src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,3639 @@
     1.4 +/*
     1.5 + * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "c1/c1_Compilation.hpp"
    1.30 +#include "c1/c1_LIRAssembler.hpp"
    1.31 +#include "c1/c1_MacroAssembler.hpp"
    1.32 +#include "c1/c1_Runtime1.hpp"
    1.33 +#include "c1/c1_ValueStack.hpp"
    1.34 +#include "ci/ciArrayKlass.hpp"
    1.35 +#include "ci/ciInstance.hpp"
    1.36 +#include "gc_interface/collectedHeap.hpp"
    1.37 +#include "memory/barrierSet.hpp"
    1.38 +#include "memory/cardTableModRefBS.hpp"
    1.39 +#include "nativeInst_sparc.hpp"
    1.40 +#include "oops/objArrayKlass.hpp"
    1.41 +#include "runtime/sharedRuntime.hpp"
    1.42 +
    1.43 +#define __ _masm->
    1.44 +
    1.45 +
    1.46 +//------------------------------------------------------------
    1.47 +
    1.48 +
    1.49 +bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    1.50 +  if (opr->is_constant()) {
    1.51 +    LIR_Const* constant = opr->as_constant_ptr();
    1.52 +    switch (constant->type()) {
    1.53 +      case T_INT: {
    1.54 +        jint value = constant->as_jint();
    1.55 +        return Assembler::is_simm13(value);
    1.56 +      }
    1.57 +
    1.58 +      default:
    1.59 +        return false;
    1.60 +    }
    1.61 +  }
    1.62 +  return false;
    1.63 +}
    1.64 +
    1.65 +
    1.66 +bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    1.67 +  switch (op->code()) {
    1.68 +    case lir_null_check:
    1.69 +    return true;
    1.70 +
    1.71 +
    1.72 +    case lir_add:
    1.73 +    case lir_ushr:
    1.74 +    case lir_shr:
    1.75 +    case lir_shl:
    1.76 +      // integer shifts and adds are always one instruction
    1.77 +      return op->result_opr()->is_single_cpu();
    1.78 +
    1.79 +
    1.80 +    case lir_move: {
    1.81 +      LIR_Op1* op1 = op->as_Op1();
    1.82 +      LIR_Opr src = op1->in_opr();
    1.83 +      LIR_Opr dst = op1->result_opr();
    1.84 +
    1.85 +      if (src == dst) {
    1.86 +        NEEDS_CLEANUP;
    1.87 +        // this works around a problem where moves with the same src and dst
    1.88 +        // end up in the delay slot and then the assembler swallows the mov
    1.89 +        // since it has no effect and then it complains because the delay slot
    1.90 +        // is empty.  returning false stops the optimizer from putting this in
    1.91 +        // the delay slot
    1.92 +        return false;
    1.93 +      }
    1.94 +
    1.95 +      // don't put moves involving oops into the delay slot since the VerifyOops code
    1.96 +      // will make it much larger than a single instruction.
    1.97 +      if (VerifyOops) {
    1.98 +        return false;
    1.99 +      }
   1.100 +
   1.101 +      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
   1.102 +          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   1.103 +        return false;
   1.104 +      }
   1.105 +
   1.106 +      if (UseCompressedOops) {
   1.107 +        if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   1.108 +        if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   1.109 +      }
   1.110 +
   1.111 +      if (UseCompressedClassPointers) {
   1.112 +        if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
   1.113 +            src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
   1.114 +      }
   1.115 +
   1.116 +      if (dst->is_register()) {
   1.117 +        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   1.118 +          return !PatchALot;
   1.119 +        } else if (src->is_single_stack()) {
   1.120 +          return true;
   1.121 +        }
   1.122 +      }
   1.123 +
   1.124 +      if (src->is_register()) {
   1.125 +        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   1.126 +          return !PatchALot;
   1.127 +        } else if (dst->is_single_stack()) {
   1.128 +          return true;
   1.129 +        }
   1.130 +      }
   1.131 +
   1.132 +      if (dst->is_register() &&
   1.133 +          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   1.134 +           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   1.135 +        return true;
   1.136 +      }
   1.137 +
   1.138 +      return false;
   1.139 +    }
   1.140 +
   1.141 +    default:
   1.142 +      return false;
   1.143 +  }
   1.144 +  ShouldNotReachHere();
   1.145 +}
   1.146 +
   1.147 +
   1.148 +LIR_Opr LIR_Assembler::receiverOpr() {
   1.149 +  return FrameMap::O0_oop_opr;
   1.150 +}
   1.151 +
   1.152 +
   1.153 +LIR_Opr LIR_Assembler::osrBufferPointer() {
   1.154 +  return FrameMap::I0_opr;
   1.155 +}
   1.156 +
   1.157 +
   1.158 +int LIR_Assembler::initial_frame_size_in_bytes() const {
   1.159 +  return in_bytes(frame_map()->framesize_in_bytes());
   1.160 +}
   1.161 +
   1.162 +
   1.163 +// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   1.164 +// we fetch the class of the receiver (O0) and compare it with the cached class.
   1.165 +// If they do not match we jump to slow case.
   1.166 +int LIR_Assembler::check_icache() {
   1.167 +  int offset = __ offset();
   1.168 +  __ inline_cache_check(O0, G5_inline_cache_reg);
   1.169 +  return offset;
   1.170 +}
   1.171 +
   1.172 +
   1.173 +void LIR_Assembler::osr_entry() {
   1.174 +  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   1.175 +  //
   1.176 +  //   1. Create a new compiled activation.
   1.177 +  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   1.178 +  //      at the osr_bci; it is not initialized.
   1.179 +  //   3. Jump to the continuation address in compiled code to resume execution.
   1.180 +
   1.181 +  // OSR entry point
   1.182 +  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   1.183 +  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   1.184 +  ValueStack* entry_state = osr_entry->end()->state();
   1.185 +  int number_of_locks = entry_state->locks_size();
   1.186 +
   1.187 +  // Create a frame for the compiled activation.
   1.188 +  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
   1.189 +
   1.190 +  // OSR buffer is
   1.191 +  //
   1.192 +  // locals[nlocals-1..0]
   1.193 +  // monitors[number_of_locks-1..0]
   1.194 +  //
   1.195 +  // locals is a direct copy of the interpreter frame so in the osr buffer
   1.196 +  // so first slot in the local array is the last local from the interpreter
   1.197 +  // and last slot is local[0] (receiver) from the interpreter
   1.198 +  //
   1.199 +  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   1.200 +  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   1.201 +  // in the interpreter frame (the method lock if a sync method)
   1.202 +
   1.203 +  // Initialize monitors in the compiled activation.
   1.204 +  //   I0: pointer to osr buffer
   1.205 +  //
   1.206 +  // All other registers are dead at this point and the locals will be
   1.207 +  // copied into place by code emitted in the IR.
   1.208 +
   1.209 +  Register OSR_buf = osrBufferPointer()->as_register();
   1.210 +  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   1.211 +    int monitor_offset = BytesPerWord * method()->max_locals() +
   1.212 +      (2 * BytesPerWord) * (number_of_locks - 1);
   1.213 +    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   1.214 +    // the OSR buffer using 2 word entries: first the lock and then
   1.215 +    // the oop.
   1.216 +    for (int i = 0; i < number_of_locks; i++) {
   1.217 +      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   1.218 +#ifdef ASSERT
   1.219 +      // verify the interpreter's monitor has a non-null object
   1.220 +      {
   1.221 +        Label L;
   1.222 +        __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   1.223 +        __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   1.224 +        __ stop("locked object is NULL");
   1.225 +        __ bind(L);
   1.226 +      }
   1.227 +#endif // ASSERT
   1.228 +      // Copy the lock field into the compiled activation.
   1.229 +      __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   1.230 +      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   1.231 +      __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   1.232 +      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   1.233 +    }
   1.234 +  }
   1.235 +}
   1.236 +
   1.237 +
   1.238 +// Optimized Library calls
   1.239 +// This is the fast version of java.lang.String.compare; it has not
   1.240 +// OSR-entry and therefore, we generate a slow version for OSR's
   1.241 +void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   1.242 +  Register str0 = left->as_register();
   1.243 +  Register str1 = right->as_register();
   1.244 +
   1.245 +  Label Ldone;
   1.246 +
   1.247 +  Register result = dst->as_register();
   1.248 +  {
   1.249 +    // Get a pointer to the first character of string0 in tmp0
   1.250 +    //   and get string0.length() in str0
   1.251 +    // Get a pointer to the first character of string1 in tmp1
   1.252 +    //   and get string1.length() in str1
   1.253 +    // Also, get string0.length()-string1.length() in
   1.254 +    //   o7 and get the condition code set
   1.255 +    // Note: some instructions have been hoisted for better instruction scheduling
   1.256 +
   1.257 +    Register tmp0 = L0;
   1.258 +    Register tmp1 = L1;
   1.259 +    Register tmp2 = L2;
   1.260 +
   1.261 +    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   1.262 +    if (java_lang_String::has_offset_field()) {
   1.263 +      int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   1.264 +      int  count_offset = java_lang_String:: count_offset_in_bytes();
   1.265 +      __ load_heap_oop(str0, value_offset, tmp0);
   1.266 +      __ ld(str0, offset_offset, tmp2);
   1.267 +      __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   1.268 +      __ ld(str0, count_offset, str0);
   1.269 +      __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   1.270 +    } else {
   1.271 +      __ load_heap_oop(str0, value_offset, tmp1);
   1.272 +      __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   1.273 +      __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   1.274 +    }
   1.275 +
   1.276 +    // str1 may be null
   1.277 +    add_debug_info_for_null_check_here(info);
   1.278 +
   1.279 +    if (java_lang_String::has_offset_field()) {
   1.280 +      int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   1.281 +      int  count_offset = java_lang_String:: count_offset_in_bytes();
   1.282 +      __ load_heap_oop(str1, value_offset, tmp1);
   1.283 +      __ add(tmp0, tmp2, tmp0);
   1.284 +
   1.285 +      __ ld(str1, offset_offset, tmp2);
   1.286 +      __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   1.287 +      __ ld(str1, count_offset, str1);
   1.288 +      __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   1.289 +      __ add(tmp1, tmp2, tmp1);
   1.290 +    } else {
   1.291 +      __ load_heap_oop(str1, value_offset, tmp2);
   1.292 +      __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   1.293 +      __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   1.294 +    }
   1.295 +    __ subcc(str0, str1, O7);
   1.296 +  }
   1.297 +
   1.298 +  {
   1.299 +    // Compute the minimum of the string lengths, scale it and store it in limit
   1.300 +    Register count0 = I0;
   1.301 +    Register count1 = I1;
   1.302 +    Register limit  = L3;
   1.303 +
   1.304 +    Label Lskip;
   1.305 +    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   1.306 +    __ br(Assembler::greater, true, Assembler::pt, Lskip);
   1.307 +    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   1.308 +    __ bind(Lskip);
   1.309 +
   1.310 +    // If either string is empty (or both of them) the result is the difference in lengths
   1.311 +    __ cmp(limit, 0);
   1.312 +    __ br(Assembler::equal, true, Assembler::pn, Ldone);
   1.313 +    __ delayed()->mov(O7, result);  // result is difference in lengths
   1.314 +  }
   1.315 +
   1.316 +  {
   1.317 +    // Neither string is empty
   1.318 +    Label Lloop;
   1.319 +
   1.320 +    Register base0 = L0;
   1.321 +    Register base1 = L1;
   1.322 +    Register chr0  = I0;
   1.323 +    Register chr1  = I1;
   1.324 +    Register limit = L3;
   1.325 +
   1.326 +    // Shift base0 and base1 to the end of the arrays, negate limit
   1.327 +    __ add(base0, limit, base0);
   1.328 +    __ add(base1, limit, base1);
   1.329 +    __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   1.330 +
   1.331 +    __ lduh(base0, limit, chr0);
   1.332 +    __ bind(Lloop);
   1.333 +    __ lduh(base1, limit, chr1);
   1.334 +    __ subcc(chr0, chr1, chr0);
   1.335 +    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   1.336 +    assert(chr0 == result, "result must be pre-placed");
   1.337 +    __ delayed()->inccc(limit, sizeof(jchar));
   1.338 +    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   1.339 +    __ delayed()->lduh(base0, limit, chr0);
   1.340 +  }
   1.341 +
   1.342 +  // If strings are equal up to min length, return the length difference.
   1.343 +  __ mov(O7, result);
   1.344 +
   1.345 +  // Otherwise, return the difference between the first mismatched chars.
   1.346 +  __ bind(Ldone);
   1.347 +}
   1.348 +
   1.349 +
   1.350 +// --------------------------------------------------------------------------------------------
   1.351 +
   1.352 +void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   1.353 +  if (!GenerateSynchronizationCode) return;
   1.354 +
   1.355 +  Register obj_reg = obj_opr->as_register();
   1.356 +  Register lock_reg = lock_opr->as_register();
   1.357 +
   1.358 +  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   1.359 +  Register reg = mon_addr.base();
   1.360 +  int offset = mon_addr.disp();
   1.361 +  // compute pointer to BasicLock
   1.362 +  if (mon_addr.is_simm13()) {
   1.363 +    __ add(reg, offset, lock_reg);
   1.364 +  }
   1.365 +  else {
   1.366 +    __ set(offset, lock_reg);
   1.367 +    __ add(reg, lock_reg, lock_reg);
   1.368 +  }
   1.369 +  // unlock object
   1.370 +  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   1.371 +  // _slow_case_stubs->append(slow_case);
   1.372 +  // temporary fix: must be created after exceptionhandler, therefore as call stub
   1.373 +  _slow_case_stubs->append(slow_case);
   1.374 +  if (UseFastLocking) {
   1.375 +    // try inlined fast unlocking first, revert to slow locking if it fails
   1.376 +    // note: lock_reg points to the displaced header since the displaced header offset is 0!
   1.377 +    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   1.378 +    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   1.379 +  } else {
   1.380 +    // always do slow unlocking
   1.381 +    // note: the slow unlocking code could be inlined here, however if we use
   1.382 +    //       slow unlocking, speed doesn't matter anyway and this solution is
   1.383 +    //       simpler and requires less duplicated code - additionally, the
   1.384 +    //       slow unlocking code is the same in either case which simplifies
   1.385 +    //       debugging
   1.386 +    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   1.387 +    __ delayed()->nop();
   1.388 +  }
   1.389 +  // done
   1.390 +  __ bind(*slow_case->continuation());
   1.391 +}
   1.392 +
   1.393 +
   1.394 +int LIR_Assembler::emit_exception_handler() {
   1.395 +  // if the last instruction is a call (typically to do a throw which
   1.396 +  // is coming at the end after block reordering) the return address
   1.397 +  // must still point into the code area in order to avoid assertion
   1.398 +  // failures when searching for the corresponding bci => add a nop
   1.399 +  // (was bug 5/14/1999 - gri)
   1.400 +  __ nop();
   1.401 +
   1.402 +  // generate code for exception handler
   1.403 +  ciMethod* method = compilation()->method();
   1.404 +
   1.405 +  address handler_base = __ start_a_stub(exception_handler_size);
   1.406 +
   1.407 +  if (handler_base == NULL) {
   1.408 +    // not enough space left for the handler
   1.409 +    bailout("exception handler overflow");
   1.410 +    return -1;
   1.411 +  }
   1.412 +
   1.413 +  int offset = code_offset();
   1.414 +
   1.415 +  __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   1.416 +  __ delayed()->nop();
   1.417 +  __ should_not_reach_here();
   1.418 +  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   1.419 +  __ end_a_stub();
   1.420 +
   1.421 +  return offset;
   1.422 +}
   1.423 +
   1.424 +
   1.425 +// Emit the code to remove the frame from the stack in the exception
   1.426 +// unwind path.
