or the linear allocation block.
   1.505 +  bool verify_chunk_in_free_list(FreeChunk* fc) const;
   1.506 +  // Verify that the given chunk is the linear allocation block
   1.507 +  bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
   1.508 +  // Do some basic checks on the the free lists.
   1.509 +  void check_free_list_consistency()      const PRODUCT_RETURN;
   1.510 +
   1.511 +  // Printing support
   1.512 +  void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
   1.513 +  void print_indexed_free_lists(outputStream* st) const;
   1.514 +  void print_dictionary_free_lists(outputStream* st) const;
   1.515 +  void print_promo_info_blocks(outputStream* st) const;
   1.516 +
   1.517 +  NOT_PRODUCT (
   1.518 +    void initializeIndexedFreeListArrayReturnedBytes();
   1.519 +    size_t sumIndexedFreeListArrayReturnedBytes();
   1.520 +    // Return the total number of chunks in the indexed free lists.
   1.521 +    size_t totalCountInIndexedFreeLists() const;
   1.522 +    // Return the total numberof chunks in the space.
   1.523 +    size_t totalCount();
   1.524 +  )
   1.525 +
   1.526 +  // The census consists of counts of the quantities such as
   1.527 +  // the current count of the free chunks, number of chunks
   1.528 +  // created as a result of the split of a larger chunk or
   1.529 +  // coalescing of smaller chucks, etc.  The counts in the
   1.530 +  // census is used to make decisions on splitting and
   1.531 +  // coalescing of chunks during the sweep of garbage.
   1.532 +
   1.533 +  // Print the statistics for the free lists.
   1.534 +  void printFLCensus(size_t sweep_count) const;
   1.535 +
   1.536 +  // Statistics functions
   1.537 +  // Initialize census for lists before the sweep.
   1.538 +  void beginSweepFLCensus(float inter_sweep_current,
   1.539 +                          float inter_sweep_estimate,
   1.540 +                          float intra_sweep_estimate);
   1.541 +  // Set the surplus for each of the free lists.
   1.542 +  void setFLSurplus();
   1.543 +  // Set the hint for each of the free lists.
   1.544 +  void setFLHints();
   1.545 +  // Clear the census for each of the free lists.
   1.546 +  void clearFLCensus();
   1.547 +  // Perform functions for the census after the end of the sweep.
   1.548 +  void endSweepFLCensus(size_t sweep_count);
   1.549 +  // Return true if the count of free chunks is greater
   1.550 +  // than the desired number of free chunks.
   1.551 +  bool coalOverPopulated(size_t size);
   1.552 +
   1.553 +// Record (for each size):
   1.554 +//
   1.555 +//   split-births = #chunks added due to splits in (prev-sweep-end,
   1.556 +//      this-sweep-start)
   1.557 +//   split-deaths = #chunks removed for splits in (prev-sweep-end,
   1.558 +//      this-sweep-start)
   1.559 +//   num-curr     = #chunks at start of this sweep
   1.560 +//   num-prev     = #chunks at end of previous sweep
   1.561 +//
   1.562 +// The above are quantities that are measured. Now define:
   1.563 +//
   1.564 +//   num-desired := num-prev + split-births - split-deaths - num-curr
   1.565 +//
   1.566 +// Roughly, num-prev + split-births is the supply,
   1.567 +// split-deaths is demand due to other sizes
   1.568 +// and num-curr is what we have left.
   1.569 +//
   1.570 +// Thus, num-desired is roughly speaking the "legitimate demand"
   1.571 +// for blocks of this size and what we are striving to reach at the
   1.572 +// end of the current sweep.
   1.573 +//
   1.574 +// For a given list, let num-len be its current population.
   1.575 +// Define, for a free list of a given size:
   1.576 +//
   1.577 +//   coal-overpopulated := num-len >= num-desired * coal-surplus
   1.578 +// (coal-surplus is set to 1.05, i.e. we allow a little slop when
   1.579 +// coalescing -- we do not coalesce unless we think that the current
   1.580 +// supply has exceeded the estimated demand by more than 5%).
