src/cpu/sparc/vm/assembler_sparc.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/sparc/vm/assembler_sparc.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,1214 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    1.29 +#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    1.30 +
    1.31 +#include "asm/register.hpp"
    1.32 +
    1.33 +// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
    1.34 +// level; i.e., what you write
    1.35 +// is what you get. The Assembler is generating code into a CodeBuffer.
    1.36 +
    1.37 +class Assembler : public AbstractAssembler  {
    1.38 +  friend class AbstractAssembler;
    1.39 +  friend class AddressLiteral;
    1.40 +
    1.41 +  // code patchers need various routines like inv_wdisp()
    1.42 +  friend class NativeInstruction;
    1.43 +  friend class NativeGeneralJump;
    1.44 +  friend class Relocation;
    1.45 +  friend class Label;
    1.46 +
    1.47 + public:
    1.48 +  // op carries format info; see page 62 & 267
    1.49 +
    1.50 +  enum ops {
    1.51 +    call_op   = 1, // fmt 1
    1.52 +    branch_op = 0, // also sethi (fmt2)
    1.53 +    arith_op  = 2, // fmt 3, arith & misc
    1.54 +    ldst_op   = 3  // fmt 3, load/store
    1.55 +  };
    1.56 +
    1.57 +  enum op2s {
    1.58 +    bpr_op2   = 3,
    1.59 +    fb_op2    = 6,
    1.60 +    fbp_op2   = 5,
    1.61 +    br_op2    = 2,
    1.62 +    bp_op2    = 1,
    1.63 +    sethi_op2 = 4
    1.64 +  };
    1.65 +
    1.66 +  enum op3s {
    1.67 +    // selected op3s
    1.68 +    add_op3      = 0x00,
    1.69 +    and_op3      = 0x01,
    1.70 +    or_op3       = 0x02,
    1.71 +    xor_op3      = 0x03,
    1.72 +    sub_op3      = 0x04,
    1.73 +    andn_op3     = 0x05,
    1.74 +    orn_op3      = 0x06,
    1.75 +    xnor_op3     = 0x07,
    1.76 +    addc_op3     = 0x08,
    1.77 +    mulx_op3     = 0x09,
    1.78 +    umul_op3     = 0x0a,
    1.79 +    smul_op3     = 0x0b,
    1.80 +    subc_op3     = 0x0c,
    1.81 +    udivx_op3    = 0x0d,
    1.82 +    udiv_op3     = 0x0e,
    1.83 +    sdiv_op3     = 0x0f,
    1.84 +
    1.85 +    addcc_op3    = 0x10,
    1.86 +    andcc_op3    = 0x11,
    1.87 +    orcc_op3     = 0x12,
    1.88 +    xorcc_op3    = 0x13,
    1.89 +    subcc_op3    = 0x14,
    1.90 +    andncc_op3   = 0x15,
    1.91 +    orncc_op3    = 0x16,
    1.92 +    xnorcc_op3   = 0x17,
    1.93 +    addccc_op3   = 0x18,
    1.94 +    aes4_op3     = 0x19,
    1.95 +    umulcc_op3   = 0x1a,
    1.96 +    smulcc_op3   = 0x1b,
    1.97 +    subccc_op3   = 0x1c,
    1.98 +    udivcc_op3   = 0x1e,
    1.99 +    sdivcc_op3   = 0x1f,
   1.100 +
   1.101 +    taddcc_op3   = 0x20,
   1.102 +    tsubcc_op3   = 0x21,
   1.103 +    taddcctv_op3 = 0x22,
   1.104 +    tsubcctv_op3 = 0x23,
   1.105 +    mulscc_op3   = 0x24,
   1.106 +    sll_op3      = 0x25,
   1.107 +    sllx_op3     = 0x25,
   1.108 +    srl_op3      = 0x26,
   1.109 +    srlx_op3     = 0x26,
   1.110 +    sra_op3      = 0x27,
   1.111 +    srax_op3     = 0x27,
   1.112 +    rdreg_op3    = 0x28,
   1.113 +    membar_op3   = 0x28,
   1.114 +
   1.115 +    flushw_op3   = 0x2b,
   1.116 +    movcc_op3    = 0x2c,
   1.117 +    sdivx_op3    = 0x2d,
   1.118 +    popc_op3     = 0x2e,
   1.119 +    movr_op3     = 0x2f,
   1.120 +
   1.121 +    sir_op3      = 0x30,
   1.122 +    wrreg_op3    = 0x30,
   1.123 +    saved_op3    = 0x31,
   1.124 +
   1.125 +    fpop1_op3    = 0x34,
   1.126 +    fpop2_op3    = 0x35,
   1.127 +    impdep1_op3  = 0x36,
   1.128 +    aes3_op3     = 0x36,
   1.129 +    alignaddr_op3  = 0x36,
   1.130 +    faligndata_op3 = 0x36,
   1.131 +    flog3_op3    = 0x36,
   1.132 +    edge_op3     = 0x36,
   1.133 +    fsrc_op3     = 0x36,
   1.134 +    impdep2_op3  = 0x37,
   1.135 +    stpartialf_op3 = 0x37,
   1.136 +    jmpl_op3     = 0x38,
   1.137 +    rett_op3     = 0x39,
   1.138 +    trap_op3     = 0x3a,
   1.139 +    flush_op3    = 0x3b,
   1.140 +    save_op3     = 0x3c,
   1.141 +    restore_op3  = 0x3d,
   1.142 +    done_op3     = 0x3e,
   1.143 +    retry_op3    = 0x3e,
   1.144 +
   1.145 +    lduw_op3     = 0x00,