   1.427 +int LIR_Assembler::emit_unwind_handler() {
   1.428 +#ifndef PRODUCT
   1.429 +  if (CommentedAssembly) {
   1.430 +    _masm->block_comment("Unwind handler");
   1.431 +  }
   1.432 +#endif
   1.433 +
   1.434 +  int offset = code_offset();
   1.435 +
   1.436 +  // Fetch the exception from TLS and clear out exception related thread state
   1.437 +  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   1.438 +  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   1.439 +  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   1.440 +
   1.441 +  __ bind(_unwind_handler_entry);
   1.442 +  __ verify_not_null_oop(O0);
   1.443 +  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   1.444 +    __ mov(O0, I0);  // Preserve the exception
   1.445 +  }
   1.446 +
   1.447 +  // Preform needed unlocking
   1.448 +  MonitorExitStub* stub = NULL;
   1.449 +  if (method()->is_synchronized()) {
   1.450 +    monitor_address(0, FrameMap::I1_opr);
   1.451 +    stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   1.452 +    __ unlock_object(I3, I2, I1, *stub->entry());
   1.453 +    __ bind(*stub->continuation());
   1.454 +  }
   1.455 +
   1.456 +  if (compilation()->env()->dtrace_method_probes()) {
   1.457 +    __ mov(G2_thread, O0);
   1.458 +    __ save_thread(I1); // need to preserve thread in G2 across
   1.459 +                        // runtime call
   1.460 +    metadata2reg(method()->constant_encoding(), O1);
   1.461 +    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   1.462 +    __ delayed()->nop();
   1.463 +    __ restore_thread(I1);
   1.464 +  }
   1.465 +
   1.466 +  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   1.467 +    __ mov(I0, O0);  // Restore the exception
   1.468 +  }
   1.469 +
   1.470 +  // dispatch to the unwind logic
   1.471 +  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   1.472 +  __ delayed()->nop();
   1.473 +
   1.474 +  // Emit the slow path assembly
   1.475 +  if (stub != NULL) {
   1.476 +    stub->emit_code(this);
   1.477 +  }
   1.478 +
   1.479 +  return offset;
   1.480 +}
   1.481 +
   1.482 +
   1.483 +int LIR_Assembler::emit_deopt_handler() {
   1.484 +  // if the last instruction is a call (typically to do a throw which
   1.485 +  // is coming at the end after block reordering) the return address
   1.486 +  // must still point into the code area in order to avoid assertion
   1.487 +  // failures when searching for the corresponding bci => add a nop
   1.488 +  // (was bug 5/14/1999 - gri)
   1.489 +  __ nop();
   1.490 +
   1.491 +  // generate code for deopt handler
   1.492 +  ciMethod* method = compilation()->method();
   1.493 +  address handler_base = __ start_a_stub(deopt_handler_size);
   1.494 +  if (handler_base == NULL) {
   1.495 +    // not enough space left for the handler
   1.496 +    bailout("deopt handler overflow");
   1.497 +    return -1;
   1.498 +  }
   1.499 +
   1.500 +  int offset = code_offset();
   1.501 +  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   1.502 +  __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   1.503 +  __ delayed()->nop();
   1.504 +  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   1.505 +  __ end_a_stub();
   1.506 +
   1.507 +  return offset;
   1.508 +}
   1.509 +
   1.510 +
   1.511 +void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   1.512 +  if (o == NULL) {
   1.513 +    __ set(NULL_WORD, reg);
   1.514 +  } else {
   1.515 +    int oop_index = __ oop_recorder()->find_index(o);
   1.516 +    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   1.517 +    RelocationHolder rspec = oop_Relocation::spec(oop_index);
   1.518 +    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   1.519 +  }
   1.520 +}
   1.521 +
   1.522 +
   1.523 +void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   1.524 +  // Allocate a new index in table to hold the object once it's been patched
   1.525 +  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   1.526 +  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
   1.527 +
   1.528 +  AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   1.529 +  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   1.530 +  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   1.531 +  // NULL will be dynamically patched later and the patched value may be large.  We must
   1.532 +  // therefore generate the sethi/add as a placeholders
   1.533 +  __ patchable_set(addrlit, reg);
   1.534 +
   1.535 +  patching_epilog(patch, lir_patch_normal, reg, info);
   1.536 +}
   1.537 +
   1.538 +
   1.539 +void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   1.540 +  __ set_metadata_constant(o, reg);
   1.541 +}
   1.542 +
   1.543 +void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   1.544 +  // Allocate a new index in table to hold the klass once it's been patched
   1.545 +  int index = __ oop_recorder()->allocate_metadata_index(NULL);
   1.546 +  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   1.547 +  AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   1.548 +  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   1.549 +  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   1.550 +  // NULL will be dynamically patched later and the patched value may be large.  We must
   1.551 +  // therefore generate the sethi/add as a placeholders
   1.552 +  __ patchable_set(addrlit, reg);
   1.553 +
   1.554 +  patching_epilog(patch, lir_patch_normal, reg, info);
   1.555 +}
   1.556 +
   1.557 +void LIR_Assembler::emit_op3(LIR_Op3* op) {
   1.558 +  Register Rdividend = op->in_opr1()->as_register();
   1.559 +  Register Rdivisor  = noreg;
   1.560 +  Register Rscratch  = op->in_opr3()->as_register();
   1.561 +  Register Rresult   = op->result_opr()->as_register();
   1.562 +  int divisor = -1;
   1.563 +
   1.564 +  if (op->in_opr2()->is_register()) {
   1.565 +    Rdivisor = op->in_opr2()->as_register();
   1.566 +  } else {
   1.567 +    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   1.568 +    assert(Assembler::is_simm13(divisor), "can only handle simm13");
   1.569 +  }
   1.570 +
   1.571 +  assert(Rdividend != Rscratch, "");
   1.572 +  assert(Rdivisor  != Rscratch, "");
   1.573 +  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   1.574 +
   1.575 +  if (Rdivisor == noreg && is_power_of_2(divisor)) {
   1.576 +    // convert division by a power of two into some shifts and logical operations
   1.577 +    if (op->code() == lir_idiv) {
   1.578 +      if (divisor == 2) {
   1.579 +        __ srl(Rdividend, 31, Rscratch);
   1.580 +      } else {
   1.581 +        __ sra(Rdividend, 31, Rscratch);
   1.582 +        __ and3(Rscratch, divisor - 1, Rscratch);
   1.583 +      }
   1.584 +      __ add(Rdividend, Rscratch, Rscratch);
   1.585 +      __ sra(Rscratch, log2_intptr(divisor), Rresult);
   1.586 +      return;
   1.587 +    } else {
   1.588 +      if (divisor == 2) {
   1.589 +        __ srl(Rdividend, 31, Rscratch);
   1.590 +      } else {
   1.591 +        __ sra(Rdividend, 31, Rscratch);
   1.592 +        __ and3(Rscratch, divisor - 1,Rscratch);
   1.593 +      }
   1.594 +      __ add(Rdividend, Rscratch, Rscratch);
   1.595 +      __ andn(Rscratch, divisor - 1,Rscratch);
   1.596 +      __ sub(Rdividend, Rscratch, Rresult);
   1.597 +      return;
   1.598 +    }
   1.599 +  }
   1.600 +
   1.601 +  __ sra(Rdividend, 31, Rscratch);
   1.602 +  __ wry(Rscratch);
   1.603 +
   1.604 +  add_debug_info_for_div0_here(op->info());
   1.605 +
   1.606 +  if (Rdivisor != noreg) {
   1.607 +    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   1.608 +  } else {
   1.609 +    assert(Assembler::is_simm13(divisor), "can only handle simm13");
   1.610 +    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   1.611 +  }
   1.612 +
   1.613 +  Label skip;
   1.614 +  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   1.615 +  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   1.616 +  __ bind(skip);
   1.617 +
   1.618 +  if (op->code() == lir_irem) {
   1.619 +    if (Rdivisor != noreg) {
   1.620 +      __ smul(Rscratch, Rdivisor, Rscratch);
   1.621 +    } else {
   1.622 +      __ smul(Rscratch, divisor, Rscratch);
   1.623 +    }
   1.624 +    __ sub(Rdividend, Rscratch, Rresult);
   1.625 +  }
   1.626 +}
   1.627 +
   1.628 +
   1.629 +void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   1.630 +#ifdef ASSERT
   1.631 +  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   1.632 +  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   1.633 +  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   1.634 +#endif
   1.635 +  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   1.636 +
   1.637 +  if (op->cond() == lir_cond_always) {
   1.638 +    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   1.639 +  } else if (op->code() == lir_cond_float_branch) {
   1.640 +    assert(op->ublock() != NULL, "must have unordered successor");
   1.641 +    bool is_unordered = (op->ublock() == op->block());
   1.642 +    Assembler::Condition acond;
   1.643 +    switch (op->cond()) {
   1.644 +      case lir_cond_equal:         acond = Assembler::f_equal;    break;
   1.645 +      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   1.646 +      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   1.647 +      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   1.648 +      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   1.649 +      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   1.650 +      default :                         ShouldNotReachHere();
   1.651 +    }
   1.652 +    __ fb( acond, false, Assembler::pn, *(op->label()));
   1.653 +  } else {
   1.654 +    assert (op->code() == lir_branch, "just checking");
   1.655 +
   1.656 +    Assembler::Condition acond;
   1.657 +    switch (op->cond()) {
   1.658 +      case lir_cond_equal:        acond = Assembler::equal;                break;
   1.659 +      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   1.660 +      case lir_cond_less:         acond = Assembler::less;                 break;
   1.661 +      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   1.662 +      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   1.663 +      case lir_cond_greater:      acond = Assembler::greater;              break;
   1.664 +      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   1.665 +      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   1.666 +      default:                         ShouldNotReachHere();
   1.667 +    };
   1.668 +
   1.669 +    // sparc has different condition codes for testing 32-bit
   1.670 +    // vs. 64-bit values.  We could always test xcc is we could
   1.671 +    // guarantee that 32-bit loads always sign extended but that isn't
   1.672 +    // true and since sign extension isn't free, it would impose a
   1.673 +    // slight cost.
   1.674 +#ifdef _LP64
   1.675 +    if  (op->type() == T_INT) {
   1.676 +      __ br(acond, false, Assembler::pn, *(op->label()));
   1.677 +    } else
   1.678 +#endif
   1.679 +      __ brx(acond, false, Assembler::pn, *(op->label()));
   1.680 +  }
   1.681 +  // The peephole pass fills the delay slot
   1.682 +}
   1.683 +
   1.684 +
   1.685 +void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   1.686 +  Bytecodes::Code code = op->bytecode();
   1.687 +  LIR_Opr dst = op->result_opr();
   1.688 +
   1.689 +  switch(code) {
   1.690 +    case Bytecodes::_i2l: {
   1.691 +      Register rlo  = dst->as_register_lo();
   1.692 +      Register rhi  = dst->as_register_hi();
   1.693 +      Register rval = op->in_opr()->as_register();
   1.694 +#ifdef _LP64
   1.695 +      __ sra(rval, 0, rlo);
   1.696 +#else
   1.697 +      __ mov(rval, rlo);
   1.698 +      __ sra(rval, BitsPerInt-1, rhi);
   1.699 +#endif
   1.700 +      break;
   1.701 +    }
   1.702 +    case Bytecodes::_i2d:
   1.703 +    case Bytecodes::_i2f: {
   1.704 +      bool is_double = (code == Bytecodes::_i2d);
   1.705 +      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   1.706 +      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   1.707 +      FloatRegister rsrc = op->in_opr()->as_float_reg();
   1.708 +      if (rsrc != rdst) {
   1.709 +        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   1.710 +      }
   1.711 +      __ fitof(w, rdst, rdst);
   1.712 +      break;
   1.713 +    }
   1.714 +    case Bytecodes::_f2i:{
   1.715 +      FloatRegister rsrc = op->in_opr()->as_float_reg();
   1.716 +      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   1.717 +      Label L;
   1.718 +      // result must be 0 if value is NaN; test by comparing value to itself
   1.719 +      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   1.720 +      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   1.721 +      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   1.722 +      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   1.723 +      // move integer result from float register to int register
   1.724 +      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   1.725 +      __ bind (L);
   1.726 +      break;
   1.727 +    }
   1.728 +    case Bytecodes::_l2i: {
   1.729 +      Register rlo  = op->in_opr()->as_register_lo();
   1.730 +      Register rhi  = op->in_opr()->as_register_hi();
   1.731 +      Register rdst = dst->as_register();
   1.732 +#ifdef _LP64
   1.733 +      __ sra(rlo, 0, rdst);
   1.734 +#else
   1.735 +      __ mov(rlo, rdst);
   1.736 +#endif
   1.737 +      break;
   1.738 +    }
   1.739 +    case Bytecodes::_d2f:
   1.740 +    case Bytecodes::_f2d: {
   1.741 +      bool is_double = (code == Bytecodes::_f2d);
   1.742 +      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   1.743 +      LIR_Opr val = op->in_opr();
   1.744 +      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   1.745 +      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   1.746 +      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   1.747 +      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   1.748 +      __ ftof(vw, dw, rval, rdst);
   1.749 +      break;
   1.750 +    }
   1.751 +    case Bytecodes::_i2s:
   1.752 +    case Bytecodes::_i2b: {
   1.753 +      Register rval = op->in_opr()->as_register();
   1.754 +      Register rdst = dst->as_register();
   1.755 +      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   1.756 +      __ sll (rval, shift, rdst);
   1.757 +      __ sra (rdst, shift, rdst);
   1.758 +      break;
   1.759 +    }
   1.760 +    case Bytecodes::_i2c: {
   1.761 +      Register rval = op->in_opr()->as_register();
   1.762 +      Register rdst = dst->as_register();
   1.763 +      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   1.764 +      __ sll (rval, shift, rdst);
   1.765 +      __ srl (rdst, shift, rdst);
   1.766 +      break;
   1.767 +    }
   1.768 +
   1.769 +    default: ShouldNotReachHere();
   1.770 +  }
   1.771 +}
   1.772 +
   1.773 +
   1.774 +void LIR_Assembler::align_call(LIR_Code) {
   1.775 +  // do nothing since all instructions are word aligned on sparc
   1.776 +}
   1.777 +
   1.778 +
   1.779 +void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   1.780 +  __ call(op->addr(), rtype);
   1.781 +  // The peephole pass fills the delay slot, add_call_info is done in
   1.782 +  // LIR_Assembler::emit_delay.
   1.783 +}
   1.784 +
   1.785 +
   1.786 +void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   1.787 +  __ ic_call(op->addr(), false);
   1.788 +  // The peephole pass fills the delay slot, add_call_info is done in
   1.789 +  // LIR_Assembler::emit_delay.
   1.790 +}
   1.791 +
   1.792 +
   1.793 +void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   1.794 +  add_debug_info_for_null_check_here(op->info());
   1.795 +  __ load_klass(O0, G3_scratch);
   1.796 +  if (Assembler::is_simm13(op->vtable_offset())) {
   1.797 +    __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   1.798 +  } else {
   1.799 +    // This will generate 2 instructions
   1.800 +    __ set(op->vtable_offset(), G5_method);
   1.801 +    // ld_ptr, set_hi, set
   1.802 +    __ ld_ptr(G3_scratch, G5_method, G5_method);
   1.803 +  }
   1.804 +  __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   1.805 +  __ callr(G3_scratch, G0);
   1.806 +  // the peephole pass fills the delay slot
   1.807 +}
   1.808 +
   1.809 +int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   1.810 +  int store_offset;
   1.811 +  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   1.812 +    assert(!unaligned, "can't handle this");
   1.813 +    // for offsets larger than a simm13 we setup the offset in O7
   1.814 +    __ set(offset, O7);
   1.815 +    store_offset = store(from_reg, base, O7, type, wide);
   1.816 +  } else {
   1.817 +    if (type == T_ARRAY || type == T_OBJECT) {
   1.818 +      __ verify_oop(from_reg->as_register());
   1.819 +    }
   1.820 +    store_offset = code_offset();
   1.821 +    switch (type) {
   1.822 +      case T_BOOLEAN: // fall through
   1.823 +      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   1.824 +      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   1.825 +      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   1.826 +      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   1.827 +      case T_LONG  :
   1.828 +#ifdef _LP64
   1.829 +        if (unaligned || PatchALot) {
   1.830 +          __ srax(from_reg->as_register_lo(), 32, O7);
   1.831 +          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   1.832 +          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   1.833 +        } else {
   1.834 +          __ stx(from_reg->as_register_lo(), base, offset);
   1.835 +        }
   1.836 +#else
   1.837 +        assert(Assembler::is_simm13(offset + 4), "must be");
   1.838 +        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   1.839 +        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   1.840 +#endif
   1.841 +        break;
   1.842 +      case T_ADDRESS:
   1.843 +      case T_METADATA:
   1.844 +        __ st_ptr(from_reg->as_register(), base, offset);
   1.845 +        break;
   1.846 +      case T_ARRAY : // fall through
   1.847 +      case T_OBJECT:
   1.848 +        {
   1.849 +          if (UseCompressedOops && !wide) {
   1.850 +            __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   1.851 +            store_offset = code_offset();
   1.852 +            __ stw(G3_scratch, base, offset);
   1.853 +          } else {
   1.854 +            __ st_ptr(from_reg->as_register(), base, offset);
   1.855 +          }
   1.856 +          break;
   1.857 +        }
   1.858 +
   1.859 +      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   1.860 +      case T_DOUBLE:
   1.861 +        {
   1.862 +          FloatRegister reg = from_reg->as_double_reg();
   1.863 +          // split unaligned stores
   1.864 +          if (unaligned || PatchALot) {
   1.865 +            assert(Assembler::is_simm13(offset + 4), "must be");
   1.866 +            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   1.867 +            __ stf(FloatRegisterImpl::S, reg,              base, offset);
   1.868 +          } else {
   1.869 +            __ stf(FloatRegisterImpl::D, reg, base, offset);
   1.870 +          }
   1.871 +          break;
   1.872 +        }
   1.873 +      default      : ShouldNotReachHere();
   1.874 +    }
   1.875 +  }
   1.876 +  return store_offset;
   1.877 +}
   1.878 +
   1.879 +
   1.880 +int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   1.881 +  if (type == T_ARRAY || type == T_OBJECT) {
   1.882 +    __ verify_oop(from_reg->as_register());
   1.883 +  }
   1.884 +  int store_offset = code_offset();
   1.885 +  switch (type) {
   1.886 +    case T_BOOLEAN: // fall through
   1.887 +    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   1.888 +    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   1.889 +    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   1.890 +    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   1.891 +    case T_LONG  :
   1.892 +#ifdef _LP64
   1.893 +      __ stx(from_reg->as_register_lo(), base, disp);
   1.894 +#else
   1.895 +      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   1.896 +      __ std(from_reg->as_register_hi(), base, disp);
   1.897 +#endif
   1.898 +      break;
   1.899 +    case T_ADDRESS:
   1.900 +      __ st_ptr(from_reg->as_register(), base, disp);
   1.901 +      break;
   1.902 +    case T_ARRAY : // fall through
   1.903 +    case T_OBJECT:
   1.904 +      {
   1.905 +        if (UseCompressedOops && !wide) {
