src/cpu/sparc/vm/bytecodeInterpreter_sparc.inline.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/sparc/vm/bytecodeInterpreter_sparc.inline.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,338 @@
     1.4 +/*
     1.5 + * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP
    1.29 +#define CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP
    1.30 +
    1.31 +// Inline interpreter functions for sparc
    1.32 +
    1.33 +inline jfloat BytecodeInterpreter::VMfloatAdd(jfloat op1, jfloat op2) { return op1 + op2; }
    1.34 +inline jfloat BytecodeInterpreter::VMfloatSub(jfloat op1, jfloat op2) { return op1 - op2; }
    1.35 +inline jfloat BytecodeInterpreter::VMfloatMul(jfloat op1, jfloat op2) { return op1 * op2; }
    1.36 +inline jfloat BytecodeInterpreter::VMfloatDiv(jfloat op1, jfloat op2) { return op1 / op2; }
    1.37 +inline jfloat BytecodeInterpreter::VMfloatRem(jfloat op1, jfloat op2) { return fmod(op1, op2); }
    1.38 +
    1.39 +inline jfloat BytecodeInterpreter::VMfloatNeg(jfloat op) { return -op; }
    1.40 +
    1.41 +inline int32_t BytecodeInterpreter::VMfloatCompare(jfloat op1, jfloat op2, int32_t direction) {
    1.42 +  return ( op1 < op2 ? -1 :
    1.43 +               op1 > op2 ? 1 :
    1.44 +                   op1 == op2 ? 0 :
    1.45 +                       (direction == -1 || direction == 1) ? direction : 0);
    1.46 +
    1.47 +}
    1.48 +
    1.49 +inline void BytecodeInterpreter::VMmemCopy64(uint32_t to[2], const uint32_t from[2]) {
    1.50 +  // x86 can do unaligned copies but not 64bits at a time
    1.51 +  to[0] = from[0]; to[1] = from[1];
    1.52 +}
    1.53 +
    1.54 +// The long operations depend on compiler support for "long long" on x86
    1.55 +
    1.56 +inline jlong BytecodeInterpreter::VMlongAdd(jlong op1, jlong op2) {
    1.57 +  return op1 + op2;
    1.58 +}
    1.59 +
    1.60 +inline jlong BytecodeInterpreter::VMlongAnd(jlong op1, jlong op2) {
    1.61 +  return op1 & op2;
    1.62 +}
    1.63 +
    1.64 +inline jlong BytecodeInterpreter::VMlongDiv(jlong op1, jlong op2) {
    1.65 +  // QQQ what about check and throw...
    1.66 +  return op1 / op2;
    1.67 +}
    1.68 +
    1.69 +inline jlong BytecodeInterpreter::VMlongMul(jlong op1, jlong op2) {
    1.70 +  return op1 * op2;
    1.71 +}
    1.72 +
    1.73 +inline jlong BytecodeInterpreter::VMlongOr(jlong op1, jlong op2) {
    1.74 +  return op1 | op2;
    1.75 +}
    1.76 +
    1.77 +inline jlong BytecodeInterpreter::VMlongSub(jlong op1, jlong op2) {
    1.78 +  return op1 - op2;
    1.79 +}
    1.80 +
    1.81 +inline jlong BytecodeInterpreter::VMlongXor(jlong op1, jlong op2) {
    1.82 +  return op1 ^ op2;
    1.83 +}
    1.84 +
    1.85 +inline jlong BytecodeInterpreter::VMlongRem(jlong op1, jlong op2) {
    1.86 +  return op1 % op2;
    1.87 +}
    1.88 +
    1.89 +inline jlong BytecodeInterpreter::VMlongUshr(jlong op1, jint op2) {
    1.90 +  // CVM did this 0x3f mask, is the really needed??? QQQ
    1.91 +  return ((unsigned long long) op1) >> (op2 & 0x3F);
    1.92 +}
    1.93 +
    1.94 +inline jlong BytecodeInterpreter::VMlongShr(jlong op1, jint op2) {
    1.95 +  return op1 >> (op2 & 0x3F);
    1.96 +}
    1.97 +
    1.98 +inline jlong BytecodeInterpreter::VMlongShl(jlong op1, jint op2) {
    1.99 +  return op1 << (op2 & 0x3F);
   1.100 +}
   1.101 +
   1.102 +inline jlong BytecodeInterpreter::VMlongNeg(jlong op) {
   1.103 +  return -op;
   1.104 +}
   1.105 +
   1.106 +inline jlong BytecodeInterpreter::VMlongNot(jlong op) {
   1.107 +  return ~op;
   1.108 +}
   1.109 +
   1.110 +inline int32_t BytecodeInterpreter::VMlongLtz(jlong op) {
   1.111 +  return (op <= 0);
   1.112 +}
   1.113 +
   1.114 +inline int32_t BytecodeInterpreter::VMlongGez(jlong op) {
   1.115 +  return (op >= 0);
   1.116 +}
   1.117 +
   1.118 +inline int32_t BytecodeInterpreter::VMlongEqz(jlong op) {
   1.119 +  return (op == 0);
   1.120 +}
   1.121 +
   1.122 +inline int32_t BytecodeInterpreter::VMlongEq(jlong op1, jlong op2) {
   1.123 +  return (op1 == op2);
   1.124 +}
   1.125 +
   1.126 +inline int32_t BytecodeInterpreter::VMlongNe(jlong op1, jlong op2) {
   1.127 +  return (op1 != op2);
   1.128 +}
   1.129 +
   1.130 +inline int32_t BytecodeInterpreter::VMlongGe(jlong op1, jlong op2) {
   1.131 +  return (op1 >= op2);
   1.132 +}
   1.133 +
   1.134 +inline int32_t BytecodeInterpreter::VMlongLe(jlong op1, jlong op2) {
   1.135 +  return (op1 <= op2);
   1.136 +}
   1.137 +
   1.138 +inline int32_t BytecodeInterpreter::VMlongLt(jlong op1, jlong op2) {
   1.139 +  return (op1 < op2);
   1.140 +}
   1.141 +
   1.142 +inline int32_t BytecodeInterpreter::VMlongGt(jlong op1, jlong op2) {
   1.143 +  return (op1 > op2);
   1.144 +}
   1.145 +
   1.146 +inline int32_t BytecodeInterpreter::VMlongCompare(jlong op1, jlong op2) {
   1.147 +  return (VMlongLt(op1, op2) ? -1 : VMlongGt(op1, op2) ? 1 : 0);
   1.148 +}
   1.149 +
   1.150 +// Long conversions
   1.151 +
   1.152 +inline jdouble BytecodeInterpreter::VMlong2Double(jlong val) {
   1.153 +  return (jdouble) val;
   1.154 +}
   1.155 +
   1.156 +inline jfloat BytecodeInterpreter::VMlong2Float(jlong val) {
   1.157 +  return (jfloat) val;
   1.158 +}
   1.159 +
   1.160 +inline jint BytecodeInterpreter::VMlong2Int(jlong val) {
   1.161 +  return (jint) val;
   1.162 +}
   1.163 +
   1.164 +// Double Arithmetic
   1.165 +
   1.166 +inline jdouble BytecodeInterpreter::VMdoubleAdd(jdouble op1, jdouble op2) {
   1.167 +  return op1 + op2;
   1.168 +}
   1.169 +
   1.170 +inline jdouble BytecodeInterpreter::VMdoubleDiv(jdouble op1, jdouble op2) {
   1.171 +  // Divide by zero... QQQ
   1.172 +  return op1 / op2;
   1.173 +}
   1.174 +
   1.175 +inline jdouble BytecodeInterpreter::VMdoubleMul(jdouble op1, jdouble op2) {
   1.176 +  return op1 * op2;
   1.177 +}
   1.178 +
   1.179 +inline jdouble BytecodeInterpreter::VMdoubleNeg(jdouble op) {
   1.180 +  return -op;
   1.181 +}
   1.182 +
   1.183 +inline jdouble BytecodeInterpreter::VMdoubleRem(jdouble op1, jdouble op2) {
   1.184 +  return fmod(op1, op2);
   1.185 +}
   1.186 +
   1.187 +inline jdouble BytecodeInterpreter::VMdoubleSub(jdouble op1, jdouble op2) {
   1.188 +  return op1 - op2;
   1.189 +}
   1.190 +
   1.191 +inline int32_t BytecodeInterpreter::VMdoubleCompare(jdouble op1, jdouble op2, int32_t direction) {
   1.192 +  return ( op1 < op2 ? -1 :
   1.193 +               op1 > op2 ? 1 :
   1.194 +                   op1 == op2 ? 0 :
   1.195 +                       (direction == -1 || direction == 1) ? direction : 0);
   1.196 +}
   1.197 +
   1.198 +// Double Conversions
   1.199 +
   1.200 +inline jfloat BytecodeInterpreter::VMdouble2Float(jdouble val) {
   1.201 +  return (jfloat) val;
   1.202 +}
   1.203 +
   1.204 +// Float Conversions
   1.205 +
   1.206 +inline jdouble BytecodeInterpreter::VMfloat2Double(jfloat op) {
   1.207 +  return (jdouble) op;
   1.208 +}
   1.209 +
   1.210 +// Integer Arithmetic
   1.211 +
   1.212 +inline jint BytecodeInterpreter::VMintAdd(jint op1, jint op2) {
   1.213 +  return op1 + op2;
   1.214 +}
   1.215 +
   1.216 +inline jint BytecodeInterpreter::VMintAnd(jint op1, jint op2) {
   1.217 +  return op1 & op2;
   1.218 +}
   1.219 +
   1.220 +inline jint BytecodeInterpreter::VMintDiv(jint op1, jint op2) {
   1.221 +  /* it's possible we could catch this special case implicitly */
   1.222 +  if (op1 == 0x80000000 && op2 == -1) return op1;
   1.223 +  else return op1 / op2;
   1.224 +}
   1.225 +
   1.226 +inline jint BytecodeInterpreter::VMintMul(jint op1, jint op2) {
   1.227 +  return op1 * op2;
   1.228 +}
   1.229 +
   1.230 +inline jint BytecodeInterpreter::VMintNeg(jint op) {
   1.231 +  return -op;
   1.232 +}
   1.233 +
   1.234 +inline jint BytecodeInterpreter::VMintOr(jint op1, jint op2) {
   1.235 +  return op1 | op2;
   1.236 +}
   1.237 +
   1.238 +inline jint BytecodeInterpreter::VMintRem(jint op1, jint op2) {
   1.239 +  /* it's possible we could catch this special case implicitly */
   1.240 +  if (op1 == 0x80000000 && op2 == -1) return 0;
   1.241 +  else return op1 % op2;
   1.242 +}
   1.243 +
   1.244 +inline jint BytecodeInterpreter::VMintShl(jint op1, jint op2) {
   1.245 +  return op1 << (op2 & 0x1f);
   1.246 +}
   1.247 +
   1.248 +inline jint BytecodeInterpreter::VMintShr(jint op1, jint op2) {
   1.249 +  return op1 >> (op2 & 0x1f);
   1.250 +}
   1.251 +
   1.252 +inline jint BytecodeInterpreter::VMintSub(jint op1, jint op2) {
   1.253 +  return op1 - op2;
   1.254 +}
   1.255 +
   1.256 +inline juint BytecodeInterpreter::VMintUshr(jint op1, jint op2) {
   1.257 +  return ((juint) op1) >> (op2 & 0x1f);
   1.258 +}
   1.259 +
   1.260 +inline jint BytecodeInterpreter::VMintXor(jint op1, jint op2) {
   1.261 +  return op1 ^ op2;
   1.262 +}
   1.263 +
   1.264 +inline jdouble BytecodeInterpreter::VMint2Double(jint val) {
   1.265 +  return (jdouble) val;
   1.266 +}
   1.267 +
   1.268 +inline jfloat BytecodeInterpreter::VMint2Float(jint val) {
   1.269 +  return (jfloat) val;
   1.270 +}
   1.271 +
   1.272 +inline jlong BytecodeInterpreter::VMint2Long(jint val) {
   1.273 +  return (jlong) val;
   1.274 +}
   1.275 +
   1.276 +inline jchar BytecodeInterpreter::VMint2Char(jint val) {
   1.277 +  return (jchar) val;
   1.278 +}
   1.279 +
   1.280 +inline jshort BytecodeInterpreter::VMint2Short(jint val) {
   1.281 +  return (jshort) val;
   1.282 +}
   1.283 +
   1.284 +inline jbyte BytecodeInterpreter::VMint2Byte(jint val) {
   1.285 +  return (jbyte) val;
   1.286 +}
   1.287 +
   1.288 +// The implementations are platform dependent. We have to worry about alignment
   1.289 +// issues on some machines which can change on the same platform depending on
   1.290 +// whether it is an LP64 machine also.
   1.291 +
   1.292 +// We know that on LP32 mode that longs/doubles are the only thing that gives
   1.293 +// us alignment headaches. We also know that the worst we have is 32bit alignment
   1.294 +// so thing are not really too bad.
   1.295 +// (Also sparcworks compiler does the right thing for free if we don't use -arch..
   1.296 +// switches. Only gcc gives us a hard time. In LP64 mode I think we have no issue
   1.297 +// with alignment.
   1.298 +
   1.299 +#ifdef _GNU_SOURCE
   1.300 +  #define ALIGN_CONVERTER        /* Needs alignment converter */
   1.301 +#else
   1.302 +  #undef ALIGN_CONVERTER        /* No alignment converter */
   1.303 +#endif /* _GNU_SOURCE */
   1.304 +
   1.305 +#ifdef ALIGN_CONVERTER
   1.306 +class u8_converter {
   1.307 +
   1.308 +  private:
   1.309 +
   1.310 +  public:
   1.311 +  static jdouble get_jdouble(address p) {
   1.312 +    VMJavaVal64 tmp;
   1.313 +    tmp.v[0] = ((uint32_t*)p)[0];
   1.314 +    tmp.v[1] = ((uint32_t*)p)[1];
   1.315 +    return tmp.d;
   1.316 +  }
   1.317 +
   1.318 +  static void put_jdouble(address p, jdouble d) {
   1.319 +    VMJavaVal64 tmp;
   1.320 +    tmp.d = d;
   1.321 +    ((uint32_t*)p)[0] = tmp.v[0];
   1.322 +    ((uint32_t*)p)[1] = tmp.v[1];
   1.323 +  }
   1.324 +
   1.325 +  static jlong get_jlong(address p) {
   1.326 +    VMJavaVal64 tmp;
   1.327 +    tmp.v[0] = ((uint32_t*)p)[0];
   1.328 +    tmp.v[1] = ((uint32_t*)p)[1];
   1.329 +    return tmp.l;
   1.330 +  }
   1.331 +
   1.332 +  static void put_jlong(address p, jlong l) {
   1.333 +    VMJavaVal64 tmp;
   1.334 +    tmp.l = l;
   1.335 +    ((uint32_t*)p)[0] = tmp.v[0];
   1.336 +    ((uint32_t*)p)[1] = tmp.v[1];
   1.337 +  }
   1.338 +};
   1.339 +#endif /* ALIGN_CONVERTER */
   1.340 +
   1.341 +#endif // CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP

mercurial