   1.146 +    ldub_op3     = 0x01,
   1.147 +    lduh_op3     = 0x02,
   1.148 +    ldd_op3      = 0x03,
   1.149 +    stw_op3      = 0x04,
   1.150 +    stb_op3      = 0x05,
   1.151 +    sth_op3      = 0x06,
   1.152 +    std_op3      = 0x07,
   1.153 +    ldsw_op3     = 0x08,
   1.154 +    ldsb_op3     = 0x09,
   1.155 +    ldsh_op3     = 0x0a,
   1.156 +    ldx_op3      = 0x0b,
   1.157 +
   1.158 +    stx_op3      = 0x0e,
   1.159 +    swap_op3     = 0x0f,
   1.160 +
   1.161 +    stwa_op3     = 0x14,
   1.162 +    stxa_op3     = 0x1e,
   1.163 +
   1.164 +    ldf_op3      = 0x20,
   1.165 +    ldfsr_op3    = 0x21,
   1.166 +    ldqf_op3     = 0x22,
   1.167 +    lddf_op3     = 0x23,
   1.168 +    stf_op3      = 0x24,
   1.169 +    stfsr_op3    = 0x25,
   1.170 +    stqf_op3     = 0x26,
   1.171 +    stdf_op3     = 0x27,
   1.172 +
   1.173 +    prefetch_op3 = 0x2d,
   1.174 +
   1.175 +    casa_op3     = 0x3c,
   1.176 +    casxa_op3    = 0x3e,
   1.177 +
   1.178 +    mftoi_op3    = 0x36,
   1.179 +
   1.180 +    alt_bit_op3  = 0x10,
   1.181 +     cc_bit_op3  = 0x10
   1.182 +  };
   1.183 +
   1.184 +  enum opfs {
   1.185 +    // selected opfs
   1.186 +    edge8n_opf         = 0x01,
   1.187 +
   1.188 +    fmovs_opf          = 0x01,
   1.189 +    fmovd_opf          = 0x02,
   1.190 +
   1.191 +    fnegs_opf          = 0x05,
   1.192 +    fnegd_opf          = 0x06,
   1.193 +
   1.194 +    alignaddr_opf      = 0x18,
   1.195 +
   1.196 +    fadds_opf          = 0x41,
   1.197 +    faddd_opf          = 0x42,
   1.198 +    fsubs_opf          = 0x45,
   1.199 +    fsubd_opf          = 0x46,
   1.200 +
   1.201 +    faligndata_opf     = 0x48,
   1.202 +
   1.203 +    fmuls_opf          = 0x49,
   1.204 +    fmuld_opf          = 0x4a,
   1.205 +    fdivs_opf          = 0x4d,
   1.206 +    fdivd_opf          = 0x4e,
   1.207 +
   1.208 +    fcmps_opf          = 0x51,
   1.209 +    fcmpd_opf          = 0x52,
   1.210 +
   1.211 +    fstox_opf          = 0x81,
   1.212 +    fdtox_opf          = 0x82,
   1.213 +    fxtos_opf          = 0x84,
   1.214 +    fxtod_opf          = 0x88,
   1.215 +    fitos_opf          = 0xc4,
   1.216 +    fdtos_opf          = 0xc6,
   1.217 +    fitod_opf          = 0xc8,
   1.218 +    fstod_opf          = 0xc9,
   1.219 +    fstoi_opf          = 0xd1,
   1.220 +    fdtoi_opf          = 0xd2,
   1.221 +
   1.222 +    mdtox_opf          = 0x110,
   1.223 +    mstouw_opf         = 0x111,
   1.224 +    mstosw_opf         = 0x113,
   1.225 +    mxtod_opf          = 0x118,
   1.226 +    mwtos_opf          = 0x119,
   1.227 +
   1.228 +    aes_kexpand0_opf   = 0x130,
   1.229 +    aes_kexpand2_opf   = 0x131
   1.230 +  };
   1.231 +
   1.232 +  enum op5s {
   1.233 +    aes_eround01_op5     = 0x00,
   1.234 +    aes_eround23_op5     = 0x01,
   1.235 +    aes_dround01_op5     = 0x02,
   1.236 +    aes_dround23_op5     = 0x03,
   1.237 +    aes_eround01_l_op5   = 0x04,
   1.238 +    aes_eround23_l_op5   = 0x05,
   1.239 +    aes_dround01_l_op5   = 0x06,
   1.240 +    aes_dround23_l_op5   = 0x07,
   1.241 +    aes_kexpand1_op5     = 0x08
   1.242 +  };
   1.243 +
   1.244 +  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez  };
   1.245 +
   1.246 +  enum Condition {
   1.247 +     // for FBfcc & FBPfcc instruction
   1.248 +    f_never                     = 0,
   1.249 +    f_notEqual                  = 1,
   1.250 +    f_notZero                   = 1,
   1.251 +    f_lessOrGreater             = 2,
   1.252 +    f_unorderedOrLess           = 3,
   1.253 +    f_less                      = 4,
   1.254 +    f_unorderedOrGreater        = 5,
   1.255 +    f_greater                   = 6,
   1.256 +    f_unordered                 = 7,
   1.257 +    f_always                    = 8,
   1.258 +    f_equal                     = 9,
   1.259 +    f_zero                      = 9,
   1.260 +    f_unorderedOrEqual          = 10,
   1.261 +    f_greaterOrEqual            = 11,
   1.262 +    f_unorderedOrGreaterOrEqual = 12,
   1.263 +    f_lessOrEqual               = 13,
   1.264 +    f_unorderedOrLessOrEqual    = 14,
   1.265 +    f_ordered                   = 15,
   1.266 +