   1.906 +          __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   1.907 +          store_offset = code_offset();
   1.908 +          __ stw(G3_scratch, base, disp);
   1.909 +        } else {
   1.910 +          __ st_ptr(from_reg->as_register(), base, disp);
   1.911 +        }
   1.912 +        break;
   1.913 +      }
   1.914 +    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   1.915 +    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   1.916 +    default      : ShouldNotReachHere();
   1.917 +  }
   1.918 +  return store_offset;
   1.919 +}
   1.920 +
   1.921 +
   1.922 +int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   1.923 +  int load_offset;
   1.924 +  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   1.925 +    assert(base != O7, "destroying register");
   1.926 +    assert(!unaligned, "can't handle this");
   1.927 +    // for offsets larger than a simm13 we setup the offset in O7
   1.928 +    __ set(offset, O7);
   1.929 +    load_offset = load(base, O7, to_reg, type, wide);
   1.930 +  } else {
   1.931 +    load_offset = code_offset();
   1.932 +    switch(type) {
   1.933 +      case T_BOOLEAN: // fall through
   1.934 +      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   1.935 +      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   1.936 +      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   1.937 +      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   1.938 +      case T_LONG  :
   1.939 +        if (!unaligned) {
   1.940 +#ifdef _LP64
   1.941 +          __ ldx(base, offset, to_reg->as_register_lo());
   1.942 +#else
   1.943 +          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   1.944 +                 "must be sequential");
   1.945 +          __ ldd(base, offset, to_reg->as_register_hi());
   1.946 +#endif
   1.947 +        } else {
   1.948 +#ifdef _LP64
   1.949 +          assert(base != to_reg->as_register_lo(), "can't handle this");
   1.950 +          assert(O7 != to_reg->as_register_lo(), "can't handle this");
   1.951 +          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   1.952 +          __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   1.953 +          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   1.954 +          __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   1.955 +#else
   1.956 +          if (base == to_reg->as_register_lo()) {
   1.957 +            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   1.958 +            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   1.959 +          } else {
   1.960 +            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   1.961 +            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   1.962 +          }
   1.963 +#endif
   1.964 +        }
   1.965 +        break;
   1.966 +      case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   1.967 +      case T_ADDRESS:
   1.968 +#ifdef _LP64
   1.969 +        if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
   1.970 +          __ lduw(base, offset, to_reg->as_register());
   1.971 +          __ decode_klass_not_null(to_reg->as_register());
   1.972 +        } else
   1.973 +#endif
   1.974 +        {
   1.975 +          __ ld_ptr(base, offset, to_reg->as_register());
   1.976 +        }
   1.977 +        break;
   1.978 +      case T_ARRAY : // fall through
   1.979 +      case T_OBJECT:
   1.980 +        {
   1.981 +          if (UseCompressedOops && !wide) {
   1.982 +            __ lduw(base, offset, to_reg->as_register());
   1.983 +            __ decode_heap_oop(to_reg->as_register());
   1.984 +          } else {
   1.985 +            __ ld_ptr(base, offset, to_reg->as_register());
   1.986 +          }
   1.987 +          break;
   1.988 +        }
   1.989 +      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   1.990 +      case T_DOUBLE:
   1.991 +        {
   1.992 +          FloatRegister reg = to_reg->as_double_reg();
   1.993 +          // split unaligned loads
   1.994 +          if (unaligned || PatchALot) {
   1.995 +            __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   1.996 +            __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   1.997 +          } else {
   1.998 +            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   1.999 +          }
  1.1000 +          break;
  1.1001 +        }
  1.1002 +      default      : ShouldNotReachHere();
  1.1003 +    }
  1.1004 +    if (type == T_ARRAY || type == T_OBJECT) {
  1.1005 +      __ verify_oop(to_reg->as_register());
  1.1006 +    }
  1.1007 +  }
  1.1008 +  return load_offset;
  1.1009 +}
  1.1010 +
  1.1011 +
  1.1012 +int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1.1013 +  int load_offset = code_offset();
  1.1014 +  switch(type) {
  1.1015 +    case T_BOOLEAN: // fall through
  1.1016 +    case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1.1017 +    case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1.1018 +    case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1.1019 +    case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1.1020 +    case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1.1021 +    case T_ARRAY : // fall through
  1.1022 +    case T_OBJECT:
  1.1023 +      {
  1.1024 +          if (UseCompressedOops && !wide) {
  1.1025 +            __ lduw(base, disp, to_reg->as_register());
  1.1026 +            __ decode_heap_oop(to_reg->as_register());
  1.1027 +          } else {
  1.1028 +            __ ld_ptr(base, disp, to_reg->as_register());
  1.1029 +          }
  1.1030 +          break;
  1.1031 +      }
  1.1032 +    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1.1033 +    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1.1034 +    case T_LONG  :
  1.1035 +#ifdef _LP64
  1.1036 +      __ ldx(base, disp, to_reg->as_register_lo());
  1.1037 +#else
  1.1038 +      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1.1039 +             "must be sequential");
  1.1040 +      __ ldd(base, disp, to_reg->as_register_hi());
  1.1041 +#endif
  1.1042 +      break;
  1.1043 +    default      : ShouldNotReachHere();
  1.1044 +  }
  1.1045 +  if (type == T_ARRAY || type == T_OBJECT) {
  1.1046 +    __ verify_oop(to_reg->as_register());
  1.1047 +  }
  1.1048 +  return load_offset;
  1.1049 +}
  1.1050 +
  1.1051 +void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1.1052 +  LIR_Const* c = src->as_constant_ptr();
  1.1053 +  switch (c->type()) {
  1.1054 +    case T_INT:
  1.1055 +    case T_FLOAT: {
  1.1056 +      Register src_reg = O7;
  1.1057 +      int value = c->as_jint_bits();
  1.1058 +      if (value == 0) {
  1.1059 +        src_reg = G0;
  1.1060 +      } else {
  1.1061 +        __ set(value, O7);
  1.1062 +      }
  1.1063 +      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1064 +      __ stw(src_reg, addr.base(), addr.disp());
  1.1065 +      break;
  1.1066 +    }
  1.1067 +    case T_ADDRESS: {
  1.1068 +      Register src_reg = O7;
  1.1069 +      int value = c->as_jint_bits();
  1.1070 +      if (value == 0) {
  1.1071 +        src_reg = G0;
  1.1072 +      } else {
  1.1073 +        __ set(value, O7);
  1.1074 +      }
  1.1075 +      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1076 +      __ st_ptr(src_reg, addr.base(), addr.disp());
  1.1077 +      break;
  1.1078 +    }
  1.1079 +    case T_OBJECT: {
  1.1080 +      Register src_reg = O7;
  1.1081 +      jobject2reg(c->as_jobject(), src_reg);
  1.1082 +      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1083 +      __ st_ptr(src_reg, addr.base(), addr.disp());
  1.1084 +      break;
  1.1085 +    }
  1.1086 +    case T_LONG:
  1.1087 +    case T_DOUBLE: {
  1.1088 +      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1.1089 +
  1.1090 +      Register tmp = O7;
  1.1091 +      int value_lo = c->as_jint_lo_bits();
  1.1092 +      if (value_lo == 0) {
  1.1093 +        tmp = G0;
  1.1094 +      } else {
  1.1095 +        __ set(value_lo, O7);
  1.1096 +      }
  1.1097 +      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1.1098 +      int value_hi = c->as_jint_hi_bits();
  1.1099 +      if (value_hi == 0) {
  1.1100 +        tmp = G0;
  1.1101 +      } else {
  1.1102 +        __ set(value_hi, O7);
  1.1103 +      }
  1.1104 +      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1.1105 +      break;
  1.1106 +    }
  1.1107 +    default:
  1.1108 +      Unimplemented();
  1.1109 +  }
  1.1110 +}
  1.1111 +
  1.1112 +
  1.1113 +void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1.1114 +  LIR_Const* c = src->as_constant_ptr();
  1.1115 +  LIR_Address* addr     = dest->as_address_ptr();
  1.1116 +  Register base = addr->base()->as_pointer_register();
  1.1117 +  int offset = -1;
  1.1118 +
  1.1119 +  switch (c->type()) {
  1.1120 +    case T_INT:
  1.1121 +    case T_FLOAT:
  1.1122 +    case T_ADDRESS: {
  1.1123 +      LIR_Opr tmp = FrameMap::O7_opr;
  1.1124 +      int value = c->as_jint_bits();
  1.1125 +      if (value == 0) {
  1.1126 +        tmp = FrameMap::G0_opr;
  1.1127 +      } else if (Assembler::is_simm13(value)) {
  1.1128 +        __ set(value, O7);
  1.1129 +      }
  1.1130 +      if (addr->index()->is_valid()) {
  1.1131 +        assert(addr->disp() == 0, "must be zero");
  1.1132 +        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1.1133 +      } else {
  1.1134 +        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1.1135 +        offset = store(tmp, base, addr->disp(), type, wide, false);
  1.1136 +      }
  1.1137 +      break;
  1.1138 +    }
  1.1139 +    case T_LONG:
  1.1140 +    case T_DOUBLE: {
  1.1141 +      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1.1142 +      assert(Assembler::is_simm13(addr->disp()) &&
  1.1143 +             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1.1144 +
  1.1145 +      LIR_Opr tmp = FrameMap::O7_opr;
  1.1146 +      int value_lo = c->as_jint_lo_bits();
  1.1147 +      if (value_lo == 0) {
  1.1148 +        tmp = FrameMap::G0_opr;
  1.1149 +      } else {
  1.1150 +        __ set(value_lo, O7);
  1.1151 +      }
  1.1152 +      offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1.1153 +      int value_hi = c->as_jint_hi_bits();
  1.1154 +      if (value_hi == 0) {
  1.1155 +        tmp = FrameMap::G0_opr;
  1.1156 +      } else {
  1.1157 +        __ set(value_hi, O7);
  1.1158 +      }
  1.1159 +      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1.1160 +      break;
  1.1161 +    }
  1.1162 +    case T_OBJECT: {
  1.1163 +      jobject obj = c->as_jobject();
  1.1164 +      LIR_Opr tmp;
  1.1165 +      if (obj == NULL) {
  1.1166 +        tmp = FrameMap::G0_opr;
  1.1167 +      } else {
  1.1168 +        tmp = FrameMap::O7_opr;
  1.1169 +        jobject2reg(c->as_jobject(), O7);
  1.1170 +      }
  1.1171 +      // handle either reg+reg or reg+disp address
  1.1172 +      if (addr->index()->is_valid()) {
  1.1173 +        assert(addr->disp() == 0, "must be zero");
  1.1174 +        offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1.1175 +      } else {
  1.1176 +        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1.1177 +        offset = store(tmp, base, addr->disp(), type, wide, false);
  1.1178 +      }
  1.1179 +
  1.1180 +      break;
  1.1181 +    }
  1.1182 +    default:
  1.1183 +      Unimplemented();
  1.1184 +  }
  1.1185 +  if (info != NULL) {
  1.1186 +    assert(offset != -1, "offset should've been set");
  1.1187 +    add_debug_info_for_null_check(offset, info);
  1.1188 +  }
  1.1189 +}
  1.1190 +
  1.1191 +
  1.1192 +void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1.1193 +  LIR_Const* c = src->as_constant_ptr();
  1.1194 +  LIR_Opr to_reg = dest;
  1.1195 +
  1.1196 +  switch (c->type()) {
  1.1197 +    case T_INT:
  1.1198 +    case T_ADDRESS:
  1.1199 +      {
  1.1200 +        jint con = c->as_jint();
  1.1201 +        if (to_reg->is_single_cpu()) {
  1.1202 +          assert(patch_code == lir_patch_none, "no patching handled here");
  1.1203 +          __ set(con, to_reg->as_register());
  1.1204 +        } else {
  1.1205 +          ShouldNotReachHere();
  1.1206 +          assert(to_reg->is_single_fpu(), "wrong register kind");
  1.1207 +
  1.1208 +          __ set(con, O7);
  1.1209 +          Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1.1210 +          __ st(O7, temp_slot);
  1.1211 +          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1.1212 +        }
  1.1213 +      }
  1.1214 +      break;
  1.1215 +
  1.1216 +    case T_LONG:
  1.1217 +      {
  1.1218 +        jlong con = c->as_jlong();
  1.1219 +
  1.1220 +        if (to_reg->is_double_cpu()) {
  1.1221 +#ifdef _LP64
  1.1222 +          __ set(con,  to_reg->as_register_lo());
  1.1223 +#else
  1.1224 +          __ set(low(con),  to_reg->as_register_lo());
  1.1225 +          __ set(high(con), to_reg->as_register_hi());
  1.1226 +#endif
  1.1227 +#ifdef _LP64
  1.1228 +        } else if (to_reg->is_single_cpu()) {
  1.1229 +          __ set(con, to_reg->as_register());
  1.1230 +#endif
  1.1231 +        } else {
  1.1232 +          ShouldNotReachHere();
  1.1233 +          assert(to_reg->is_double_fpu(), "wrong register kind");
  1.1234 +          Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1.1235 +          Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1.1236 +          __ set(low(con),  O7);
  1.1237 +          __ st(O7, temp_slot_lo);
  1.1238 +          __ set(high(con), O7);
  1.1239 +          __ st(O7, temp_slot_hi);
  1.1240 +          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1.1241 +        }
  1.1242 +      }
  1.1243 +      break;
  1.1244 +
  1.1245 +    case T_OBJECT:
  1.1246 +      {
  1.1247 +        if (patch_code == lir_patch_none) {
  1.1248 +          jobject2reg(c->as_jobject(), to_reg->as_register());
  1.1249 +        } else {
  1.1250 +          jobject2reg_with_patching(to_reg->as_register(), info);
  1.1251 +        }
  1.1252 +      }
  1.1253 +      break;
  1.1254 +
  1.1255 +    case T_METADATA:
  1.1256 +      {
  1.1257 +        if (patch_code == lir_patch_none) {
  1.1258 +          metadata2reg(c->as_metadata(), to_reg->as_register());
  1.1259 +        } else {
  1.1260 +          klass2reg_with_patching(to_reg->as_register(), info);
  1.1261 +        }
  1.1262 +      }
  1.1263 +      break;
  1.1264 +
  1.1265 +    case T_FLOAT:
  1.1266 +      {
  1.1267 +        address const_addr = __ float_constant(c->as_jfloat());
  1.1268 +        if (const_addr == NULL) {
  1.1269 +          bailout("const section overflow");
  1.1270 +          break;
  1.1271 +        }
  1.1272 +        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1.1273 +        AddressLiteral const_addrlit(const_addr, rspec);
  1.1274 +        if (to_reg->is_single_fpu()) {
  1.1275 +          __ patchable_sethi(const_addrlit, O7);
  1.1276 +          __ relocate(rspec);
  1.1277 +          __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1.1278 +
  1.1279 +        } else {
  1.1280 +          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1.1281 +
  1.1282 +          __ set(const_addrlit, O7);
  1.1283 +          __ ld(O7, 0, to_reg->as_register());
  1.1284 +        }
  1.1285 +      }
  1.1286 +      break;
  1.1287 +
  1.1288 +    case T_DOUBLE:
  1.1289 +      {
  1.1290 +        address const_addr = __ double_constant(c->as_jdouble());
  1.1291 +        if (const_addr == NULL) {
  1.1292 +          bailout("const section overflow");
  1.1293 +          break;
  1.1294 +        }
  1.1295 +        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1.1296 +
  1.1297 +        if (to_reg->is_double_fpu()) {
  1.1298 +          AddressLiteral const_addrlit(const_addr, rspec);
  1.1299 +          __ patchable_sethi(const_addrlit, O7);
  1.1300 +          __ relocate(rspec);
  1.1301 +          __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1.1302 +        } else {
  1.1303 +          assert(to_reg->is_double_cpu(), "Must be a long register.");
  1.1304 +#ifdef _LP64
  1.1305 +          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1.1306 +#else
  1.1307 +          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1.1308 +          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1.1309 +#endif
  1.1310 +        }
  1.1311 +
  1.1312 +      }
  1.1313 +      break;
  1.1314 +
  1.1315 +    default:
  1.1316 +      ShouldNotReachHere();
  1.1317 +  }
  1.1318 +}
  1.1319 +
  1.1320 +Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1.1321 +  Register reg = addr->base()->as_pointer_register();
  1.1322 +  LIR_Opr index = addr->index();
  1.1323 +  if (index->is_illegal()) {
  1.1324 +    return Address(reg, addr->disp());
  1.1325 +  } else {
  1.1326 +    assert (addr->disp() == 0, "unsupported address mode");
  1.1327 +    return Address(reg, index->as_pointer_register());
  1.1328 +  }
  1.1329 +}
  1.1330 +
  1.1331 +
  1.1332 +void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1.1333 +  switch (type) {
  1.1334 +    case T_INT:
  1.1335 +    case T_FLOAT: {
  1.1336 +      Register tmp = O7;
  1.1337 +      Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1.1338 +      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1339 +      __ lduw(from.base(), from.disp(), tmp);
  1.1340 +      __ stw(tmp, to.base(), to.disp());
  1.1341 +      break;
  1.1342 +    }
  1.1343 +    case T_OBJECT: {
  1.1344 +      Register tmp = O7;
  1.1345 +      Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1.1346 +      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1347 +      __ ld_ptr(from.base(), from.disp(), tmp);
  1.1348 +      __ st_ptr(tmp, to.base(), to.disp());
  1.1349 +      break;
  1.1350 +    }
  1.1351 +    case T_LONG:
  1.1352 +    case T_DOUBLE: {
  1.1353 +      Register tmp = O7;
  1.1354 +      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1.1355 +      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1.1356 +      __ lduw(from.base(), from.disp(), tmp);
  1.1357 +      __ stw(tmp, to.base(), to.disp());
  1.1358 +      __ lduw(from.base(), from.disp() + 4, tmp);
  1.1359 +      __ stw(tmp, to.base(), to.disp() + 4);
  1.1360 +      break;
  1.1361 +    }
  1.1362 +
  1.1363 +    default:
  1.1364 +      ShouldNotReachHere();
  1.1365 +  }
  1.1366 +}
  1.1367 +
  1.1368 +
  1.1369 +Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1.1370 +  Address base = as_Address(addr);
  1.1371 +  return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1.1372 +}
  1.1373 +
  1.1374 +
  1.1375 +Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1.1376 +  Address base = as_Address(addr);
  1.1377 +  return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1.1378 +}
  1.1379 +
  1.1380 +
  1.1381 +void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1.1382 +                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1.1383 +
  1.1384 +  assert(type != T_METADATA, "load of metadata ptr not supported");
  1.1385 +  LIR_Address* addr = src_opr->as_address_ptr();
  1.1386 +  LIR_Opr to_reg = dest;
  1.1387 +
  1.1388 +  Register src = addr->base()->as_pointer_register();
  1.1389 +  Register disp_reg = noreg;
  1.1390 +  int disp_value = addr->disp();
  1.1391 +  bool needs_patching = (patch_code != lir_patch_none);
  1.1392 +
  1.1393 +  if (addr->base()->type() == T_OBJECT) {
  1.1394 +    __ verify_oop(src);
  1.1395 +  }
  1.1396 +
  1.1397 +  PatchingStub* patch = NULL;
  1.1398 +  if (needs_patching) {
  1.1399 +    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1.1400 +    assert(!to_reg->is_double_cpu() ||
  1.1401 +           patch_code == lir_patch_none ||
  1.1402 +           patch_code == lir_patch_normal, "patching doesn't match register");
  1.1403 +  }
  1.1404 +
  1.1405 +  if (addr->index()->is_illegal()) {
  1.1406 +    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1.1407 +      if (needs_patching) {
  1.1408 +        __ patchable_set(0, O7);
  1.1409 +      } else {
  1.1410 +        __ set(disp_value, O7);
  1.1411 +      }
  1.1412 +      disp_reg = O7;
  1.1413 +    }
  1.1414 +  } else if (unaligned || PatchALot) {
  1.1415 +    __ add(src, addr->index()->as_register(), O7);
  1.1416 +    src = O7;
  1.1417 +  } else {
  1.1418 +    disp_reg = addr->index()->as_pointer_register();
  1.1419 +    assert(disp_value == 0, "can't handle 3 operand addresses");
  1.1420 +  }
  1.1421 +
  1.1422 +  // remember the offset of the load.  The patching_epilog must be done
  1.1423 +  // before the call to add_debug_info, otherwise the PcDescs don't get
  1.1424 +  // entered in increasing order.