   1.581 +//
   1.582 +// For the set of sizes in the binary tree, which is neither dense nor
   1.583 +// closed, it may be the case that for a particular size we have never
   1.584 +// had, or do not now have, or did not have at the previous sweep,
   1.585 +// chunks of that size. We need to extend the definition of
   1.586 +// coal-overpopulated to such sizes as well:
   1.587 +//
   1.588 +//   For a chunk in/not in the binary tree, extend coal-overpopulated
   1.589 +//   defined above to include all sizes as follows:
   1.590 +//
   1.591 +//   . a size that is non-existent is coal-overpopulated
   1.592 +//   . a size that has a num-desired <= 0 as defined above is
   1.593 +//     coal-overpopulated.
   1.594 +//
   1.595 +// Also define, for a chunk heap-offset C and mountain heap-offset M:
   1.596 +//
   1.597 +//   close-to-mountain := C >= 0.99 * M
   1.598 +//
   1.599 +// Now, the coalescing strategy is:
   1.600 +//
   1.601 +//    Coalesce left-hand chunk with right-hand chunk if and
   1.602 +//    only if:
   1.603 +//
   1.604 +//      EITHER
   1.605 +//        . left-hand chunk is of a size that is coal-overpopulated
   1.606 +//      OR
   1.607 +//        . right-hand chunk is close-to-mountain
   1.608 +  void smallCoalBirth(size_t size);
   1.609 +  void smallCoalDeath(size_t size);
   1.610 +  void coalBirth(size_t size);
   1.611 +  void coalDeath(size_t size);
   1.612 +  void smallSplitBirth(size_t size);
   1.613 +  void smallSplitDeath(size_t size);
   1.614 +  void split_birth(size_t size);
   1.615 +  void splitDeath(size_t size);
   1.616 +  void split(size_t from, size_t to1);
   1.617 +
   1.618 +  double flsFrag() const;
   1.619 +};
   1.620 +
   1.621 +// A parallel-GC-thread-local allocation buffer for allocation into a
   1.622 +// CompactibleFreeListSpace.
   1.623 +class CFLS_LAB : public CHeapObj<mtGC> {
   1.624 +  // The space that this buffer allocates into.
   1.625 +  CompactibleFreeListSpace* _cfls;
   1.626 +
   1.627 +  // Our local free lists.
   1.628 +  AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
   1.629 +
   1.630 +  // Initialized from a command-line arg.
   1.631 +
   1.632 +  // Allocation statistics in support of dynamic adjustment of
   1.633 +  // #blocks to claim per get_from_global_pool() call below.
   1.634 +  static AdaptiveWeightedAverage
   1.635 +                 _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
   1.636 +  static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
   1.637 +  static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
   1.638 +  size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
   1.639 +
   1.640 +  // Internal work method
   1.641 +  void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
   1.642 +
   1.643 +public:
   1.644 +  CFLS_LAB(CompactibleFreeListSpace* cfls);
   1.645 +
   1.646 +  // Allocate and return a block of the given size, or else return NULL.
   1.647 +  HeapWord* alloc(size_t word_sz);
   1.648 +
   1.649 +  // Return any unused portions of the buffer to the global pool.
   1.650 +  void retire(int tid);
   1.651 +
   1.652 +  // Dynamic OldPLABSize sizing
   1.653 +  static void compute_desired_plab_size();
   1.654 +  // When the settings are modified from default static initialization
   1.655 +  static void modify_initialization(size_t n, unsigned wt);
   1.656 +};
   1.657 +
   1.658 +size_t PromotionInfo::refillSize() const {
   1.659 +  const size_t CMSSpoolBlockSize = 256;
   1.660 +  const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
   1.661 +                                   * CMSSpoolBlockSize);
   1.662 +  return CompactibleFreeListSpace::adjustObjectSize(sz);
   1.663 +}
   1.664 +
   1.665 +#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP

mercurial