   1.267 +    // V8 coproc, pp 123 v8 manual
   1.268 +
   1.269 +    cp_always  = 8,
   1.270 +    cp_never   = 0,
   1.271 +    cp_3       = 7,
   1.272 +    cp_2       = 6,
   1.273 +    cp_2or3    = 5,
   1.274 +    cp_1       = 4,
   1.275 +    cp_1or3    = 3,
   1.276 +    cp_1or2    = 2,
   1.277 +    cp_1or2or3 = 1,
   1.278 +    cp_0       = 9,
   1.279 +    cp_0or3    = 10,
   1.280 +    cp_0or2    = 11,
   1.281 +    cp_0or2or3 = 12,
   1.282 +    cp_0or1    = 13,
   1.283 +    cp_0or1or3 = 14,
   1.284 +    cp_0or1or2 = 15,
   1.285 +
   1.286 +
   1.287 +    // for integers
   1.288 +
   1.289 +    never                 =  0,
   1.290 +    equal                 =  1,
   1.291 +    zero                  =  1,
   1.292 +    lessEqual             =  2,
   1.293 +    less                  =  3,
   1.294 +    lessEqualUnsigned     =  4,
   1.295 +    lessUnsigned          =  5,
   1.296 +    carrySet              =  5,
   1.297 +    negative              =  6,
   1.298 +    overflowSet           =  7,
   1.299 +    always                =  8,
   1.300 +    notEqual              =  9,
   1.301 +    notZero               =  9,
   1.302 +    greater               =  10,
   1.303 +    greaterEqual          =  11,
   1.304 +    greaterUnsigned       =  12,
   1.305 +    greaterEqualUnsigned  =  13,
   1.306 +    carryClear            =  13,
   1.307 +    positive              =  14,
   1.308 +    overflowClear         =  15
   1.309 +  };
   1.310 +
   1.311 +  enum CC {
   1.312 +    icc  = 0,  xcc  = 2,
   1.313 +    // ptr_cc is the correct condition code for a pointer or intptr_t:
   1.314 +    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   1.315 +    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   1.316 +  };
   1.317 +
   1.318 +  enum PrefetchFcn {
   1.319 +    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   1.320 +  };
   1.321 +
   1.322 + public:
   1.323 +  // Helper functions for groups of instructions
   1.324 +
   1.325 +  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   1.326 +
   1.327 +  enum Membar_mask_bits { // page 184, v9
   1.328 +    StoreStore = 1 << 3,
   1.329 +    LoadStore  = 1 << 2,
   1.330 +    StoreLoad  = 1 << 1,
   1.331 +    LoadLoad   = 1 << 0,
   1.332 +
   1.333 +    Sync       = 1 << 6,
   1.334 +    MemIssue   = 1 << 5,
   1.335 +    Lookaside  = 1 << 4
   1.336 +  };
   1.337 +
   1.338 +  static bool is_in_wdisp_range(address a, address b, int nbits) {
   1.339 +    intptr_t d = intptr_t(b) - intptr_t(a);
   1.340 +    return is_simm(d, nbits + 2);
   1.341 +  }
   1.342 +
   1.343 +  address target_distance(Label& L) {
   1.344 +    // Assembler::target(L) should be called only when
   1.345 +    // a branch instruction is emitted since non-bound
   1.346 +    // labels record current pc() as a branch address.
   1.347 +    if (L.is_bound()) return target(L);
   1.348 +    // Return current address for non-bound labels.
   1.349 +    return pc();
   1.350 +  }
   1.351 +
   1.352 +  // test if label is in simm16 range in words (wdisp16).
   1.353 +  bool is_in_wdisp16_range(Label& L) {
   1.354 +    return is_in_wdisp_range(target_distance(L), pc(), 16);
   1.355 +  }
   1.356 +  // test if the distance between two addresses fits in simm30 range in words
   1.357 +  static bool is_in_wdisp30_range(address a, address b) {
   1.358 +    return is_in_wdisp_range(a, b, 30);
   1.359 +  }
   1.360 +
   1.361 +  enum ASIs { // page 72, v9
   1.362 +    ASI_PRIMARY            = 0x80,
   1.363 +    ASI_PRIMARY_NOFAULT    = 0x82,
   1.364 +    ASI_PRIMARY_LITTLE     = 0x88,
   1.365 +    // 8x8-bit partial store
   1.366 +    ASI_PST8_PRIMARY       = 0xC0,
   1.367 +    // Block initializing store
   1.368 +    ASI_ST_BLKINIT_PRIMARY = 0xE2,
   1.369 +    // Most-Recently-Used (MRU) BIS variant
   1.370 +    ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
   1.371 +    // add more from book as needed
   1.372 +  };
   1.373 +
   1.374 + protected:
   1.375 +  // helpers
   1.376 +
   1.377 +  // x is supposed to fit in a field "nbits" wide
   1.378 +  // and be sign-extended. Check the range.