  1.1425 +  int offset = code_offset();
  1.1426 +
  1.1427 +  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1.1428 +  if (disp_reg == noreg) {
  1.1429 +    offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1.1430 +  } else {
  1.1431 +    assert(!unaligned, "can't handle this");
  1.1432 +    offset = load(src, disp_reg, to_reg, type, wide);
  1.1433 +  }
  1.1434 +
  1.1435 +  if (patch != NULL) {
  1.1436 +    patching_epilog(patch, patch_code, src, info);
  1.1437 +  }
  1.1438 +  if (info != NULL) add_debug_info_for_null_check(offset, info);
  1.1439 +}
  1.1440 +
  1.1441 +
  1.1442 +void LIR_Assembler::prefetchr(LIR_Opr src) {
  1.1443 +  LIR_Address* addr = src->as_address_ptr();
  1.1444 +  Address from_addr = as_Address(addr);
  1.1445 +
  1.1446 +  if (VM_Version::has_v9()) {
  1.1447 +    __ prefetch(from_addr, Assembler::severalReads);
  1.1448 +  }
  1.1449 +}
  1.1450 +
  1.1451 +
  1.1452 +void LIR_Assembler::prefetchw(LIR_Opr src) {
  1.1453 +  LIR_Address* addr = src->as_address_ptr();
  1.1454 +  Address from_addr = as_Address(addr);
  1.1455 +
  1.1456 +  if (VM_Version::has_v9()) {
  1.1457 +    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1.1458 +  }
  1.1459 +}
  1.1460 +
  1.1461 +
  1.1462 +void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1.1463 +  Address addr;
  1.1464 +  if (src->is_single_word()) {
  1.1465 +    addr = frame_map()->address_for_slot(src->single_stack_ix());
  1.1466 +  } else if (src->is_double_word())  {
  1.1467 +    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1.1468 +  }
  1.1469 +
  1.1470 +  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1.1471 +  load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1.1472 +}
  1.1473 +
  1.1474 +
  1.1475 +void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1.1476 +  Address addr;
  1.1477 +  if (dest->is_single_word()) {
  1.1478 +    addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1.1479 +  } else if (dest->is_double_word())  {
  1.1480 +    addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1.1481 +  }
  1.1482 +  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1.1483 +  store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1.1484 +}
  1.1485 +
  1.1486 +
  1.1487 +void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1.1488 +  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1.1489 +    if (from_reg->is_double_fpu()) {
  1.1490 +      // double to double moves
  1.1491 +      assert(to_reg->is_double_fpu(), "should match");
  1.1492 +      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1.1493 +    } else {
  1.1494 +      // float to float moves
  1.1495 +      assert(to_reg->is_single_fpu(), "should match");
  1.1496 +      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1.1497 +    }
  1.1498 +  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1.1499 +    if (from_reg->is_double_cpu()) {
  1.1500 +#ifdef _LP64
  1.1501 +      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1.1502 +#else
  1.1503 +      assert(to_reg->is_double_cpu() &&
  1.1504 +             from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1.1505 +             from_reg->as_register_lo() != to_reg->as_register_hi(),
  1.1506 +             "should both be long and not overlap");
  1.1507 +      // long to long moves
  1.1508 +      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1.1509 +      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1.1510 +#endif
  1.1511 +#ifdef _LP64
  1.1512 +    } else if (to_reg->is_double_cpu()) {
  1.1513 +      // int to int moves
  1.1514 +      __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1.1515 +#endif
  1.1516 +    } else {
  1.1517 +      // int to int moves
  1.1518 +      __ mov(from_reg->as_register(), to_reg->as_register());
  1.1519 +    }
  1.1520 +  } else {
  1.1521 +    ShouldNotReachHere();
  1.1522 +  }
  1.1523 +  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1.1524 +    __ verify_oop(to_reg->as_register());
  1.1525 +  }
  1.1526 +}
  1.1527 +
  1.1528 +
  1.1529 +void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1.1530 +                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1.1531 +                            bool wide, bool unaligned) {
  1.1532 +  assert(type != T_METADATA, "store of metadata ptr not supported");
  1.1533 +  LIR_Address* addr = dest->as_address_ptr();
  1.1534 +
  1.1535 +  Register src = addr->base()->as_pointer_register();
  1.1536 +  Register disp_reg = noreg;
  1.1537 +  int disp_value = addr->disp();
  1.1538 +  bool needs_patching = (patch_code != lir_patch_none);
  1.1539 +
  1.1540 +  if (addr->base()->is_oop_register()) {
  1.1541 +    __ verify_oop(src);
  1.1542 +  }
  1.1543 +
  1.1544 +  PatchingStub* patch = NULL;
  1.1545 +  if (needs_patching) {
  1.1546 +    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1.1547 +    assert(!from_reg->is_double_cpu() ||
  1.1548 +           patch_code == lir_patch_none ||
  1.1549 +           patch_code == lir_patch_normal, "patching doesn't match register");
  1.1550 +  }
  1.1551 +
  1.1552 +  if (addr->index()->is_illegal()) {
  1.1553 +    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1.1554 +      if (needs_patching) {
  1.1555 +        __ patchable_set(0, O7);
  1.1556 +      } else {
  1.1557 +        __ set(disp_value, O7);
  1.1558 +      }
  1.1559 +      disp_reg = O7;
  1.1560 +    }
  1.1561 +  } else if (unaligned || PatchALot) {
  1.1562 +    __ add(src, addr->index()->as_register(), O7);
  1.1563 +    src = O7;
  1.1564 +  } else {
  1.1565 +    disp_reg = addr->index()->as_pointer_register();
  1.1566 +    assert(disp_value == 0, "can't handle 3 operand addresses");
  1.1567 +  }
  1.1568 +
  1.1569 +  // remember the offset of the store.  The patching_epilog must be done
  1.1570 +  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1.1571 +  // entered in increasing order.
  1.1572 +  int offset;
  1.1573 +
  1.1574 +  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1.1575 +  if (disp_reg == noreg) {
  1.1576 +    offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1.1577 +  } else {
  1.1578 +    assert(!unaligned, "can't handle this");
  1.1579 +    offset = store(from_reg, src, disp_reg, type, wide);
  1.1580 +  }
  1.1581 +
  1.1582 +  if (patch != NULL) {
  1.1583 +    patching_epilog(patch, patch_code, src, info);
  1.1584 +  }
  1.1585 +
  1.1586 +  if (info != NULL) add_debug_info_for_null_check(offset, info);
  1.1587 +}
  1.1588 +
  1.1589 +
  1.1590 +void LIR_Assembler::return_op(LIR_Opr result) {
  1.1591 +  // the poll may need a register so just pick one that isn't the return register
  1.1592 +#if defined(TIERED) && !defined(_LP64)
  1.1593 +  if (result->type_field() == LIR_OprDesc::long_type) {
  1.1594 +    // Must move the result to G1
  1.1595 +    // Must leave proper result in O0,O1 and G1 (TIERED only)
  1.1596 +    __ sllx(I0, 32, G1);          // Shift bits into high G1
  1.1597 +    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1.1598 +    __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1.1599 +#ifdef ASSERT
  1.1600 +    // mangle it so any problems will show up
  1.1601 +    __ set(0xdeadbeef, I0);
  1.1602 +    __ set(0xdeadbeef, I1);
  1.1603 +#endif
  1.1604 +  }
  1.1605 +#endif // TIERED
  1.1606 +  __ set((intptr_t)os::get_polling_page(), L0);
  1.1607 +  __ relocate(relocInfo::poll_return_type);
  1.1608 +  __ ld_ptr(L0, 0, G0);
  1.1609 +  __ ret();
  1.1610 +  __ delayed()->restore();
  1.1611 +}
  1.1612 +
  1.1613 +
  1.1614 +int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1.1615 +  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1.1616 +  if (info != NULL) {
  1.1617 +    add_debug_info_for_branch(info);
  1.1618 +  } else {
  1.1619 +    __ relocate(relocInfo::poll_type);
  1.1620 +  }
  1.1621 +
  1.1622 +  int offset = __ offset();
  1.1623 +  __ ld_ptr(tmp->as_register(), 0, G0);
  1.1624 +
  1.1625 +  return offset;
  1.1626 +}
  1.1627 +
  1.1628 +
  1.1629 +void LIR_Assembler::emit_static_call_stub() {
  1.1630 +  address call_pc = __ pc();
  1.1631 +  address stub = __ start_a_stub(call_stub_size);
  1.1632 +  if (stub == NULL) {
  1.1633 +    bailout("static call stub overflow");
  1.1634 +    return;
  1.1635 +  }
  1.1636 +
  1.1637 +  int start = __ offset();
  1.1638 +  __ relocate(static_stub_Relocation::spec(call_pc));
  1.1639 +
  1.1640 +  __ set_metadata(NULL, G5);
  1.1641 +  // must be set to -1 at code generation time
  1.1642 +  AddressLiteral addrlit(-1);
  1.1643 +  __ jump_to(addrlit, G3);
  1.1644 +  __ delayed()->nop();
  1.1645 +
  1.1646 +  assert(__ offset() - start <= call_stub_size, "stub too big");
  1.1647 +  __ end_a_stub();
  1.1648 +}
  1.1649 +
  1.1650 +
  1.1651 +void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1.1652 +  if (opr1->is_single_fpu()) {
  1.1653 +    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1.1654 +  } else if (opr1->is_double_fpu()) {
  1.1655 +    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1.1656 +  } else if (opr1->is_single_cpu()) {
  1.1657 +    if (opr2->is_constant()) {
  1.1658 +      switch (opr2->as_constant_ptr()->type()) {
  1.1659 +        case T_INT:
  1.1660 +          { jint con = opr2->as_constant_ptr()->as_jint();
  1.1661 +            if (Assembler::is_simm13(con)) {
  1.1662 +              __ cmp(opr1->as_register(), con);
  1.1663 +            } else {
  1.1664 +              __ set(con, O7);
  1.1665 +              __ cmp(opr1->as_register(), O7);
  1.1666 +            }
  1.1667 +          }
  1.1668 +          break;
  1.1669 +
  1.1670 +        case T_OBJECT:
  1.1671 +          // there are only equal/notequal comparisions on objects
  1.1672 +          { jobject con = opr2->as_constant_ptr()->as_jobject();
  1.1673 +            if (con == NULL) {
  1.1674 +              __ cmp(opr1->as_register(), 0);
  1.1675 +            } else {
  1.1676 +              jobject2reg(con, O7);
  1.1677 +              __ cmp(opr1->as_register(), O7);
  1.1678 +            }
  1.1679 +          }
  1.1680 +          break;
  1.1681 +
  1.1682 +        default:
  1.1683 +          ShouldNotReachHere();
  1.1684 +          break;
  1.1685 +      }
  1.1686 +    } else {
  1.1687 +      if (opr2->is_address()) {
  1.1688 +        LIR_Address * addr = opr2->as_address_ptr();
  1.1689 +        BasicType type = addr->type();
  1.1690 +        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1.1691 +        else                    __ ld(as_Address(addr), O7);
  1.1692 +        __ cmp(opr1->as_register(), O7);
  1.1693 +      } else {
  1.1694 +        __ cmp(opr1->as_register(), opr2->as_register());
  1.1695 +      }
  1.1696 +    }
  1.1697 +  } else if (opr1->is_double_cpu()) {
  1.1698 +    Register xlo = opr1->as_register_lo();
  1.1699 +    Register xhi = opr1->as_register_hi();
  1.1700 +    if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1.1701 +      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1.1702 +#ifdef _LP64
  1.1703 +      __ orcc(xhi, G0, G0);
  1.1704 +#else
  1.1705 +      __ orcc(xhi, xlo, G0);
  1.1706 +#endif
  1.1707 +    } else if (opr2->is_register()) {
  1.1708 +      Register ylo = opr2->as_register_lo();
  1.1709 +      Register yhi = opr2->as_register_hi();
  1.1710 +#ifdef _LP64
  1.1711 +      __ cmp(xlo, ylo);
  1.1712 +#else
  1.1713 +      __ subcc(xlo, ylo, xlo);
  1.1714 +      __ subccc(xhi, yhi, xhi);
  1.1715 +      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1.1716 +        __ orcc(xhi, xlo, G0);
  1.1717 +      }
  1.1718 +#endif
  1.1719 +    } else {
  1.1720 +      ShouldNotReachHere();
  1.1721 +    }
  1.1722 +  } else if (opr1->is_address()) {
  1.1723 +    LIR_Address * addr = opr1->as_address_ptr();
  1.1724 +    BasicType type = addr->type();
  1.1725 +    assert (opr2->is_constant(), "Checking");
  1.1726 +    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1.1727 +    else                    __ ld(as_Address(addr), O7);
  1.1728 +    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1.1729 +  } else {
  1.1730 +    ShouldNotReachHere();
  1.1731 +  }
  1.1732 +}
  1.1733 +
  1.1734 +
  1.1735 +void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1.1736 +  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1.1737 +    bool is_unordered_less = (code == lir_ucmp_fd2i);
  1.1738 +    if (left->is_single_fpu()) {
  1.1739 +      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1.1740 +    } else if (left->is_double_fpu()) {
  1.1741 +      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1.1742 +    } else {
  1.1743 +      ShouldNotReachHere();
  1.1744 +    }
  1.1745 +  } else if (code == lir_cmp_l2i) {
  1.1746 +#ifdef _LP64
  1.1747 +    __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1.1748 +#else
  1.1749 +    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1.1750 +            right->as_register_hi(), right->as_register_lo(),
  1.1751 +            dst->as_register());
  1.1752 +#endif
  1.1753 +  } else {
  1.1754 +    ShouldNotReachHere();
  1.1755 +  }
  1.1756 +}
  1.1757 +
  1.1758 +
  1.1759 +void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1.1760 +  Assembler::Condition acond;
  1.1761 +  switch (condition) {
  1.1762 +    case lir_cond_equal:        acond = Assembler::equal;        break;
  1.1763 +    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1.1764 +    case lir_cond_less:         acond = Assembler::less;         break;
  1.1765 +    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1.1766 +    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1.1767 +    case lir_cond_greater:      acond = Assembler::greater;      break;
  1.1768 +    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1.1769 +    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1.1770 +    default:                         ShouldNotReachHere();
  1.1771 +  };
  1.1772 +
  1.1773 +  if (opr1->is_constant() && opr1->type() == T_INT) {
  1.1774 +    Register dest = result->as_register();
  1.1775 +    // load up first part of constant before branch
  1.1776 +    // and do the rest in the delay slot.
  1.1777 +    if (!Assembler::is_simm13(opr1->as_jint())) {
  1.1778 +      __ sethi(opr1->as_jint(), dest);
  1.1779 +    }
  1.1780 +  } else if (opr1->is_constant()) {
  1.1781 +    const2reg(opr1, result, lir_patch_none, NULL);
  1.1782 +  } else if (opr1->is_register()) {
  1.1783 +    reg2reg(opr1, result);
  1.1784 +  } else if (opr1->is_stack()) {
  1.1785 +    stack2reg(opr1, result, result->type());
  1.1786 +  } else {
  1.1787 +    ShouldNotReachHere();
  1.1788 +  }
  1.1789 +  Label skip;
  1.1790 +#ifdef _LP64
  1.1791 +    if  (type == T_INT) {
  1.1792 +      __ br(acond, false, Assembler::pt, skip);
  1.1793 +    } else
  1.1794 +#endif
  1.1795 +      __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1.1796 +  if (opr1->is_constant() && opr1->type() == T_INT) {
  1.1797 +    Register dest = result->as_register();
  1.1798 +    if (Assembler::is_simm13(opr1->as_jint())) {
  1.1799 +      __ delayed()->or3(G0, opr1->as_jint(), dest);
  1.1800 +    } else {
  1.1801 +      // the sethi has been done above, so just put in the low 10 bits
  1.1802 +      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1.1803 +    }
  1.1804 +  } else {
  1.1805 +    // can't do anything useful in the delay slot
  1.1806 +    __ delayed()->nop();
  1.1807 +  }
  1.1808 +  if (opr2->is_constant()) {
  1.1809 +    const2reg(opr2, result, lir_patch_none, NULL);
  1.1810 +  } else if (opr2->is_register()) {
  1.1811 +    reg2reg(opr2, result);
  1.1812 +  } else if (opr2->is_stack()) {
  1.1813 +    stack2reg(opr2, result, result->type());
  1.1814 +  } else {
  1.1815 +    ShouldNotReachHere();
  1.1816 +  }
  1.1817 +  __ bind(skip);
  1.1818 +}
  1.1819 +
  1.1820 +
  1.1821 +void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1.1822 +  assert(info == NULL, "unused on this code path");
  1.1823 +  assert(left->is_register(), "wrong items state");
  1.1824 +  assert(dest->is_register(), "wrong items state");
  1.1825 +
  1.1826 +  if (right->is_register()) {
  1.1827 +    if (dest->is_float_kind()) {
  1.1828 +
  1.1829 +      FloatRegister lreg, rreg, res;
  1.1830 +      FloatRegisterImpl::Width w;
  1.1831 +      if (right->is_single_fpu()) {
  1.1832 +        w = FloatRegisterImpl::S;
  1.1833 +        lreg = left->as_float_reg();
  1.1834 +        rreg = right->as_float_reg();
  1.1835 +        res  = dest->as_float_reg();
  1.1836 +      } else {
  1.1837 +        w = FloatRegisterImpl::D;
  1.1838 +        lreg = left->as_double_reg();
  1.1839 +        rreg = right->as_double_reg();
  1.1840 +        res  = dest->as_double_reg();
  1.1841 +      }
  1.1842 +
  1.1843 +      switch (code) {
  1.1844 +        case lir_add: __ fadd(w, lreg, rreg, res); break;
  1.1845 +        case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1.1846 +        case lir_mul: // fall through
  1.1847 +        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1.1848 +        case lir_div: // fall through
  1.1849 +        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1.1850 +        default: ShouldNotReachHere();
  1.1851 +      }
  1.1852 +
  1.1853 +    } else if (dest->is_double_cpu()) {
  1.1854 +#ifdef _LP64
  1.1855 +      Register dst_lo = dest->as_register_lo();
  1.1856 +      Register op1_lo = left->as_pointer_register();
  1.1857 +      Register op2_lo = right->as_pointer_register();
  1.1858 +
  1.1859 +      switch (code) {
  1.1860 +        case lir_add:
  1.1861 +          __ add(op1_lo, op2_lo, dst_lo);
  1.1862 +          break;
  1.1863 +
  1.1864 +        case lir_sub:
  1.1865 +          __ sub(op1_lo, op2_lo, dst_lo);
  1.1866 +          break;
  1.1867 +
  1.1868 +        default: ShouldNotReachHere();
  1.1869 +      }
  1.1870 +#else
  1.1871 +      Register op1_lo = left->as_register_lo();
  1.1872 +      Register op1_hi = left->as_register_hi();
  1.1873 +      Register op2_lo = right->as_register_lo();
  1.1874 +      Register op2_hi = right->as_register_hi();
  1.1875 +      Register dst_lo = dest->as_register_lo();
  1.1876 +      Register dst_hi = dest->as_register_hi();
  1.1877 +
  1.1878 +      switch (code) {
  1.1879 +        case lir_add:
  1.1880 +          __ addcc(op1_lo, op2_lo, dst_lo);
  1.1881 +          __ addc (op1_hi, op2_hi, dst_hi);
  1.1882 +          break;
  1.1883 +
  1.1884 +        case lir_sub:
  1.1885 +          __ subcc(op1_lo, op2_lo, dst_lo);
  1.1886 +          __ subc (op1_hi, op2_hi, dst_hi);
  1.1887 +          break;
  1.1888 +
  1.1889 +        default: ShouldNotReachHere();
  1.1890 +      }
  1.1891 +#endif
  1.1892 +    } else {
  1.1893 +      assert (right->is_single_cpu(), "Just Checking");
  1.1894 +
  1.1895 +      Register lreg = left->as_register();
  1.1896 +      Register res  = dest->as_register();
  1.1897 +      Register rreg = right->as_register();
  1.1898 +      switch (code) {
  1.1899 +        case lir_add:  __ add  (lreg, rreg, res); break;
  1.1900 +        case lir_sub:  __ sub  (lreg, rreg, res); break;