   1.379 +
   1.380 +  static void assert_signed_range(intptr_t x, int nbits) {
   1.381 +    assert(nbits == 32 || (-(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1)),
   1.382 +           err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
   1.383 +  }
   1.384 +
   1.385 +  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   1.386 +    assert( (x & 3) == 0, "not word aligned");
   1.387 +    assert_signed_range(x, nbits + 2);
   1.388 +  }
   1.389 +
   1.390 +  static void assert_unsigned_const(int x, int nbits) {
   1.391 +    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   1.392 +  }
   1.393 +
   1.394 +  // fields: note bits numbered from LSB = 0,
   1.395 +  //  fields known by inclusive bit range
   1.396 +
   1.397 +  static int fmask(juint hi_bit, juint lo_bit) {
   1.398 +    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   1.399 +    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   1.400 +  }
   1.401 +
   1.402 +  // inverse of u_field
   1.403 +
   1.404 +  static int inv_u_field(int x, int hi_bit, int lo_bit) {
   1.405 +    juint r = juint(x) >> lo_bit;
   1.406 +    r &= fmask( hi_bit, lo_bit);
   1.407 +    return int(r);
   1.408 +  }
   1.409 +
   1.410 +
   1.411 +  // signed version: extract from field and sign-extend
   1.412 +
   1.413 +  static int inv_s_field(int x, int hi_bit, int lo_bit) {
   1.414 +    int sign_shift = 31 - hi_bit;
   1.415 +    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   1.416 +  }
   1.417 +
   1.418 +  // given a field that ranges from hi_bit to lo_bit (inclusive,
   1.419 +  // LSB = 0), and an unsigned value for the field,
   1.420 +  // shift it into the field
   1.421 +
   1.422 +#ifdef ASSERT
   1.423 +  static int u_field(int x, int hi_bit, int lo_bit) {
   1.424 +    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   1.425 +            "value out of range");
   1.426 +    int r = x << lo_bit;
   1.427 +    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   1.428 +    return r;
   1.429 +  }
   1.430 +#else
   1.431 +  // make sure this is inlined as it will reduce code size significantly
   1.432 +  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   1.433 +#endif
   1.434 +
   1.435 +  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   1.436 +  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   1.437 +  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   1.438 +  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   1.439 +
   1.440 +  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   1.441 +
   1.442 +  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   1.443 +  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   1.444 +  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   1.445 +
   1.446 +  static int op(       int         x)  { return  u_field(x,             31, 30); }
   1.447 +  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   1.448 +  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   1.449 +  static int op3(      int         x)  { return  u_field(x,             24, 19); }
   1.450 +  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   1.451 +  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   1.452 +  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   1.453 +  static int cond(     int         x)  { return  u_field(x,             28, 25); }
   1.454 +  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   1.455 +  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   1.456 +  static int op2(      int         x)  { return  u_field(x,             24, 22); }
   1.457 +  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   1.458 +  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   1.459 +  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   1.460 +  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   1.461 +  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   1.462 +  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   1.463 +  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   1.464 +  static int op5(      int         x)  { return  u_field(x,              8,  5); }
   1.465 +  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   1.466 +  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   1.467 +  static int opf(      int         x)  { return  u_field(x,             13,  5); }
   1.468 +
   1.469 +  static bool is_cbcond( int x ) {
   1.470 +    return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
   1.471 +            inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
   1.472 +  }
   1.473 +  static bool is_cxb( int x ) {
   1.474 +    assert(is_cbcond(x), "wrong instruction");
   1.475 +    return (x & (1<<21)) != 0;
   1.476 +  }
   1.477 +  static int cond_cbcond( int         x)  { return  u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
   1.478 +  static int inv_cond_cbcond(int      x)  {
   1.479 +    assert(is_cbcond(x), "wrong instruction");
   1.480 +    return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
   1.481 +  }
   1.482 +
   1.483 +  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   1.484 +  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   1.485 +
   1.486 +  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   1.487 +  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   1.488 +  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   1.489 +  static int fs3(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13,  9); };
   1.490 +
   1.491 +  // some float instructions use this encoding on the op3 field
   1.492 +  static int alt_op3(int op, FloatRegisterImpl::Width w) {
   1.493 +    int r;
   1.494 +    switch(w) {
   1.495 +     case FloatRegisterImpl::S: r = op + 0;  break;
   1.496 +     case FloatRegisterImpl::D: r = op + 3;  break;
   1.497 +     case FloatRegisterImpl::Q: r = op + 2;  break;
   1.498 +     default: ShouldNotReachHere(); break;
   1.499 +    }
   1.500 +    return op3(r);
   1.501 +  }
   1.502 +
   1.503 +
   1.504 +  // compute inverse of simm
   1.505 +  static int inv_simm(int x, int nbits) {
   1.506 +    return (int)(x << (32 - nbits)) >> (32 - nbits);
   1.507 +  }
   1.508 +
   1.509 +  static int inv_simm13( int x ) { return inv_simm(x, 13); }
   1.510 +
   1.511 +  // signed immediate, in low bits, nbits long
   1.512 +  static int simm(int x, int nbits) {