  1.1901 +        case lir_mul:  __ mulx (lreg, rreg, res); break;
  1.1902 +        default: ShouldNotReachHere();
  1.1903 +      }
  1.1904 +    }
  1.1905 +  } else {
  1.1906 +    assert (right->is_constant(), "must be constant");
  1.1907 +
  1.1908 +    if (dest->is_single_cpu()) {
  1.1909 +      Register lreg = left->as_register();
  1.1910 +      Register res  = dest->as_register();
  1.1911 +      int    simm13 = right->as_constant_ptr()->as_jint();
  1.1912 +
  1.1913 +      switch (code) {
  1.1914 +        case lir_add:  __ add  (lreg, simm13, res); break;
  1.1915 +        case lir_sub:  __ sub  (lreg, simm13, res); break;
  1.1916 +        case lir_mul:  __ mulx (lreg, simm13, res); break;
  1.1917 +        default: ShouldNotReachHere();
  1.1918 +      }
  1.1919 +    } else {
  1.1920 +      Register lreg = left->as_pointer_register();
  1.1921 +      Register res  = dest->as_register_lo();
  1.1922 +      long con = right->as_constant_ptr()->as_jlong();
  1.1923 +      assert(Assembler::is_simm13(con), "must be simm13");
  1.1924 +
  1.1925 +      switch (code) {
  1.1926 +        case lir_add:  __ add  (lreg, (int)con, res); break;
  1.1927 +        case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1.1928 +        case lir_mul:  __ mulx (lreg, (int)con, res); break;
  1.1929 +        default: ShouldNotReachHere();
  1.1930 +      }
  1.1931 +    }
  1.1932 +  }
  1.1933 +}
  1.1934 +
  1.1935 +
  1.1936 +void LIR_Assembler::fpop() {
  1.1937 +  // do nothing
  1.1938 +}
  1.1939 +
  1.1940 +
  1.1941 +void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1.1942 +  switch (code) {
  1.1943 +    case lir_sin:
  1.1944 +    case lir_tan:
  1.1945 +    case lir_cos: {
  1.1946 +      assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1.1947 +      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1.1948 +      break;
  1.1949 +    }
  1.1950 +    case lir_sqrt: {
  1.1951 +      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1.1952 +      FloatRegister src_reg = value->as_double_reg();
  1.1953 +      FloatRegister dst_reg = dest->as_double_reg();
  1.1954 +      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1.1955 +      break;
  1.1956 +    }
  1.1957 +    case lir_abs: {
  1.1958 +      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1.1959 +      FloatRegister src_reg = value->as_double_reg();
  1.1960 +      FloatRegister dst_reg = dest->as_double_reg();
  1.1961 +      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1.1962 +      break;
  1.1963 +    }
  1.1964 +    default: {
  1.1965 +      ShouldNotReachHere();
  1.1966 +      break;
  1.1967 +    }
  1.1968 +  }
  1.1969 +}
  1.1970 +
  1.1971 +
  1.1972 +void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1.1973 +  if (right->is_constant()) {
  1.1974 +    if (dest->is_single_cpu()) {
  1.1975 +      int simm13 = right->as_constant_ptr()->as_jint();
  1.1976 +      switch (code) {
  1.1977 +        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1.1978 +        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1.1979 +        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1.1980 +        default: ShouldNotReachHere();
  1.1981 +      }
  1.1982 +    } else {
  1.1983 +      long c = right->as_constant_ptr()->as_jlong();
  1.1984 +      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1.1985 +      int simm13 = (int)c;
  1.1986 +      switch (code) {
  1.1987 +        case lir_logic_and:
  1.1988 +#ifndef _LP64
  1.1989 +          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1.1990 +#endif
  1.1991 +          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1.1992 +          break;
  1.1993 +
  1.1994 +        case lir_logic_or:
  1.1995 +#ifndef _LP64
  1.1996 +          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1.1997 +#endif
  1.1998 +          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1.1999 +          break;
  1.2000 +
  1.2001 +        case lir_logic_xor:
  1.2002 +#ifndef _LP64
  1.2003 +          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1.2004 +#endif
  1.2005 +          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1.2006 +          break;
  1.2007 +
  1.2008 +        default: ShouldNotReachHere();
  1.2009 +      }
  1.2010 +    }
  1.2011 +  } else {
  1.2012 +    assert(right->is_register(), "right should be in register");
  1.2013 +
  1.2014 +    if (dest->is_single_cpu()) {
  1.2015 +      switch (code) {
  1.2016 +        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1.2017 +        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1.2018 +        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1.2019 +        default: ShouldNotReachHere();
  1.2020 +      }
  1.2021 +    } else {
  1.2022 +#ifdef _LP64
  1.2023 +      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1.2024 +                                                                        left->as_register_lo();
  1.2025 +      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1.2026 +                                                                          right->as_register_lo();
  1.2027 +
  1.2028 +      switch (code) {
  1.2029 +        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1.2030 +        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  1.2031 +        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  1.2032 +        default: ShouldNotReachHere();
  1.2033 +      }
  1.2034 +#else
  1.2035 +      switch (code) {
  1.2036 +        case lir_logic_and:
  1.2037 +          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1.2038 +          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1.2039 +          break;
  1.2040 +
  1.2041 +        case lir_logic_or:
  1.2042 +          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1.2043 +          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1.2044 +          break;
  1.2045 +
  1.2046 +        case lir_logic_xor:
  1.2047 +          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1.2048 +          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1.2049 +          break;
  1.2050 +
  1.2051 +        default: ShouldNotReachHere();
  1.2052 +      }
  1.2053 +#endif
  1.2054 +    }
  1.2055 +  }
  1.2056 +}
  1.2057 +
  1.2058 +
  1.2059 +int LIR_Assembler::shift_amount(BasicType t) {
  1.2060 +  int elem_size = type2aelembytes(t);
  1.2061 +  switch (elem_size) {
  1.2062 +    case 1 : return 0;
  1.2063 +    case 2 : return 1;
  1.2064 +    case 4 : return 2;
  1.2065 +    case 8 : return 3;
  1.2066 +  }
  1.2067 +  ShouldNotReachHere();
  1.2068 +  return -1;
  1.2069 +}
  1.2070 +
  1.2071 +
  1.2072 +void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  1.2073 +  assert(exceptionOop->as_register() == Oexception, "should match");
  1.2074 +  assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  1.2075 +
  1.2076 +  info->add_register_oop(exceptionOop);
  1.2077 +
  1.2078 +  // reuse the debug info from the safepoint poll for the throw op itself
  1.2079 +  address pc_for_athrow  = __ pc();
  1.2080 +  int pc_for_athrow_offset = __ offset();
  1.2081 +  RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  1.2082 +  __ set(pc_for_athrow, Oissuing_pc, rspec);
  1.2083 +  add_call_info(pc_for_athrow_offset, info); // for exception handler
  1.2084 +
  1.2085 +  __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  1.2086 +  __ delayed()->nop();
  1.2087 +}
  1.2088 +
  1.2089 +
  1.2090 +void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  1.2091 +  assert(exceptionOop->as_register() == Oexception, "should match");
  1.2092 +
  1.2093 +  __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  1.2094 +  __ delayed()->nop();
  1.2095 +}
  1.2096 +
  1.2097 +void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  1.2098 +  Register src = op->src()->as_register();
  1.2099 +  Register dst = op->dst()->as_register();
  1.2100 +  Register src_pos = op->src_pos()->as_register();
  1.2101 +  Register dst_pos = op->dst_pos()->as_register();
  1.2102 +  Register length  = op->length()->as_register();
  1.2103 +  Register tmp = op->tmp()->as_register();
  1.2104 +  Register tmp2 = O7;
  1.2105 +
  1.2106 +  int flags = op->flags();
  1.2107 +  ciArrayKlass* default_type = op->expected_type();
  1.2108 +  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  1.2109 +  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  1.2110 +
  1.2111 +#ifdef _LP64
  1.2112 +  // higher 32bits must be null
  1.2113 +  __ sra(dst_pos, 0, dst_pos);
  1.2114 +  __ sra(src_pos, 0, src_pos);
  1.2115 +  __ sra(length, 0, length);
  1.2116 +#endif
  1.2117 +
  1.2118 +  // set up the arraycopy stub information
  1.2119 +  ArrayCopyStub* stub = op->stub();
  1.2120 +
  1.2121 +  // always do stub if no type information is available.  it's ok if
  1.2122 +  // the known type isn't loaded since the code sanity checks
  1.2123 +  // in debug mode and the type isn't required when we know the exact type
  1.2124 +  // also check that the type is an array type.
  1.2125 +  if (op->expected_type() == NULL) {
  1.2126 +    __ mov(src,     O0);
  1.2127 +    __ mov(src_pos, O1);
  1.2128 +    __ mov(dst,     O2);
  1.2129 +    __ mov(dst_pos, O3);
  1.2130 +    __ mov(length,  O4);
  1.2131 +    address copyfunc_addr = StubRoutines::generic_arraycopy();
  1.2132 +
  1.2133 +    if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  1.2134 +      __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  1.2135 +    } else {
  1.2136 +#ifndef PRODUCT
  1.2137 +      if (PrintC1Statistics) {
  1.2138 +        address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  1.2139 +        __ inc_counter(counter, G1, G3);
  1.2140 +      }
  1.2141 +#endif
  1.2142 +      __ call_VM_leaf(tmp, copyfunc_addr);
  1.2143 +    }
  1.2144 +
  1.2145 +    if (copyfunc_addr != NULL) {
  1.2146 +      __ xor3(O0, -1, tmp);
  1.2147 +      __ sub(length, tmp, length);
  1.2148 +      __ add(src_pos, tmp, src_pos);
  1.2149 +      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  1.2150 +      __ delayed()->add(dst_pos, tmp, dst_pos);
  1.2151 +    } else {
  1.2152 +      __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  1.2153 +      __ delayed()->nop();
  1.2154 +    }
  1.2155 +    __ bind(*stub->continuation());
  1.2156 +    return;
  1.2157 +  }
  1.2158 +
  1.2159 +  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  1.2160 +
  1.2161 +  // make sure src and dst are non-null and load array length
  1.2162 +  if (flags & LIR_OpArrayCopy::src_null_check) {
  1.2163 +    __ tst(src);
  1.2164 +    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  1.2165 +    __ delayed()->nop();
  1.2166 +  }
  1.2167 +
  1.2168 +  if (flags & LIR_OpArrayCopy::dst_null_check) {
  1.2169 +    __ tst(dst);
  1.2170 +    __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  1.2171 +    __ delayed()->nop();
  1.2172 +  }
  1.2173 +
  1.2174 +  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  1.2175 +    // test src_pos register
  1.2176 +    __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  1.2177 +    __ delayed()->nop();
  1.2178 +  }
  1.2179 +
  1.2180 +  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  1.2181 +    // test dst_pos register
  1.2182 +    __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  1.2183 +    __ delayed()->nop();
  1.2184 +  }
  1.2185 +
  1.2186 +  if (flags & LIR_OpArrayCopy::length_positive_check) {
  1.2187 +    // make sure length isn't negative
  1.2188 +    __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  1.2189 +    __ delayed()->nop();
  1.2190 +  }
  1.2191 +
  1.2192 +  if (flags & LIR_OpArrayCopy::src_range_check) {
  1.2193 +    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  1.2194 +    __ add(length, src_pos, tmp);
  1.2195 +    __ cmp(tmp2, tmp);
  1.2196 +    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  1.2197 +    __ delayed()->nop();
  1.2198 +  }
  1.2199 +
  1.2200 +  if (flags & LIR_OpArrayCopy::dst_range_check) {
  1.2201 +    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  1.2202 +    __ add(length, dst_pos, tmp);
  1.2203 +    __ cmp(tmp2, tmp);
  1.2204 +    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  1.2205 +    __ delayed()->nop();
  1.2206 +  }
  1.2207 +
  1.2208 +  int shift = shift_amount(basic_type);
  1.2209 +
  1.2210 +  if (flags & LIR_OpArrayCopy::type_check) {
  1.2211 +    // We don't know the array types are compatible
  1.2212 +    if (basic_type != T_OBJECT) {
  1.2213 +      // Simple test for basic type arrays
  1.2214 +      if (UseCompressedClassPointers) {
  1.2215 +        // We don't need decode because we just need to compare
  1.2216 +        __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  1.2217 +        __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2218 +        __ cmp(tmp, tmp2);
  1.2219 +        __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  1.2220 +      } else {
  1.2221 +        __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  1.2222 +        __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2223 +        __ cmp(tmp, tmp2);
  1.2224 +        __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  1.2225 +      }
  1.2226 +      __ delayed()->nop();
  1.2227 +    } else {
  1.2228 +      // For object arrays, if src is a sub class of dst then we can
  1.2229 +      // safely do the copy.
  1.2230 +      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  1.2231 +
  1.2232 +      Label cont, slow;
  1.2233 +      assert_different_registers(tmp, tmp2, G3, G1);
  1.2234 +
  1.2235 +      __ load_klass(src, G3);
  1.2236 +      __ load_klass(dst, G1);
  1.2237 +
  1.2238 +      __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  1.2239 +
  1.2240 +      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  1.2241 +      __ delayed()->nop();
  1.2242 +
  1.2243 +      __ cmp(G3, 0);
  1.2244 +      if (copyfunc_addr != NULL) { // use stub if available
  1.2245 +        // src is not a sub class of dst so we have to do a
  1.2246 +        // per-element check.
  1.2247 +        __ br(Assembler::notEqual, false, Assembler::pt, cont);
  1.2248 +        __ delayed()->nop();
  1.2249 +
  1.2250 +        __ bind(slow);
  1.2251 +
  1.2252 +        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  1.2253 +        if ((flags & mask) != mask) {
  1.2254 +          // Check that at least both of them object arrays.
  1.2255 +          assert(flags & mask, "one of the two should be known to be an object array");
  1.2256 +
  1.2257 +          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  1.2258 +            __ load_klass(src, tmp);
  1.2259 +          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  1.2260 +            __ load_klass(dst, tmp);
  1.2261 +          }
  1.2262 +          int lh_offset = in_bytes(Klass::layout_helper_offset());
  1.2263 +
  1.2264 +          __ lduw(tmp, lh_offset, tmp2);
  1.2265 +
  1.2266 +          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1.2267 +          __ set(objArray_lh, tmp);
  1.2268 +          __ cmp(tmp, tmp2);
  1.2269 +          __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  1.2270 +          __ delayed()->nop();
  1.2271 +        }
  1.2272 +
  1.2273 +        Register src_ptr = O0;
  1.2274 +        Register dst_ptr = O1;
  1.2275 +        Register len     = O2;
  1.2276 +        Register chk_off = O3;
  1.2277 +        Register super_k = O4;
  1.2278 +
  1.2279 +        __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  1.2280 +        if (shift == 0) {
  1.2281 +          __ add(src_ptr, src_pos, src_ptr);
  1.2282 +        } else {
  1.2283 +          __ sll(src_pos, shift, tmp);
  1.2284 +          __ add(src_ptr, tmp, src_ptr);
  1.2285 +        }
  1.2286 +
  1.2287 +        __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  1.2288 +        if (shift == 0) {
  1.2289 +          __ add(dst_ptr, dst_pos, dst_ptr);
  1.2290 +        } else {
  1.2291 +          __ sll(dst_pos, shift, tmp);
  1.2292 +          __ add(dst_ptr, tmp, dst_ptr);
  1.2293 +        }
  1.2294 +        __ mov(length, len);
  1.2295 +        __ load_klass(dst, tmp);
  1.2296 +
  1.2297 +        int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1.2298 +        __ ld_ptr(tmp, ek_offset, super_k);
  1.2299 +
  1.2300 +        int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1.2301 +        __ lduw(super_k, sco_offset, chk_off);
  1.2302 +
  1.2303 +        __ call_VM_leaf(tmp, copyfunc_addr);
  1.2304 +
  1.2305 +#ifndef PRODUCT
  1.2306 +        if (PrintC1Statistics) {
  1.2307 +          Label failed;
  1.2308 +          __ br_notnull_short(O0, Assembler::pn, failed);
  1.2309 +          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  1.2310 +          __ bind(failed);
  1.2311 +        }
  1.2312 +#endif
  1.2313 +
  1.2314 +        __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  1.2315 +        __ delayed()->xor3(O0, -1, tmp);
  1.2316 +
  1.2317 +#ifndef PRODUCT
  1.2318 +        if (PrintC1Statistics) {
  1.2319 +          __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  1.2320 +        }
  1.2321 +#endif
  1.2322 +
  1.2323 +        __ sub(length, tmp, length);
  1.2324 +        __ add(src_pos, tmp, src_pos);
  1.2325 +        __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  1.2326 +        __ delayed()->add(dst_pos, tmp, dst_pos);
  1.2327 +
  1.2328 +        __ bind(cont);
  1.2329 +      } else {
  1.2330 +        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  1.2331 +        __ delayed()->nop();
  1.2332 +        __ bind(cont);
  1.2333 +      }
  1.2334 +    }
  1.2335 +  }
  1.2336 +
  1.2337 +#ifdef ASSERT
  1.2338 +  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  1.2339 +    // Sanity check the known type with the incoming class.  For the
  1.2340 +    // primitive case the types must match exactly with src.klass and
  1.2341 +    // dst.klass each exactly matching the default type.  For the
  1.2342 +    // object array case, if no type check is needed then either the
  1.2343 +    // dst type is exactly the expected type and the src type is a
  1.2344 +    // subtype which we can't check or src is the same array as dst
  1.2345 +    // but not necessarily exactly of type default_type.
  1.2346 +    Label known_ok, halt;
  1.2347 +    metadata2reg(op->expected_type()->constant_encoding(), tmp);
  1.2348 +    if (UseCompressedClassPointers) {
  1.2349 +      // tmp holds the default type. It currently comes uncompressed after the
  1.2350 +      // load of a constant, so encode it.
  1.2351 +      __ encode_klass_not_null(tmp);
  1.2352 +      // load the raw value of the dst klass, since we will be comparing
  1.2353 +      // uncompressed values directly.
  1.2354 +      __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2355 +      if (basic_type != T_OBJECT) {
  1.2356 +        __ cmp(tmp, tmp2);
  1.2357 +        __ br(Assembler::notEqual, false, Assembler::pn, halt);
  1.2358 +        // load the raw value of the src klass.
  1.2359 +        __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2360 +        __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  1.2361 +      } else {
  1.2362 +        __ cmp(tmp, tmp2);
  1.2363 +        __ br(Assembler::equal, false, Assembler::pn, known_ok);
  1.2364 +        __ delayed()->cmp(src, dst);
  1.2365 +        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  1.2366 +        __ delayed()->nop();
  1.2367 +      }
  1.2368 +    } else {
  1.2369 +      __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2370 +      if (basic_type != T_OBJECT) {
  1.2371 +        __ cmp(tmp, tmp2);
  1.2372 +        __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  1.2373 +        __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  1.2374 +        __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  1.2375 +      } else {
  1.2376 +        __ cmp(tmp, tmp2);
  1.2377 +        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  1.2378 +        __ delayed()->cmp(src, dst);
  1.2379 +        __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  1.2380 +        __ delayed()->nop();
  1.2381 +      }
  1.2382 +    }
  1.2383 +    __ bind(halt);
  1.2384 +    __ stop("incorrect type information in arraycopy");
  1.2385 +    __ bind(known_ok);
  1.2386 +  }
  1.2387 +#endif
  1.2388 +
  1.2389 +#ifndef PRODUCT
  1.2390 +  if (PrintC1Statistics) {
  1.2391 +    address counter = Runtime1::arraycopy_count_address(basic_type);
  1.2392 +    __ inc_counter(counter, G1, G3);
  1.2393 +  }
  1.2394 +#endif
  1.2395 +
  1.2396 +  Register src_ptr = O0;
  1.2397 +  Register dst_ptr = O1;
  1.2398 +  Register len     = O2;
  1.2399 +
  1.2400 +  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  1.2401 +  if (shift == 0) {
  1.2402 +    __ add(src_ptr, src_pos, src_ptr);
  1.2403 +  } else {
  1.2404 +    __ sll(src_pos, shift, tmp);
  1.2405 +    __ add(src_ptr, tmp, src_ptr);
  1.2406 +  }
  1.2407 +
  1.2408 +  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  1.2409 +  if (shift == 0) {
  1.2410 +    __ add(dst_ptr, dst_pos, dst_ptr);
  1.2411 +  } else {
  1.2412 +    __ sll(dst_pos, shift, tmp);
  1.2413 +    __ add(dst_ptr, tmp, dst_ptr);
  1.2414 +  }
  1.2415 +
  1.2416 +  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  1.2417 +  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  1.2418 +  const char *name;
  1.2419 +  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  1.2420 +
  1.2421 +  // arraycopy stubs takes a length in number of elements, so don't scale it.
  1.2422 +  __ mov(length, len);
  1.2423 +  __ call_VM_leaf(tmp, entry);
  1.2424 +
  1.2425 +  __ bind(*stub->continuation());
  1.2426 +}
  1.2427 +
  1.2428 +
  1.2429 +void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  1.2430 +  if (dest->is_single_cpu()) {
  1.2431 +#ifdef _LP64
  1.2432 +    if (left->type() == T_OBJECT) {
  1.2433 +      switch (code) {
  1.2434 +        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2435 +        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2436 +        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2437 +        default: ShouldNotReachHere();
  1.2438 +      }
  1.2439 +    } else
  1.2440 +#endif
  1.2441 +      switch (code) {
  1.2442 +        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2443 +        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2444 +        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  1.2445 +        default: ShouldNotReachHere();
  1.2446 +      }
  1.2447 +  } else {
  1.2448 +#ifdef _LP64
  1.2449 +    switch (code) {
  1.2450 +      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  1.2451 +      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  1.2452 +      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  1.2453 +      default: ShouldNotReachHere();
  1.2454 +    }
  1.2455 +#else
  1.2456 +    switch (code) {
  1.2457 +      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  1.2458 +      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  1.2459 +      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  1.2460 +      default: ShouldNotReachHere();
  1.2461 +    }
  1.2462 +#endif
  1.2463 +  }
  1.2464 +}
  1.2465 +
  1.2466 +
  1.2467 +void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  1.2468 +#ifdef _LP64
  1.2469 +  if (left->type() == T_OBJECT) {
  1.2470 +    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  1.2471 +    Register l = left->as_register();
  1.2472 +    Register d = dest->as_register_lo();
  1.2473 +    switch (code) {
  1.2474 +      case lir_shl:  __ sllx  (l, count, d); break;
  1.2475 +      case lir_shr:  __ srax  (l, count, d); break;
  1.2476 +      case lir_ushr: __ srlx  (l, count, d); break;
  1.2477 +      default: ShouldNotReachHere();
  1.2478 +    }
  1.2479 +    return;
  1.2480 +  }
  1.2481 +#endif
  1.2482 +
  1.2483 +  if (dest->is_single_cpu()) {
  1.2484 +    count = count & 0x1F; // Java spec
  1.2485 +    switch (code) {
  1.2486 +      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  1.2487 +      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  1.2488 +      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  1.2489 +      default: ShouldNotReachHere();
  1.2490 +    }
  1.2491 +  } else if (dest->is_double_cpu()) {
  1.2492 +    count = count & 63; // Java spec
  1.2493 +    switch (code) {
  1.2494 +      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  1.2495 +      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  1.2496 +      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  1.2497 +      default: ShouldNotReachHere();
  1.2498 +    }
  1.2499 +  } else {
  1.2500 +    ShouldNotReachHere();
  1.2501 +  }
  1.2502 +}
  1.2503 +
  1.2504 +
  1.2505 +void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1.2506 +  assert(op->tmp1()->as_register()  == G1 &&
  1.2507 +         op->tmp2()->as_register()  == G3 &&
  1.2508 +         op->tmp3()->as_register()  == G4 &&
  1.2509 +         op->obj()->as_register()   == O0 &&
  1.2510 +         op->klass()->as_register() == G5, "must be");
  1.2511 +  if (op->init_check()) {
  1.2512 +    __ ldub(op->klass()->as_register(),
  1.2513 +          in_bytes(InstanceKlass::init_state_offset()),
  1.2514 +          op->tmp1()->as_register());
  1.2515 +    add_debug_info_for_null_check_here(op->stub()->info());
  1.2516 +    __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  1.2517 +    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  1.2518 +    __ delayed()->nop();
  1.2519 +  }
  1.2520 +  __ allocate_object(op->obj()->as_register(),
  1.2521 +                     op->tmp1()->as_register(),
  1.2522 +                     op->tmp2()->as_register(),
  1.2523 +                     op->tmp3()->as_register(),
  1.2524 +                     op->header_size(),
  1.2525 +                     op->object_size(),
  1.2526 +                     op->klass()->as_register(),
  1.2527 +                     *op->stub()->entry());
  1.2528 +  __ bind(*op->stub()->continuation());
  1.2529 +  __ verify_oop(op->obj()->as_register());
  1.2530 +}
  1.2531 +
  1.2532 +
  1.2533 +void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1.2534 +  assert(op->tmp1()->as_register()  == G1 &&
  1.2535 +         op->tmp2()->as_register()  == G3 &&
  1.2536 +         op->tmp3()->as_register()  == G4 &&
  1.2537 +         op->tmp4()->as_register()  == O1 &&
  1.2538 +         op->klass()->as_register() == G5, "must be");
  1.2539 +
  1.2540 +  LP64_ONLY( __ signx(op->len()->as_register()); )
  1.2541 +  if (UseSlowPath ||
  1.2542 +      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1.2543 +      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1.2544 +    __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  1.2545 +    __ delayed()->nop();
  1.2546 +  } else {
  1.2547 +    __ allocate_array(op->obj()->as_register(),
  1.2548 +                      op->len()->as_register(),
  1.2549 +                      op->tmp1()->as_register(),
  1.2550 +                      op->tmp2()->as_register(),
  1.2551 +                      op->tmp3()->as_register(),
  1.2552 +                      arrayOopDesc::header_size(op->type()),
  1.2553 +                      type2aelembytes(op->type()),
  1.2554 +                      op->klass()->as_register(),
  1.2555 +                      *op->stub()->entry());
  1.2556 +  }
  1.2557 +  __ bind(*op->stub()->continuation());
  1.2558 +}
  1.2559 +
  1.2560 +
  1.2561 +void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  1.2562 +                                        ciMethodData *md, ciProfileData *data,
  1.2563 +                                        Register recv, Register tmp1, Label* update_done) {
  1.2564 +  uint i;
  1.2565 +  for (i = 0; i < VirtualCallData::row_limit(); i++) {
  1.2566 +    Label next_test;
  1.2567 +    // See if the receiver is receiver[n].
  1.2568 +    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  1.2569 +                          mdo_offset_bias);
  1.2570 +    __ ld_ptr(receiver_addr, tmp1);
  1.2571 +    __ verify_klass_ptr(tmp1);
  1.2572 +    __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  1.2573 +    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  1.2574 +                      mdo_offset_bias);
  1.2575 +    __ ld_ptr(data_addr, tmp1);
  1.2576 +    __ add(tmp1, DataLayout::counter_increment, tmp1);
  1.2577 +    __ st_ptr(tmp1, data_addr);
  1.2578 +    __ ba(*update_done);
  1.2579 +    __ delayed()->nop();
  1.2580 +    __ bind(next_test);
  1.2581 +  }
  1.2582 +
  1.2583 +  // Didn't find receiver; find next empty slot and fill it in
  1.2584 +  for (i = 0; i < VirtualCallData::row_limit(); i++) {
  1.2585 +    Label next_test;
  1.2586 +    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  1.2587 +                      mdo_offset_bias);
  1.2588 +    __ ld_ptr(recv_addr, tmp1);
  1.2589 +    __ br_notnull_short(tmp1, Assembler::pt, next_test);
  1.2590 +    __ st_ptr(recv, recv_addr);
  1.2591 +    __ set(DataLayout::counter_increment, tmp1);
  1.2592 +    __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  1.2593 +              mdo_offset_bias);
  1.2594 +    __ ba(*update_done);
  1.2595 +    __ delayed()->nop();
  1.2596 +    __ bind(next_test);
  1.2597 +  }
  1.2598 +}
  1.2599 +
  1.2600 +
  1.2601 +void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  1.2602 +                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  1.2603 +  md = method->method_data_or_null();
  1.2604 +  assert(md != NULL, "Sanity");
  1.2605 +  data = md->bci_to_data(bci);
  1.2606 +  assert(data != NULL,       "need data for checkcast");
  1.2607 +  assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1.2608 +  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  1.2609 +    // The offset is large so bias the mdo by the base of the slot so
  1.2610 +    // that the ld can use simm13s to reference the slots of the data
  1.2611 +    mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  1.2612 +  }
  1.2613 +}
  1.2614 +
  1.2615 +void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1.2616 +  // we always need a stub for the failure case.
  1.2617 +  CodeStub* stub = op->stub();
  1.2618 +  Register obj = op->object()->as_register();
  1.2619 +  Register k_RInfo = op->tmp1()->as_register();
  1.2620 +  Register klass_RInfo = op->tmp2()->as_register();
  1.2621 +  Register dst = op->result_opr()->as_register();
  1.2622 +  Register Rtmp1 = op->tmp3()->as_register();
  1.2623 +  ciKlass* k = op->klass();
  1.2624 +
  1.2625 +
  1.2626 +  if (obj == k_RInfo) {
  1.2627 +    k_RInfo = klass_RInfo;
  1.2628 +    klass_RInfo = obj;
  1.2629 +  }
  1.2630 +
  1.2631 +  ciMethodData* md;
  1.2632 +  ciProfileData* data;
  1.2633 +  int mdo_offset_bias = 0;
  1.2634 +  if (op->should_profile()) {
  1.2635 +    ciMethod* method = op->profiled_method();
  1.2636 +    assert(method != NULL, "Should have method");
  1.2637 +    setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  1.2638 +
  1.2639 +    Label not_null;
  1.2640 +    __ br_notnull_short(obj, Assembler::pn, not_null);
  1.2641 +    Register mdo      = k_RInfo;
  1.2642 +    Register data_val = Rtmp1;
  1.2643 +    metadata2reg(md->constant_encoding(), mdo);
  1.2644 +    if (mdo_offset_bias > 0) {
  1.2645 +      __ set(mdo_offset_bias, data_val);
  1.2646 +      __ add(mdo, data_val, mdo);
  1.2647 +    }
  1.2648 +    Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  1.2649 +    __ ldub(flags_addr, data_val);
  1.2650 +    __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  1.2651 +    __ stb(data_val, flags_addr);
  1.2652 +    __ ba(*obj_is_null);
  1.2653 +    __ delayed()->nop();
  1.2654 +    __ bind(not_null);
  1.2655 +  } else {
  1.2656 +    __ br_null(obj, false, Assembler::pn, *obj_is_null);
  1.2657 +    __ delayed()->nop();
  1.2658 +  }
  1.2659 +
  1.2660 +  Label profile_cast_failure, profile_cast_success;
  1.2661 +  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1.2662 +  Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1.2663 +
  1.2664 +  // patching may screw with our temporaries on sparc,
  1.2665 +  // so let's do it before loading the class
  1.2666 +  if (k->is_loaded()) {
  1.2667 +    metadata2reg(k->constant_encoding(), k_RInfo);
  1.2668 +  } else {
  1.2669 +    klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1.2670 +  }
  1.2671 +  assert(obj != k_RInfo, "must be different");
  1.2672 +
  1.2673 +  // get object class
  1.2674 +  // not a safepoint as obj null check happens earlier
  1.2675 +  __ load_klass(obj, klass_RInfo);
  1.2676 +  if (op->fast_check()) {
  1.2677 +    assert_different_registers(klass_RInfo, k_RInfo);
  1.2678 +    __ cmp(k_RInfo, klass_RInfo);
  1.2679 +    __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  1.2680 +    __ delayed()->nop();
  1.2681 +  } else {
  1.2682 +    bool need_slow_path = true;
  1.2683 +    if (k->is_loaded()) {
  1.2684 +      if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  1.2685 +        need_slow_path = false;
  1.2686 +      // perform the fast part of the checking logic
  1.2687 +      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  1.2688 +                                       (need_slow_path ? success_target : NULL),
  1.2689 +                                       failure_target, NULL,
  1.2690 +                                       RegisterOrConstant(k->super_check_offset()));
  1.2691 +    } else {
  1.2692 +      // perform the fast part of the checking logic
  1.2693 +      __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  1.2694 +                                       failure_target, NULL);
  1.2695 +    }
  1.2696 +    if (need_slow_path) {
  1.2697 +      // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1.2698 +      assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  1.2699 +      __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  1.2700 +      __ delayed()->nop();
  1.2701 +      __ cmp(G3, 0);
  1.2702 +      __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  1.2703 +      __ delayed()->nop();
  1.2704 +      // Fall through to success case
  1.2705 +    }
  1.2706 +  }
  1.2707 +
  1.2708 +  if (op->should_profile()) {
  1.2709 +    Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  1.2710 +    assert_different_registers(obj, mdo, recv, tmp1);
  1.2711 +    __ bind(profile_cast_success);
  1.2712 +    metadata2reg(md->constant_encoding(), mdo);
  1.2713 +    if (mdo_offset_bias > 0) {
  1.2714 +      __ set(mdo_offset_bias, tmp1);
  1.2715 +      __ add(mdo, tmp1, mdo);
  1.2716 +    }
  1.2717 +    __ load_klass(obj, recv);
  1.2718 +    type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  1.2719 +    // Jump over the failure case
  1.2720 +    __ ba(*success);
  1.2721 +    __ delayed()->nop();
  1.2722 +    // Cast failure case
  1.2723 +    __ bind(profile_cast_failure);
  1.2724 +    metadata2reg(md->constant_encoding(), mdo);
  1.2725 +    if (mdo_offset_bias > 0) {
  1.2726 +      __ set(mdo_offset_bias, tmp1);
  1.2727 +      __ add(mdo, tmp1, mdo);
  1.2728 +    }
  1.2729 +    Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  1.2730 +    __ ld_ptr(data_addr, tmp1);
  1.2731 +    __ sub(tmp1, DataLayout::counter_increment, tmp1);
  1.2732 +    __ st_ptr(tmp1, data_addr);
  1.2733 +    __ ba(*failure);
  1.2734 +    __ delayed()->nop();
  1.2735 +  }
  1.2736 +  __ ba(*success);
  1.2737 +  __ delayed()->nop();
  1.2738 +}
  1.2739 +
  1.2740 +void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1.2741 +  LIR_Code code = op->code();
  1.2742 +  if (code == lir_store_check) {
  1.2743 +    Register value = op->object()->as_register();
  1.2744 +    Register array = op->array()->as_register();
  1.2745 +    Register k_RInfo = op->tmp1()->as_register();
  1.2746 +    Register klass_RInfo = op->tmp2()->as_register();
  1.2747 +    Register Rtmp1 = op->tmp3()->as_register();
  1.2748 +
  1.2749 +    __ verify_oop(value);
  1.2750 +    CodeStub* stub = op->stub();
  1.2751 +    // check if it needs to be profiled
  1.2752 +    ciMethodData* md;
  1.2753 +    ciProfileData* data;
  1.2754 +    int mdo_offset_bias = 0;
  1.2755 +    if (op->should_profile()) {
  1.2756 +      ciMethod* method = op->profiled_method();
  1.2757 +      assert(method != NULL, "Should have method");
  1.2758 +      setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  1.2759 +    }
  1.2760 +    Label profile_cast_success, profile_cast_failure, done;
  1.2761 +    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1.2762 +    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1.2763 +
  1.2764 +    if (op->should_profile()) {
  1.2765 +      Label not_null;
  1.2766 +      __ br_notnull_short(value, Assembler::pn, not_null);
  1.2767 +      Register mdo      = k_RInfo;
  1.2768 +      Register data_val = Rtmp1;
  1.2769 +      metadata2reg(md->constant_encoding(), mdo);
  1.2770 +      if (mdo_offset_bias > 0) {
  1.2771 +        __ set(mdo_offset_bias, data_val);
  1.2772 +        __ add(mdo, data_val, mdo);
  1.2773 +      }
  1.2774 +      Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  1.2775 +      __ ldub(flags_addr, data_val);
  1.2776 +      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  1.2777 +      __ stb(data_val, flags_addr);
  1.2778 +      __ ba_short(done);
  1.2779 +      __ bind(not_null);
  1.2780 +    } else {
  1.2781 +      __ br_null_short(value, Assembler::pn, done);
  1.2782 +    }
  1.2783 +    add_debug_info_for_null_check_here(op->info_for_exception());
  1.2784 +    __ load_klass(array, k_RInfo);
  1.2785 +    __ load_klass(value, klass_RInfo);
  1.2786 +
  1.2787 +    // get instance klass
  1.2788 +    __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
  1.2789 +    // perform the fast part of the checking logic
  1.2790 +    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  1.2791 +
  1.2792 +    // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1.2793 +    assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  1.2794 +    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  1.2795 +    __ delayed()->nop();
  1.2796 +    __ cmp(G3, 0);
  1.2797 +    __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  1.2798 +    __ delayed()->nop();
  1.2799 +    // fall through to the success case
  1.2800 +
  1.2801 +    if (op->should_profile()) {
  1.2802 +      Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  1.2803 +      assert_different_registers(value, mdo, recv, tmp1);
  1.2804 +      __ bind(profile_cast_success);
  1.2805 +      metadata2reg(md->constant_encoding(), mdo);
  1.2806 +      if (mdo_offset_bias > 0) {
  1.2807 +        __ set(mdo_offset_bias, tmp1);
  1.2808 +        __ add(mdo, tmp1, mdo);
  1.2809 +      }
  1.2810 +      __ load_klass(value, recv);
  1.2811 +      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  1.2812 +      __ ba_short(done);
  1.2813 +      // Cast failure case
  1.2814 +      __ bind(profile_cast_failure);
  1.2815 +      metadata2reg(md->constant_encoding(), mdo);
  1.2816 +      if (mdo_offset_bias > 0) {
  1.2817 +        __ set(mdo_offset_bias, tmp1);
  1.2818 +        __ add(mdo, tmp1, mdo);
  1.2819 +      }
  1.2820 +      Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  1.2821 +      __ ld_ptr(data_addr, tmp1);
  1.2822 +      __ sub(tmp1, DataLayout::counter_increment, tmp1);
  1.2823 +      __ st_ptr(tmp1, data_addr);
  1.2824 +      __ ba(*stub->entry());
  1.2825 +      __ delayed()->nop();
  1.2826 +    }
  1.2827 +    __ bind(done);
  1.2828 +  } else if (code == lir_checkcast) {
  1.2829 +    Register obj = op->object()->as_register();
  1.2830 +    Register dst = op->result_opr()->as_register();
  1.2831 +    Label success;
  1.2832 +    emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1.2833 +    __ bind(success);
  1.2834 +    __ mov(obj, dst);
  1.2835 +  } else if (code == lir_instanceof) {
  1.2836 +    Register obj = op->object()->as_register();
  1.2837 +    Register dst = op->result_opr()->as_register();
  1.2838 +    Label success, failure, done;
  1.2839 +    emit_typecheck_helper(op, &success, &failure, &failure);
  1.2840 +    __ bind(failure);
  1.2841 +    __ set(0, dst);
  1.2842 +    __ ba_short(done);
  1.2843 +    __ bind(success);
  1.2844 +    __ set(1, dst);
  1.2845 +    __ bind(done);
  1.2846 +  } else {
  1.2847 +    ShouldNotReachHere();
  1.2848 +  }
  1.2849 +
  1.2850 +}
  1.2851 +
  1.2852 +
  1.2853 +void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1.2854 +  if (op->code() == lir_cas_long) {
  1.2855 +    assert(VM_Version::supports_cx8(), "wrong machine");
  1.2856 +    Register addr = op->addr()->as_pointer_register();
  1.2857 +    Register cmp_value_lo = op->cmp_value()->as_register_lo();
  1.2858 +    Register cmp_value_hi = op->cmp_value()->as_register_hi();
  1.2859 +    Register new_value_lo = op->new_value()->as_register_lo();
  1.2860 +    Register new_value_hi = op->new_value()->as_register_hi();
  1.2861 +    Register t1 = op->tmp1()->as_register();
  1.2862 +    Register t2 = op->tmp2()->as_register();
  1.2863 +#ifdef _LP64
  1.2864 +    __ mov(cmp_value_lo, t1);
  1.2865 +    __ mov(new_value_lo, t2);
  1.2866 +    // perform the compare and swap operation
  1.2867 +    __ casx(addr, t1, t2);
  1.2868 +    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  1.2869 +    // overwritten with the original value in "addr" and will be equal to t1.
  1.2870 +    __ cmp(t1, t2);
  1.2871 +#else
  1.2872 +    // move high and low halves of long values into single registers
  1.2873 +    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  1.2874 +    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  1.2875 +    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  1.2876 +    __ sllx(new_value_hi, 32, t2);
  1.2877 +    __ srl(new_value_lo, 0, new_value_lo);
  1.2878 +    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  1.2879 +    // perform the compare and swap operation
  1.2880 +    __ casx(addr, t1, t2);
  1.2881 +    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  1.2882 +    // overwritten with the original value in "addr" and will be equal to t1.
  1.2883 +    // Produce icc flag for 32bit.
  1.2884 +    __ sub(t1, t2, t2);
  1.2885 +    __ srlx(t2, 32, t1);
  1.2886 +    __ orcc(t2, t1, G0);
  1.2887 +#endif
  1.2888 +  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  1.2889 +    Register addr = op->addr()->as_pointer_register();
  1.2890 +    Register cmp_value = op->cmp_value()->as_register();
  1.2891 +    Register new_value = op->new_value()->as_register();
  1.2892 +    Register t1 = op->tmp1()->as_register();
  1.2893 +    Register t2 = op->tmp2()->as_register();
  1.2894 +    __ mov(cmp_value, t1);
  1.2895 +    __ mov(new_value, t2);
  1.2896 +    if (op->code() == lir_cas_obj) {
  1.2897 +      if (UseCompressedOops) {
  1.2898 +        __ encode_heap_oop(t1);
  1.2899 +        __ encode_heap_oop(t2);
  1.2900 +        __ cas(addr, t1, t2);
  1.2901 +      } else {
  1.2902 +        __ cas_ptr(addr, t1, t2);
  1.2903 +      }
  1.2904 +    } else {
  1.2905 +      __ cas(addr, t1, t2);
  1.2906 +    }
  1.2907 +    __ cmp(t1, t2);
  1.2908 +  } else {
  1.2909 +    Unimplemented();
  1.2910 +  }
  1.2911 +}
  1.2912 +
  1.2913 +void LIR_Assembler::set_24bit_FPU() {
  1.2914 +  Unimplemented();
  1.2915 +}
  1.2916 +
  1.2917 +
  1.2918 +void LIR_Assembler::reset_FPU() {
  1.2919 +  Unimplemented();
  1.2920 +}
  1.2921 +
  1.2922 +
  1.2923 +void LIR_Assembler::breakpoint() {
  1.2924 +  __ breakpoint_trap();
  1.2925 +}
  1.2926 +
  1.2927 +
  1.2928 +void LIR_Assembler::push(LIR_Opr opr) {
  1.2929 +  Unimplemented();
  1.2930 +}
  1.2931 +
  1.2932 +
  1.2933 +void LIR_Assembler::pop(LIR_Opr opr) {
  1.2934 +  Unimplemented();
  1.2935 +}
  1.2936 +
  1.2937 +
  1.2938 +void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  1.2939 +  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  1.2940 +  Register dst = dst_opr->as_register();
  1.2941 +  Register reg = mon_addr.base();
  1.2942 +  int offset = mon_addr.disp();
  1.2943 +  // compute pointer to BasicLock
  1.2944 +  if (mon_addr.is_simm13()) {
  1.2945 +    __ add(reg, offset, dst);
  1.2946 +  } else {
  1.2947 +    __ set(offset, dst);
  1.2948 +    __ add(dst, reg, dst);
  1.2949 +  }
  1.2950 +}
  1.2951 +
  1.2952 +void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  1.2953 +  fatal("CRC32 intrinsic is not implemented on this platform");
  1.2954 +}
  1.2955 +
  1.2956 +void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  1.2957 +  Register obj = op->obj_opr()->as_register();
  1.2958 +  Register hdr = op->hdr_opr()->as_register();
  1.2959 +  Register lock = op->lock_opr()->as_register();
  1.2960 +
  1.2961 +  // obj may not be an oop
  1.2962 +  if (op->code() == lir_lock) {
  1.2963 +    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  1.2964 +    if (UseFastLocking) {
  1.2965 +      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  1.2966 +      // add debug info for NullPointerException only if one is possible
  1.2967 +      if (op->info() != NULL) {
  1.2968 +        add_debug_info_for_null_check_here(op->info());
  1.2969 +      }
  1.2970 +      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  1.2971 +    } else {
  1.2972 +      // always do slow locking
  1.2973 +      // note: the slow locking code could be inlined here, however if we use
  1.2974 +      //       slow locking, speed doesn't matter anyway and this solution is
  1.2975 +      //       simpler and requires less duplicated code - additionally, the
  1.2976 +      //       slow locking code is the same in either case which simplifies
  1.2977 +      //       debugging
  1.2978 +      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  1.2979 +      __ delayed()->nop();
  1.2980 +    }
  1.2981 +  } else {
  1.2982 +    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  1.2983 +    if (UseFastLocking) {
  1.2984 +      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  1.2985 +      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  1.2986 +    } else {
  1.2987 +      // always do slow unlocking
  1.2988 +      // note: the slow unlocking code could be inlined here, however if we use
  1.2989 +      //       slow unlocking, speed doesn't matter anyway and this solution is
  1.2990 +      //       simpler and requires less duplicated code - additionally, the
  1.2991 +      //       slow unlocking code is the same in either case which simplifies
  1.2992 +      //       debugging
  1.2993 +      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  1.2994 +      __ delayed()->nop();
  1.2995 +    }
  1.2996 +  }
  1.2997 +  __ bind(*op->stub()->continuation());
  1.2998 +}
  1.2999 +
  1.3000 +
  1.3001 +void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  1.3002 +  ciMethod* method = op->profiled_method();
  1.3003 +  int bci          = op->profiled_bci();
  1.3004 +  ciMethod* callee = op->profiled_callee();
  1.3005 +
  1.3006 +  // Update counter for all call types
  1.3007 +  ciMethodData* md = method->method_data_or_null();
  1.3008 +  assert(md != NULL, "Sanity");
  1.3009 +  ciProfileData* data = md->bci_to_data(bci);
  1.3010 +  assert(data->is_CounterData(), "need CounterData for calls");
  1.3011 +  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  1.3012 +  Register mdo  = op->mdo()->as_register();
  1.3013 +#ifdef _LP64
  1.3014 +  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  1.3015 +  Register tmp1 = op->tmp1()->as_register_lo();
  1.3016 +#else
  1.3017 +  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  1.3018 +  Register tmp1 = op->tmp1()->as_register();
  1.3019 +#endif
  1.3020 +  metadata2reg(md->constant_encoding(), mdo);
  1.3021 +  int mdo_offset_bias = 0;
  1.3022 +  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  1.3023 +                            data->size_in_bytes())) {
  1.3024 +    // The offset is large so bias the mdo by the base of the slot so
  1.3025 +    // that the ld can use simm13s to reference the slots of the data
  1.3026 +    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  1.3027 +    __ set(mdo_offset_bias, O7);
  1.3028 +    __ add(mdo, O7, mdo);
  1.3029 +  }
  1.3030 +
  1.3031 +  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  1.3032 +  Bytecodes::Code bc = method->java_code_at_bci(bci);
  1.3033 +  const bool callee_is_static = callee->is_loaded() && callee->is_static();
  1.3034 +  // Perform additional virtual call profiling for invokevirtual and
  1.3035 +  // invokeinterface bytecodes
  1.3036 +  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  1.3037 +      !callee_is_static &&  // required for optimized MH invokes
  1.3038 +      C1ProfileVirtualCalls) {
  1.3039 +    assert(op->recv()->is_single_cpu(), "recv must be allocated");
  1.3040 +    Register recv = op->recv()->as_register();
  1.3041 +    assert_different_registers(mdo, tmp1, recv);
  1.3042 +    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  1.3043 +    ciKlass* known_klass = op->known_holder();
  1.3044 +    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  1.3045 +      // We know the type that will be seen at this call site; we can
  1.3046 +      // statically update the MethodData* rather than needing to do
  1.3047 +      // dynamic tests on the receiver type
  1.3048 +
  1.3049 +      // NOTE: we should probably put a lock around this search to
  1.3050 +      // avoid collisions by concurrent compilations
  1.3051 +      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  1.3052 +      uint i;
  1.3053 +      for (i = 0; i < VirtualCallData::row_limit(); i++) {
  1.3054 +        ciKlass* receiver = vc_data->receiver(i);
  1.3055 +        if (known_klass->equals(receiver)) {
  1.3056 +          Address data_addr(mdo, md->byte_offset_of_slot(data,
  1.3057 +                                                         VirtualCallData::receiver_count_offset(i)) -
  1.3058 +                            mdo_offset_bias);
  1.3059 +          __ ld_ptr(data_addr, tmp1);
  1.3060 +          __ add(tmp1, DataLayout::counter_increment, tmp1);
  1.3061 +          __ st_ptr(tmp1, data_addr);
  1.3062 +          return;
  1.3063 +        }
  1.3064 +      }
  1.3065 +
  1.3066 +      // Receiver type not found in profile data; select an empty slot
  1.3067 +
  1.3068 +      // Note that this is less efficient than it should be because it
  1.3069 +      // always does a write to the receiver part of the
  1.3070 +      // VirtualCallData rather than just the first time
  1.3071 +      for (i = 0; i < VirtualCallData::row_limit(); i++) {
  1.3072 +        ciKlass* receiver = vc_data->receiver(i);
  1.3073 +        if (receiver == NULL) {
  1.3074 +          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  1.3075 +                            mdo_offset_bias);
  1.3076 +          metadata2reg(known_klass->constant_encoding(), tmp1);
  1.3077 +          __ st_ptr(tmp1, recv_addr);
  1.3078 +          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  1.3079 +                            mdo_offset_bias);
  1.3080 +          __ ld_ptr(data_addr, tmp1);
  1.3081 +          __ add(tmp1, DataLayout::counter_increment, tmp1);
  1.3082 +          __ st_ptr(tmp1, data_addr);
  1.3083 +          return;
  1.3084 +        }
  1.3085 +      }
  1.3086 +    } else {
  1.3087 +      __ load_klass(recv, recv);
  1.3088 +      Label update_done;
  1.3089 +      type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  1.3090 +      // Receiver did not match any saved receiver and there is no empty row for it.
  1.3091 +      // Increment total counter to indicate polymorphic case.
  1.3092 +      __ ld_ptr(counter_addr, tmp1);
  1.3093 +      __ add(tmp1, DataLayout::counter_increment, tmp1);
  1.3094 +      __ st_ptr(tmp1, counter_addr);
  1.3095 +
  1.3096 +      __ bind(update_done);
  1.3097 +    }
  1.3098 +  } else {
  1.3099 +    // Static call
  1.3100 +    __ ld_ptr(counter_addr, tmp1);
  1.3101 +    __ add(tmp1, DataLayout::counter_increment, tmp1);
  1.3102 +    __ st_ptr(tmp1, counter_addr);
  1.3103 +  }
  1.3104 +}
  1.3105 +
  1.3106 +void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
  1.3107 +  Register obj = op->obj()->as_register();
  1.3108 +  Register tmp1 = op->tmp()->as_pointer_register();
  1.3109 +  Register tmp2 = G1;
  1.3110 +  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
  1.3111 +  ciKlass* exact_klass = op->exact_klass();
  1.3112 +  intptr_t current_klass = op->current_klass();
  1.3113 +  bool not_null = op->not_null();
  1.3114 +  bool no_conflict = op->no_conflict();
  1.3115 +
  1.3116 +  Label update, next, none;
  1.3117 +
  1.3118 +  bool do_null = !not_null;
  1.3119 +  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
  1.3120 +  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
  1.3121 +
  1.3122 +  assert(do_null || do_update, "why are we here?");
  1.3123 +  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
  1.3124 +
  1.3125 +  __ verify_oop(obj);
  1.3126 +
  1.3127 +  if (tmp1 != obj) {
  1.3128 +    __ mov(obj, tmp1);
  1.3129 +  }
  1.3130 +  if (do_null) {
  1.3131 +    __ br_notnull_short(tmp1, Assembler::pt, update);
  1.3132 +    if (!TypeEntries::was_null_seen(current_klass)) {
  1.3133 +      __ ld_ptr(mdo_addr, tmp1);
  1.3134 +      __ or3(tmp1, TypeEntries::null_seen, tmp1);
  1.3135 +      __ st_ptr(tmp1, mdo_addr);
  1.3136 +    }
  1.3137 +    if (do_update) {
  1.3138 +      __ ba(next);
  1.3139 +      __ delayed()->nop();
  1.3140 +    }
  1.3141 +#ifdef ASSERT
  1.3142 +  } else {
  1.3143 +    __ br_notnull_short(tmp1, Assembler::pt, update);
  1.3144 +    __ stop("unexpect null obj");
  1.3145 +#endif
  1.3146 +  }
  1.3147 +
  1.3148 +  __ bind(update);
  1.3149 +
  1.3150 +  if (do_update) {
  1.3151 +#ifdef ASSERT
  1.3152 +    if (exact_klass != NULL) {
  1.3153 +      Label ok;
  1.3154 +      __ load_klass(tmp1, tmp1);
  1.3155 +      metadata2reg(exact_klass->constant_encoding(), tmp2);
  1.3156 +      __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
  1.3157 +      __ stop("exact klass and actual klass differ");
  1.3158 +      __ bind(ok);
  1.3159 +    }
  1.3160 +#endif
  1.3161 +
  1.3162 +    Label do_update;
  1.3163 +    __ ld_ptr(mdo_addr, tmp2);
  1.3164 +
  1.3165 +    if (!no_conflict) {
  1.3166 +      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
  1.3167 +        if (exact_klass != NULL) {
  1.3168 +          metadata2reg(exact_klass->constant_encoding(), tmp1);
  1.3169 +        } else {
  1.3170 +          __ load_klass(tmp1, tmp1);
  1.3171 +        }
  1.3172 +
  1.3173 +        __ xor3(tmp1, tmp2, tmp1);
  1.3174 +        __ btst(TypeEntries::type_klass_mask, tmp1);
  1.3175 +        // klass seen before, nothing to do. The unknown bit may have been
  1.3176 +        // set already but no need to check.
  1.3177 +        __ brx(Assembler::zero, false, Assembler::pt, next);
  1.3178 +        __ delayed()->
  1.3179 +
  1.3180 +           btst(TypeEntries::type_unknown, tmp1);
  1.3181 +        // already unknown. Nothing to do anymore.
  1.3182 +        __ brx(Assembler::notZero, false, Assembler::pt, next);
  1.3183 +
  1.3184 +        if (TypeEntries::is_type_none(current_klass)) {
  1.3185 +          __ delayed()->btst(TypeEntries::type_mask, tmp2);
  1.3186 +          __ brx(Assembler::zero, true, Assembler::pt, do_update);
  1.3187 +          // first time here. Set profile type.
  1.3188 +          __ delayed()->or3(tmp2, tmp1, tmp2);
  1.3189 +        } else {
  1.3190 +          __ delayed()->nop();
  1.3191 +        }
  1.3192 +      } else {
  1.3193 +        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  1.3194 +               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
  1.3195 +
  1.3196 +        __ btst(TypeEntries::type_unknown, tmp2);
  1.3197 +        // already unknown. Nothing to do anymore.
  1.3198 +        __ brx(Assembler::notZero, false, Assembler::pt, next);
  1.3199 +        __ delayed()->nop();
  1.3200 +      }
  1.3201 +
  1.3202 +      // different than before. Cannot keep accurate profile.
  1.3203 +      __ or3(tmp2, TypeEntries::type_unknown, tmp2);
  1.3204 +    } else {
  1.3205 +      // There's a single possible klass at this profile point
  1.3206 +      assert(exact_klass != NULL, "should be");
  1.3207 +      if (TypeEntries::is_type_none(current_klass)) {
  1.3208 +        metadata2reg(exact_klass->constant_encoding(), tmp1);
  1.3209 +        __ xor3(tmp1, tmp2, tmp1);
  1.3210 +        __ btst(TypeEntries::type_klass_mask, tmp1);
  1.3211 +        __ brx(Assembler::zero, false, Assembler::pt, next);
  1.3212 +#ifdef ASSERT
  1.3213 +
  1.3214 +        {
  1.3215 +          Label ok;
  1.3216 +          __ delayed()->btst(TypeEntries::type_mask, tmp2);
  1.3217 +          __ brx(Assembler::zero, true, Assembler::pt, ok);
  1.3218 +          __ delayed()->nop();
  1.3219 +
  1.3220 +          __ stop("unexpected profiling mismatch");
  1.3221 +          __ bind(ok);
  1.3222 +        }
  1.3223 +        // first time here. Set profile type.
  1.3224 +        __ or3(tmp2, tmp1, tmp2);
  1.3225 +#else
  1.3226 +        // first time here. Set profile type.
  1.3227 +        __ delayed()->or3(tmp2, tmp1, tmp2);
  1.3228 +#endif
  1.3229 +
  1.3230 +      } else {
  1.3231 +        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  1.3232 +               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
  1.3233 +
  1.3234 +        // already unknown. Nothing to do anymore.
  1.3235 +        __ btst(TypeEntries::type_unknown, tmp2);
  1.3236 +        __ brx(Assembler::notZero, false, Assembler::pt, next);
  1.3237 +        __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
  1.3238 +      }
  1.3239 +    }
  1.3240 +
  1.3241 +    __ bind(do_update);
  1.3242 +    __ st_ptr(tmp2, mdo_addr);
  1.3243 +
  1.3244 +    __ bind(next);
  1.3245 +  }
  1.3246 +}
  1.3247 +
  1.3248 +void LIR_Assembler::align_backward_branch_target() {
  1.3249 +  __ align(OptoLoopAlignment);
  1.3250 +}
  1.3251 +
  1.3252 +
  1.3253 +void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  1.3254 +  // make sure we are expecting a delay
  1.3255 +  // this has the side effect of clearing the delay state
  1.3256 +  // so we can use _masm instead of _masm->delayed() to do the
  1.3257 +  // code generation.
  1.3258 +  __ delayed();
  1.3259 +
  1.3260 +  // make sure we only emit one instruction
  1.3261 +  int offset = code_offset();
  1.3262 +  op->delay_op()->emit_code(this);
  1.3263 +#ifdef ASSERT
  1.3264 +  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  1.3265 +    op->delay_op()->print();
  1.3266 +  }
  1.3267 +  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  1.3268 +         "only one instruction can go in a delay slot");
  1.3269 +#endif
  1.3270 +
  1.3271 +  // we may also be emitting the call info for the instruction
  1.3272 +  // which we are the delay slot of.
  1.3273 +  CodeEmitInfo* call_info = op->call_info();
  1.3274 +  if (call_info) {
  1.3275 +    add_call_info(code_offset(), call_info);
  1.3276 +  }
  1.3277 +
  1.3278 +  if (VerifyStackAtCalls) {
  1.3279 +    _masm->sub(FP, SP, O7);
  1.3280 +    _masm->cmp(O7, initial_frame_size_in_bytes());
  1.3281 +    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  1.3282 +  }
  1.3283 +}
  1.3284 +
  1.3285 +
  1.3286 +void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  1.3287 +  assert(left->is_register(), "can only handle registers");
  1.3288 +
  1.3289 +  if (left->is_single_cpu()) {
  1.3290 +    __ neg(left->as_register(), dest->as_register());
  1.3291 +  } else if (left->is_single_fpu()) {
  1.3292 +    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  1.3293 +  } else if (left->is_double_fpu()) {
  1.3294 +    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  1.3295 +  } else {
  1.3296 +    assert (left->is_double_cpu(), "Must be a long");
  1.3297 +    Register Rlow = left->as_register_lo();
  1.3298 +    Register Rhi = left->as_register_hi();
  1.3299 +#ifdef _LP64
  1.3300 +    __ sub(G0, Rlow, dest->as_register_lo());
  1.3301 +#else
  1.3302 +    __ subcc(G0, Rlow, dest->as_register_lo());
  1.3303 +    __ subc (G0, Rhi,  dest->as_register_hi());
  1.3304 +#endif
  1.3305 +  }
  1.3306 +}
  1.3307 +
  1.3308 +
  1.3309 +void LIR_Assembler::fxch(int i) {
  1.3310 +  Unimplemented();
  1.3311 +}
  1.3312 +
  1.3313 +void LIR_Assembler::fld(int i) {
  1.3314 +  Unimplemented();
  1.3315 +}
  1.3316 +
  1.3317 +void LIR_Assembler::ffree(int i) {
  1.3318 +  Unimplemented();
  1.3319 +}
  1.3320 +
  1.3321 +void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  1.3322 +                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  1.3323 +
  1.3324 +  // if tmp is invalid, then the function being called doesn't destroy the thread
  1.3325 +  if (tmp->is_valid()) {
  1.3326 +    __ save_thread(tmp->as_register());
  1.3327 +  }
  1.3328 +  __ call(dest, relocInfo::runtime_call_type);
  1.3329 +  __ delayed()->nop();
  1.3330 +  if (info != NULL) {
  1.3331 +    add_call_info_here(info);
  1.3332 +  }
  1.3333 +  if (tmp->is_valid()) {
  1.3334 +    __ restore_thread(tmp->as_register());
  1.3335 +  }
  1.3336 +
  1.3337 +#ifdef ASSERT
  1.3338 +  __ verify_thread();
  1.3339 +#endif // ASSERT
  1.3340 +}
  1.3341 +
  1.3342 +
  1.3343 +void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  1.3344 +#ifdef _LP64
  1.3345 +  ShouldNotReachHere();
  1.3346 +#endif
  1.3347 +
  1.3348 +  NEEDS_CLEANUP;
  1.3349 +  if (type == T_LONG) {
  1.3350 +    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  1.3351 +
  1.3352 +    // (extended to allow indexed as well as constant displaced for JSR-166)
  1.3353 +    Register idx = noreg; // contains either constant offset or index
  1.3354 +
  1.3355 +    int disp = mem_addr->disp();
  1.3356 +    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  1.3357 +      if (!Assembler::is_simm13(disp)) {
  1.3358 +        idx = O7;
  1.3359 +        __ set(disp, idx);
  1.3360 +      }
  1.3361 +    } else {
  1.3362 +      assert(disp == 0, "not both indexed and disp");
  1.3363 +      idx = mem_addr->index()->as_register();
  1.3364 +    }
  1.3365 +
  1.3366 +    int null_check_offset = -1;
  1.3367 +
  1.3368 +    Register base = mem_addr->base()->as_register();
  1.3369 +    if (src->is_register() && dest->is_address()) {
  1.3370 +      // G4 is high half, G5 is low half
  1.3371 +      // clear the top bits of G5, and scale up G4
  1.3372 +      __ srl (src->as_register_lo(),  0, G5);
  1.3373 +      __ sllx(src->as_register_hi(), 32, G4);
  1.3374 +      // combine the two halves into the 64 bits of G4
  1.3375 +      __ or3(G4, G5, G4);
  1.3376 +      null_check_offset = __ offset();
  1.3377 +      if (idx == noreg) {
  1.3378 +        __ stx(G4, base, disp);
  1.3379 +      } else {
  1.3380 +        __ stx(G4, base, idx);
  1.3381 +      }
  1.3382 +    } else if (src->is_address() && dest->is_register()) {
  1.3383 +      null_check_offset = __ offset();
  1.3384 +      if (idx == noreg) {
  1.3385 +        __ ldx(base, disp, G5);
  1.3386 +      } else {
  1.3387 +        __ ldx(base, idx, G5);
  1.3388 +      }
  1.3389 +      __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  1.3390 +      __ mov (G5, dest->as_register_lo());     // copy low half into lo
  1.3391 +    } else {
  1.3392 +      Unimplemented();
  1.3393 +    }
  1.3394 +    if (info != NULL) {
  1.3395 +      add_debug_info_for_null_check(null_check_offset, info);
  1.3396 +    }
  1.3397 +
  1.3398 +  } else {
  1.3399 +    // use normal move for all other volatiles since they don't need
  1.3400 +    // special handling to remain atomic.
  1.3401 +    move_op(src, dest, type, lir_patch_none, info, false, false, false);
  1.3402 +  }
  1.3403 +}
  1.3404 +
  1.3405 +void LIR_Assembler::membar() {
  1.3406 +  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  1.3407 +  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  1.3408 +}
  1.3409 +
  1.3410 +void LIR_Assembler::membar_acquire() {
  1.3411 +  // no-op on TSO
  1.3412 +}
  1.3413 +
  1.3414 +void LIR_Assembler::membar_release() {
  1.3415 +  // no-op on TSO
  1.3416 +}
  1.3417 +
  1.3418 +void LIR_Assembler::membar_loadload() {
  1.3419 +  // no-op
  1.3420 +  //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  1.3421 +}
  1.3422 +
  1.3423 +void LIR_Assembler::membar_storestore() {
  1.3424 +  // no-op
  1.3425 +  //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  1.3426 +}
  1.3427 +
  1.3428 +void LIR_Assembler::membar_loadstore() {
  1.3429 +  // no-op
  1.3430 +  //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  1.3431 +}
  1.3432 +
  1.3433 +void LIR_Assembler::membar_storeload() {
  1.3434 +  __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  1.3435 +}
  1.3436 +
  1.3437 +
  1.3438 +// Pack two sequential registers containing 32 bit values
  1.3439 +// into a single 64 bit register.
  1.3440 +// src and src->successor() are packed into dst
  1.3441 +// src and dst may be the same register.
  1.3442 +// Note: src is destroyed
  1.3443 +void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  1.3444 +  Register rs = src->as_register();
  1.3445 +  Register rd = dst->as_register_lo();
  1.3446 +  __ sllx(rs, 32, rs);
  1.3447 +  __ srl(rs->successor(), 0, rs->successor());
  1.3448 +  __ or3(rs, rs->successor(), rd);
  1.3449 +}
  1.3450 +
  1.3451 +// Unpack a 64 bit value in a register into
  1.3452 +// two sequential registers.
  1.3453 +// src is unpacked into dst and dst->successor()
  1.3454 +void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  1.3455 +  Register rs = src->as_register_lo();
  1.3456 +  Register rd = dst->as_register_hi();
  1.3457 +  assert_different_registers(rs, rd, rd->successor());
  1.3458 +  __ srlx(rs, 32, rd);
  1.3459 +  __ srl (rs,  0, rd->successor());
  1.3460 +}
  1.3461 +
  1.3462 +
  1.3463 +void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  1.3464 +  LIR_Address* addr = addr_opr->as_address_ptr();
  1.3465 +  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
  1.3466 +
  1.3467 +  if (Assembler::is_simm13(addr->disp())) {
  1.3468 +    __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  1.3469 +  } else {
  1.3470 +    __ set(addr->disp(), G3_scratch);
  1.3471 +    __ add(addr->base()->as_pointer_register(), G3_scratch, dest->as_pointer_register());
  1.3472 +  }
  1.3473 +}
  1.3474 +
  1.3475 +
  1.3476 +void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  1.3477 +  assert(result_reg->is_register(), "check");
  1.3478 +  __ mov(G2_thread, result_reg->as_register());
  1.3479 +}
  1.3480 +
  1.3481 +#ifdef ASSERT
  1.3482 +// emit run-time assertion
  1.3483 +void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  1.3484 +  assert(op->code() == lir_assert, "must be");
  1.3485 +
  1.3486 +  if (op->in_opr1()->is_valid()) {
  1.3487 +    assert(op->in_opr2()->is_valid(), "both operands must be valid");
  1.3488 +    comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  1.3489 +  } else {
  1.3490 +    assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  1.3491 +    assert(op->condition() == lir_cond_always, "no other conditions allowed");
  1.3492 +  }
  1.3493 +
  1.3494 +  Label ok;
  1.3495 +  if (op->condition() != lir_cond_always) {
  1.3496 +    Assembler::Condition acond;
  1.3497 +    switch (op->condition()) {
  1.3498 +      case lir_cond_equal:        acond = Assembler::equal;                break;
  1.3499 +      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
  1.3500 +      case lir_cond_less:         acond = Assembler::less;                 break;
  1.3501 +      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
  1.3502 +      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
  1.3503 +      case lir_cond_greater:      acond = Assembler::greater;              break;
  1.3504 +      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
  1.3505 +      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
  1.3506 +      default:                         ShouldNotReachHere();
  1.3507 +    };
  1.3508 +    __ br(acond, false, Assembler::pt, ok);
  1.3509 +    __ delayed()->nop();
  1.3510 +  }
  1.3511 +  if (op->halt()) {
  1.3512 +    const char* str = __ code_string(op->msg());
  1.3513 +    __ stop(str);
  1.3514 +  } else {
  1.3515 +    breakpoint();
  1.3516 +  }
  1.3517 +  __ bind(ok);
  1.3518 +}
  1.3519 +#endif
  1.3520 +
  1.3521 +void LIR_Assembler::peephole(LIR_List* lir) {
  1.3522 +  LIR_OpList* inst = lir->instructions_list();
  1.3523 +  for (int i = 0; i < inst->length(); i++) {
  1.3524 +    LIR_Op* op = inst->at(i);
  1.3525 +    switch (op->code()) {
  1.3526 +      case lir_cond_float_branch:
  1.3527 +      case lir_branch: {
  1.3528 +        LIR_OpBranch* branch = op->as_OpBranch();
  1.3529 +        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  1.3530 +        LIR_Op* delay_op = NULL;
  1.3531 +        // we'd like to be able to pull following instructions into
  1.3532 +        // this slot but we don't know enough to do it safely yet so
  1.3533 +        // only optimize block to block control flow.
  1.3534 +        if (LIRFillDelaySlots && branch->block()) {
  1.3535 +          LIR_Op* prev = inst->at(i - 1);
  1.3536 +          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  1.3537 +            // swap previous instruction into delay slot
  1.3538 +            inst->at_put(i - 1, op);
  1.3539 +            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  1.3540 +#ifndef PRODUCT
  1.3541 +            if (LIRTracePeephole) {
  1.3542 +              tty->print_cr("delayed");
  1.3543 +              inst->at(i - 1)->print();
  1.3544 +              inst->at(i)->print();
  1.3545 +              tty->cr();
  1.3546 +            }
  1.3547 +#endif
  1.3548 +            continue;
  1.3549 +          }
  1.3550 +        }
  1.3551 +
  1.3552 +        if (!delay_op) {
  1.3553 +          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  1.3554 +        }
  1.3555 +        inst->insert_before(i + 1, delay_op);
  1.3556 +        break;
  1.3557 +      }
  1.3558 +      case lir_static_call:
  1.3559 +      case lir_virtual_call:
  1.3560 +      case lir_icvirtual_call:
  1.3561 +      case lir_optvirtual_call:
  1.3562 +      case lir_dynamic_call: {
  1.3563 +        LIR_Op* prev = inst->at(i - 1);
  1.3564 +        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  1.3565 +            (op->code() != lir_virtual_call ||
  1.3566 +             !prev->result_opr()->is_single_cpu() ||
  1.3567 +             prev->result_opr()->as_register() != O0) &&
  1.3568 +            LIR_Assembler::is_single_instruction(prev)) {
  1.3569 +          // Only moves without info can be put into the delay slot.
  1.3570 +          // Also don't allow the setup of the receiver in the delay
  1.3571 +          // slot for vtable calls.
  1.3572 +          inst->at_put(i - 1, op);
  1.3573 +          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  1.3574 +#ifndef PRODUCT
  1.3575 +          if (LIRTracePeephole) {
  1.3576 +            tty->print_cr("delayed");
  1.3577 +            inst->at(i - 1)->print();
  1.3578 +            inst->at(i)->print();
  1.3579 +            tty->cr();
  1.3580 +          }
  1.3581 +#endif
  1.3582 +        } else {
  1.3583 +          LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  1.3584 +          inst->insert_before(i + 1, delay_op);
  1.3585 +          i++;
  1.3586 +        }
  1.3587 +
  1.3588 +#if defined(TIERED) && !defined(_LP64)
  1.3589 +        // fixup the return value from G1 to O0/O1 for long returns.
  1.3590 +        // It's done here instead of in LIRGenerator because there's
  1.3591 +        // such a mismatch between the single reg and double reg
  1.3592 +        // calling convention.
  1.3593 +        LIR_OpJavaCall* callop = op->as_OpJavaCall();
  1.3594 +        if (callop->result_opr() == FrameMap::out_long_opr) {
  1.3595 +          LIR_OpJavaCall* call;
  1.3596 +          LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  1.3597 +          for (int a = 0; a < arguments->length(); a++) {
  1.3598 +            arguments[a] = callop->arguments()[a];
  1.3599 +          }
  1.3600 +          if (op->code() == lir_virtual_call) {
  1.3601 +            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  1.3602 +                                      callop->vtable_offset(), arguments, callop->info());
  1.3603 +          } else {
  1.3604 +            call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  1.3605 +                                      callop->addr(), arguments, callop->info());
  1.3606 +          }
  1.3607 +          inst->at_put(i - 1, call);
  1.3608 +          inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  1.3609 +                                                 T_LONG, lir_patch_none, NULL));
  1.3610 +        }
  1.3611 +#endif
  1.3612 +        break;
  1.3613 +      }
  1.3614 +    }
  1.3615 +  }
  1.3616 +}
  1.3617 +
  1.3618 +void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  1.3619 +  LIR_Address* addr = src->as_address_ptr();
  1.3620 +
  1.3621 +  assert(data == dest, "swap uses only 2 operands");
  1.3622 +  assert (code == lir_xchg, "no xadd on sparc");
  1.3623 +
  1.3624 +  if (data->type() == T_INT) {
  1.3625 +    __ swap(as_Address(addr), data->as_register());
  1.3626 +  } else if (data->is_oop()) {
  1.3627 +    Register obj = data->as_register();
  1.3628 +    Register narrow = tmp->as_register();
  1.3629 +#ifdef _LP64
  1.3630 +    assert(UseCompressedOops, "swap is 32bit only");
  1.3631 +    __ encode_heap_oop(obj, narrow);
  1.3632 +    __ swap(as_Address(addr), narrow);
  1.3633 +    __ decode_heap_oop(narrow, obj);
  1.3634 +#else
  1.3635 +    __ swap(as_Address(addr), obj);
  1.3636 +#endif
  1.3637 +  } else {
  1.3638 +    ShouldNotReachHere();
  1.3639 +  }
  1.3640 +}
  1.3641 +
  1.3642 +#undef __

mercurial