   1.513 +    assert_signed_range(x, nbits);
   1.514 +    return x  &  (( 1 << nbits ) - 1);
   1.515 +  }
   1.516 +
   1.517 +  // compute inverse of wdisp16
   1.518 +  static intptr_t inv_wdisp16(int x, intptr_t pos) {
   1.519 +    int lo = x & (( 1 << 14 ) - 1);
   1.520 +    int hi = (x >> 20) & 3;
   1.521 +    if (hi >= 2) hi |= ~1;
   1.522 +    return (((hi << 14) | lo) << 2) + pos;
   1.523 +  }
   1.524 +
   1.525 +  // word offset, 14 bits at LSend, 2 bits at B21, B20
   1.526 +  static int wdisp16(intptr_t x, intptr_t off) {
   1.527 +    intptr_t xx = x - off;
   1.528 +    assert_signed_word_disp_range(xx, 16);
   1.529 +    int r =  (xx >> 2) & ((1 << 14) - 1)
   1.530 +           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   1.531 +    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   1.532 +    return r;
   1.533 +  }
   1.534 +
   1.535 +  // compute inverse of wdisp10
   1.536 +  static intptr_t inv_wdisp10(int x, intptr_t pos) {
   1.537 +    assert(is_cbcond(x), "wrong instruction");
   1.538 +    int lo = inv_u_field(x, 12, 5);
   1.539 +    int hi = (x >> 19) & 3;
   1.540 +    if (hi >= 2) hi |= ~1;
   1.541 +    return (((hi << 8) | lo) << 2) + pos;
   1.542 +  }
   1.543 +
   1.544 +  // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
   1.545 +  static int wdisp10(intptr_t x, intptr_t off) {
   1.546 +    assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
   1.547 +    intptr_t xx = x - off;
   1.548 +    assert_signed_word_disp_range(xx, 10);
   1.549 +    int r =  ( ( (xx >>  2   ) & ((1 << 8) - 1) ) <<  5 )
   1.550 +           | ( ( (xx >> (2+8)) & 3              ) << 19 );
   1.551 +    // Have to fake cbcond instruction to pass assert in inv_wdisp10()
   1.552 +    assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x,  "inverse is not inverse");
   1.553 +    return r;
   1.554 +  }
   1.555 +
   1.556 +  // word displacement in low-order nbits bits
   1.557 +
   1.558 +  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   1.559 +    int pre_sign_extend = x & (( 1 << nbits ) - 1);
   1.560 +    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   1.561 +       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   1.562 +       :   pre_sign_extend;
   1.563 +    return (r << 2) + pos;
   1.564 +  }
   1.565 +
   1.566 +  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   1.567 +    intptr_t xx = x - off;
   1.568 +    assert_signed_word_disp_range(xx, nbits);
   1.569 +    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   1.570 +    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   1.571 +    return r;
   1.572 +  }
   1.573 +
   1.574 +
   1.575 +  // Extract the top 32 bits in a 64 bit word
   1.576 +  static int32_t hi32( int64_t x ) {
   1.577 +    int32_t r = int32_t( (uint64_t)x >> 32 );
   1.578 +    return r;
   1.579 +  }
   1.580 +
   1.581 +  // given a sethi instruction, extract the constant, left-justified
   1.582 +  static int inv_hi22( int x ) {
   1.583 +    return x << 10;
   1.584 +  }
   1.585 +
   1.586 +  // create an imm22 field, given a 32-bit left-justified constant
   1.587 +  static int hi22( int x ) {
   1.588 +    int r = int( juint(x) >> 10 );
   1.589 +    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   1.590 +    return r;
   1.591 +  }
   1.592 +
   1.593 +  // create a low10 __value__ (not a field) for a given a 32-bit constant
   1.594 +  static int low10( int x ) {
   1.595 +    return x & ((1 << 10) - 1);
   1.596 +  }
   1.597 +
   1.598 +  // AES crypto instructions supported only on certain processors
   1.599 +  static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
   1.600 +
   1.601 +  // instruction only in VIS1
   1.602 +  static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
   1.603 +
   1.604 +  // instruction only in VIS2
   1.605 +  static void vis2_only() { assert( VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
   1.606 +
   1.607 +  // instruction only in VIS3
   1.608 +  static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
   1.609 +
   1.610 +  // instruction only in v9
   1.611 +  static void v9_only() { } // do nothing
   1.612 +
   1.613 +  // instruction deprecated in v9
   1.614 +  static void v9_dep()  { } // do nothing for now
   1.615 +
   1.616 +  // v8 has no CC field
   1.617 +  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
   1.618 +
   1.619 + protected:
   1.620 +  // Simple delay-slot scheme:
   1.621 +  // In order to check the programmer, the assembler keeps track of deley slots.
   1.622 +  // It forbids CTIs in delay slots (conservative, but should be OK).
   1.623 +  // Also, when putting an instruction into a delay slot, you must say
   1.624 +  // asm->delayed()->add(...), in order to check that you don't omit
   1.625 +  // delay-slot instructions.
   1.626 +  // To implement this, we use a simple FSA
   1.627 +
   1.628 +#ifdef ASSERT
   1.629 +  #define CHECK_DELAY
   1.630 +#endif
   1.631 +#ifdef CHECK_DELAY
   1.632 +  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
   1.633 +#endif
   1.634 +
   1.635 + public:
   1.636 +  // Tells assembler next instruction must NOT be in delay slot.
   1.637 +  // Use at start of multinstruction macros.
   1.638 +  void assert_not_delayed() {
   1.639 +    // This is a separate overloading to avoid creation of string constants
   1.640 +    // in non-asserted code--with some compilers this pollutes the object code.
   1.641 +#ifdef CHECK_DELAY
   1.642 +    assert_not_delayed("next instruction should not be a delay slot");
   1.643 +#endif
   1.644 +  }
   1.645 +  void assert_not_delayed(const char* msg) {
   1.646 +#ifdef CHECK_DELAY
   1.647 +    assert(delay_state == no_delay, msg);
   1.648 +#endif
   1.649 +  }
   1.650 +
   1.651 + protected:
   1.652 +  // Insert a nop if the previous is cbcond
   1.653 +  void insert_nop_after_cbcond() {
   1.654 +    if (UseCBCond && cbcond_before()) {
   1.655 +      nop();
   1.656 +    }
   1.657 +  }
   1.658 +  // Delay slot helpers
   1.659 +  // cti is called when emitting control-transfer instruction,
   1.660 +  // BEFORE doing the emitting.
   1.661 +  // Only effective when assertion-checking is enabled.
   1.662 +  void cti() {
   1.663 +    // A cbcond instruction immediately followed by a CTI
   1.664 +    // instruction introduces pipeline stalls, we need to avoid that.
   1.665 +    no_cbcond_before();
   1.666 +#ifdef CHECK_DELAY
   1.667 +    assert_not_delayed("cti should not be in delay slot");
   1.668 +#endif
   1.669 +  }
   1.670 +
   1.671 +  // called when emitting cti with a delay slot, AFTER emitting
   1.672 +  void has_delay_slot() {
   1.673 +#ifdef CHECK_DELAY
   1.674 +    assert_not_delayed("just checking");
   1.675 +    delay_state = at_delay_slot;
   1.676 +#endif
   1.677 +  }
   1.678 +
   1.679 +  // cbcond instruction should not be generated one after an other
   1.680 +  bool cbcond_before() {
   1.681 +    if (offset() == 0) return false; // it is first instruction
   1.682 +    int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
   1.683 +    return is_cbcond(x);
   1.684 +  }
   1.685 +
   1.686 +  void no_cbcond_before() {
   1.687 +    assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
   1.688 +  }
   1.689 +public:
   1.690 +
   1.691 +  bool use_cbcond(Label& L) {
   1.692 +    if (!UseCBCond || cbcond_before()) return false;
   1.693 +    intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
   1.694 +    assert( (x & 3) == 0, "not word aligned");
   1.695 +    return is_simm12(x);
   1.696 +  }
   1.697 +
   1.698 +  // Tells assembler you know that next instruction is delayed
   1.699 +  Assembler* delayed() {
   1.700 +#ifdef CHECK_DELAY
   1.701 +    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
   1.702 +    delay_state = filling_delay_slot;
   1.703 +#endif
   1.704 +    return this;
   1.705 +  }
   1.706 +
   1.707 +  void flush() {
   1.708 +#ifdef CHECK_DELAY
   1.709 +    assert ( delay_state == no_delay, "ending code with a delay slot");
   1.710 +#endif
   1.711 +    AbstractAssembler::flush();
   1.712 +  }
   1.713 +
   1.714 +  inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
   1.715 +  inline void emit_data(int x) { emit_int32(x); }
   1.716 +  inline void emit_data(int, RelocationHolder const&);
   1.717 +  inline void emit_data(int, relocInfo::relocType rtype);
   1.718 +  // helper for above fcns
   1.719 +  inline void check_delay();
   1.720 +
   1.721 +
   1.722 + public:
   1.723 +  // instructions, refer to page numbers in the SPARC Architecture Manual, V9
   1.724 +
   1.725 +  // pp 135 (addc was addx in v8)
   1.726 +
   1.727 +  inline void add(Register s1, Register s2, Register d );
   1.728 +  inline void add(Register s1, int simm13a, Register d );
   1.729 +
   1.730 +  void addcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.731 +  void addcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.732 +  void addc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
   1.733 +  void addc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.734 +  void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.735 +  void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.736 +
   1.737 +
   1.738 +  // 4-operand AES instructions
   1.739 +
   1.740 +  void aes_eround01(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.741 +  void aes_eround23(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.742 +  void aes_dround01(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.743 +  void aes_dround23(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.744 +  void aes_eround01_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.745 +  void aes_eround23_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.746 +  void aes_dround01_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.747 +  void aes_dround23_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.748 +  void aes_kexpand1(  FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   1.749 +
   1.750 +
   1.751 +  // 3-operand AES instructions
   1.752 +
   1.753 +  void aes_kexpand0(  FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
   1.754 +  void aes_kexpand2(  FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
   1.755 +
   1.756 +  // pp 136
   1.757 +
   1.758 +  inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
   1.759 +  inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
   1.760 +
   1.761 +  // compare and branch
   1.762 +  inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
   1.763 +  inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
   1.764 +
   1.765 + protected: // use MacroAssembler::br instead
   1.766 +
   1.767 +  // pp 138
   1.768 +
   1.769 +  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   1.770 +  inline void fb( Condition c, bool a, Label& L );
   1.771 +
   1.772 +  // pp 141
   1.773 +
   1.774 +  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.775 +  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   1.776 +
   1.777 +  // pp 144
   1.778 +
   1.779 +  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   1.780 +  inline void br( Condition c, bool a, Label& L );
   1.781 +
   1.782 +  // pp 146
   1.783 +
   1.784 +  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.785 +  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   1.786 +
   1.787 +  // pp 149
   1.788 +
   1.789 +  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   1.790 +  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   1.791 +
   1.792 + public:
   1.793 +
   1.794 +  // pp 150
   1.795 +
   1.796 +  // These instructions compare the contents of s2 with the contents of
   1.797 +  // memory at address in s1. If the values are equal, the contents of memory
   1.798 +  // at address s1 is swapped with the data in d. If the values are not equal,
   1.799 +  // the the contents of memory at s1 is loaded into d, without the swap.
   1.800 +
   1.801 +  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   1.802 +  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   1.803 +
   1.804 +  // pp 152
   1.805 +
   1.806 +  void udiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
   1.807 +  void udiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.808 +  void sdiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
   1.809 +  void sdiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.810 +  void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   1.811 +  void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.812 +  void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   1.813 +  void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.814 +
   1.815 +  // pp 155
   1.816 +
   1.817 +  void done()  { v9_only();  cti();  emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
   1.818 +  void retry() { v9_only();  cti();  emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
   1.819 +
   1.820 +  // pp 156
   1.821 +
   1.822 +  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
   1.823 +  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
   1.824 +
   1.825 +  // pp 157
   1.826 +
   1.827 +  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
   1.828 +  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
   1.829 +
   1.830 +  // pp 159
   1.831 +
   1.832 +  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
   1.833 +  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
   1.834 +
   1.835 +  // pp 160
   1.836 +
   1.837 +  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
   1.838 +
   1.839 +  // pp 161
   1.840 +
   1.841 +  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
   1.842 +  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
   1.843 +
   1.844 +  // pp 162
   1.845 +
   1.846 +  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
   1.847 +
   1.848 +  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
   1.849 +
   1.850 +  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
   1.851 +
   1.852 +  // pp 163
   1.853 +
   1.854 +  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
   1.855 +  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
   1.856 +  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
   1.857 +
   1.858 +  // FXORs/FXORd instructions
   1.859 +
   1.860 +  void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
   1.861 +
   1.862 +  // pp 164
   1.863 +
   1.864 +  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
   1.865 +
   1.866 +  // pp 165
   1.867 +
   1.868 +  inline void flush( Register s1, Register s2 );
   1.869 +  inline void flush( Register s1, int simm13a);
   1.870 +
   1.871 +  // pp 167
   1.872 +
   1.873 +  void flushw() { v9_only();  emit_int32( op(arith_op) | op3(flushw_op3) ); }
   1.874 +
   1.875 +  // pp 168
   1.876 +
   1.877 +  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
   1.878 +  // v8 unimp == illtrap(0)
   1.879 +
   1.880 +  // pp 169
   1.881 +
   1.882 +  void impdep1( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
   1.883 +  void impdep2( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
   1.884 +
   1.885 +  // pp 170
   1.886 +
   1.887 +  void jmpl( Register s1, Register s2, Register d );
   1.888 +  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
   1.889 +
   1.890 +  // 171
   1.891 +
   1.892 +  inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   1.893 +  inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
   1.894 +
   1.895 +
   1.896 +  inline void ldfsr(  Register s1, Register s2 );
   1.897 +  inline void ldfsr(  Register s1, int simm13a);
   1.898 +  inline void ldxfsr( Register s1, Register s2 );
   1.899 +  inline void ldxfsr( Register s1, int simm13a);
   1.900 +
   1.901 +  // 173
   1.902 +
   1.903 +  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.904 +  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.905 +
   1.906 +  // pp 175, lduw is ld on v8
   1.907 +
   1.908 +  inline void ldsb(  Register s1, Register s2, Register d );
   1.909 +  inline void ldsb(  Register s1, int simm13a, Register d);
   1.910 +  inline void ldsh(  Register s1, Register s2, Register d );
   1.911 +  inline void ldsh(  Register s1, int simm13a, Register d);
   1.912 +  inline void ldsw(  Register s1, Register s2, Register d );
   1.913 +  inline void ldsw(  Register s1, int simm13a, Register d);
   1.914 +  inline void ldub(  Register s1, Register s2, Register d );
   1.915 +  inline void ldub(  Register s1, int simm13a, Register d);
   1.916 +  inline void lduh(  Register s1, Register s2, Register d );
   1.917 +  inline void lduh(  Register s1, int simm13a, Register d);
   1.918 +  inline void lduw(  Register s1, Register s2, Register d );
   1.919 +  inline void lduw(  Register s1, int simm13a, Register d);
   1.920 +  inline void ldx(   Register s1, Register s2, Register d );
   1.921 +  inline void ldx(   Register s1, int simm13a, Register d);
   1.922 +  inline void ldd(   Register s1, Register s2, Register d );
   1.923 +  inline void ldd(   Register s1, int simm13a, Register d);
   1.924 +
   1.925 +  // pp 177
   1.926 +
   1.927 +  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.928 +  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.929 +  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.930 +  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.931 +  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.932 +  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.933 +  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.934 +  void lduba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.935 +  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.936 +  void lduha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.937 +  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.938 +  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.939 +  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.940 +  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.941 +
   1.942 +  // pp 181
   1.943 +
   1.944 +  void and3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
   1.945 +  void and3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.946 +  void andcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.947 +  void andcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.948 +  void andn(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   1.949 +  void andn(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.950 +  void andncc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.951 +  void andncc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.952 +  void or3(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
   1.953 +  void or3(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.954 +  void orcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.955 +  void orcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.956 +  void orn(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
   1.957 +  void orn(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.958 +  void orncc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.959 +  void orncc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.960 +  void xor3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
   1.961 +  void xor3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.962 +  void xorcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.963 +  void xorcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.964 +  void xnor(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
   1.965 +  void xnor(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.966 +  void xnorcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.967 +  void xnorcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.968 +
   1.969 +  // pp 183
   1.970 +
   1.971 +  void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
   1.972 +
   1.973 +  // pp 185
   1.974 +
   1.975 +  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
   1.976 +
   1.977 +  // pp 189
   1.978 +
   1.979 +  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
   1.980 +
   1.981 +  // pp 191
   1.982 +
   1.983 +  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
   1.984 +  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
   1.985 +
   1.986 +  // pp 195
   1.987 +
   1.988 +  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
   1.989 +  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
   1.990 +
   1.991 +  // pp 196
   1.992 +
   1.993 +  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
   1.994 +  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.995 +  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
   1.996 +  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.997 +  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
   1.998 +  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.999 +
  1.1000 +  // pp 197
  1.1001 +
  1.1002 +  void umul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1003 +  void umul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1004 +  void smul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1005 +  void smul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1006 +  void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1007 +  void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1008 +  void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1009 +  void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1010 +
  1.1011 +  // pp 201
  1.1012 +
  1.1013 +  void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
  1.1014 +
  1.1015 +
  1.1016 +  // pp 202
  1.1017 +
  1.1018 +  void popc( Register s,  Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1.1019 +  void popc( int simm13a, Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1.1020 +
  1.1021 +  // pp 203
  1.1022 +
  1.1023 +  void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
  1.1024 +  void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  1.1025 +
  1.1026 +  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1027 +  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1028 +
  1.1029 +  // pp 208
  1.1030 +
  1.1031 +  // not implementing read privileged register
  1.1032 +
  1.1033 +  inline void rdy(    Register d) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1.1034 +  inline void rdccr(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1.1035 +  inline void rdasi(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1.1036 +  inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1.1037 +  inline void rdpc(   Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1.1038 +  inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1.1039 +
  1.1040 +  // pp 213
  1.1041 +
  1.1042 +  inline void rett( Register s1, Register s2);
  1.1043 +  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1.1044 +
  1.1045 +  // pp 214
  1.1046 +
  1.1047 +  void save(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1.1048 +  void save(    Register s1, int simm13a, Register d ) {
  1.1049 +    // make sure frame is at least large enough for the register save area
  1.1050 +    assert(-simm13a >= 16 * wordSize, "frame too small");
  1.1051 +    emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
  1.1052 +  }
  1.1053 +
  1.1054 +  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1.1055 +  void restore( Register s1,       int simm13a,      Register d      ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1056 +
  1.1057 +  // pp 216
  1.1058 +
  1.1059 +  void saved()    { v9_only();  emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1.1060 +  void restored() { v9_only();  emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1.1061 +
  1.1062 +  // pp 217
  1.1063 +
  1.1064 +  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1.1065 +  // pp 218
  1.1066 +
  1.1067 +  void sll(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1068 +  void sll(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1069 +  void srl(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1070 +  void srl(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1071 +  void sra(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1.1072 +  void sra(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1.1073 +
  1.1074 +  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1075 +  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1076 +  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1077 +  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1078 +  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1.1079 +  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1.1080 +
  1.1081 +  // pp 220
  1.1082 +
  1.1083 +  void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1.1084 +
  1.1085 +  // pp 221
  1.1086 +
  1.1087 +  void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1.1088 +
  1.1089 +  // pp 222
  1.1090 +
  1.1091 +  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
  1.1092 +  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1.1093 +
  1.1094 +  inline void stfsr(  Register s1, Register s2 );
  1.1095 +  inline void stfsr(  Register s1, int simm13a);
  1.1096 +  inline void stxfsr( Register s1, Register s2 );
  1.1097 +  inline void stxfsr( Register s1, int simm13a);
  1.1098 +
  1.1099 +  //  pp 224
  1.1100 +
  1.1101 +  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1102 +  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1103 +
  1.1104 +  // p 226
  1.1105 +
  1.1106 +  inline void stb(  Register d, Register s1, Register s2 );
  1.1107 +  inline void stb(  Register d, Register s1, int simm13a);
  1.1108 +  inline void sth(  Register d, Register s1, Register s2 );
  1.1109 +  inline void sth(  Register d, Register s1, int simm13a);
  1.1110 +  inline void stw(  Register d, Register s1, Register s2 );
  1.1111 +  inline void stw(  Register d, Register s1, int simm13a);
  1.1112 +  inline void stx(  Register d, Register s1, Register s2 );
  1.1113 +  inline void stx(  Register d, Register s1, int simm13a);
  1.1114 +  inline void std(  Register d, Register s1, Register s2 );
  1.1115 +  inline void std(  Register d, Register s1, int simm13a);
  1.1116 +
  1.1117 +  // pp 177
  1.1118 +
  1.1119 +  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1120 +  void stba(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1121 +  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1122 +  void stha(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1123 +  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1124 +  void stwa(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1125 +  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1126 +  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1127 +  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1128 +  void stda(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1129 +
  1.1130 +  // pp 230
  1.1131 +
  1.1132 +  void sub(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1.1133 +  void sub(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1134 +
  1.1135 +  void subcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1.1136 +  void subcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1137 +  void subc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1.1138 +  void subc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1139 +  void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1.1140 +  void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1141 +
  1.1142 +  // pp 231
  1.1143 +
  1.1144 +  inline void swap( Register s1, Register s2, Register d );
  1.1145 +  inline void swap( Register s1, int simm13a, Register d);
  1.1146 +
  1.1147 +  // pp 232
  1.1148 +
  1.1149 +  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1.1150 +  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1151 +
  1.1152 +  // pp 234, note op in book is wrong, see pp 268
  1.1153 +
  1.1154 +  void taddcc(    Register s1, Register s2, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1.1155 +  void taddcc(    Register s1, int simm13a, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1156 +
  1.1157 +  // pp 235
  1.1158 +
  1.1159 +  void tsubcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1.1160 +  void tsubcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1.1161 +
  1.1162 +  // pp 237
  1.1163 +
  1.1164 +  void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1.1165 +  void trap( Condition c, CC cc, Register s1, int trapa   ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1.1166 +  // simple uncond. trap
  1.1167 +  void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1.1168 +
  1.1169 +  // pp 239 omit write priv register for now
  1.1170 +
  1.1171 +  inline void wry(    Register d) { v9_dep();  emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1.1172 +  inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1.1173 +  inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
  1.1174 +                                                                           rs1(s) |
  1.1175 +                                                                           op3(wrreg_op3) |
  1.1176 +                                                                           u_field(2, 29, 25) |
  1.1177 +                                                                           immed(true) |
  1.1178 +                                                                           simm(simm13a, 13)); }
  1.1179 +  inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1.1180 +  // wrasi(d, imm) stores (d xor imm) to asi
  1.1181 +  inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
  1.1182 +                                               u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
  1.1183 +  inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1.1184 +
  1.1185 +
  1.1186 +  //  VIS1 instructions
  1.1187 +
  1.1188 +  void alignaddr( Register s1, Register s2, Register d ) { vis1_only(); emit_int32( op(arith_op) | rd(d) | op3(alignaddr_op3) | rs1(s1) | opf(alignaddr_opf) | rs2(s2)); }
  1.1189 +
  1.1190 +  void faligndata( FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(faligndata_op3) | fs1(s1, FloatRegisterImpl::D) | opf(faligndata_opf) | fs2(s2, FloatRegisterImpl::D)); }
  1.1191 +
  1.1192 +  void fsrc2( FloatRegisterImpl::Width w, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fsrc_op3) | opf(0x7A - w) | fs2(s2, w)); }
  1.1193 +
  1.1194 +  void stpartialf( Register s1, Register s2, FloatRegister d, int ia = -1 ) { vis1_only(); emit_int32( op(ldst_op) | fd(d, FloatRegisterImpl::D) | op3(stpartialf_op3) | rs1(s1) | imm_asi(ia) | rs2(s2)); }
  1.1195 +
  1.1196 +  //  VIS2 instructions
  1.1197 +
  1.1198 +  void edge8n( Register s1, Register s2, Register d ) { vis2_only(); emit_int32( op(arith_op) | rd(d) | op3(edge_op3) | rs1(s1) | opf(edge8n_opf) | rs2(s2)); }
  1.1199 +
  1.1200 +  // VIS3 instructions
  1.1201 +
  1.1202 +  void movstosw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1.1203 +  void movstouw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1.1204 +  void movdtox(  FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
  1.1205 +
  1.1206 +  void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
  1.1207 +  void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
  1.1208 +
  1.1209 +  // Creation
  1.1210 +  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1.1211 +#ifdef CHECK_DELAY
  1.1212 +    delay_state = no_delay;
  1.1213 +#endif
  1.1214 +  }
  1.1215 +};
  1.1216 +
  1.1217 +#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial