src/cpu/ppc/vm/ppc.ad

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/ppc/vm/ppc.ad	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,12117 @@
     1.4 +//
     1.5 +// Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 +// Copyright 2012, 2014 SAP AG. All rights reserved.
     1.7 +// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.8 +//
     1.9 +// This code is free software; you can redistribute it and/or modify it
    1.10 +// under the terms of the GNU General Public License version 2 only, as
    1.11 +// published by the Free Software Foundation.
    1.12 +//
    1.13 +// This code is distributed in the hope that it will be useful, but WITHOUT
    1.14 +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.15 +// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.16 +// version 2 for more details (a copy is included in the LICENSE file that
    1.17 +// accompanied this code).
    1.18 +//
    1.19 +// You should have received a copy of the GNU General Public License version
    1.20 +// 2 along with this work; if not, write to the Free Software Foundation,
    1.21 +// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.22 +//
    1.23 +// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.24 +// or visit www.oracle.com if you need additional information or have any
    1.25 +// questions.
    1.26 +//
    1.27 +//
    1.28 +
    1.29 +//
    1.30 +// PPC64 Architecture Description File
    1.31 +//
    1.32 +
    1.33 +//----------REGISTER DEFINITION BLOCK------------------------------------------
    1.34 +// This information is used by the matcher and the register allocator to
    1.35 +// describe individual registers and classes of registers within the target
    1.36 +// architecture.
    1.37 +register %{
    1.38 +//----------Architecture Description Register Definitions----------------------
    1.39 +// General Registers
    1.40 +// "reg_def"  name (register save type, C convention save type,
    1.41 +//                  ideal register type, encoding);
    1.42 +//
    1.43 +// Register Save Types:
    1.44 +//
    1.45 +//   NS  = No-Save:     The register allocator assumes that these registers
    1.46 +//                      can be used without saving upon entry to the method, &
    1.47 +//                      that they do not need to be saved at call sites.
    1.48 +//
    1.49 +//   SOC = Save-On-Call: The register allocator assumes that these registers
    1.50 +//                      can be used without saving upon entry to the method,
    1.51 +//                      but that they must be saved at call sites.
    1.52 +//                      These are called "volatiles" on ppc.
    1.53 +//
    1.54 +//   SOE = Save-On-Entry: The register allocator assumes that these registers
    1.55 +//                      must be saved before using them upon entry to the
    1.56 +//                      method, but they do not need to be saved at call
    1.57 +//                      sites.
    1.58 +//                      These are called "nonvolatiles" on ppc.
    1.59 +//
    1.60 +//   AS  = Always-Save:   The register allocator assumes that these registers
    1.61 +//                      must be saved before using them upon entry to the
    1.62 +//                      method, & that they must be saved at call sites.
    1.63 +//
    1.64 +// Ideal Register Type is used to determine how to save & restore a
    1.65 +// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    1.66 +// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    1.67 +//
    1.68 +// The encoding number is the actual bit-pattern placed into the opcodes.
    1.69 +//
    1.70 +// PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    1.71 +// Supplement Version 1.7 as of 2003-10-29.
    1.72 +//
    1.73 +// For each 64-bit register we must define two registers: the register
    1.74 +// itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    1.75 +// e.g. R3_H, which is needed by the allocator, but is not used
    1.76 +// for stores, loads, etc.
    1.77 +
    1.78 +// ----------------------------
    1.79 +// Integer/Long Registers
    1.80 +// ----------------------------
    1.81 +
    1.82 +  // PPC64 has 32 64-bit integer registers.
    1.83 +
    1.84 +  // types: v = volatile, nv = non-volatile, s = system
    1.85 +  reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    1.86 +  reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    1.87 +  reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    1.88 +  reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    1.89 +  reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    1.90 +  reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    1.91 +  reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    1.92 +  reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    1.93 +  reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    1.94 +  reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    1.95 +  reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    1.96 +  reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    1.97 +  reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    1.98 +  reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    1.99 +  reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
   1.100 +  reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
   1.101 +  reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
   1.102 +  reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   1.103 +  reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   1.104 +  reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   1.105 +  reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   1.106 +  reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   1.107 +  reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   1.108 +  reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   1.109 +  reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   1.110 +  reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   1.111 +  reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   1.112 +  reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   1.113 +  reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   1.114 +  reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   1.115 +  reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   1.116 +  reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   1.117 +  reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   1.118 +  reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   1.119 +  reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   1.120 +  reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   1.121 +  reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   1.122 +  reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   1.123 +  reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   1.124 +  reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   1.125 +  reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   1.126 +  reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   1.127 +  reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   1.128 +  reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   1.129 +  reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   1.130 +  reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   1.131 +  reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   1.132 +  reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   1.133 +  reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   1.134 +  reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   1.135 +  reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   1.136 +  reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   1.137 +  reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   1.138 +  reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   1.139 +  reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   1.140 +  reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   1.141 +  reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   1.142 +  reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   1.143 +  reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   1.144 +  reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   1.145 +  reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   1.146 +  reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   1.147 +  reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   1.148 +  reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   1.149 +
   1.150 +
   1.151 +// ----------------------------
   1.152 +// Float/Double Registers
   1.153 +// ----------------------------
   1.154 +
   1.155 +  // Double Registers
   1.156 +  // The rules of ADL require that double registers be defined in pairs.
   1.157 +  // Each pair must be two 32-bit values, but not necessarily a pair of
   1.158 +  // single float registers. In each pair, ADLC-assigned register numbers
   1.159 +  // must be adjacent, with the lower number even. Finally, when the
   1.160 +  // CPU stores such a register pair to memory, the word associated with
   1.161 +  // the lower ADLC-assigned number must be stored to the lower address.
   1.162 +
   1.163 +  // PPC64 has 32 64-bit floating-point registers. Each can store a single
   1.164 +  // or double precision floating-point value.
   1.165 +
   1.166 +  // types: v = volatile, nv = non-volatile, s = system
   1.167 +  reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   1.168 +  reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   1.169 +  reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   1.170 +  reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   1.171 +  reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   1.172 +  reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   1.173 +  reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   1.174 +  reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   1.175 +  reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   1.176 +  reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   1.177 +  reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   1.178 +  reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   1.179 +  reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   1.180 +  reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   1.181 +  reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   1.182 +  reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   1.183 +  reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   1.184 +  reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   1.185 +  reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   1.186 +  reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   1.187 +  reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   1.188 +  reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   1.189 +  reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   1.190 +  reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   1.191 +  reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   1.192 +  reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   1.193 +  reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   1.194 +  reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   1.195 +  reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   1.196 +  reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   1.197 +  reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   1.198 +  reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   1.199 +  reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   1.200 +  reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   1.201 +  reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   1.202 +  reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   1.203 +  reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   1.204 +  reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   1.205 +  reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   1.206 +  reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   1.207 +  reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   1.208 +  reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   1.209 +  reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   1.210 +  reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   1.211 +  reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   1.212 +  reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   1.213 +  reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   1.214 +  reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   1.215 +  reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   1.216 +  reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   1.217 +  reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   1.218 +  reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   1.219 +  reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   1.220 +  reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   1.221 +  reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   1.222 +  reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   1.223 +  reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   1.224 +  reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   1.225 +  reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   1.226 +  reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   1.227 +  reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   1.228 +  reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   1.229 +  reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   1.230 +  reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   1.231 +
   1.232 +// ----------------------------
   1.233 +// Special Registers
   1.234 +// ----------------------------
   1.235 +
   1.236 +// Condition Codes Flag Registers
   1.237 +
   1.238 +  // PPC64 has 8 condition code "registers" which are all contained
   1.239 +  // in the CR register.
   1.240 +
   1.241 +  // types: v = volatile, nv = non-volatile, s = system
   1.242 +  reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   1.243 +  reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   1.244 +  reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   1.245 +  reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   1.246 +  reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   1.247 +  reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   1.248 +  reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   1.249 +  reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   1.250 +
   1.251 +  // Special registers of PPC64
   1.252 +
   1.253 +  reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   1.254 +  reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   1.255 +  reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   1.256 +  reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   1.257 +  reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   1.258 +  reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   1.259 +
   1.260 +
   1.261 +// ----------------------------
   1.262 +// Specify priority of register selection within phases of register
   1.263 +// allocation. Highest priority is first. A useful heuristic is to
   1.264 +// give registers a low priority when they are required by machine
   1.265 +// instructions, like EAX and EDX on I486, and choose no-save registers
   1.266 +// before save-on-call, & save-on-call before save-on-entry. Registers
   1.267 +// which participate in fixed calling sequences should come last.
   1.268 +// Registers which are used as pairs must fall on an even boundary.
   1.269 +
   1.270 +// It's worth about 1% on SPEC geomean to get this right.
   1.271 +
   1.272 +// Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   1.273 +// in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   1.274 +// R3_num. Therefore, R3_num may not be (and in reality is not)
   1.275 +// the same as R3->encoding()! Furthermore, we cannot make any
   1.276 +// assumptions on ordering, e.g. R3_num may be less than R2_num.
   1.277 +// Additionally, the function
   1.278 +//   static enum RC rc_class(OptoReg::Name reg )
   1.279 +// maps a given <register>_num value to its chunk type (except for flags)
   1.280 +// and its current implementation relies on chunk0 and chunk1 having a
   1.281 +// size of 64 each.
   1.282 +
   1.283 +// If you change this allocation class, please have a look at the
   1.284 +// default values for the parameters RoundRobinIntegerRegIntervalStart
   1.285 +// and RoundRobinFloatRegIntervalStart
   1.286 +
   1.287 +alloc_class chunk0 (
   1.288 +  // Chunk0 contains *all* 64 integer registers halves.
   1.289 +
   1.290 +  // "non-volatile" registers
   1.291 +  R14, R14_H,
   1.292 +  R15, R15_H,
   1.293 +  R17, R17_H,
   1.294 +  R18, R18_H,
   1.295 +  R19, R19_H,
   1.296 +  R20, R20_H,
   1.297 +  R21, R21_H,
   1.298 +  R22, R22_H,
   1.299 +  R23, R23_H,
   1.300 +  R24, R24_H,
   1.301 +  R25, R25_H,
   1.302 +  R26, R26_H,
   1.303 +  R27, R27_H,
   1.304 +  R28, R28_H,
   1.305 +  R29, R29_H,
   1.306 +  R30, R30_H,
   1.307 +  R31, R31_H,
   1.308 +
   1.309 +  // scratch/special registers
   1.310 +  R11, R11_H,
   1.311 +  R12, R12_H,
   1.312 +
   1.313 +  // argument registers
   1.314 +  R10, R10_H,
   1.315 +  R9,  R9_H,
   1.316 +  R8,  R8_H,
   1.317 +  R7,  R7_H,
   1.318 +  R6,  R6_H,
   1.319 +  R5,  R5_H,
   1.320 +  R4,  R4_H,
   1.321 +  R3,  R3_H,
   1.322 +
   1.323 +  // special registers, not available for allocation
   1.324 +  R16, R16_H,     // R16_thread
   1.325 +  R13, R13_H,     // system thread id
   1.326 +  R2,  R2_H,      // may be used for TOC
   1.327 +  R1,  R1_H,      // SP
   1.328 +  R0,  R0_H       // R0 (scratch)
   1.329 +);
   1.330 +
   1.331 +// If you change this allocation class, please have a look at the
   1.332 +// default values for the parameters RoundRobinIntegerRegIntervalStart
   1.333 +// and RoundRobinFloatRegIntervalStart
   1.334 +
   1.335 +alloc_class chunk1 (
   1.336 +  // Chunk1 contains *all* 64 floating-point registers halves.
   1.337 +
   1.338 +  // scratch register
   1.339 +  F0,  F0_H,
   1.340 +
   1.341 +  // argument registers
   1.342 +  F13, F13_H,
   1.343 +  F12, F12_H,
   1.344 +  F11, F11_H,
   1.345 +  F10, F10_H,
   1.346 +  F9,  F9_H,
   1.347 +  F8,  F8_H,
   1.348 +  F7,  F7_H,
   1.349 +  F6,  F6_H,
   1.350 +  F5,  F5_H,
   1.351 +  F4,  F4_H,
   1.352 +  F3,  F3_H,
   1.353 +  F2,  F2_H,
   1.354 +  F1,  F1_H,
   1.355 +
   1.356 +  // non-volatile registers
   1.357 +  F14, F14_H,
   1.358 +  F15, F15_H,
   1.359 +  F16, F16_H,
   1.360 +  F17, F17_H,
   1.361 +  F18, F18_H,
   1.362 +  F19, F19_H,
   1.363 +  F20, F20_H,
   1.364 +  F21, F21_H,
   1.365 +  F22, F22_H,
   1.366 +  F23, F23_H,
   1.367 +  F24, F24_H,
   1.368 +  F25, F25_H,
   1.369 +  F26, F26_H,
   1.370 +  F27, F27_H,
   1.371 +  F28, F28_H,
   1.372 +  F29, F29_H,
   1.373 +  F30, F30_H,
   1.374 +  F31, F31_H
   1.375 +);
   1.376 +
   1.377 +alloc_class chunk2 (
   1.378 +  // Chunk2 contains *all* 8 condition code registers.
   1.379 +
   1.380 +  CCR0,
   1.381 +  CCR1,
   1.382 +  CCR2,
   1.383 +  CCR3,
   1.384 +  CCR4,
   1.385 +  CCR5,
   1.386 +  CCR6,
   1.387 +  CCR7
   1.388 +);
   1.389 +
   1.390 +alloc_class chunk3 (
   1.391 +  // special registers
   1.392 +  // These registers are not allocated, but used for nodes generated by postalloc expand.
   1.393 +  SR_XER,
   1.394 +  SR_LR,
   1.395 +  SR_CTR,
   1.396 +  SR_VRSAVE,
   1.397 +  SR_SPEFSCR,
   1.398 +  SR_PPR
   1.399 +);
   1.400 +
   1.401 +//-------Architecture Description Register Classes-----------------------
   1.402 +
   1.403 +// Several register classes are automatically defined based upon
   1.404 +// information in this architecture description.
   1.405 +
   1.406 +// 1) reg_class inline_cache_reg           ( as defined in frame section )
   1.407 +// 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   1.408 +// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   1.409 +// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   1.410 +//
   1.411 +
   1.412 +// ----------------------------
   1.413 +// 32 Bit Register Classes
   1.414 +// ----------------------------
   1.415 +
   1.416 +// We specify registers twice, once as read/write, and once read-only.
   1.417 +// We use the read-only registers for source operands. With this, we
   1.418 +// can include preset read only registers in this class, as a hard-coded
   1.419 +// '0'-register. (We used to simulate this on ppc.)
   1.420 +
   1.421 +// 32 bit registers that can be read and written i.e. these registers
   1.422 +// can be dest (or src) of normal instructions.
   1.423 +reg_class bits32_reg_rw(
   1.424 +/*R0*/              // R0
   1.425 +/*R1*/              // SP
   1.426 +  R2,               // TOC
   1.427 +  R3,
   1.428 +  R4,
   1.429 +  R5,
   1.430 +  R6,
   1.431 +  R7,
   1.432 +  R8,
   1.433 +  R9,
   1.434 +  R10,
   1.435 +  R11,
   1.436 +  R12,
   1.437 +/*R13*/             // system thread id
   1.438 +  R14,
   1.439 +  R15,
   1.440 +/*R16*/             // R16_thread
   1.441 +  R17,
   1.442 +  R18,
   1.443 +  R19,
   1.444 +  R20,
   1.445 +  R21,
   1.446 +  R22,
   1.447 +  R23,
   1.448 +  R24,
   1.449 +  R25,
   1.450 +  R26,
   1.451 +  R27,
   1.452 +  R28,
   1.453 +/*R29*/             // global TOC
   1.454 +/*R30*/             // Narrow Oop Base
   1.455 +  R31
   1.456 +);
   1.457 +
   1.458 +// 32 bit registers that can only be read i.e. these registers can
   1.459 +// only be src of all instructions.
   1.460 +reg_class bits32_reg_ro(
   1.461 +/*R0*/              // R0
   1.462 +/*R1*/              // SP
   1.463 +  R2                // TOC
   1.464 +  R3,
   1.465 +  R4,
   1.466 +  R5,
   1.467 +  R6,
   1.468 +  R7,
   1.469 +  R8,
   1.470 +  R9,
   1.471 +  R10,
   1.472 +  R11,
   1.473 +  R12,
   1.474 +/*R13*/             // system thread id
   1.475 +  R14,
   1.476 +  R15,
   1.477 +/*R16*/             // R16_thread
   1.478 +  R17,
   1.479 +  R18,
   1.480 +  R19,
   1.481 +  R20,
   1.482 +  R21,
   1.483 +  R22,
   1.484 +  R23,
   1.485 +  R24,
   1.486 +  R25,
   1.487 +  R26,
   1.488 +  R27,
   1.489 +  R28,
   1.490 +/*R29*/
   1.491 +/*R30*/             // Narrow Oop Base
   1.492 +  R31
   1.493 +);
   1.494 +
   1.495 +// Complement-required-in-pipeline operands for narrow oops.
   1.496 +reg_class bits32_reg_ro_not_complement (
   1.497 +/*R0*/     // R0
   1.498 +  R1,      // SP
   1.499 +  R2,      // TOC
   1.500 +  R3,
   1.501 +  R4,
   1.502 +  R5,
   1.503 +  R6,
   1.504 +  R7,
   1.505 +  R8,
   1.506 +  R9,
   1.507 +  R10,
   1.508 +  R11,
   1.509 +  R12,
   1.510 +/*R13,*/   // system thread id
   1.511 +  R14,
   1.512 +  R15,
   1.513 +  R16,    // R16_thread
   1.514 +  R17,
   1.515 +  R18,
   1.516 +  R19,
   1.517 +  R20,
   1.518 +  R21,
   1.519 +  R22,
   1.520 +/*R23,
   1.521 +  R24,
   1.522 +  R25,
   1.523 +  R26,
   1.524 +  R27,
   1.525 +  R28,*/
   1.526 +/*R29,*/ // TODO: let allocator handle TOC!!
   1.527 +/*R30,*/
   1.528 +  R31
   1.529 +);
   1.530 +
   1.531 +// Complement-required-in-pipeline operands for narrow oops.
   1.532 +// See 64-bit declaration.
   1.533 +reg_class bits32_reg_ro_complement (
   1.534 +  R23,
   1.535 +  R24,
   1.536 +  R25,
   1.537 +  R26,
   1.538 +  R27,
   1.539 +  R28
   1.540 +);
   1.541 +
   1.542 +reg_class rscratch1_bits32_reg(R11);
   1.543 +reg_class rscratch2_bits32_reg(R12);
   1.544 +reg_class rarg1_bits32_reg(R3);
   1.545 +reg_class rarg2_bits32_reg(R4);
   1.546 +reg_class rarg3_bits32_reg(R5);
   1.547 +reg_class rarg4_bits32_reg(R6);
   1.548 +
   1.549 +// ----------------------------
   1.550 +// 64 Bit Register Classes
   1.551 +// ----------------------------
   1.552 +// 64-bit build means 64-bit pointers means hi/lo pairs
   1.553 +
   1.554 +reg_class rscratch1_bits64_reg(R11_H, R11);
   1.555 +reg_class rscratch2_bits64_reg(R12_H, R12);
   1.556 +reg_class rarg1_bits64_reg(R3_H, R3);
   1.557 +reg_class rarg2_bits64_reg(R4_H, R4);
   1.558 +reg_class rarg3_bits64_reg(R5_H, R5);
   1.559 +reg_class rarg4_bits64_reg(R6_H, R6);
   1.560 +// Thread register, 'written' by tlsLoadP, see there.
   1.561 +reg_class thread_bits64_reg(R16_H, R16);
   1.562 +
   1.563 +reg_class r19_bits64_reg(R19_H, R19);
   1.564 +
   1.565 +// 64 bit registers that can be read and written i.e. these registers
   1.566 +// can be dest (or src) of normal instructions.
   1.567 +reg_class bits64_reg_rw(
   1.568 +/*R0_H,  R0*/     // R0
   1.569 +/*R1_H,  R1*/     // SP
   1.570 +  R2_H,  R2,      // TOC
   1.571 +  R3_H,  R3,
   1.572 +  R4_H,  R4,
   1.573 +  R5_H,  R5,
   1.574 +  R6_H,  R6,
   1.575 +  R7_H,  R7,
   1.576 +  R8_H,  R8,
   1.577 +  R9_H,  R9,
   1.578 +  R10_H, R10,
   1.579 +  R11_H, R11,
   1.580 +  R12_H, R12,
   1.581 +/*R13_H, R13*/   // system thread id
   1.582 +  R14_H, R14,
   1.583 +  R15_H, R15,
   1.584 +/*R16_H, R16*/   // R16_thread
   1.585 +  R17_H, R17,
   1.586 +  R18_H, R18,
   1.587 +  R19_H, R19,
   1.588 +  R20_H, R20,
   1.589 +  R21_H, R21,
   1.590 +  R22_H, R22,
   1.591 +  R23_H, R23,
   1.592 +  R24_H, R24,
   1.593 +  R25_H, R25,
   1.594 +  R26_H, R26,
   1.595 +  R27_H, R27,
   1.596 +  R28_H, R28,
   1.597 +/*R29_H, R29*/
   1.598 +/*R30_H, R30*/
   1.599 +  R31_H, R31
   1.600 +);
   1.601 +
   1.602 +// 64 bit registers used excluding r2, r11 and r12
   1.603 +// Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   1.604 +// r2, r11 and r12 internally.
   1.605 +reg_class bits64_reg_leaf_call(
   1.606 +/*R0_H,  R0*/     // R0
   1.607 +/*R1_H,  R1*/     // SP
   1.608 +/*R2_H,  R2*/     // TOC
   1.609 +  R3_H,  R3,
   1.610 +  R4_H,  R4,
   1.611 +  R5_H,  R5,
   1.612 +  R6_H,  R6,
   1.613 +  R7_H,  R7,
   1.614 +  R8_H,  R8,
   1.615 +  R9_H,  R9,
   1.616 +  R10_H, R10,
   1.617 +/*R11_H, R11*/
   1.618 +/*R12_H, R12*/
   1.619 +/*R13_H, R13*/   // system thread id
   1.620 +  R14_H, R14,
   1.621 +  R15_H, R15,
   1.622 +/*R16_H, R16*/   // R16_thread
   1.623 +  R17_H, R17,
   1.624 +  R18_H, R18,
   1.625 +  R19_H, R19,
   1.626 +  R20_H, R20,
   1.627 +  R21_H, R21,
   1.628 +  R22_H, R22,
   1.629 +  R23_H, R23,
   1.630 +  R24_H, R24,
   1.631 +  R25_H, R25,
   1.632 +  R26_H, R26,
   1.633 +  R27_H, R27,
   1.634 +  R28_H, R28,
   1.635 +/*R29_H, R29*/
   1.636 +/*R30_H, R30*/
   1.637 +  R31_H, R31
   1.638 +);
   1.639 +
   1.640 +// Used to hold the TOC to avoid collisions with expanded DynamicCall
   1.641 +// which uses r19 as inline cache internally and expanded LeafCall which uses
   1.642 +// r2, r11 and r12 internally.
   1.643 +reg_class bits64_constant_table_base(
   1.644 +/*R0_H,  R0*/     // R0
   1.645 +/*R1_H,  R1*/     // SP
   1.646 +/*R2_H,  R2*/     // TOC
   1.647 +  R3_H,  R3,
   1.648 +  R4_H,  R4,
   1.649 +  R5_H,  R5,
   1.650 +  R6_H,  R6,
   1.651 +  R7_H,  R7,
   1.652 +  R8_H,  R8,
   1.653 +  R9_H,  R9,
   1.654 +  R10_H, R10,
   1.655 +/*R11_H, R11*/
   1.656 +/*R12_H, R12*/
   1.657 +/*R13_H, R13*/   // system thread id
   1.658 +  R14_H, R14,
   1.659 +  R15_H, R15,
   1.660 +/*R16_H, R16*/   // R16_thread
   1.661 +  R17_H, R17,
   1.662 +  R18_H, R18,
   1.663 +/*R19_H, R19*/
   1.664 +  R20_H, R20,
   1.665 +  R21_H, R21,
   1.666 +  R22_H, R22,
   1.667 +  R23_H, R23,
   1.668 +  R24_H, R24,
   1.669 +  R25_H, R25,
   1.670 +  R26_H, R26,
   1.671 +  R27_H, R27,
   1.672 +  R28_H, R28,
   1.673 +/*R29_H, R29*/
   1.674 +/*R30_H, R30*/
   1.675 +  R31_H, R31
   1.676 +);
   1.677 +
   1.678 +// 64 bit registers that can only be read i.e. these registers can
   1.679 +// only be src of all instructions.
   1.680 +reg_class bits64_reg_ro(
   1.681 +/*R0_H,  R0*/     // R0
   1.682 +  R1_H,  R1,
   1.683 +  R2_H,  R2,       // TOC
   1.684 +  R3_H,  R3,
   1.685 +  R4_H,  R4,
   1.686 +  R5_H,  R5,
   1.687 +  R6_H,  R6,
   1.688 +  R7_H,  R7,
   1.689 +  R8_H,  R8,
   1.690 +  R9_H,  R9,
   1.691 +  R10_H, R10,
   1.692 +  R11_H, R11,
   1.693 +  R12_H, R12,
   1.694 +/*R13_H, R13*/   // system thread id
   1.695 +  R14_H, R14,
   1.696 +  R15_H, R15,
   1.697 +  R16_H, R16,    // R16_thread
   1.698 +  R17_H, R17,
   1.699 +  R18_H, R18,
   1.700 +  R19_H, R19,
   1.701 +  R20_H, R20,
   1.702 +  R21_H, R21,
   1.703 +  R22_H, R22,
   1.704 +  R23_H, R23,
   1.705 +  R24_H, R24,
   1.706 +  R25_H, R25,
   1.707 +  R26_H, R26,
   1.708 +  R27_H, R27,
   1.709 +  R28_H, R28,
   1.710 +/*R29_H, R29*/ // TODO: let allocator handle TOC!!
   1.711 +/*R30_H, R30,*/
   1.712 +  R31_H, R31
   1.713 +);
   1.714 +
   1.715 +// Complement-required-in-pipeline operands.
   1.716 +reg_class bits64_reg_ro_not_complement (
   1.717 +/*R0_H,  R0*/     // R0
   1.718 +  R1_H,  R1,      // SP
   1.719 +  R2_H,  R2,      // TOC
   1.720 +  R3_H,  R3,
   1.721 +  R4_H,  R4,
   1.722 +  R5_H,  R5,
   1.723 +  R6_H,  R6,
   1.724 +  R7_H,  R7,
   1.725 +  R8_H,  R8,
   1.726 +  R9_H,  R9,
   1.727 +  R10_H, R10,
   1.728 +  R11_H, R11,
   1.729 +  R12_H, R12,
   1.730 +/*R13_H, R13*/   // system thread id
   1.731 +  R14_H, R14,
   1.732 +  R15_H, R15,
   1.733 +  R16_H, R16,    // R16_thread
   1.734 +  R17_H, R17,
   1.735 +  R18_H, R18,
   1.736 +  R19_H, R19,
   1.737 +  R20_H, R20,
   1.738 +  R21_H, R21,
   1.739 +  R22_H, R22,
   1.740 +/*R23_H, R23,
   1.741 +  R24_H, R24,
   1.742 +  R25_H, R25,
   1.743 +  R26_H, R26,
   1.744 +  R27_H, R27,
   1.745 +  R28_H, R28,*/
   1.746 +/*R29_H, R29*/ // TODO: let allocator handle TOC!!
   1.747 +/*R30_H, R30,*/
   1.748 +  R31_H, R31
   1.749 +);
   1.750 +
   1.751 +// Complement-required-in-pipeline operands.
   1.752 +// This register mask is used for the trap instructions that implement
   1.753 +// the null checks on AIX. The trap instruction first computes the
   1.754 +// complement of the value it shall trap on. Because of this, the
   1.755 +// instruction can not be scheduled in the same cycle as an other
   1.756 +// instruction reading the normal value of the same register. So we
   1.757 +// force the value to check into 'bits64_reg_ro_not_complement'
   1.758 +// and then copy it to 'bits64_reg_ro_complement' for the trap.
   1.759 +reg_class bits64_reg_ro_complement (
   1.760 +  R23_H, R23,
   1.761 +  R24_H, R24,
   1.762 +  R25_H, R25,
   1.763 +  R26_H, R26,
   1.764 +  R27_H, R27,
   1.765 +  R28_H, R28
   1.766 +);
   1.767 +
   1.768 +
   1.769 +// ----------------------------
   1.770 +// Special Class for Condition Code Flags Register
   1.771 +
   1.772 +reg_class int_flags(
   1.773 +/*CCR0*/             // scratch
   1.774 +/*CCR1*/             // scratch
   1.775 +/*CCR2*/             // nv!
   1.776 +/*CCR3*/             // nv!
   1.777 +/*CCR4*/             // nv!
   1.778 +  CCR5,
   1.779 +  CCR6,
   1.780 +  CCR7
   1.781 +);
   1.782 +
   1.783 +reg_class int_flags_CR0(CCR0);
   1.784 +reg_class int_flags_CR1(CCR1);
   1.785 +reg_class int_flags_CR6(CCR6);
   1.786 +reg_class ctr_reg(SR_CTR);
   1.787 +
   1.788 +// ----------------------------
   1.789 +// Float Register Classes
   1.790 +// ----------------------------
   1.791 +
   1.792 +reg_class flt_reg(
   1.793 +/*F0*/              // scratch
   1.794 +  F1,
   1.795 +  F2,
   1.796 +  F3,
   1.797 +  F4,
   1.798 +  F5,
   1.799 +  F6,
   1.800 +  F7,
   1.801 +  F8,
   1.802 +  F9,
   1.803 +  F10,
   1.804 +  F11,
   1.805 +  F12,
   1.806 +  F13,
   1.807 +  F14,              // nv!
   1.808 +  F15,              // nv!
   1.809 +  F16,              // nv!
   1.810 +  F17,              // nv!
   1.811 +  F18,              // nv!
   1.812 +  F19,              // nv!
   1.813 +  F20,              // nv!
   1.814 +  F21,              // nv!
   1.815 +  F22,              // nv!
   1.816 +  F23,              // nv!
   1.817 +  F24,              // nv!
   1.818 +  F25,              // nv!
   1.819 +  F26,              // nv!
   1.820 +  F27,              // nv!
   1.821 +  F28,              // nv!
   1.822 +  F29,              // nv!
   1.823 +  F30,              // nv!
   1.824 +  F31               // nv!
   1.825 +);
   1.826 +
   1.827 +// Double precision float registers have virtual `high halves' that
   1.828 +// are needed by the allocator.
   1.829 +reg_class dbl_reg(
   1.830 +/*F0,  F0_H*/     // scratch
   1.831 +  F1,  F1_H,
   1.832 +  F2,  F2_H,
   1.833 +  F3,  F3_H,
   1.834 +  F4,  F4_H,
   1.835 +  F5,  F5_H,
   1.836 +  F6,  F6_H,
   1.837 +  F7,  F7_H,
   1.838 +  F8,  F8_H,
   1.839 +  F9,  F9_H,
   1.840 +  F10, F10_H,
   1.841 +  F11, F11_H,
   1.842 +  F12, F12_H,
   1.843 +  F13, F13_H,
   1.844 +  F14, F14_H,    // nv!
   1.845 +  F15, F15_H,    // nv!
   1.846 +  F16, F16_H,    // nv!
   1.847 +  F17, F17_H,    // nv!
   1.848 +  F18, F18_H,    // nv!
   1.849 +  F19, F19_H,    // nv!
   1.850 +  F20, F20_H,    // nv!
   1.851 +  F21, F21_H,    // nv!
   1.852 +  F22, F22_H,    // nv!
   1.853 +  F23, F23_H,    // nv!
   1.854 +  F24, F24_H,    // nv!
   1.855 +  F25, F25_H,    // nv!
   1.856 +  F26, F26_H,    // nv!
   1.857 +  F27, F27_H,    // nv!
   1.858 +  F28, F28_H,    // nv!
   1.859 +  F29, F29_H,    // nv!
   1.860 +  F30, F30_H,    // nv!
   1.861 +  F31, F31_H     // nv!
   1.862 +);
   1.863 +
   1.864 + %}
   1.865 +
   1.866 +//----------DEFINITION BLOCK---------------------------------------------------
   1.867 +// Define name --> value mappings to inform the ADLC of an integer valued name
   1.868 +// Current support includes integer values in the range [0, 0x7FFFFFFF]
   1.869 +// Format:
   1.870 +//        int_def  <name>         ( <int_value>, <expression>);
   1.871 +// Generated Code in ad_<arch>.hpp
   1.872 +//        #define  <name>   (<expression>)
   1.873 +//        // value == <int_value>
   1.874 +// Generated code in ad_<arch>.cpp adlc_verification()
   1.875 +//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   1.876 +//
   1.877 +definitions %{
   1.878 +  // The default cost (of an ALU instruction).
   1.879 +  int_def DEFAULT_COST_LOW        (     30,      30);
   1.880 +  int_def DEFAULT_COST            (    100,     100);
   1.881 +  int_def HUGE_COST               (1000000, 1000000);
   1.882 +
   1.883 +  // Memory refs
   1.884 +  int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   1.885 +  int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   1.886 +
   1.887 +  // Branches are even more expensive.
   1.888 +  int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   1.889 +  int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   1.890 +%}
   1.891 +
   1.892 +
   1.893 +//----------SOURCE BLOCK-------------------------------------------------------
   1.894 +// This is a block of C++ code which provides values, functions, and
   1.895 +// definitions necessary in the rest of the architecture description.
   1.896 +source_hpp %{
   1.897 +  // Header information of the source block.
   1.898 +  // Method declarations/definitions which are used outside
   1.899 +  // the ad-scope can conveniently be defined here.
   1.900 +  //
   1.901 +  // To keep related declarations/definitions/uses close together,
   1.902 +  // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   1.903 +
   1.904 +  // Returns true if Node n is followed by a MemBar node that
   1.905 +  // will do an acquire. If so, this node must not do the acquire
   1.906 +  // operation.
   1.907 +  bool followed_by_acquire(const Node *n);
   1.908 +%}
   1.909 +
   1.910 +source %{
   1.911 +
   1.912 +// Optimize load-acquire.
   1.913 +//
   1.914 +// Check if acquire is unnecessary due to following operation that does
   1.915 +// acquire anyways.
   1.916 +// Walk the pattern:
   1.917 +//
   1.918 +//      n: Load.acq
   1.919 +//           |
   1.920 +//      MemBarAcquire
   1.921 +//       |         |
   1.922 +//  Proj(ctrl)  Proj(mem)
   1.923 +//       |         |
   1.924 +//   MemBarRelease/Volatile
   1.925 +//
   1.926 +bool followed_by_acquire(const Node *load) {
   1.927 +  assert(load->is_Load(), "So far implemented only for loads.");
   1.928 +
   1.929 +  // Find MemBarAcquire.
   1.930 +  const Node *mba = NULL;
   1.931 +  for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   1.932 +    const Node *out = load->fast_out(i);
   1.933 +    if (out->Opcode() == Op_MemBarAcquire) {
   1.934 +      if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   1.935 +      mba = out;
   1.936 +      break;
   1.937 +    }
   1.938 +  }
   1.939 +  if (!mba) return false;
   1.940 +
   1.941 +  // Find following MemBar node.
   1.942 +  //
   1.943 +  // The following node must be reachable by control AND memory
   1.944 +  // edge to assure no other operations are in between the two nodes.
   1.945 +  //
   1.946 +  // So first get the Proj node, mem_proj, to use it to iterate forward.
   1.947 +  Node *mem_proj = NULL;
   1.948 +  for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   1.949 +    mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   1.950 +    assert(mem_proj->is_Proj(), "only projections here");
   1.951 +    ProjNode *proj = mem_proj->as_Proj();
   1.952 +    if (proj->_con == TypeFunc::Memory &&
   1.953 +        !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   1.954 +      break;
   1.955 +  }
   1.956 +  assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   1.957 +
   1.958 +  // Search MemBar behind Proj. If there are other memory operations
   1.959 +  // behind the Proj we lost.
   1.960 +  for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   1.961 +    Node *x = mem_proj->fast_out(j);
   1.962 +    // Proj might have an edge to a store or load node which precedes the membar.
   1.963 +    if (x->is_Mem()) return false;
   1.964 +
   1.965 +    // On PPC64 release and volatile are implemented by an instruction
   1.966 +    // that also has acquire semantics. I.e. there is no need for an
   1.967 +    // acquire before these.
   1.968 +    int xop = x->Opcode();
   1.969 +    if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   1.970 +      // Make sure we're not missing Call/Phi/MergeMem by checking
   1.971 +      // control edges. The control edge must directly lead back
   1.972 +      // to the MemBarAcquire
   1.973 +      Node *ctrl_proj = x->in(0);
   1.974 +      if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   1.975 +        return true;
   1.976 +      }
   1.977 +    }
   1.978 +  }
   1.979 +
   1.980 +  return false;
   1.981 +}
   1.982 +
   1.983 +#define __ _masm.
   1.984 +
   1.985 +// Tertiary op of a LoadP or StoreP encoding.
   1.986 +#define REGP_OP true
   1.987 +
   1.988 +// ****************************************************************************
   1.989 +
   1.990 +// REQUIRED FUNCTIONALITY
   1.991 +
   1.992 +// !!!!! Special hack to get all type of calls to specify the byte offset
   1.993 +//       from the start of the call to the point where the return address
   1.994 +//       will point.
   1.995 +
   1.996 +// PPC port: Removed use of lazy constant construct.
   1.997 +
   1.998 +int MachCallStaticJavaNode::ret_addr_offset() {
   1.999 +  // It's only a single branch-and-link instruction.
  1.1000 +  return 4;
  1.1001 +}
  1.1002 +
  1.1003 +int MachCallDynamicJavaNode::ret_addr_offset() {
  1.1004 +  // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1.1005 +  // postalloc expanded calls if we use inline caches and do not update method data.
  1.1006 +  if (UseInlineCaches)
  1.1007 +    return 4;
  1.1008 +
  1.1009 +  int vtable_index = this->_vtable_index;
  1.1010 +  if (vtable_index < 0) {
  1.1011 +    // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1.1012 +    assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1.1013 +    return 12;
  1.1014 +  } else {
  1.1015 +    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1.1016 +    return 24;
  1.1017 +  }
  1.1018 +}
  1.1019 +
  1.1020 +int MachCallRuntimeNode::ret_addr_offset() {
  1.1021 +#if defined(ABI_ELFv2)
  1.1022 +  return 28;
  1.1023 +#else
  1.1024 +  return 40;
  1.1025 +#endif
  1.1026 +}
  1.1027 +
  1.1028 +//=============================================================================
  1.1029 +
  1.1030 +// condition code conversions
  1.1031 +
  1.1032 +static int cc_to_boint(int cc) {
  1.1033 +  return Assembler::bcondCRbiIs0 | (cc & 8);
  1.1034 +}
  1.1035 +
  1.1036 +static int cc_to_inverse_boint(int cc) {
  1.1037 +  return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1.1038 +}
  1.1039 +
  1.1040 +static int cc_to_biint(int cc, int flags_reg) {
  1.1041 +  return (flags_reg << 2) | (cc & 3);
  1.1042 +}
  1.1043 +
  1.1044 +//=============================================================================
  1.1045 +
  1.1046 +// Compute padding required for nodes which need alignment. The padding
  1.1047 +// is the number of bytes (not instructions) which will be inserted before
  1.1048 +// the instruction. The padding must match the size of a NOP instruction.
  1.1049 +
  1.1050 +int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1.1051 +  return (3*4-current_offset)&31;
  1.1052 +}
  1.1053 +
  1.1054 +int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1.1055 +  return (2*4-current_offset)&31;
  1.1056 +}
  1.1057 +
  1.1058 +int string_indexOf_immNode::compute_padding(int current_offset) const {
  1.1059 +  return (3*4-current_offset)&31;
  1.1060 +}
  1.1061 +
  1.1062 +int string_indexOfNode::compute_padding(int current_offset) const {
  1.1063 +  return (1*4-current_offset)&31;
  1.1064 +}
  1.1065 +
  1.1066 +int string_compareNode::compute_padding(int current_offset) const {
  1.1067 +  return (4*4-current_offset)&31;
  1.1068 +}
  1.1069 +
  1.1070 +int string_equals_immNode::compute_padding(int current_offset) const {
  1.1071 +  if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1.1072 +  return (2*4-current_offset)&31;
  1.1073 +}
  1.1074 +
  1.1075 +int string_equalsNode::compute_padding(int current_offset) const {
  1.1076 +  return (7*4-current_offset)&31;
  1.1077 +}
  1.1078 +
  1.1079 +int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1.1080 +  return (2*4-current_offset)&31;
  1.1081 +}
  1.1082 +
  1.1083 +//=============================================================================
  1.1084 +
  1.1085 +// Indicate if the safepoint node needs the polling page as an input.
  1.1086 +bool SafePointNode::needs_polling_address_input() {
  1.1087 +  // The address is loaded from thread by a seperate node.
  1.1088 +  return true;
  1.1089 +}
  1.1090 +
  1.1091 +//=============================================================================
  1.1092 +
  1.1093 +// Emit an interrupt that is caught by the debugger (for debugging compiler).
  1.1094 +void emit_break(CodeBuffer &cbuf) {
  1.1095 +  MacroAssembler _masm(&cbuf);
  1.1096 +  __ illtrap();
  1.1097 +}
  1.1098 +
  1.1099 +#ifndef PRODUCT
  1.1100 +void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1101 +  st->print("BREAKPOINT");
  1.1102 +}
  1.1103 +#endif
  1.1104 +
  1.1105 +void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1106 +  emit_break(cbuf);
  1.1107 +}
  1.1108 +
  1.1109 +uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1.1110 +  return MachNode::size(ra_);
  1.1111 +}
  1.1112 +
  1.1113 +//=============================================================================
  1.1114 +
  1.1115 +void emit_nop(CodeBuffer &cbuf) {
  1.1116 +  MacroAssembler _masm(&cbuf);
  1.1117 +  __ nop();
  1.1118 +}
  1.1119 +
  1.1120 +static inline void emit_long(CodeBuffer &cbuf, int value) {
  1.1121 +  *((int*)(cbuf.insts_end())) = value;
  1.1122 +  cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1.1123 +}
  1.1124 +
  1.1125 +//=============================================================================
  1.1126 +
  1.1127 +%} // interrupt source
  1.1128 +
  1.1129 +source_hpp %{ // Header information of the source block.
  1.1130 +
  1.1131 +//--------------------------------------------------------------
  1.1132 +//---<  Used for optimization in Compile::Shorten_branches  >---
  1.1133 +//--------------------------------------------------------------
  1.1134 +
  1.1135 +const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1.1136 +
  1.1137 +class CallStubImpl {
  1.1138 +
  1.1139 + public:
  1.1140 +
  1.1141 +  // Emit call stub, compiled java to interpreter.
  1.1142 +  static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1.1143 +
  1.1144 +  // Size of call trampoline stub.
  1.1145 +  // This doesn't need to be accurate to the byte, but it
  1.1146 +  // must be larger than or equal to the real size of the stub.
  1.1147 +  static uint size_call_trampoline() {
  1.1148 +    return trampoline_stub_size;
  1.1149 +  }
  1.1150 +
  1.1151 +  // number of relocations needed by a call trampoline stub
  1.1152 +  static uint reloc_call_trampoline() {
  1.1153 +    return 5;
  1.1154 +  }
  1.1155 +
  1.1156 +};
  1.1157 +
  1.1158 +%} // end source_hpp
  1.1159 +
  1.1160 +source %{
  1.1161 +
  1.1162 +// Emit a trampoline stub for a call to a target which is too far away.
  1.1163 +//
  1.1164 +// code sequences:
  1.1165 +//
  1.1166 +// call-site:
  1.1167 +//   branch-and-link to <destination> or <trampoline stub>
  1.1168 +//
  1.1169 +// Related trampoline stub for this call-site in the stub section:
  1.1170 +//   load the call target from the constant pool
  1.1171 +//   branch via CTR (LR/link still points to the call-site above)
  1.1172 +
  1.1173 +void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1.1174 +  // Start the stub.
  1.1175 +  address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1.1176 +  if (stub == NULL) {
  1.1177 +    Compile::current()->env()->record_out_of_memory_failure();
  1.1178 +    return;
  1.1179 +  }
  1.1180 +
  1.1181 +  // For java_to_interp stubs we use R11_scratch1 as scratch register
  1.1182 +  // and in call trampoline stubs we use R12_scratch2. This way we
  1.1183 +  // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1.1184 +  Register reg_scratch = R12_scratch2;
  1.1185 +
  1.1186 +  // Create a trampoline stub relocation which relates this trampoline stub
  1.1187 +  // with the call instruction at insts_call_instruction_offset in the
  1.1188 +  // instructions code-section.
  1.1189 +  __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1.1190 +  const int stub_start_offset = __ offset();
  1.1191 +
  1.1192 +  // Now, create the trampoline stub's code:
  1.1193 +  // - load the TOC
  1.1194 +  // - load the call target from the constant pool
  1.1195 +  // - call
  1.1196 +  __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1.1197 +  __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1.1198 +  __ mtctr(reg_scratch);
  1.1199 +  __ bctr();
  1.1200 +
  1.1201 +  const address stub_start_addr = __ addr_at(stub_start_offset);
  1.1202 +
  1.1203 +  // FIXME: Assert that the trampoline stub can be identified and patched.
  1.1204 +
  1.1205 +  // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1.1206 +  assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1.1207 +         "encoded offset into the constant pool must match");
  1.1208 +  // Trampoline_stub_size should be good.
  1.1209 +  assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1.1210 +  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1.1211 +
  1.1212 +  // End the stub.
  1.1213 +  __ end_a_stub();
  1.1214 +}
  1.1215 +
  1.1216 +//=============================================================================
  1.1217 +
  1.1218 +// Emit an inline branch-and-link call and a related trampoline stub.
  1.1219 +//
  1.1220 +// code sequences:
  1.1221 +//
  1.1222 +// call-site:
  1.1223 +//   branch-and-link to <destination> or <trampoline stub>
  1.1224 +//
  1.1225 +// Related trampoline stub for this call-site in the stub section:
  1.1226 +//   load the call target from the constant pool
  1.1227 +//   branch via CTR (LR/link still points to the call-site above)
  1.1228 +//
  1.1229 +
  1.1230 +typedef struct {
  1.1231 +  int insts_call_instruction_offset;
  1.1232 +  int ret_addr_offset;
  1.1233 +} EmitCallOffsets;
  1.1234 +
  1.1235 +// Emit a branch-and-link instruction that branches to a trampoline.
  1.1236 +// - Remember the offset of the branch-and-link instruction.
  1.1237 +// - Add a relocation at the branch-and-link instruction.
  1.1238 +// - Emit a branch-and-link.
  1.1239 +// - Remember the return pc offset.
  1.1240 +EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1.1241 +  EmitCallOffsets offsets = { -1, -1 };
  1.1242 +  const int start_offset = __ offset();
  1.1243 +  offsets.insts_call_instruction_offset = __ offset();
  1.1244 +
  1.1245 +  // No entry point given, use the current pc.
  1.1246 +  if (entry_point == NULL) entry_point = __ pc();
  1.1247 +
  1.1248 +  if (!Compile::current()->in_scratch_emit_size()) {
  1.1249 +    // Put the entry point as a constant into the constant pool.
  1.1250 +    const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1.1251 +    const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1.1252 +
  1.1253 +    // Emit the trampoline stub which will be related to the branch-and-link below.
  1.1254 +    CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1.1255 +    __ relocate(rtype);
  1.1256 +  }
  1.1257 +
  1.1258 +  // Note: At this point we do not have the address of the trampoline
  1.1259 +  // stub, and the entry point might be too far away for bl, so __ pc()
  1.1260 +  // serves as dummy and the bl will be patched later.
  1.1261 +  __ bl((address) __ pc());
  1.1262 +
  1.1263 +  offsets.ret_addr_offset = __ offset() - start_offset;
  1.1264 +
  1.1265 +  return offsets;
  1.1266 +}
  1.1267 +
  1.1268 +//=============================================================================
  1.1269 +
  1.1270 +// Factory for creating loadConL* nodes for large/small constant pool.
  1.1271 +
  1.1272 +static inline jlong replicate_immF(float con) {
  1.1273 +  // Replicate float con 2 times and pack into vector.
  1.1274 +  int val = *((int*)&con);
  1.1275 +  jlong lval = val;
  1.1276 +  lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1.1277 +  return lval;
  1.1278 +}
  1.1279 +
  1.1280 +//=============================================================================
  1.1281 +
  1.1282 +const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1.1283 +int Compile::ConstantTable::calculate_table_base_offset() const {
  1.1284 +  return 0;  // absolute addressing, no offset
  1.1285 +}
  1.1286 +
  1.1287 +bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1.1288 +void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1.1289 +  Compile *C = ra_->C;
  1.1290 +
  1.1291 +  iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1.1292 +  MachNode *m1 = new (C) loadToc_hiNode();
  1.1293 +  MachNode *m2 = new (C) loadToc_loNode();
  1.1294 +
  1.1295 +  m1->add_req(NULL);
  1.1296 +  m2->add_req(NULL, m1);
  1.1297 +  m1->_opnds[0] = op_dst;
  1.1298 +  m2->_opnds[0] = op_dst;
  1.1299 +  m2->_opnds[1] = op_dst;
  1.1300 +  ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.1301 +  ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.1302 +  nodes->push(m1);
  1.1303 +  nodes->push(m2);
  1.1304 +}
  1.1305 +
  1.1306 +void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1.1307 +  // Is postalloc expanded.
  1.1308 +  ShouldNotReachHere();
  1.1309 +}
  1.1310 +
  1.1311 +uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1.1312 +  return 0;
  1.1313 +}
  1.1314 +
  1.1315 +#ifndef PRODUCT
  1.1316 +void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1.1317 +  st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1.1318 +}
  1.1319 +#endif
  1.1320 +
  1.1321 +//=============================================================================
  1.1322 +
  1.1323 +#ifndef PRODUCT
  1.1324 +void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1325 +  Compile* C = ra_->C;
  1.1326 +  const long framesize = C->frame_slots() << LogBytesPerInt;
  1.1327 +
  1.1328 +  st->print("PROLOG\n\t");
  1.1329 +  if (C->need_stack_bang(framesize)) {
  1.1330 +    st->print("stack_overflow_check\n\t");
  1.1331 +  }
  1.1332 +
  1.1333 +  if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1.1334 +    st->print("save return pc\n\t");
  1.1335 +    st->print("push frame %d\n\t", -framesize);
  1.1336 +  }
  1.1337 +}
  1.1338 +#endif
  1.1339 +
  1.1340 +// Macro used instead of the common __ to emulate the pipes of PPC.
  1.1341 +// Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1.1342 +// micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1.1343 +// still no scheduling of this code is possible, the micro scheduler is aware of the
  1.1344 +// code and can update its internal data. The following mechanism is used to achieve this:
  1.1345 +// The micro scheduler calls size() of each compound node during scheduling. size() does a
  1.1346 +// dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1.1347 +#if 0 // TODO: PPC port
  1.1348 +#define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1.1349 +                  C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1.1350 +                _masm.
  1.1351 +#define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1.1352 +                  C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1.1353 +#define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1.1354 +                  C->hb_scheduling()->_pdScheduling->advance_offset
  1.1355 +#else
  1.1356 +#define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1.1357 +                  Unimplemented();                                                    \
  1.1358 +                _masm.
  1.1359 +#define ___stop if (UsePower6SchedulerPPC64)                                          \
  1.1360 +                  Unimplemented()
  1.1361 +#define ___advance if (UsePower6SchedulerPPC64)                                       \
  1.1362 +                  Unimplemented()
  1.1363 +#endif
  1.1364 +
  1.1365 +void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1366 +  Compile* C = ra_->C;
  1.1367 +  MacroAssembler _masm(&cbuf);
  1.1368 +
  1.1369 +  const long framesize = C->frame_size_in_bytes();
  1.1370 +  assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
  1.1371 +
  1.1372 +  const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1.1373 +
  1.1374 +  const Register return_pc            = R20; // Must match return_addr() in frame section.
  1.1375 +  const Register callers_sp           = R21;
  1.1376 +  const Register push_frame_temp      = R22;
  1.1377 +  const Register toc_temp             = R23;
  1.1378 +  assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1.1379 +
  1.1380 +  if (method_is_frameless) {
  1.1381 +    // Add nop at beginning of all frameless methods to prevent any
  1.1382 +    // oop instructions from getting overwritten by make_not_entrant
  1.1383 +    // (patching attempt would fail).
  1.1384 +    ___(nop) nop();
  1.1385 +  } else {
  1.1386 +    // Get return pc.
  1.1387 +    ___(mflr) mflr(return_pc);
  1.1388 +  }
  1.1389 +
  1.1390 +  // Calls to C2R adapters often do not accept exceptional returns.
  1.1391 +  // We require that their callers must bang for them. But be
  1.1392 +  // careful, because some VM calls (such as call site linkage) can
  1.1393 +  // use several kilobytes of stack. But the stack safety zone should
  1.1394 +  // account for that. See bugs 4446381, 4468289, 4497237.
  1.1395 +
  1.1396 +  int bangsize = C->bang_size_in_bytes();
  1.1397 +  assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  1.1398 +  if (C->need_stack_bang(bangsize) && UseStackBanging) {
  1.1399 +    // Unfortunately we cannot use the function provided in
  1.1400 +    // assembler.cpp as we have to emulate the pipes. So I had to
  1.1401 +    // insert the code of generate_stack_overflow_check(), see
  1.1402 +    // assembler.cpp for some illuminative comments.
  1.1403 +    const int page_size = os::vm_page_size();
  1.1404 +    int bang_end = StackShadowPages * page_size;
  1.1405 +
  1.1406 +    // This is how far the previous frame's stack banging extended.
  1.1407 +    const int bang_end_safe = bang_end;
  1.1408 +
  1.1409 +    if (bangsize > page_size) {
  1.1410 +      bang_end += bangsize;
  1.1411 +    }
  1.1412 +
  1.1413 +    int bang_offset = bang_end_safe;
  1.1414 +
  1.1415 +    while (bang_offset <= bang_end) {
  1.1416 +      // Need at least one stack bang at end of shadow zone.
  1.1417 +
  1.1418 +      // Again I had to copy code, this time from assembler_ppc64.cpp,
  1.1419 +      // bang_stack_with_offset - see there for comments.
  1.1420 +
  1.1421 +      // Stack grows down, caller passes positive offset.
  1.1422 +      assert(bang_offset > 0, "must bang with positive offset");
  1.1423 +
  1.1424 +      long stdoffset = -bang_offset;
  1.1425 +
  1.1426 +      if (Assembler::is_simm(stdoffset, 16)) {
  1.1427 +        // Signed 16 bit offset, a simple std is ok.
  1.1428 +        if (UseLoadInstructionsForStackBangingPPC64) {
  1.1429 +          ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1.1430 +        } else {
  1.1431 +          ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1.1432 +        }
  1.1433 +      } else if (Assembler::is_simm(stdoffset, 31)) {
  1.1434 +        // Use largeoffset calculations for addis & ld/std.
  1.1435 +        const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1.1436 +        const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1.1437 +
  1.1438 +        Register tmp = R11;
  1.1439 +        ___(addis) addis(tmp, R1_SP, hi);
  1.1440 +        if (UseLoadInstructionsForStackBangingPPC64) {
  1.1441 +          ___(ld) ld(R0, lo, tmp);
  1.1442 +        } else {
  1.1443 +          ___(std) std(R0, lo, tmp);
  1.1444 +        }
  1.1445 +      } else {
  1.1446 +        ShouldNotReachHere();
  1.1447 +      }
  1.1448 +
  1.1449 +      bang_offset += page_size;
  1.1450 +    }
  1.1451 +    // R11 trashed
  1.1452 +  } // C->need_stack_bang(framesize) && UseStackBanging
  1.1453 +
  1.1454 +  unsigned int bytes = (unsigned int)framesize;
  1.1455 +  long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1.1456 +  ciMethod *currMethod = C->method();
  1.1457 +
  1.1458 +  // Optimized version for most common case.
  1.1459 +  if (UsePower6SchedulerPPC64 &&
  1.1460 +      !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1.1461 +      !(false /* ConstantsALot TODO: PPC port*/)) {
  1.1462 +    ___(or) mr(callers_sp, R1_SP);
  1.1463 +    ___(std) std(return_pc, _abi(lr), R1_SP);
  1.1464 +    ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1.1465 +    return;
  1.1466 +  }
  1.1467 +
  1.1468 +  if (!method_is_frameless) {
  1.1469 +    // Get callers sp.
  1.1470 +    ___(or) mr(callers_sp, R1_SP);
  1.1471 +
  1.1472 +    // Push method's frame, modifies SP.
  1.1473 +    assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1.1474 +    // The ABI is already accounted for in 'framesize' via the
  1.1475 +    // 'out_preserve' area.
  1.1476 +    Register tmp = push_frame_temp;
  1.1477 +    // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1.1478 +    if (Assembler::is_simm(-offset, 16)) {
  1.1479 +      ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1.1480 +    } else {
  1.1481 +      long x = -offset;
  1.1482 +      // Had to insert load_const(tmp, -offset).
  1.1483 +      ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1.1484 +      ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1.1485 +      ___(rldicr) sldi(tmp, tmp, 32);
  1.1486 +      ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1.1487 +      ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1.1488 +
  1.1489 +      ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1.1490 +    }
  1.1491 +  }
  1.1492 +#if 0 // TODO: PPC port
  1.1493 +  // For testing large constant pools, emit a lot of constants to constant pool.
  1.1494 +  // "Randomize" const_size.
  1.1495 +  if (ConstantsALot) {
  1.1496 +    const int num_consts = const_size();
  1.1497 +    for (int i = 0; i < num_consts; i++) {
  1.1498 +      __ long_constant(0xB0B5B00BBABE);
  1.1499 +    }
  1.1500 +  }
  1.1501 +#endif
  1.1502 +  if (!method_is_frameless) {
  1.1503 +    // Save return pc.
  1.1504 +    ___(std) std(return_pc, _abi(lr), callers_sp);
  1.1505 +  }
  1.1506 +}
  1.1507 +#undef ___
  1.1508 +#undef ___stop
  1.1509 +#undef ___advance
  1.1510 +
  1.1511 +uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1.1512 +  // Variable size. determine dynamically.
  1.1513 +  return MachNode::size(ra_);
  1.1514 +}
  1.1515 +
  1.1516 +int MachPrologNode::reloc() const {
  1.1517 +  // Return number of relocatable values contained in this instruction.
  1.1518 +  return 1; // 1 reloc entry for load_const(toc).
  1.1519 +}
  1.1520 +
  1.1521 +//=============================================================================
  1.1522 +
  1.1523 +#ifndef PRODUCT
  1.1524 +void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1525 +  Compile* C = ra_->C;
  1.1526 +
  1.1527 +  st->print("EPILOG\n\t");
  1.1528 +  st->print("restore return pc\n\t");
  1.1529 +  st->print("pop frame\n\t");
  1.1530 +
  1.1531 +  if (do_polling() && C->is_method_compilation()) {
  1.1532 +    st->print("touch polling page\n\t");
  1.1533 +  }
  1.1534 +}
  1.1535 +#endif
  1.1536 +
  1.1537 +void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1538 +  Compile* C = ra_->C;
  1.1539 +  MacroAssembler _masm(&cbuf);
  1.1540 +
  1.1541 +  const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1.1542 +  assert(framesize >= 0, "negative frame-size?");
  1.1543 +
  1.1544 +  const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1.1545 +  const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1.1546 +  const Register return_pc        = R11;
  1.1547 +  const Register polling_page     = R12;
  1.1548 +
  1.1549 +  if (!method_is_frameless) {
  1.1550 +    // Restore return pc relative to callers' sp.
  1.1551 +    __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1.1552 +  }
  1.1553 +
  1.1554 +  if (method_needs_polling) {
  1.1555 +    if (LoadPollAddressFromThread) {
  1.1556 +      // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1.1557 +      Unimplemented();
  1.1558 +    } else {
  1.1559 +      __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1.1560 +    }
  1.1561 +  }
  1.1562 +
  1.1563 +  if (!method_is_frameless) {
  1.1564 +    // Move return pc to LR.
  1.1565 +    __ mtlr(return_pc);
  1.1566 +    // Pop frame (fixed frame-size).
  1.1567 +    __ addi(R1_SP, R1_SP, (int)framesize);
  1.1568 +  }
  1.1569 +
  1.1570 +  if (method_needs_polling) {
  1.1571 +    // We need to mark the code position where the load from the safepoint
  1.1572 +    // polling page was emitted as relocInfo::poll_return_type here.
  1.1573 +    __ relocate(relocInfo::poll_return_type);
  1.1574 +    __ load_from_polling_page(polling_page);
  1.1575 +  }
  1.1576 +}
  1.1577 +
  1.1578 +uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1.1579 +  // Variable size. Determine dynamically.
  1.1580 +  return MachNode::size(ra_);
  1.1581 +}
  1.1582 +
  1.1583 +int MachEpilogNode::reloc() const {
  1.1584 +  // Return number of relocatable values contained in this instruction.
  1.1585 +  return 1; // 1 for load_from_polling_page.
  1.1586 +}
  1.1587 +
  1.1588 +const Pipeline * MachEpilogNode::pipeline() const {
  1.1589 +  return MachNode::pipeline_class();
  1.1590 +}
  1.1591 +
  1.1592 +// This method seems to be obsolete. It is declared in machnode.hpp
  1.1593 +// and defined in all *.ad files, but it is never called. Should we
  1.1594 +// get rid of it?
  1.1595 +int MachEpilogNode::safepoint_offset() const {
  1.1596 +  assert(do_polling(), "no return for this epilog node");
  1.1597 +  return 0;
  1.1598 +}
  1.1599 +
  1.1600 +#if 0 // TODO: PPC port
  1.1601 +void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1.1602 +  MacroAssembler _masm(&cbuf);
  1.1603 +  if (LoadPollAddressFromThread) {
  1.1604 +    _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1.1605 +  } else {
  1.1606 +    _masm.nop();
  1.1607 +  }
  1.1608 +}
  1.1609 +
  1.1610 +uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1.1611 +  if (LoadPollAddressFromThread) {
  1.1612 +    return 4;
  1.1613 +  } else {
  1.1614 +    return 4;
  1.1615 +  }
  1.1616 +}
  1.1617 +
  1.1618 +#ifndef PRODUCT
  1.1619 +void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1.1620 +  st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1.1621 +}
  1.1622 +#endif
  1.1623 +
  1.1624 +const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1.1625 +  return RSCRATCH1_BITS64_REG_mask();
  1.1626 +}
  1.1627 +#endif // PPC port
  1.1628 +
  1.1629 +// =============================================================================
  1.1630 +
  1.1631 +// Figure out which register class each belongs in: rc_int, rc_float or
  1.1632 +// rc_stack.
  1.1633 +enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1.1634 +
  1.1635 +static enum RC rc_class(OptoReg::Name reg) {
  1.1636 +  // Return the register class for the given register. The given register
  1.1637 +  // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1.1638 +  // enumeration in adGlobals_ppc64.hpp.
  1.1639 +
  1.1640 +  if (reg == OptoReg::Bad) return rc_bad;
  1.1641 +
  1.1642 +  // We have 64 integer register halves, starting at index 0.
  1.1643 +  if (reg < 64) return rc_int;
  1.1644 +
  1.1645 +  // We have 64 floating-point register halves, starting at index 64.
  1.1646 +  if (reg < 64+64) return rc_float;
  1.1647 +
  1.1648 +  // Between float regs & stack are the flags regs.
  1.1649 +  assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1.1650 +
  1.1651 +  return rc_stack;
  1.1652 +}
  1.1653 +
  1.1654 +static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1.1655 +                        bool do_print, Compile* C, outputStream *st) {
  1.1656 +
  1.1657 +  assert(opcode == Assembler::LD_OPCODE   ||
  1.1658 +         opcode == Assembler::STD_OPCODE  ||
  1.1659 +         opcode == Assembler::LWZ_OPCODE  ||
  1.1660 +         opcode == Assembler::STW_OPCODE  ||
  1.1661 +         opcode == Assembler::LFD_OPCODE  ||
  1.1662 +         opcode == Assembler::STFD_OPCODE ||
  1.1663 +         opcode == Assembler::LFS_OPCODE  ||
  1.1664 +         opcode == Assembler::STFS_OPCODE,
  1.1665 +         "opcode not supported");
  1.1666 +
  1.1667 +  if (cbuf) {
  1.1668 +    int d =
  1.1669 +      (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1.1670 +        Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1.1671 +      : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1.1672 +    emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1.1673 +  }
  1.1674 +#ifndef PRODUCT
  1.1675 +  else if (do_print) {
  1.1676 +    st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1.1677 +              op_str,
  1.1678 +              Matcher::regName[reg],
  1.1679 +              offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1.1680 +  }
  1.1681 +#endif
  1.1682 +  return 4; // size
  1.1683 +}
  1.1684 +
  1.1685 +uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1.1686 +  Compile* C = ra_->C;
  1.1687 +
  1.1688 +  // Get registers to move.
  1.1689 +  OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1.1690 +  OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1.1691 +  OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1.1692 +  OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1.1693 +
  1.1694 +  enum RC src_hi_rc = rc_class(src_hi);
  1.1695 +  enum RC src_lo_rc = rc_class(src_lo);
  1.1696 +  enum RC dst_hi_rc = rc_class(dst_hi);
  1.1697 +  enum RC dst_lo_rc = rc_class(dst_lo);
  1.1698 +
  1.1699 +  assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1.1700 +  if (src_hi != OptoReg::Bad)
  1.1701 +    assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1.1702 +           (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1.1703 +           "expected aligned-adjacent pairs");
  1.1704 +  // Generate spill code!
  1.1705 +  int size = 0;
  1.1706 +
  1.1707 +  if (src_lo == dst_lo && src_hi == dst_hi)
  1.1708 +    return size;            // Self copy, no move.
  1.1709 +
  1.1710 +  // --------------------------------------
  1.1711 +  // Memory->Memory Spill. Use R0 to hold the value.
  1.1712 +  if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1.1713 +    int src_offset = ra_->reg2offset(src_lo);
  1.1714 +    int dst_offset = ra_->reg2offset(dst_lo);
  1.1715 +    if (src_hi != OptoReg::Bad) {
  1.1716 +      assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1.1717 +             "expected same type of move for high parts");
  1.1718 +      size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1.1719 +      if (!cbuf && !do_size) st->print("\n\t");
  1.1720 +      size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1.1721 +    } else {
  1.1722 +      size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1.1723 +      if (!cbuf && !do_size) st->print("\n\t");
  1.1724 +      size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1.1725 +    }
  1.1726 +    return size;
  1.1727 +  }
  1.1728 +
  1.1729 +  // --------------------------------------
  1.1730 +  // Check for float->int copy; requires a trip through memory.
  1.1731 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1.1732 +    Unimplemented();
  1.1733 +  }
  1.1734 +
  1.1735 +  // --------------------------------------
  1.1736 +  // Check for integer reg-reg copy.
  1.1737 +  if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1.1738 +      Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1.1739 +      Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1.1740 +      size = (Rsrc != Rdst) ? 4 : 0;
  1.1741 +
  1.1742 +      if (cbuf) {
  1.1743 +        MacroAssembler _masm(cbuf);
  1.1744 +        if (size) {
  1.1745 +          __ mr(Rdst, Rsrc);
  1.1746 +        }
  1.1747 +      }
  1.1748 +#ifndef PRODUCT
  1.1749 +      else if (!do_size) {
  1.1750 +        if (size) {
  1.1751 +          st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1.1752 +        } else {
  1.1753 +          st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1.1754 +        }
  1.1755 +      }
  1.1756 +#endif
  1.1757 +      return size;
  1.1758 +  }
  1.1759 +
  1.1760 +  // Check for integer store.
  1.1761 +  if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1.1762 +    int dst_offset = ra_->reg2offset(dst_lo);
  1.1763 +    if (src_hi != OptoReg::Bad) {
  1.1764 +      assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1.1765 +             "expected same type of move for high parts");
  1.1766 +      size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1.1767 +    } else {
  1.1768 +      size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1.1769 +    }
  1.1770 +    return size;
  1.1771 +  }
  1.1772 +
  1.1773 +  // Check for integer load.
  1.1774 +  if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1.1775 +    int src_offset = ra_->reg2offset(src_lo);
  1.1776 +    if (src_hi != OptoReg::Bad) {
  1.1777 +      assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1.1778 +             "expected same type of move for high parts");
  1.1779 +      size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1.1780 +    } else {
  1.1781 +      size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1.1782 +    }
  1.1783 +    return size;
  1.1784 +  }
  1.1785 +
  1.1786 +  // Check for float reg-reg copy.
  1.1787 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1.1788 +    if (cbuf) {
  1.1789 +      MacroAssembler _masm(cbuf);
  1.1790 +      FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1.1791 +      FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1.1792 +      __ fmr(Rdst, Rsrc);
  1.1793 +    }
  1.1794 +#ifndef PRODUCT
  1.1795 +    else if (!do_size) {
  1.1796 +      st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1.1797 +    }
  1.1798 +#endif
  1.1799 +    return 4;
  1.1800 +  }
  1.1801 +
  1.1802 +  // Check for float store.
  1.1803 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1.1804 +    int dst_offset = ra_->reg2offset(dst_lo);
  1.1805 +    if (src_hi != OptoReg::Bad) {
  1.1806 +      assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1.1807 +             "expected same type of move for high parts");
  1.1808 +      size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1.1809 +    } else {
  1.1810 +      size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1.1811 +    }
  1.1812 +    return size;
  1.1813 +  }
  1.1814 +
  1.1815 +  // Check for float load.
  1.1816 +  if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1.1817 +    int src_offset = ra_->reg2offset(src_lo);
  1.1818 +    if (src_hi != OptoReg::Bad) {
  1.1819 +      assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1.1820 +             "expected same type of move for high parts");
  1.1821 +      size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1.1822 +    } else {
  1.1823 +      size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1.1824 +    }
  1.1825 +    return size;
  1.1826 +  }
  1.1827 +
  1.1828 +  // --------------------------------------------------------------------
  1.1829 +  // Check for hi bits still needing moving. Only happens for misaligned
  1.1830 +  // arguments to native calls.
  1.1831 +  if (src_hi == dst_hi)
  1.1832 +    return size;               // Self copy; no move.
  1.1833 +
  1.1834 +  assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1.1835 +  ShouldNotReachHere(); // Unimplemented
  1.1836 +  return 0;
  1.1837 +}
  1.1838 +
  1.1839 +#ifndef PRODUCT
  1.1840 +void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1841 +  if (!ra_)
  1.1842 +    st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1.1843 +  else
  1.1844 +    implementation(NULL, ra_, false, st);
  1.1845 +}
  1.1846 +#endif
  1.1847 +
  1.1848 +void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1849 +  implementation(&cbuf, ra_, false, NULL);
  1.1850 +}
  1.1851 +
  1.1852 +uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1.1853 +  return implementation(NULL, ra_, true, NULL);
  1.1854 +}
  1.1855 +
  1.1856 +#if 0 // TODO: PPC port
  1.1857 +ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1.1858 +#ifndef PRODUCT
  1.1859 +  if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1.1860 +#endif
  1.1861 +  assert(ra_->node_regs_max_index() != 0, "");
  1.1862 +
  1.1863 +  // Get registers to move.
  1.1864 +  OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1.1865 +  OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1.1866 +  OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1.1867 +  OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1.1868 +
  1.1869 +  enum RC src_lo_rc = rc_class(src_lo);
  1.1870 +  enum RC dst_lo_rc = rc_class(dst_lo);
  1.1871 +
  1.1872 +  if (src_lo == dst_lo && src_hi == dst_hi)
  1.1873 +    return ppc64Opcode_none;            // Self copy, no move.
  1.1874 +
  1.1875 +  // --------------------------------------
  1.1876 +  // Memory->Memory Spill. Use R0 to hold the value.
  1.1877 +  if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1.1878 +    return ppc64Opcode_compound;
  1.1879 +  }
  1.1880 +
  1.1881 +  // --------------------------------------
  1.1882 +  // Check for float->int copy; requires a trip through memory.
  1.1883 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1.1884 +    Unimplemented();
  1.1885 +  }
  1.1886 +
  1.1887 +  // --------------------------------------
  1.1888 +  // Check for integer reg-reg copy.
  1.1889 +  if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1.1890 +    Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1.1891 +    Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1.1892 +    if (Rsrc == Rdst) {
  1.1893 +      return ppc64Opcode_none;
  1.1894 +    } else {
  1.1895 +      return ppc64Opcode_or;
  1.1896 +    }
  1.1897 +  }
  1.1898 +
  1.1899 +  // Check for integer store.
  1.1900 +  if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1.1901 +    if (src_hi != OptoReg::Bad) {
  1.1902 +      return ppc64Opcode_std;
  1.1903 +    } else {
  1.1904 +      return ppc64Opcode_stw;
  1.1905 +    }
  1.1906 +  }
  1.1907 +
  1.1908 +  // Check for integer load.
  1.1909 +  if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1.1910 +    if (src_hi != OptoReg::Bad) {
  1.1911 +      return ppc64Opcode_ld;
  1.1912 +    } else {
  1.1913 +      return ppc64Opcode_lwz;
  1.1914 +    }
  1.1915 +  }
  1.1916 +
  1.1917 +  // Check for float reg-reg copy.
  1.1918 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1.1919 +    return ppc64Opcode_fmr;
  1.1920 +  }
  1.1921 +
  1.1922 +  // Check for float store.
  1.1923 +  if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1.1924 +    if (src_hi != OptoReg::Bad) {
  1.1925 +      return ppc64Opcode_stfd;
  1.1926 +    } else {
  1.1927 +      return ppc64Opcode_stfs;
  1.1928 +    }
  1.1929 +  }
  1.1930 +
  1.1931 +  // Check for float load.
  1.1932 +  if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1.1933 +    if (src_hi != OptoReg::Bad) {
  1.1934 +      return ppc64Opcode_lfd;
  1.1935 +    } else {
  1.1936 +      return ppc64Opcode_lfs;
  1.1937 +    }
  1.1938 +  }
  1.1939 +
  1.1940 +  // --------------------------------------------------------------------
  1.1941 +  // Check for hi bits still needing moving. Only happens for misaligned
  1.1942 +  // arguments to native calls.
  1.1943 +  if (src_hi == dst_hi)
  1.1944 +    return ppc64Opcode_none;               // Self copy; no move.
  1.1945 +
  1.1946 +  ShouldNotReachHere();
  1.1947 +  return ppc64Opcode_undefined;
  1.1948 +}
  1.1949 +#endif // PPC port
  1.1950 +
  1.1951 +#ifndef PRODUCT
  1.1952 +void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1953 +  st->print("NOP \t// %d nops to pad for loops.", _count);
  1.1954 +}
  1.1955 +#endif
  1.1956 +
  1.1957 +void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1.1958 +  MacroAssembler _masm(&cbuf);
  1.1959 +  // _count contains the number of nops needed for padding.
  1.1960 +  for (int i = 0; i < _count; i++) {
  1.1961 +    __ nop();
  1.1962 +  }
  1.1963 +}
  1.1964 +
  1.1965 +uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1.1966 +   return _count * 4;
  1.1967 +}
  1.1968 +
  1.1969 +#ifndef PRODUCT
  1.1970 +void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1971 +  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1.1972 +  int reg = ra_->get_reg_first(this);
  1.1973 +  st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
  1.1974 +}
  1.1975 +#endif
  1.1976 +
  1.1977 +void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.1978 +  MacroAssembler _masm(&cbuf);
  1.1979 +
  1.1980 +  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1.1981 +  int reg    = ra_->get_encode(this);
  1.1982 +
  1.1983 +  if (Assembler::is_simm(offset, 16)) {
  1.1984 +    __ addi(as_Register(reg), R1, offset);
  1.1985 +  } else {
  1.1986 +    ShouldNotReachHere();
  1.1987 +  }
  1.1988 +}
  1.1989 +
  1.1990 +uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1.1991 +  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1.1992 +  return 4;
  1.1993 +}
  1.1994 +
  1.1995 +#ifndef PRODUCT
  1.1996 +void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1.1997 +  st->print_cr("---- MachUEPNode ----");
  1.1998 +  st->print_cr("...");
  1.1999 +}
  1.2000 +#endif
  1.2001 +
  1.2002 +void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1.2003 +  // This is the unverified entry point.
  1.2004 +  MacroAssembler _masm(&cbuf);
  1.2005 +
  1.2006 +  // Inline_cache contains a klass.
  1.2007 +  Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  1.2008 +  Register receiver_klass = R0;  // tmp
  1.2009 +
  1.2010 +  assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  1.2011 +  assert(R11_scratch1 == R11, "need prologue scratch register");
  1.2012 +
  1.2013 +  // Check for NULL argument if we don't have implicit null checks.
  1.2014 +  if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  1.2015 +    if (TrapBasedNullChecks) {
  1.2016 +      __ trap_null_check(R3_ARG1);
  1.2017 +    } else {
  1.2018 +      Label valid;
  1.2019 +      __ cmpdi(CCR0, R3_ARG1, 0);
  1.2020 +      __ bne_predict_taken(CCR0, valid);
  1.2021 +      // We have a null argument, branch to ic_miss_stub.
  1.2022 +      __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1.2023 +                           relocInfo::runtime_call_type);
  1.2024 +      __ bind(valid);
  1.2025 +    }
  1.2026 +  }
  1.2027 +  // Assume argument is not NULL, load klass from receiver.
  1.2028 +  __ load_klass(receiver_klass, R3_ARG1);
  1.2029 +
  1.2030 +  if (TrapBasedICMissChecks) {
  1.2031 +    __ trap_ic_miss_check(receiver_klass, ic_klass);
  1.2032 +  } else {
  1.2033 +    Label valid;
  1.2034 +    __ cmpd(CCR0, receiver_klass, ic_klass);
  1.2035 +    __ beq_predict_taken(CCR0, valid);
  1.2036 +    // We have an unexpected klass, branch to ic_miss_stub.
  1.2037 +    __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1.2038 +                         relocInfo::runtime_call_type);
  1.2039 +    __ bind(valid);
  1.2040 +  }
  1.2041 +
  1.2042 +  // Argument is valid and klass is as expected, continue.
  1.2043 +}
  1.2044 +
  1.2045 +#if 0 // TODO: PPC port
  1.2046 +// Optimize UEP code on z (save a load_const() call in main path).
  1.2047 +int MachUEPNode::ep_offset() {
  1.2048 +  return 0;
  1.2049 +}
  1.2050 +#endif
  1.2051 +
  1.2052 +uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1.2053 +  // Variable size. Determine dynamically.
  1.2054 +  return MachNode::size(ra_);
  1.2055 +}
  1.2056 +
  1.2057 +//=============================================================================
  1.2058 +
  1.2059 +%} // interrupt source
  1.2060 +
  1.2061 +source_hpp %{ // Header information of the source block.
  1.2062 +
  1.2063 +class HandlerImpl {
  1.2064 +
  1.2065 + public:
  1.2066 +
  1.2067 +  static int emit_exception_handler(CodeBuffer &cbuf);
  1.2068 +  static int emit_deopt_handler(CodeBuffer& cbuf);
  1.2069 +
  1.2070 +  static uint size_exception_handler() {
  1.2071 +    // The exception_handler is a b64_patchable.
  1.2072 +    return MacroAssembler::b64_patchable_size;
  1.2073 +  }
  1.2074 +
  1.2075 +  static uint size_deopt_handler() {
  1.2076 +    // The deopt_handler is a bl64_patchable.
  1.2077 +    return MacroAssembler::bl64_patchable_size;
  1.2078 +  }
  1.2079 +
  1.2080 +};
  1.2081 +
  1.2082 +%} // end source_hpp
  1.2083 +
  1.2084 +source %{
  1.2085 +
  1.2086 +int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  1.2087 +  MacroAssembler _masm(&cbuf);
  1.2088 +
  1.2089 +  address base = __ start_a_stub(size_exception_handler());
  1.2090 +  if (base == NULL) return 0; // CodeBuffer::expand failed
  1.2091 +
  1.2092 +  int offset = __ offset();
  1.2093 +  __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  1.2094 +                       relocInfo::runtime_call_type);
  1.2095 +  assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  1.2096 +  __ end_a_stub();
  1.2097 +
  1.2098 +  return offset;
  1.2099 +}
  1.2100 +
  1.2101 +// The deopt_handler is like the exception handler, but it calls to
  1.2102 +// the deoptimization blob instead of jumping to the exception blob.
  1.2103 +int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  1.2104 +  MacroAssembler _masm(&cbuf);
  1.2105 +
  1.2106 +  address base = __ start_a_stub(size_deopt_handler());
  1.2107 +  if (base == NULL) return 0; // CodeBuffer::expand failed
  1.2108 +
  1.2109 +  int offset = __ offset();
  1.2110 +  __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  1.2111 +                        relocInfo::runtime_call_type);
  1.2112 +  assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  1.2113 +  __ end_a_stub();
  1.2114 +
  1.2115 +  return offset;
  1.2116 +}
  1.2117 +
  1.2118 +//=============================================================================
  1.2119 +
  1.2120 +// Use a frame slots bias for frameless methods if accessing the stack.
  1.2121 +static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  1.2122 +  if (as_Register(reg_enc) == R1_SP) {
  1.2123 +    return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  1.2124 +  }
  1.2125 +  return 0;
  1.2126 +}
  1.2127 +
  1.2128 +const bool Matcher::match_rule_supported(int opcode) {
  1.2129 +  if (!has_match_rule(opcode))
  1.2130 +    return false;
  1.2131 +
  1.2132 +  switch (opcode) {
  1.2133 +  case Op_SqrtD:
  1.2134 +    return VM_Version::has_fsqrt();
  1.2135 +  case Op_CountLeadingZerosI:
  1.2136 +  case Op_CountLeadingZerosL:
  1.2137 +  case Op_CountTrailingZerosI:
  1.2138 +  case Op_CountTrailingZerosL:
  1.2139 +    if (!UseCountLeadingZerosInstructionsPPC64)
  1.2140 +      return false;
  1.2141 +    break;
  1.2142 +
  1.2143 +  case Op_PopCountI:
  1.2144 +  case Op_PopCountL:
  1.2145 +    return (UsePopCountInstruction && VM_Version::has_popcntw());
  1.2146 +
  1.2147 +  case Op_StrComp:
  1.2148 +    return SpecialStringCompareTo;
  1.2149 +  case Op_StrEquals:
  1.2150 +    return SpecialStringEquals;
  1.2151 +  case Op_StrIndexOf:
  1.2152 +    return SpecialStringIndexOf;
  1.2153 +  }
  1.2154 +
  1.2155 +  return true;  // Per default match rules are supported.
  1.2156 +}
  1.2157 +
  1.2158 +int Matcher::regnum_to_fpu_offset(int regnum) {
  1.2159 +  // No user for this method?
  1.2160 +  Unimplemented();
  1.2161 +  return 999;
  1.2162 +}
  1.2163 +
  1.2164 +const bool Matcher::convL2FSupported(void) {
  1.2165 +  // fcfids can do the conversion (>= Power7).
  1.2166 +  // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  1.2167 +  return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  1.2168 +}
  1.2169 +
  1.2170 +// Vector width in bytes.
  1.2171 +const int Matcher::vector_width_in_bytes(BasicType bt) {
  1.2172 +  assert(MaxVectorSize == 8, "");
  1.2173 +  return 8;
  1.2174 +}
  1.2175 +
  1.2176 +// Vector ideal reg.
  1.2177 +const int Matcher::vector_ideal_reg(int size) {
  1.2178 +  assert(MaxVectorSize == 8 && size == 8, "");
  1.2179 +  return Op_RegL;
  1.2180 +}
  1.2181 +
  1.2182 +const int Matcher::vector_shift_count_ideal_reg(int size) {
  1.2183 +  fatal("vector shift is not supported");
  1.2184 +  return Node::NotAMachineReg;
  1.2185 +}
  1.2186 +
  1.2187 +// Limits on vector size (number of elements) loaded into vector.
  1.2188 +const int Matcher::max_vector_size(const BasicType bt) {
  1.2189 +  assert(is_java_primitive(bt), "only primitive type vectors");
  1.2190 +  return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1.2191 +}
  1.2192 +
  1.2193 +const int Matcher::min_vector_size(const BasicType bt) {
  1.2194 +  return max_vector_size(bt); // Same as max.
  1.2195 +}
  1.2196 +
  1.2197 +// PPC doesn't support misaligned vectors store/load.
  1.2198 +const bool Matcher::misaligned_vectors_ok() {
  1.2199 +  return false;
  1.2200 +}
  1.2201 +
  1.2202 +// PPC AES support not yet implemented
  1.2203 +const bool Matcher::pass_original_key_for_aes() {
  1.2204 +  return false;
  1.2205 +}
  1.2206 +
  1.2207 +// RETURNS: whether this branch offset is short enough that a short
  1.2208 +// branch can be used.
  1.2209 +//
  1.2210 +// If the platform does not provide any short branch variants, then
  1.2211 +// this method should return `false' for offset 0.
  1.2212 +//
  1.2213 +// `Compile::Fill_buffer' will decide on basis of this information
  1.2214 +// whether to do the pass `Compile::Shorten_branches' at all.
  1.2215 +//
  1.2216 +// And `Compile::Shorten_branches' will decide on basis of this
  1.2217 +// information whether to replace particular branch sites by short
  1.2218 +// ones.
  1.2219 +bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1.2220 +  // Is the offset within the range of a ppc64 pc relative branch?
  1.2221 +  bool b;
  1.2222 +
  1.2223 +  const int safety_zone = 3 * BytesPerInstWord;
  1.2224 +  b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  1.2225 +                         29 - 16 + 1 + 2);
  1.2226 +  return b;
  1.2227 +}
  1.2228 +
  1.2229 +const bool Matcher::isSimpleConstant64(jlong value) {
  1.2230 +  // Probably always true, even if a temp register is required.
  1.2231 +  return true;
  1.2232 +}
  1.2233 +/* TODO: PPC port
  1.2234 +// Make a new machine dependent decode node (with its operands).
  1.2235 +MachTypeNode *Matcher::make_decode_node(Compile *C) {
  1.2236 +  assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  1.2237 +         "This method is only implemented for unscaled cOops mode so far");
  1.2238 +  MachTypeNode *decode = new (C) decodeN_unscaledNode();
  1.2239 +  decode->set_opnd_array(0, new (C) iRegPdstOper());
  1.2240 +  decode->set_opnd_array(1, new (C) iRegNsrcOper());
  1.2241 +  return decode;
  1.2242 +}
  1.2243 +*/
  1.2244 +// Threshold size for cleararray.
  1.2245 +const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1.2246 +
  1.2247 +// false => size gets scaled to BytesPerLong, ok.
  1.2248 +const bool Matcher::init_array_count_is_in_bytes = false;
  1.2249 +
  1.2250 +// Use conditional move (CMOVL) on Power7.
  1.2251 +const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  1.2252 +
  1.2253 +// Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  1.2254 +// fsel doesn't accept a condition register as input, so this would be slightly different.
  1.2255 +const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  1.2256 +
  1.2257 +// Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  1.2258 +const bool Matcher::require_postalloc_expand = true;
  1.2259 +
  1.2260 +// Should the Matcher clone shifts on addressing modes, expecting them to
  1.2261 +// be subsumed into complex addressing expressions or compute them into
  1.2262 +// registers? True for Intel but false for most RISCs.
  1.2263 +const bool Matcher::clone_shift_expressions = false;
  1.2264 +
  1.2265 +// Do we need to mask the count passed to shift instructions or does
  1.2266 +// the cpu only look at the lower 5/6 bits anyway?
  1.2267 +// Off, as masks are generated in expand rules where required.
  1.2268 +// Constant shift counts are handled in Ideal phase.
  1.2269 +const bool Matcher::need_masked_shift_count = false;
  1.2270 +
  1.2271 +// This affects two different things:
  1.2272 +//  - how Decode nodes are matched
  1.2273 +//  - how ImplicitNullCheck opportunities are recognized
  1.2274 +// If true, the matcher will try to remove all Decodes and match them
  1.2275 +// (as operands) into nodes. NullChecks are not prepared to deal with
  1.2276 +// Decodes by final_graph_reshaping().
  1.2277 +// If false, final_graph_reshaping() forces the decode behind the Cmp
  1.2278 +// for a NullCheck. The matcher matches the Decode node into a register.
  1.2279 +// Implicit_null_check optimization moves the Decode along with the
  1.2280 +// memory operation back up before the NullCheck.
  1.2281 +bool Matcher::narrow_oop_use_complex_address() {
  1.2282 +  // TODO: PPC port if (MatchDecodeNodes) return true;
  1.2283 +  return false;
  1.2284 +}
  1.2285 +
  1.2286 +bool Matcher::narrow_klass_use_complex_address() {
  1.2287 +  NOT_LP64(ShouldNotCallThis());
  1.2288 +  assert(UseCompressedClassPointers, "only for compressed klass code");
  1.2289 +  // TODO: PPC port if (MatchDecodeNodes) return true;
  1.2290 +  return false;
  1.2291 +}
  1.2292 +
  1.2293 +// Is it better to copy float constants, or load them directly from memory?
  1.2294 +// Intel can load a float constant from a direct address, requiring no
  1.2295 +// extra registers. Most RISCs will have to materialize an address into a
  1.2296 +// register first, so they would do better to copy the constant from stack.
  1.2297 +const bool Matcher::rematerialize_float_constants = false;
  1.2298 +
  1.2299 +// If CPU can load and store mis-aligned doubles directly then no fixup is
  1.2300 +// needed. Else we split the double into 2 integer pieces and move it
  1.2301 +// piece-by-piece. Only happens when passing doubles into C code as the
  1.2302 +// Java calling convention forces doubles to be aligned.
  1.2303 +const bool Matcher::misaligned_doubles_ok = true;
  1.2304 +
  1.2305 +void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1.2306 + Unimplemented();
  1.2307 +}
  1.2308 +
  1.2309 +// Advertise here if the CPU requires explicit rounding operations
  1.2310 +// to implement the UseStrictFP mode.
  1.2311 +const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1.2312 +
  1.2313 +// Do floats take an entire double register or just half?
  1.2314 +//
  1.2315 +// A float occupies a ppc64 double register. For the allocator, a
  1.2316 +// ppc64 double register appears as a pair of float registers.
  1.2317 +bool Matcher::float_in_double() { return true; }
  1.2318 +
  1.2319 +// Do ints take an entire long register or just half?
  1.2320 +// The relevant question is how the int is callee-saved:
  1.2321 +// the whole long is written but de-opt'ing will have to extract
  1.2322 +// the relevant 32 bits.
  1.2323 +const bool Matcher::int_in_long = true;
  1.2324 +
  1.2325 +// Constants for c2c and c calling conventions.
  1.2326 +
  1.2327 +const MachRegisterNumbers iarg_reg[8] = {
  1.2328 +  R3_num, R4_num, R5_num, R6_num,
  1.2329 +  R7_num, R8_num, R9_num, R10_num
  1.2330 +};
  1.2331 +
  1.2332 +const MachRegisterNumbers farg_reg[13] = {
  1.2333 +  F1_num, F2_num, F3_num, F4_num,
  1.2334 +  F5_num, F6_num, F7_num, F8_num,
  1.2335 +  F9_num, F10_num, F11_num, F12_num,
  1.2336 +  F13_num
  1.2337 +};
  1.2338 +
  1.2339 +const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  1.2340 +
  1.2341 +const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  1.2342 +
  1.2343 +// Return whether or not this register is ever used as an argument. This
  1.2344 +// function is used on startup to build the trampoline stubs in generateOptoStub.
  1.2345 +// Registers not mentioned will be killed by the VM call in the trampoline, and
  1.2346 +// arguments in those registers not be available to the callee.
  1.2347 +bool Matcher::can_be_java_arg(int reg) {
  1.2348 +  // We return true for all registers contained in iarg_reg[] and
  1.2349 +  // farg_reg[] and their virtual halves.
  1.2350 +  // We must include the virtual halves in order to get STDs and LDs
  1.2351 +  // instead of STWs and LWs in the trampoline stubs.
  1.2352 +
  1.2353 +  if (   reg == R3_num  || reg == R3_H_num
  1.2354 +      || reg == R4_num  || reg == R4_H_num
  1.2355 +      || reg == R5_num  || reg == R5_H_num
  1.2356 +      || reg == R6_num  || reg == R6_H_num
  1.2357 +      || reg == R7_num  || reg == R7_H_num
  1.2358 +      || reg == R8_num  || reg == R8_H_num
  1.2359 +      || reg == R9_num  || reg == R9_H_num
  1.2360 +      || reg == R10_num || reg == R10_H_num)
  1.2361 +    return true;
  1.2362 +
  1.2363 +  if (   reg == F1_num  || reg == F1_H_num
  1.2364 +      || reg == F2_num  || reg == F2_H_num
  1.2365 +      || reg == F3_num  || reg == F3_H_num
  1.2366 +      || reg == F4_num  || reg == F4_H_num
  1.2367 +      || reg == F5_num  || reg == F5_H_num
  1.2368 +      || reg == F6_num  || reg == F6_H_num
  1.2369 +      || reg == F7_num  || reg == F7_H_num
  1.2370 +      || reg == F8_num  || reg == F8_H_num
  1.2371 +      || reg == F9_num  || reg == F9_H_num
  1.2372 +      || reg == F10_num || reg == F10_H_num
  1.2373 +      || reg == F11_num || reg == F11_H_num
  1.2374 +      || reg == F12_num || reg == F12_H_num
  1.2375 +      || reg == F13_num || reg == F13_H_num)
  1.2376 +    return true;
  1.2377 +
  1.2378 +  return false;
  1.2379 +}
  1.2380 +
  1.2381 +bool Matcher::is_spillable_arg(int reg) {
  1.2382 +  return can_be_java_arg(reg);
  1.2383 +}
  1.2384 +
  1.2385 +bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  1.2386 +  return false;
  1.2387 +}
  1.2388 +
  1.2389 +// Register for DIVI projection of divmodI.
  1.2390 +RegMask Matcher::divI_proj_mask() {
  1.2391 +  ShouldNotReachHere();
  1.2392 +  return RegMask();
  1.2393 +}
  1.2394 +
  1.2395 +// Register for MODI projection of divmodI.
  1.2396 +RegMask Matcher::modI_proj_mask() {
  1.2397 +  ShouldNotReachHere();
  1.2398 +  return RegMask();
  1.2399 +}
  1.2400 +
  1.2401 +// Register for DIVL projection of divmodL.
  1.2402 +RegMask Matcher::divL_proj_mask() {
  1.2403 +  ShouldNotReachHere();
  1.2404 +  return RegMask();
  1.2405 +}
  1.2406 +
  1.2407 +// Register for MODL projection of divmodL.
  1.2408 +RegMask Matcher::modL_proj_mask() {
  1.2409 +  ShouldNotReachHere();
  1.2410 +  return RegMask();
  1.2411 +}
  1.2412 +
  1.2413 +const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1.2414 +  return RegMask();
  1.2415 +}
  1.2416 +
  1.2417 +%}
  1.2418 +
  1.2419 +//----------ENCODING BLOCK-----------------------------------------------------
  1.2420 +// This block specifies the encoding classes used by the compiler to output
  1.2421 +// byte streams. Encoding classes are parameterized macros used by
  1.2422 +// Machine Instruction Nodes in order to generate the bit encoding of the
  1.2423 +// instruction. Operands specify their base encoding interface with the
  1.2424 +// interface keyword. There are currently supported four interfaces,
  1.2425 +// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  1.2426 +// operand to generate a function which returns its register number when
  1.2427 +// queried. CONST_INTER causes an operand to generate a function which
  1.2428 +// returns the value of the constant when queried. MEMORY_INTER causes an
  1.2429 +// operand to generate four functions which return the Base Register, the
  1.2430 +// Index Register, the Scale Value, and the Offset Value of the operand when
  1.2431 +// queried. COND_INTER causes an operand to generate six functions which
  1.2432 +// return the encoding code (ie - encoding bits for the instruction)
  1.2433 +// associated with each basic boolean condition for a conditional instruction.
  1.2434 +//
  1.2435 +// Instructions specify two basic values for encoding. Again, a function
  1.2436 +// is available to check if the constant displacement is an oop. They use the
  1.2437 +// ins_encode keyword to specify their encoding classes (which must be
  1.2438 +// a sequence of enc_class names, and their parameters, specified in
  1.2439 +// the encoding block), and they use the
  1.2440 +// opcode keyword to specify, in order, their primary, secondary, and
  1.2441 +// tertiary opcode. Only the opcode sections which a particular instruction
  1.2442 +// needs for encoding need to be specified.
  1.2443 +encode %{
  1.2444 +  enc_class enc_unimplemented %{
  1.2445 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2446 +    MacroAssembler _masm(&cbuf);
  1.2447 +    __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  1.2448 +  %}
  1.2449 +
  1.2450 +  enc_class enc_untested %{
  1.2451 +#ifdef ASSERT
  1.2452 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2453 +    MacroAssembler _masm(&cbuf);
  1.2454 +    __ untested("Untested mach node encoding in AD file.");
  1.2455 +#else
  1.2456 +    // TODO: PPC port $archOpcode(ppc64Opcode_none);
  1.2457 +#endif
  1.2458 +  %}
  1.2459 +
  1.2460 +  enc_class enc_lbz(iRegIdst dst, memory mem) %{
  1.2461 +    // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  1.2462 +    MacroAssembler _masm(&cbuf);
  1.2463 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2464 +    __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2465 +  %}
  1.2466 +
  1.2467 +  // Load acquire.
  1.2468 +  enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  1.2469 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2470 +    MacroAssembler _masm(&cbuf);
  1.2471 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2472 +    __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2473 +    __ twi_0($dst$$Register);
  1.2474 +    __ isync();
  1.2475 +  %}
  1.2476 +
  1.2477 +  enc_class enc_lhz(iRegIdst dst, memory mem) %{
  1.2478 +    // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  1.2479 +
  1.2480 +    MacroAssembler _masm(&cbuf);
  1.2481 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2482 +    __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2483 +  %}
  1.2484 +
  1.2485 +  // Load acquire.
  1.2486 +  enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  1.2487 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2488 +
  1.2489 +    MacroAssembler _masm(&cbuf);
  1.2490 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2491 +    __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2492 +    __ twi_0($dst$$Register);
  1.2493 +    __ isync();
  1.2494 +  %}
  1.2495 +
  1.2496 +  enc_class enc_lwz(iRegIdst dst, memory mem) %{
  1.2497 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  1.2498 +
  1.2499 +    MacroAssembler _masm(&cbuf);
  1.2500 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2501 +    __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2502 +  %}
  1.2503 +
  1.2504 +  // Load acquire.
  1.2505 +  enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  1.2506 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2507 +
  1.2508 +    MacroAssembler _masm(&cbuf);
  1.2509 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2510 +    __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  1.2511 +    __ twi_0($dst$$Register);
  1.2512 +    __ isync();
  1.2513 +  %}
  1.2514 +
  1.2515 +  enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  1.2516 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.2517 +    MacroAssembler _masm(&cbuf);
  1.2518 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2519 +    // Operand 'ds' requires 4-alignment.
  1.2520 +    assert((Idisp & 0x3) == 0, "unaligned offset");
  1.2521 +    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  1.2522 +  %}
  1.2523 +
  1.2524 +  // Load acquire.
  1.2525 +  enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  1.2526 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2527 +    MacroAssembler _masm(&cbuf);
  1.2528 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2529 +    // Operand 'ds' requires 4-alignment.
  1.2530 +    assert((Idisp & 0x3) == 0, "unaligned offset");
  1.2531 +    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  1.2532 +    __ twi_0($dst$$Register);
  1.2533 +    __ isync();
  1.2534 +  %}
  1.2535 +
  1.2536 +  enc_class enc_lfd(RegF dst, memory mem) %{
  1.2537 +    // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  1.2538 +    MacroAssembler _masm(&cbuf);
  1.2539 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2540 +    __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  1.2541 +  %}
  1.2542 +
  1.2543 +  enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  1.2544 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.2545 +
  1.2546 +    MacroAssembler _masm(&cbuf);
  1.2547 +    int toc_offset = 0;
  1.2548 +
  1.2549 +    if (!ra_->C->in_scratch_emit_size()) {
  1.2550 +      address const_toc_addr;
  1.2551 +      // Create a non-oop constant, no relocation needed.
  1.2552 +      // If it is an IC, it has a virtual_call_Relocation.
  1.2553 +      const_toc_addr = __ long_constant((jlong)$src$$constant);
  1.2554 +
  1.2555 +      // Get the constant's TOC offset.
  1.2556 +      toc_offset = __ offset_to_method_toc(const_toc_addr);
  1.2557 +
  1.2558 +      // Keep the current instruction offset in mind.
  1.2559 +      ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  1.2560 +    }
  1.2561 +
  1.2562 +    __ ld($dst$$Register, toc_offset, $toc$$Register);
  1.2563 +  %}
  1.2564 +
  1.2565 +  enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  1.2566 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.2567 +
  1.2568 +    MacroAssembler _masm(&cbuf);
  1.2569 +
  1.2570 +    if (!ra_->C->in_scratch_emit_size()) {
  1.2571 +      address const_toc_addr;
  1.2572 +      // Create a non-oop constant, no relocation needed.
  1.2573 +      // If it is an IC, it has a virtual_call_Relocation.
  1.2574 +      const_toc_addr = __ long_constant((jlong)$src$$constant);
  1.2575 +
  1.2576 +      // Get the constant's TOC offset.
  1.2577 +      const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  1.2578 +      // Store the toc offset of the constant.
  1.2579 +      ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  1.2580 +
  1.2581 +      // Also keep the current instruction offset in mind.
  1.2582 +      ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  1.2583 +    }
  1.2584 +
  1.2585 +    __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  1.2586 +  %}
  1.2587 +
  1.2588 +%} // encode
  1.2589 +
  1.2590 +source %{
  1.2591 +
  1.2592 +typedef struct {
  1.2593 +  loadConL_hiNode *_large_hi;
  1.2594 +  loadConL_loNode *_large_lo;
  1.2595 +  loadConLNode    *_small;
  1.2596 +  MachNode        *_last;
  1.2597 +} loadConLNodesTuple;
  1.2598 +
  1.2599 +loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  1.2600 +                                             OptoReg::Name reg_second, OptoReg::Name reg_first) {
  1.2601 +  loadConLNodesTuple nodes;
  1.2602 +
  1.2603 +  const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  1.2604 +  if (large_constant_pool) {
  1.2605 +    // Create new nodes.
  1.2606 +    loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  1.2607 +    loadConL_loNode *m2 = new (C) loadConL_loNode();
  1.2608 +
  1.2609 +    // inputs for new nodes
  1.2610 +    m1->add_req(NULL, toc);
  1.2611 +    m2->add_req(NULL, m1);
  1.2612 +
  1.2613 +    // operands for new nodes
  1.2614 +    m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  1.2615 +    m1->_opnds[1] = immSrc;                 // src
  1.2616 +    m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  1.2617 +    m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  1.2618 +    m2->_opnds[1] = immSrc;                 // src
  1.2619 +    m2->_opnds[2] = new (C) iRegLdstOper(); // base
  1.2620 +
  1.2621 +    // Initialize ins_attrib TOC fields.
  1.2622 +    m1->_const_toc_offset = -1;
  1.2623 +    m2->_const_toc_offset_hi_node = m1;
  1.2624 +
  1.2625 +    // Initialize ins_attrib instruction offset.
  1.2626 +    m1->_cbuf_insts_offset = -1;
  1.2627 +
  1.2628 +    // register allocation for new nodes
  1.2629 +    ra_->set_pair(m1->_idx, reg_second, reg_first);
  1.2630 +    ra_->set_pair(m2->_idx, reg_second, reg_first);
  1.2631 +
  1.2632 +    // Create result.
  1.2633 +    nodes._large_hi = m1;
  1.2634 +    nodes._large_lo = m2;
  1.2635 +    nodes._small = NULL;
  1.2636 +    nodes._last = nodes._large_lo;
  1.2637 +    assert(m2->bottom_type()->isa_long(), "must be long");
  1.2638 +  } else {
  1.2639 +    loadConLNode *m2 = new (C) loadConLNode();
  1.2640 +
  1.2641 +    // inputs for new nodes
  1.2642 +    m2->add_req(NULL, toc);
  1.2643 +
  1.2644 +    // operands for new nodes
  1.2645 +    m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  1.2646 +    m2->_opnds[1] = immSrc;                 // src
  1.2647 +    m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  1.2648 +
  1.2649 +    // Initialize ins_attrib instruction offset.
  1.2650 +    m2->_cbuf_insts_offset = -1;
  1.2651 +
  1.2652 +    // register allocation for new nodes
  1.2653 +    ra_->set_pair(m2->_idx, reg_second, reg_first);
  1.2654 +
  1.2655 +    // Create result.
  1.2656 +    nodes._large_hi = NULL;
  1.2657 +    nodes._large_lo = NULL;
  1.2658 +    nodes._small = m2;
  1.2659 +    nodes._last = nodes._small;
  1.2660 +    assert(m2->bottom_type()->isa_long(), "must be long");
  1.2661 +  }
  1.2662 +
  1.2663 +  return nodes;
  1.2664 +}
  1.2665 +
  1.2666 +%} // source
  1.2667 +
  1.2668 +encode %{
  1.2669 +  // Postalloc expand emitter for loading a long constant from the method's TOC.
  1.2670 +  // Enc_class needed as consttanttablebase is not supported by postalloc
  1.2671 +  // expand.
  1.2672 +  enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  1.2673 +    // Create new nodes.
  1.2674 +    loadConLNodesTuple loadConLNodes =
  1.2675 +      loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  1.2676 +                                ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2677 +
  1.2678 +    // Push new nodes.
  1.2679 +    if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  1.2680 +    if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  1.2681 +
  1.2682 +    // some asserts
  1.2683 +    assert(nodes->length() >= 1, "must have created at least 1 node");
  1.2684 +    assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  1.2685 +  %}
  1.2686 +
  1.2687 +  enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  1.2688 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.2689 +
  1.2690 +    MacroAssembler _masm(&cbuf);
  1.2691 +    int toc_offset = 0;
  1.2692 +
  1.2693 +    if (!ra_->C->in_scratch_emit_size()) {
  1.2694 +      intptr_t val = $src$$constant;
  1.2695 +      relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  1.2696 +      address const_toc_addr;
  1.2697 +      if (constant_reloc == relocInfo::oop_type) {
  1.2698 +        // Create an oop constant and a corresponding relocation.
  1.2699 +        AddressLiteral a = __ allocate_oop_address((jobject)val);
  1.2700 +        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  1.2701 +        __ relocate(a.rspec());
  1.2702 +      } else if (constant_reloc == relocInfo::metadata_type) {
  1.2703 +        AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  1.2704 +        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  1.2705 +        __ relocate(a.rspec());
  1.2706 +      } else {
  1.2707 +        // Create a non-oop constant, no relocation needed.
  1.2708 +        const_toc_addr = __ long_constant((jlong)$src$$constant);
  1.2709 +      }
  1.2710 +
  1.2711 +      // Get the constant's TOC offset.
  1.2712 +      toc_offset = __ offset_to_method_toc(const_toc_addr);
  1.2713 +    }
  1.2714 +
  1.2715 +    __ ld($dst$$Register, toc_offset, $toc$$Register);
  1.2716 +  %}
  1.2717 +
  1.2718 +  enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  1.2719 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.2720 +
  1.2721 +    MacroAssembler _masm(&cbuf);
  1.2722 +    if (!ra_->C->in_scratch_emit_size()) {
  1.2723 +      intptr_t val = $src$$constant;
  1.2724 +      relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  1.2725 +      address const_toc_addr;
  1.2726 +      if (constant_reloc == relocInfo::oop_type) {
  1.2727 +        // Create an oop constant and a corresponding relocation.
  1.2728 +        AddressLiteral a = __ allocate_oop_address((jobject)val);
  1.2729 +        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  1.2730 +        __ relocate(a.rspec());
  1.2731 +      } else if (constant_reloc == relocInfo::metadata_type) {
  1.2732 +        AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  1.2733 +        const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  1.2734 +        __ relocate(a.rspec());
  1.2735 +      } else {  // non-oop pointers, e.g. card mark base, heap top
  1.2736 +        // Create a non-oop constant, no relocation needed.
  1.2737 +        const_toc_addr = __ long_constant((jlong)$src$$constant);
  1.2738 +      }
  1.2739 +
  1.2740 +      // Get the constant's TOC offset.
  1.2741 +      const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  1.2742 +      // Store the toc offset of the constant.
  1.2743 +      ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  1.2744 +    }
  1.2745 +
  1.2746 +    __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  1.2747 +  %}
  1.2748 +
  1.2749 +  // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  1.2750 +  // Enc_class needed as consttanttablebase is not supported by postalloc
  1.2751 +  // expand.
  1.2752 +  enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  1.2753 +    const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  1.2754 +    if (large_constant_pool) {
  1.2755 +      // Create new nodes.
  1.2756 +      loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  1.2757 +      loadConP_loNode *m2 = new (C) loadConP_loNode();
  1.2758 +
  1.2759 +      // inputs for new nodes
  1.2760 +      m1->add_req(NULL, n_toc);
  1.2761 +      m2->add_req(NULL, m1);
  1.2762 +
  1.2763 +      // operands for new nodes
  1.2764 +      m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  1.2765 +      m1->_opnds[1] = op_src;                 // src
  1.2766 +      m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  1.2767 +      m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  1.2768 +      m2->_opnds[1] = op_src;                 // src
  1.2769 +      m2->_opnds[2] = new (C) iRegLdstOper(); // base
  1.2770 +
  1.2771 +      // Initialize ins_attrib TOC fields.
  1.2772 +      m1->_const_toc_offset = -1;
  1.2773 +      m2->_const_toc_offset_hi_node = m1;
  1.2774 +
  1.2775 +      // Register allocation for new nodes.
  1.2776 +      ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2777 +      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2778 +
  1.2779 +      nodes->push(m1);
  1.2780 +      nodes->push(m2);
  1.2781 +      assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  1.2782 +    } else {
  1.2783 +      loadConPNode *m2 = new (C) loadConPNode();
  1.2784 +
  1.2785 +      // inputs for new nodes
  1.2786 +      m2->add_req(NULL, n_toc);
  1.2787 +
  1.2788 +      // operands for new nodes
  1.2789 +      m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  1.2790 +      m2->_opnds[1] = op_src;                 // src
  1.2791 +      m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  1.2792 +
  1.2793 +      // Register allocation for new nodes.
  1.2794 +      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2795 +
  1.2796 +      nodes->push(m2);
  1.2797 +      assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  1.2798 +    }
  1.2799 +  %}
  1.2800 +
  1.2801 +  // Enc_class needed as consttanttablebase is not supported by postalloc
  1.2802 +  // expand.
  1.2803 +  enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  1.2804 +    bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  1.2805 +
  1.2806 +    MachNode *m2;
  1.2807 +    if (large_constant_pool) {
  1.2808 +      m2 = new (C) loadConFCompNode();
  1.2809 +    } else {
  1.2810 +      m2 = new (C) loadConFNode();
  1.2811 +    }
  1.2812 +    // inputs for new nodes
  1.2813 +    m2->add_req(NULL, n_toc);
  1.2814 +
  1.2815 +    // operands for new nodes
  1.2816 +    m2->_opnds[0] = op_dst;
  1.2817 +    m2->_opnds[1] = op_src;
  1.2818 +    m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  1.2819 +
  1.2820 +    // register allocation for new nodes
  1.2821 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2822 +    nodes->push(m2);
  1.2823 +  %}
  1.2824 +
  1.2825 +  // Enc_class needed as consttanttablebase is not supported by postalloc
  1.2826 +  // expand.
  1.2827 +  enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  1.2828 +    bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  1.2829 +
  1.2830 +    MachNode *m2;
  1.2831 +    if (large_constant_pool) {
  1.2832 +      m2 = new (C) loadConDCompNode();
  1.2833 +    } else {
  1.2834 +      m2 = new (C) loadConDNode();
  1.2835 +    }
  1.2836 +    // inputs for new nodes
  1.2837 +    m2->add_req(NULL, n_toc);
  1.2838 +
  1.2839 +    // operands for new nodes
  1.2840 +    m2->_opnds[0] = op_dst;
  1.2841 +    m2->_opnds[1] = op_src;
  1.2842 +    m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  1.2843 +
  1.2844 +    // register allocation for new nodes
  1.2845 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2846 +    nodes->push(m2);
  1.2847 +  %}
  1.2848 +
  1.2849 +  enc_class enc_stw(iRegIsrc src, memory mem) %{
  1.2850 +    // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  1.2851 +    MacroAssembler _masm(&cbuf);
  1.2852 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2853 +    __ stw($src$$Register, Idisp, $mem$$base$$Register);
  1.2854 +  %}
  1.2855 +
  1.2856 +  enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  1.2857 +    // TODO: PPC port $archOpcode(ppc64Opcode_std);
  1.2858 +    MacroAssembler _masm(&cbuf);
  1.2859 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2860 +    // Operand 'ds' requires 4-alignment.
  1.2861 +    assert((Idisp & 0x3) == 0, "unaligned offset");
  1.2862 +    __ std($src$$Register, Idisp, $mem$$base$$Register);
  1.2863 +  %}
  1.2864 +
  1.2865 +  enc_class enc_stfs(RegF src, memory mem) %{
  1.2866 +    // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  1.2867 +    MacroAssembler _masm(&cbuf);
  1.2868 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2869 +    __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  1.2870 +  %}
  1.2871 +
  1.2872 +  enc_class enc_stfd(RegF src, memory mem) %{
  1.2873 +    // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  1.2874 +    MacroAssembler _masm(&cbuf);
  1.2875 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.2876 +    __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  1.2877 +  %}
  1.2878 +
  1.2879 +  // Use release_store for card-marking to ensure that previous
  1.2880 +  // oop-stores are visible before the card-mark change.
  1.2881 +  enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  1.2882 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.2883 +    // FIXME: Implement this as a cmove and use a fixed condition code
  1.2884 +    // register which is written on every transition to compiled code,
  1.2885 +    // e.g. in call-stub and when returning from runtime stubs.
  1.2886 +    //
  1.2887 +    // Proposed code sequence for the cmove implementation:
  1.2888 +    //
  1.2889 +    // Label skip_release;
  1.2890 +    // __ beq(CCRfixed, skip_release);
  1.2891 +    // __ release();
  1.2892 +    // __ bind(skip_release);
  1.2893 +    // __ stb(card mark);
  1.2894 +
  1.2895 +    MacroAssembler _masm(&cbuf);
  1.2896 +    Label skip_storestore;
  1.2897 +
  1.2898 +#if 0 // TODO: PPC port
  1.2899 +    // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  1.2900 +    // StoreStore barrier conditionally.
  1.2901 +    __ lwz(R0, 0, $releaseFieldAddr$$Register);
  1.2902 +    __ cmpwi(CCR0, R0, 0);
  1.2903 +    __ beq_predict_taken(CCR0, skip_storestore);
  1.2904 +#endif
  1.2905 +    __ li(R0, 0);
  1.2906 +    __ membar(Assembler::StoreStore);
  1.2907 +#if 0 // TODO: PPC port
  1.2908 +    __ bind(skip_storestore);
  1.2909 +#endif
  1.2910 +
  1.2911 +    // Do the store.
  1.2912 +    if ($mem$$index == 0) {
  1.2913 +      __ stb(R0, $mem$$disp, $mem$$base$$Register);
  1.2914 +    } else {
  1.2915 +      assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  1.2916 +      __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  1.2917 +    }
  1.2918 +  %}
  1.2919 +
  1.2920 +  enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  1.2921 +
  1.2922 +    if (VM_Version::has_isel()) {
  1.2923 +      // use isel instruction with Power 7
  1.2924 +      cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  1.2925 +      encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  1.2926 +      encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  1.2927 +      cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  1.2928 +
  1.2929 +      n_compare->add_req(n_region, n_src);
  1.2930 +      n_compare->_opnds[0] = op_crx;
  1.2931 +      n_compare->_opnds[1] = op_src;
  1.2932 +      n_compare->_opnds[2] = new (C) immL16Oper(0);
  1.2933 +
  1.2934 +      n_sub_base->add_req(n_region, n_src);
  1.2935 +      n_sub_base->_opnds[0] = op_dst;
  1.2936 +      n_sub_base->_opnds[1] = op_src;
  1.2937 +      n_sub_base->_bottom_type = _bottom_type;
  1.2938 +
  1.2939 +      n_shift->add_req(n_region, n_sub_base);
  1.2940 +      n_shift->_opnds[0] = op_dst;
  1.2941 +      n_shift->_opnds[1] = op_dst;
  1.2942 +      n_shift->_bottom_type = _bottom_type;
  1.2943 +
  1.2944 +      n_cond_set->add_req(n_region, n_compare, n_shift);
  1.2945 +      n_cond_set->_opnds[0] = op_dst;
  1.2946 +      n_cond_set->_opnds[1] = op_crx;
  1.2947 +      n_cond_set->_opnds[2] = op_dst;
  1.2948 +      n_cond_set->_bottom_type = _bottom_type;
  1.2949 +
  1.2950 +      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  1.2951 +      ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2952 +      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2953 +      ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2954 +
  1.2955 +      nodes->push(n_compare);
  1.2956 +      nodes->push(n_sub_base);
  1.2957 +      nodes->push(n_shift);
  1.2958 +      nodes->push(n_cond_set);
  1.2959 +
  1.2960 +    } else {
  1.2961 +      // before Power 7
  1.2962 +      moveRegNode        *n_move     = new (C) moveRegNode();
  1.2963 +      cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  1.2964 +      encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  1.2965 +      cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  1.2966 +
  1.2967 +      n_move->add_req(n_region, n_src);
  1.2968 +      n_move->_opnds[0] = op_dst;
  1.2969 +      n_move->_opnds[1] = op_src;
  1.2970 +      ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  1.2971 +
  1.2972 +      n_compare->add_req(n_region, n_src);
  1.2973 +      n_compare->add_prec(n_move);
  1.2974 +
  1.2975 +      n_compare->_opnds[0] = op_crx;
  1.2976 +      n_compare->_opnds[1] = op_src;
  1.2977 +      n_compare->_opnds[2] = new (C) immL16Oper(0);
  1.2978 +
  1.2979 +      n_sub_base->add_req(n_region, n_compare, n_src);
  1.2980 +      n_sub_base->_opnds[0] = op_dst;
  1.2981 +      n_sub_base->_opnds[1] = op_crx;
  1.2982 +      n_sub_base->_opnds[2] = op_src;
  1.2983 +      n_sub_base->_bottom_type = _bottom_type;
  1.2984 +
  1.2985 +      n_shift->add_req(n_region, n_sub_base);
  1.2986 +      n_shift->_opnds[0] = op_dst;
  1.2987 +      n_shift->_opnds[1] = op_dst;
  1.2988 +      n_shift->_bottom_type = _bottom_type;
  1.2989 +
  1.2990 +      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2991 +      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  1.2992 +      ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2993 +      ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.2994 +
  1.2995 +      nodes->push(n_move);
  1.2996 +      nodes->push(n_compare);
  1.2997 +      nodes->push(n_sub_base);
  1.2998 +      nodes->push(n_shift);
  1.2999 +    }
  1.3000 +
  1.3001 +    assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  1.3002 +  %}
  1.3003 +
  1.3004 +  enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  1.3005 +
  1.3006 +    encodeP_subNode *n1 = new (C) encodeP_subNode();
  1.3007 +    n1->add_req(n_region, n_src);
  1.3008 +    n1->_opnds[0] = op_dst;
  1.3009 +    n1->_opnds[1] = op_src;
  1.3010 +    n1->_bottom_type = _bottom_type;
  1.3011 +
  1.3012 +    encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  1.3013 +    n2->add_req(n_region, n1);
  1.3014 +    n2->_opnds[0] = op_dst;
  1.3015 +    n2->_opnds[1] = op_dst;
  1.3016 +    n2->_bottom_type = _bottom_type;
  1.3017 +    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3018 +    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3019 +
  1.3020 +    nodes->push(n1);
  1.3021 +    nodes->push(n2);
  1.3022 +    assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  1.3023 +  %}
  1.3024 +
  1.3025 +  enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  1.3026 +    decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  1.3027 +    cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  1.3028 +
  1.3029 +    n_compare->add_req(n_region, n_src);
  1.3030 +    n_compare->_opnds[0] = op_crx;
  1.3031 +    n_compare->_opnds[1] = op_src;
  1.3032 +    n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  1.3033 +
  1.3034 +    n_shift->add_req(n_region, n_src);
  1.3035 +    n_shift->_opnds[0] = op_dst;
  1.3036 +    n_shift->_opnds[1] = op_src;
  1.3037 +    n_shift->_bottom_type = _bottom_type;
  1.3038 +
  1.3039 +    if (VM_Version::has_isel()) {
  1.3040 +      // use isel instruction with Power 7
  1.3041 +
  1.3042 +      decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  1.3043 +      n_add_base->add_req(n_region, n_shift);
  1.3044 +      n_add_base->_opnds[0] = op_dst;
  1.3045 +      n_add_base->_opnds[1] = op_dst;
  1.3046 +      n_add_base->_bottom_type = _bottom_type;
  1.3047 +
  1.3048 +      cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  1.3049 +      n_cond_set->add_req(n_region, n_compare, n_add_base);
  1.3050 +      n_cond_set->_opnds[0] = op_dst;
  1.3051 +      n_cond_set->_opnds[1] = op_crx;
  1.3052 +      n_cond_set->_opnds[2] = op_dst;
  1.3053 +      n_cond_set->_bottom_type = _bottom_type;
  1.3054 +
  1.3055 +      assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  1.3056 +      ra_->set_oop(n_cond_set, true);
  1.3057 +
  1.3058 +      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3059 +      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  1.3060 +      ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3061 +      ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3062 +
  1.3063 +      nodes->push(n_compare);
  1.3064 +      nodes->push(n_shift);
  1.3065 +      nodes->push(n_add_base);
  1.3066 +      nodes->push(n_cond_set);
  1.3067 +
  1.3068 +    } else {
  1.3069 +      // before Power 7
  1.3070 +      cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  1.3071 +
  1.3072 +      n_add_base->add_req(n_region, n_compare, n_shift);
  1.3073 +      n_add_base->_opnds[0] = op_dst;
  1.3074 +      n_add_base->_opnds[1] = op_crx;
  1.3075 +      n_add_base->_opnds[2] = op_dst;
  1.3076 +      n_add_base->_bottom_type = _bottom_type;
  1.3077 +
  1.3078 +      assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  1.3079 +      ra_->set_oop(n_add_base, true);
  1.3080 +
  1.3081 +      ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3082 +      ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  1.3083 +      ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3084 +
  1.3085 +      nodes->push(n_compare);
  1.3086 +      nodes->push(n_shift);
  1.3087 +      nodes->push(n_add_base);
  1.3088 +    }
  1.3089 +  %}
  1.3090 +
  1.3091 +  enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  1.3092 +    decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  1.3093 +    n1->add_req(n_region, n_src);
  1.3094 +    n1->_opnds[0] = op_dst;
  1.3095 +    n1->_opnds[1] = op_src;
  1.3096 +    n1->_bottom_type = _bottom_type;
  1.3097 +
  1.3098 +    decodeN_addNode *n2 = new (C) decodeN_addNode();
  1.3099 +    n2->add_req(n_region, n1);
  1.3100 +    n2->_opnds[0] = op_dst;
  1.3101 +    n2->_opnds[1] = op_dst;
  1.3102 +    n2->_bottom_type = _bottom_type;
  1.3103 +    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3104 +    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3105 +
  1.3106 +    assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  1.3107 +    ra_->set_oop(n2, true);
  1.3108 +
  1.3109 +    nodes->push(n1);
  1.3110 +    nodes->push(n2);
  1.3111 +  %}
  1.3112 +
  1.3113 +  enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  1.3114 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.3115 +
  1.3116 +    MacroAssembler _masm(&cbuf);
  1.3117 +    int cc        = $cmp$$cmpcode;
  1.3118 +    int flags_reg = $crx$$reg;
  1.3119 +    Label done;
  1.3120 +    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  1.3121 +    // Branch if not (cmp crx).
  1.3122 +    __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  1.3123 +    __ mr($dst$$Register, $src$$Register);
  1.3124 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.3125 +    __ bind(done);
  1.3126 +  %}
  1.3127 +
  1.3128 +  enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  1.3129 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.3130 +
  1.3131 +    MacroAssembler _masm(&cbuf);
  1.3132 +    Label done;
  1.3133 +    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  1.3134 +    // Branch if not (cmp crx).
  1.3135 +    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  1.3136 +    __ li($dst$$Register, $src$$constant);
  1.3137 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.3138 +    __ bind(done);
  1.3139 +  %}
  1.3140 +
  1.3141 +  // New atomics.
  1.3142 +  enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  1.3143 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3144 +
  1.3145 +    MacroAssembler _masm(&cbuf);
  1.3146 +    Register Rtmp   = R0;
  1.3147 +    Register Rres   = $res$$Register;
  1.3148 +    Register Rsrc   = $src$$Register;
  1.3149 +    Register Rptr   = $mem_ptr$$Register;
  1.3150 +    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  1.3151 +    Register Rold   = RegCollision ? Rtmp : Rres;
  1.3152 +
  1.3153 +    Label Lretry;
  1.3154 +    __ bind(Lretry);
  1.3155 +    __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  1.3156 +    __ add(Rtmp, Rsrc, Rold);
  1.3157 +    __ stwcx_(Rtmp, Rptr);
  1.3158 +    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1.3159 +      __ bne_predict_not_taken(CCR0, Lretry);
  1.3160 +    } else {
  1.3161 +      __ bne(                  CCR0, Lretry);
  1.3162 +    }
  1.3163 +    if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  1.3164 +    __ fence();
  1.3165 +  %}
  1.3166 +
  1.3167 +  enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  1.3168 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3169 +
  1.3170 +    MacroAssembler _masm(&cbuf);
  1.3171 +    Register Rtmp   = R0;
  1.3172 +    Register Rres   = $res$$Register;
  1.3173 +    Register Rsrc   = $src$$Register;
  1.3174 +    Register Rptr   = $mem_ptr$$Register;
  1.3175 +    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  1.3176 +    Register Rold   = RegCollision ? Rtmp : Rres;
  1.3177 +
  1.3178 +    Label Lretry;
  1.3179 +    __ bind(Lretry);
  1.3180 +    __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  1.3181 +    __ add(Rtmp, Rsrc, Rold);
  1.3182 +    __ stdcx_(Rtmp, Rptr);
  1.3183 +    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1.3184 +      __ bne_predict_not_taken(CCR0, Lretry);
  1.3185 +    } else {
  1.3186 +      __ bne(                  CCR0, Lretry);
  1.3187 +    }
  1.3188 +    if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  1.3189 +    __ fence();
  1.3190 +  %}
  1.3191 +
  1.3192 +  enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  1.3193 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3194 +
  1.3195 +    MacroAssembler _masm(&cbuf);
  1.3196 +    Register Rtmp   = R0;
  1.3197 +    Register Rres   = $res$$Register;
  1.3198 +    Register Rsrc   = $src$$Register;
  1.3199 +    Register Rptr   = $mem_ptr$$Register;
  1.3200 +    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  1.3201 +    Register Rold   = RegCollision ? Rtmp : Rres;
  1.3202 +
  1.3203 +    Label Lretry;
  1.3204 +    __ bind(Lretry);
  1.3205 +    __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  1.3206 +    __ stwcx_(Rsrc, Rptr);
  1.3207 +    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1.3208 +      __ bne_predict_not_taken(CCR0, Lretry);
  1.3209 +    } else {
  1.3210 +      __ bne(                  CCR0, Lretry);
  1.3211 +    }
  1.3212 +    if (RegCollision) __ mr(Rres, Rtmp);
  1.3213 +    __ fence();
  1.3214 +  %}
  1.3215 +
  1.3216 +  enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  1.3217 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3218 +
  1.3219 +    MacroAssembler _masm(&cbuf);
  1.3220 +    Register Rtmp   = R0;
  1.3221 +    Register Rres   = $res$$Register;
  1.3222 +    Register Rsrc   = $src$$Register;
  1.3223 +    Register Rptr   = $mem_ptr$$Register;
  1.3224 +    bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  1.3225 +    Register Rold   = RegCollision ? Rtmp : Rres;
  1.3226 +
  1.3227 +    Label Lretry;
  1.3228 +    __ bind(Lretry);
  1.3229 +    __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  1.3230 +    __ stdcx_(Rsrc, Rptr);
  1.3231 +    if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  1.3232 +      __ bne_predict_not_taken(CCR0, Lretry);
  1.3233 +    } else {
  1.3234 +      __ bne(                  CCR0, Lretry);
  1.3235 +    }
  1.3236 +    if (RegCollision) __ mr(Rres, Rtmp);
  1.3237 +    __ fence();
  1.3238 +  %}
  1.3239 +
  1.3240 +  // This enc_class is needed so that scheduler gets proper
  1.3241 +  // input mapping for latency computation.
  1.3242 +  enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.3243 +    // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  1.3244 +    MacroAssembler _masm(&cbuf);
  1.3245 +    __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  1.3246 +  %}
  1.3247 +
  1.3248 +  enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  1.3249 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3250 +
  1.3251 +    MacroAssembler _masm(&cbuf);
  1.3252 +
  1.3253 +    Label done;
  1.3254 +    __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  1.3255 +    __ li($dst$$Register, $zero$$constant);
  1.3256 +    __ beq($crx$$CondRegister, done);
  1.3257 +    __ li($dst$$Register, $notzero$$constant);
  1.3258 +    __ bind(done);
  1.3259 +  %}
  1.3260 +
  1.3261 +  enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  1.3262 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3263 +
  1.3264 +    MacroAssembler _masm(&cbuf);
  1.3265 +
  1.3266 +    Label done;
  1.3267 +    __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  1.3268 +    __ li($dst$$Register, $zero$$constant);
  1.3269 +    __ beq($crx$$CondRegister, done);
  1.3270 +    __ li($dst$$Register, $notzero$$constant);
  1.3271 +    __ bind(done);
  1.3272 +  %}
  1.3273 +
  1.3274 +  enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  1.3275 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.3276 +
  1.3277 +    MacroAssembler _masm(&cbuf);
  1.3278 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.3279 +    Label done;
  1.3280 +    __ bso($crx$$CondRegister, done);
  1.3281 +    __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  1.3282 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.3283 +    __ bind(done);
  1.3284 +  %}
  1.3285 +
  1.3286 +  enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  1.3287 +    // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  1.3288 +
  1.3289 +    MacroAssembler _masm(&cbuf);
  1.3290 +    Label d;   // dummy
  1.3291 +    __ bind(d);
  1.3292 +    Label* p = ($lbl$$label);
  1.3293 +    // `p' is `NULL' when this encoding class is used only to
  1.3294 +    // determine the size of the encoded instruction.
  1.3295 +    Label& l = (NULL == p)? d : *(p);
  1.3296 +    int cc = $cmp$$cmpcode;
  1.3297 +    int flags_reg = $crx$$reg;
  1.3298 +    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  1.3299 +    int bhint = Assembler::bhintNoHint;
  1.3300 +
  1.3301 +    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  1.3302 +      if (_prob <= PROB_NEVER) {
  1.3303 +        bhint = Assembler::bhintIsNotTaken;
  1.3304 +      } else if (_prob >= PROB_ALWAYS) {
  1.3305 +        bhint = Assembler::bhintIsTaken;
  1.3306 +      }
  1.3307 +    }
  1.3308 +
  1.3309 +    __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  1.3310 +          cc_to_biint(cc, flags_reg),
  1.3311 +          l);
  1.3312 +  %}
  1.3313 +
  1.3314 +  enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  1.3315 +    // The scheduler doesn't know about branch shortening, so we set the opcode
  1.3316 +    // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  1.3317 +    // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  1.3318 +
  1.3319 +    MacroAssembler _masm(&cbuf);
  1.3320 +    Label d;    // dummy
  1.3321 +    __ bind(d);
  1.3322 +    Label* p = ($lbl$$label);
  1.3323 +    // `p' is `NULL' when this encoding class is used only to
  1.3324 +    // determine the size of the encoded instruction.
  1.3325 +    Label& l = (NULL == p)? d : *(p);
  1.3326 +    int cc = $cmp$$cmpcode;
  1.3327 +    int flags_reg = $crx$$reg;
  1.3328 +    int bhint = Assembler::bhintNoHint;
  1.3329 +
  1.3330 +    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  1.3331 +      if (_prob <= PROB_NEVER) {
  1.3332 +        bhint = Assembler::bhintIsNotTaken;
  1.3333 +      } else if (_prob >= PROB_ALWAYS) {
  1.3334 +        bhint = Assembler::bhintIsTaken;
  1.3335 +      }
  1.3336 +    }
  1.3337 +
  1.3338 +    // Tell the conditional far branch to optimize itself when being relocated.
  1.3339 +    __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  1.3340 +                  cc_to_biint(cc, flags_reg),
  1.3341 +                  l,
  1.3342 +                  MacroAssembler::bc_far_optimize_on_relocate);
  1.3343 +  %}
  1.3344 +
  1.3345 +  // Branch used with Power6 scheduling (can be shortened without changing the node).
  1.3346 +  enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  1.3347 +    // The scheduler doesn't know about branch shortening, so we set the opcode
  1.3348 +    // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  1.3349 +    // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  1.3350 +
  1.3351 +    MacroAssembler _masm(&cbuf);
  1.3352 +    Label d;   // dummy
  1.3353 +    __ bind(d);
  1.3354 +    Label* p = ($lbl$$label);
  1.3355 +    // `p' is `NULL' when this encoding class is used only to
  1.3356 +    // determine the size of the encoded instruction.
  1.3357 +    Label& l = (NULL == p)? d : *(p);
  1.3358 +    int cc = $cmp$$cmpcode;
  1.3359 +    int flags_reg = $crx$$reg;
  1.3360 +    int bhint = Assembler::bhintNoHint;
  1.3361 +
  1.3362 +    if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  1.3363 +      if (_prob <= PROB_NEVER) {
  1.3364 +        bhint = Assembler::bhintIsNotTaken;
  1.3365 +      } else if (_prob >= PROB_ALWAYS) {
  1.3366 +        bhint = Assembler::bhintIsTaken;
  1.3367 +      }
  1.3368 +    }
  1.3369 +
  1.3370 +#if 0 // TODO: PPC port
  1.3371 +    if (_size == 8) {
  1.3372 +      // Tell the conditional far branch to optimize itself when being relocated.
  1.3373 +      __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  1.3374 +                    cc_to_biint(cc, flags_reg),
  1.3375 +                    l,
  1.3376 +                    MacroAssembler::bc_far_optimize_on_relocate);
  1.3377 +    } else {
  1.3378 +      __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  1.3379 +                    cc_to_biint(cc, flags_reg),
  1.3380 +                    l);
  1.3381 +    }
  1.3382 +#endif
  1.3383 +    Unimplemented();
  1.3384 +  %}
  1.3385 +
  1.3386 +  // Postalloc expand emitter for loading a replicatef float constant from
  1.3387 +  // the method's TOC.
  1.3388 +  // Enc_class needed as consttanttablebase is not supported by postalloc
  1.3389 +  // expand.
  1.3390 +  enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  1.3391 +    // Create new nodes.
  1.3392 +
  1.3393 +    // Make an operand with the bit pattern to load as float.
  1.3394 +    immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  1.3395 +
  1.3396 +    loadConLNodesTuple loadConLNodes =
  1.3397 +      loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  1.3398 +                                ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.3399 +
  1.3400 +    // Push new nodes.
  1.3401 +    if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  1.3402 +    if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  1.3403 +
  1.3404 +    assert(nodes->length() >= 1, "must have created at least 1 node");
  1.3405 +    assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  1.3406 +  %}
  1.3407 +
  1.3408 +  // This enc_class is needed so that scheduler gets proper
  1.3409 +  // input mapping for latency computation.
  1.3410 +  enc_class enc_poll(immI dst, iRegLdst poll) %{
  1.3411 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.3412 +    // Fake operand dst needed for PPC scheduler.
  1.3413 +    assert($dst$$constant == 0x0, "dst must be 0x0");
  1.3414 +
  1.3415 +    MacroAssembler _masm(&cbuf);
  1.3416 +    // Mark the code position where the load from the safepoint
  1.3417 +    // polling page was emitted as relocInfo::poll_type.
  1.3418 +    __ relocate(relocInfo::poll_type);
  1.3419 +    __ load_from_polling_page($poll$$Register);
  1.3420 +  %}
  1.3421 +
  1.3422 +  // A Java static call or a runtime call.
  1.3423 +  //
  1.3424 +  // Branch-and-link relative to a trampoline.
  1.3425 +  // The trampoline loads the target address and does a long branch to there.
  1.3426 +  // In case we call java, the trampoline branches to a interpreter_stub
  1.3427 +  // which loads the inline cache and the real call target from the constant pool.
  1.3428 +  //
  1.3429 +  // This basically looks like this:
  1.3430 +  //
  1.3431 +  // >>>> consts      -+  -+
  1.3432 +  //                   |   |- offset1
  1.3433 +  // [call target1]    | <-+
  1.3434 +  // [IC cache]        |- offset2
  1.3435 +  // [call target2] <--+
  1.3436 +  //
  1.3437 +  // <<<< consts
  1.3438 +  // >>>> insts
  1.3439 +  //
  1.3440 +  // bl offset16               -+  -+             ??? // How many bits available?
  1.3441 +  //                            |   |
  1.3442 +  // <<<< insts                 |   |
  1.3443 +  // >>>> stubs                 |   |
  1.3444 +  //                            |   |- trampoline_stub_Reloc
  1.3445 +  // trampoline stub:           | <-+
  1.3446 +  //   r2 = toc                 |
  1.3447 +  //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  1.3448 +  //   mtctr r2                 |
  1.3449 +  //   bctr                     |- static_stub_Reloc
  1.3450 +  // comp_to_interp_stub:   <---+
  1.3451 +  //   r1 = toc
  1.3452 +  //   ICreg = [r1 + IC_offset]         // Load IC from const section
  1.3453 +  //   r1    = [r1 + offset2]           // Load call target2 from const section
  1.3454 +  //   mtctr r1
  1.3455 +  //   bctr
  1.3456 +  //
  1.3457 +  // <<<< stubs
  1.3458 +  //
  1.3459 +  // The call instruction in the code either
  1.3460 +  // - Branches directly to a compiled method if the offset is encodable in instruction.
  1.3461 +  // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  1.3462 +  // - Branches to the compiled_to_interp stub if the target is interpreted.
  1.3463 +  //
  1.3464 +  // Further there are three relocations from the loads to the constants in
  1.3465 +  // the constant section.
  1.3466 +  //
  1.3467 +  // Usage of r1 and r2 in the stubs allows to distinguish them.
  1.3468 +  enc_class enc_java_static_call(method meth) %{
  1.3469 +    // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  1.3470 +
  1.3471 +    MacroAssembler _masm(&cbuf);
  1.3472 +    address entry_point = (address)$meth$$method;
  1.3473 +
  1.3474 +    if (!_method) {
  1.3475 +      // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  1.3476 +      emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  1.3477 +    } else {
  1.3478 +      // Remember the offset not the address.
  1.3479 +      const int start_offset = __ offset();
  1.3480 +      // The trampoline stub.
  1.3481 +      if (!Compile::current()->in_scratch_emit_size()) {
  1.3482 +        // No entry point given, use the current pc.
  1.3483 +        // Make sure branch fits into
  1.3484 +        if (entry_point == 0) entry_point = __ pc();
  1.3485 +
  1.3486 +        // Put the entry point as a constant into the constant pool.
  1.3487 +        const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1.3488 +        const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1.3489 +
  1.3490 +        // Emit the trampoline stub which will be related to the branch-and-link below.
  1.3491 +        CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  1.3492 +        __ relocate(_optimized_virtual ?
  1.3493 +                    relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  1.3494 +      }
  1.3495 +
  1.3496 +      // The real call.
  1.3497 +      // Note: At this point we do not have the address of the trampoline
  1.3498 +      // stub, and the entry point might be too far away for bl, so __ pc()
  1.3499 +      // serves as dummy and the bl will be patched later.
  1.3500 +      cbuf.set_insts_mark();
  1.3501 +      __ bl(__ pc());  // Emits a relocation.
  1.3502 +
  1.3503 +      // The stub for call to interpreter.
  1.3504 +      CompiledStaticCall::emit_to_interp_stub(cbuf);
  1.3505 +    }
  1.3506 +  %}
  1.3507 +
  1.3508 +  // Emit a method handle call.
  1.3509 +  //
  1.3510 +  // Method handle calls from compiled to compiled are going thru a
  1.3511 +  // c2i -> i2c adapter, extending the frame for their arguments. The
  1.3512 +  // caller however, returns directly to the compiled callee, that has
  1.3513 +  // to cope with the extended frame. We restore the original frame by
  1.3514 +  // loading the callers sp and adding the calculated framesize.
  1.3515 +  enc_class enc_java_handle_call(method meth) %{
  1.3516 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3517 +
  1.3518 +    MacroAssembler _masm(&cbuf);
  1.3519 +    address entry_point = (address)$meth$$method;
  1.3520 +
  1.3521 +    // Remember the offset not the address.
  1.3522 +    const int start_offset = __ offset();
  1.3523 +    // The trampoline stub.
  1.3524 +    if (!ra_->C->in_scratch_emit_size()) {
  1.3525 +      // No entry point given, use the current pc.
  1.3526 +      // Make sure branch fits into
  1.3527 +      if (entry_point == 0) entry_point = __ pc();
  1.3528 +
  1.3529 +      // Put the entry point as a constant into the constant pool.
  1.3530 +      const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1.3531 +      const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1.3532 +
  1.3533 +      // Emit the trampoline stub which will be related to the branch-and-link below.
  1.3534 +      CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  1.3535 +      assert(_optimized_virtual, "methodHandle call should be a virtual call");
  1.3536 +      __ relocate(relocInfo::opt_virtual_call_type);
  1.3537 +    }
  1.3538 +
  1.3539 +    // The real call.
  1.3540 +    // Note: At this point we do not have the address of the trampoline
  1.3541 +    // stub, and the entry point might be too far away for bl, so __ pc()
  1.3542 +    // serves as dummy and the bl will be patched later.
  1.3543 +    cbuf.set_insts_mark();
  1.3544 +    __ bl(__ pc());  // Emits a relocation.
  1.3545 +
  1.3546 +    assert(_method, "execute next statement conditionally");
  1.3547 +    // The stub for call to interpreter.
  1.3548 +    CompiledStaticCall::emit_to_interp_stub(cbuf);
  1.3549 +
  1.3550 +    // Restore original sp.
  1.3551 +    __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  1.3552 +    const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  1.3553 +    unsigned int bytes = (unsigned int)framesize;
  1.3554 +    long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1.3555 +    if (Assembler::is_simm(-offset, 16)) {
  1.3556 +      __ addi(R1_SP, R11_scratch1, -offset);
  1.3557 +    } else {
  1.3558 +      __ load_const_optimized(R12_scratch2, -offset);
  1.3559 +      __ add(R1_SP, R11_scratch1, R12_scratch2);
  1.3560 +    }
  1.3561 +#ifdef ASSERT
  1.3562 +  __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  1.3563 +  __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  1.3564 +  __ asm_assert_eq("backlink changed", 0x8000);
  1.3565 +#endif
  1.3566 +    // If fails should store backlink before unextending.
  1.3567 +
  1.3568 +    if (ra_->C->env()->failing()) {
  1.3569 +      return;
  1.3570 +    }
  1.3571 +  %}
  1.3572 +
  1.3573 +  // Second node of expanded dynamic call - the call.
  1.3574 +  enc_class enc_java_dynamic_call_sched(method meth) %{
  1.3575 +    // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  1.3576 +
  1.3577 +    MacroAssembler _masm(&cbuf);
  1.3578 +
  1.3579 +    if (!ra_->C->in_scratch_emit_size()) {
  1.3580 +      // Create a call trampoline stub for the given method.
  1.3581 +      const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  1.3582 +      const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  1.3583 +      const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  1.3584 +      CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  1.3585 +
  1.3586 +      if (ra_->C->env()->failing())
  1.3587 +        return;
  1.3588 +
  1.3589 +      // Build relocation at call site with ic position as data.
  1.3590 +      assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  1.3591 +             (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  1.3592 +             "must have one, but can't have both");
  1.3593 +      assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  1.3594 +             (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  1.3595 +             "must contain instruction offset");
  1.3596 +      const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  1.3597 +        ? _load_ic_hi_node->_cbuf_insts_offset
  1.3598 +        : _load_ic_node->_cbuf_insts_offset;
  1.3599 +      const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  1.3600 +      assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  1.3601 +             "should be load from TOC");
  1.3602 +
  1.3603 +      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  1.3604 +    }
  1.3605 +
  1.3606 +    // At this point I do not have the address of the trampoline stub,
  1.3607 +    // and the entry point might be too far away for bl. Pc() serves
  1.3608 +    // as dummy and bl will be patched later.
  1.3609 +    __ bl((address) __ pc());
  1.3610 +  %}
  1.3611 +
  1.3612 +  // postalloc expand emitter for virtual calls.
  1.3613 +  enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  1.3614 +
  1.3615 +    // Create the nodes for loading the IC from the TOC.
  1.3616 +    loadConLNodesTuple loadConLNodes_IC =
  1.3617 +      loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  1.3618 +                                OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  1.3619 +
  1.3620 +    // Create the call node.
  1.3621 +    CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  1.3622 +    call->_method_handle_invoke = _method_handle_invoke;
  1.3623 +    call->_vtable_index      = _vtable_index;
  1.3624 +    call->_method            = _method;
  1.3625 +    call->_bci               = _bci;
  1.3626 +    call->_optimized_virtual = _optimized_virtual;
  1.3627 +    call->_tf                = _tf;
  1.3628 +    call->_entry_point       = _entry_point;
  1.3629 +    call->_cnt               = _cnt;
  1.3630 +    call->_argsize           = _argsize;
  1.3631 +    call->_oop_map           = _oop_map;
  1.3632 +    call->_jvms              = _jvms;
  1.3633 +    call->_jvmadj            = _jvmadj;
  1.3634 +    call->_in_rms            = _in_rms;
  1.3635 +    call->_nesting           = _nesting;
  1.3636 +
  1.3637 +    // New call needs all inputs of old call.
  1.3638 +    // Req...
  1.3639 +    for (uint i = 0; i < req(); ++i) {
  1.3640 +      // The expanded node does not need toc any more.
  1.3641 +      // Add the inline cache constant here instead. This expresses the
  1.3642 +      // register of the inline cache must be live at the call.
  1.3643 +      // Else we would have to adapt JVMState by -1.
  1.3644 +      if (i == mach_constant_base_node_input()) {
  1.3645 +        call->add_req(loadConLNodes_IC._last);
  1.3646 +      } else {
  1.3647 +        call->add_req(in(i));
  1.3648 +      }
  1.3649 +    }
  1.3650 +    // ...as well as prec
  1.3651 +    for (uint i = req(); i < len(); ++i) {
  1.3652 +      call->add_prec(in(i));
  1.3653 +    }
  1.3654 +
  1.3655 +    // Remember nodes loading the inline cache into r19.
  1.3656 +    call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  1.3657 +    call->_load_ic_node    = loadConLNodes_IC._small;
  1.3658 +
  1.3659 +    // Operands for new nodes.
  1.3660 +    call->_opnds[0] = _opnds[0];
  1.3661 +    call->_opnds[1] = _opnds[1];
  1.3662 +
  1.3663 +    // Only the inline cache is associated with a register.
  1.3664 +    assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  1.3665 +
  1.3666 +    // Push new nodes.
  1.3667 +    if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  1.3668 +    if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  1.3669 +    nodes->push(call);
  1.3670 +  %}
  1.3671 +
  1.3672 +  // Compound version of call dynamic
  1.3673 +  // Toc is only passed so that it can be used in ins_encode statement.
  1.3674 +  // In the code we have to use $constanttablebase.
  1.3675 +  enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  1.3676 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3677 +    MacroAssembler _masm(&cbuf);
  1.3678 +    int start_offset = __ offset();
  1.3679 +
  1.3680 +    Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  1.3681 +#if 0
  1.3682 +    int vtable_index = this->_vtable_index;
  1.3683 +    if (_vtable_index < 0) {
  1.3684 +      // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1.3685 +      assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1.3686 +      Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  1.3687 +
  1.3688 +      // Virtual call relocation will point to ic load.
  1.3689 +      address virtual_call_meta_addr = __ pc();
  1.3690 +      // Load a clear inline cache.
  1.3691 +      AddressLiteral empty_ic((address) Universe::non_oop_word());
  1.3692 +      __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  1.3693 +      // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  1.3694 +      // to determine who we intended to call.
  1.3695 +      __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  1.3696 +      emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  1.3697 +      assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  1.3698 +             "Fix constant in ret_addr_offset()");
  1.3699 +    } else {
  1.3700 +      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1.3701 +      // Go thru the vtable. Get receiver klass. Receiver already
  1.3702 +      // checked for non-null. If we'll go thru a C2I adapter, the
  1.3703 +      // interpreter expects method in R19_method.
  1.3704 +
  1.3705 +      __ load_klass(R11_scratch1, R3);
  1.3706 +
  1.3707 +      int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  1.3708 +      int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  1.3709 +      __ li(R19_method, v_off);
  1.3710 +      __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  1.3711 +      // NOTE: for vtable dispatches, the vtable entry will never be
  1.3712 +      // null. However it may very well end up in handle_wrong_method
  1.3713 +      // if the method is abstract for the particular class.
  1.3714 +      __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  1.3715 +      // Call target. Either compiled code or C2I adapter.
  1.3716 +      __ mtctr(R11_scratch1);
  1.3717 +      __ bctrl();
  1.3718 +      if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  1.3719 +        tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  1.3720 +      }
  1.3721 +      assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  1.3722 +             "Fix constant in ret_addr_offset()");
  1.3723 +    }
  1.3724 +#endif
  1.3725 +    Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  1.3726 +  %}
  1.3727 +
  1.3728 +  // a runtime call
  1.3729 +  enc_class enc_java_to_runtime_call (method meth) %{
  1.3730 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.3731 +
  1.3732 +    MacroAssembler _masm(&cbuf);
  1.3733 +    const address start_pc = __ pc();
  1.3734 +
  1.3735 +#if defined(ABI_ELFv2)
  1.3736 +    address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  1.3737 +    __ call_c(entry, relocInfo::runtime_call_type);
  1.3738 +#else
  1.3739 +    // The function we're going to call.
  1.3740 +    FunctionDescriptor fdtemp;
  1.3741 +    const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  1.3742 +
  1.3743 +    Register Rtoc = R12_scratch2;
  1.3744 +    // Calculate the method's TOC.
  1.3745 +    __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  1.3746 +    // Put entry, env, toc into the constant pool, this needs up to 3 constant
  1.3747 +    // pool entries; call_c_using_toc will optimize the call.
  1.3748 +    __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  1.3749 +#endif
  1.3750 +
  1.3751 +    // Check the ret_addr_offset.
  1.3752 +    assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  1.3753 +           "Fix constant in ret_addr_offset()");
  1.3754 +  %}
  1.3755 +
  1.3756 +  // Move to ctr for leaf call.
  1.3757 +  // This enc_class is needed so that scheduler gets proper
  1.3758 +  // input mapping for latency computation.
  1.3759 +  enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  1.3760 +    // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  1.3761 +    MacroAssembler _masm(&cbuf);
  1.3762 +    __ mtctr($src$$Register);
  1.3763 +  %}
  1.3764 +
  1.3765 +  // Postalloc expand emitter for runtime leaf calls.
  1.3766 +  enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  1.3767 +    loadConLNodesTuple loadConLNodes_Entry;
  1.3768 +#if defined(ABI_ELFv2)
  1.3769 +    jlong entry_address = (jlong) this->entry_point();
  1.3770 +    assert(entry_address, "need address here");
  1.3771 +    loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  1.3772 +                                                    OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  1.3773 +#else
  1.3774 +    // Get the struct that describes the function we are about to call.
  1.3775 +    FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  1.3776 +    assert(fd, "need fd here");
  1.3777 +    jlong entry_address = (jlong) fd->entry();
  1.3778 +    // new nodes
  1.3779 +    loadConLNodesTuple loadConLNodes_Env;
  1.3780 +    loadConLNodesTuple loadConLNodes_Toc;
  1.3781 +
  1.3782 +    // Create nodes and operands for loading the entry point.
  1.3783 +    loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  1.3784 +                                                    OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  1.3785 +
  1.3786 +
  1.3787 +    // Create nodes and operands for loading the env pointer.
  1.3788 +    if (fd->env() != NULL) {
  1.3789 +      loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  1.3790 +                                                    OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  1.3791 +    } else {
  1.3792 +      loadConLNodes_Env._large_hi = NULL;
  1.3793 +      loadConLNodes_Env._large_lo = NULL;
  1.3794 +      loadConLNodes_Env._small    = NULL;
  1.3795 +      loadConLNodes_Env._last = new (C) loadConL16Node();
  1.3796 +      loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  1.3797 +      loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  1.3798 +      ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  1.3799 +    }
  1.3800 +
  1.3801 +    // Create nodes and operands for loading the Toc point.
  1.3802 +    loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  1.3803 +                                                  OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  1.3804 +#endif // ABI_ELFv2
  1.3805 +    // mtctr node
  1.3806 +    MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  1.3807 +
  1.3808 +    assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  1.3809 +    mtctr->add_req(0, loadConLNodes_Entry._last);
  1.3810 +
  1.3811 +    mtctr->_opnds[0] = new (C) iRegLdstOper();
  1.3812 +    mtctr->_opnds[1] = new (C) iRegLdstOper();
  1.3813 +
  1.3814 +    // call node
  1.3815 +    MachCallLeafNode *call = new (C) CallLeafDirectNode();
  1.3816 +
  1.3817 +    call->_opnds[0] = _opnds[0];
  1.3818 +    call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  1.3819 +
  1.3820 +    // Make the new call node look like the old one.
  1.3821 +    call->_name        = _name;
  1.3822 +    call->_tf          = _tf;
  1.3823 +    call->_entry_point = _entry_point;
  1.3824 +    call->_cnt         = _cnt;
  1.3825 +    call->_argsize     = _argsize;
  1.3826 +    call->_oop_map     = _oop_map;
  1.3827 +    guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  1.3828 +    call->_jvms        = NULL;
  1.3829 +    call->_jvmadj      = _jvmadj;
  1.3830 +    call->_in_rms      = _in_rms;
  1.3831 +    call->_nesting     = _nesting;
  1.3832 +
  1.3833 +
  1.3834 +    // New call needs all inputs of old call.
  1.3835 +    // Req...
  1.3836 +    for (uint i = 0; i < req(); ++i) {
  1.3837 +      if (i != mach_constant_base_node_input()) {
  1.3838 +        call->add_req(in(i));
  1.3839 +      }
  1.3840 +    }
  1.3841 +
  1.3842 +    // These must be reqired edges, as the registers are live up to
  1.3843 +    // the call. Else the constants are handled as kills.
  1.3844 +    call->add_req(mtctr);
  1.3845 +#if !defined(ABI_ELFv2)
  1.3846 +    call->add_req(loadConLNodes_Env._last);
  1.3847 +    call->add_req(loadConLNodes_Toc._last);
  1.3848 +#endif
  1.3849 +
  1.3850 +    // ...as well as prec
  1.3851 +    for (uint i = req(); i < len(); ++i) {
  1.3852 +      call->add_prec(in(i));
  1.3853 +    }
  1.3854 +
  1.3855 +    // registers
  1.3856 +    ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  1.3857 +
  1.3858 +    // Insert the new nodes.
  1.3859 +    if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  1.3860 +    if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  1.3861 +#if !defined(ABI_ELFv2)
  1.3862 +    if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  1.3863 +    if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  1.3864 +    if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  1.3865 +    if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  1.3866 +#endif
  1.3867 +    nodes->push(mtctr);
  1.3868 +    nodes->push(call);
  1.3869 +  %}
  1.3870 +%}
  1.3871 +
  1.3872 +//----------FRAME--------------------------------------------------------------
  1.3873 +// Definition of frame structure and management information.
  1.3874 +
  1.3875 +frame %{
  1.3876 +  // What direction does stack grow in (assumed to be same for native & Java).
  1.3877 +  stack_direction(TOWARDS_LOW);
  1.3878 +
  1.3879 +  // These two registers define part of the calling convention between
  1.3880 +  // compiled code and the interpreter.
  1.3881 +
  1.3882 +  // Inline Cache Register or method for I2C.
  1.3883 +  inline_cache_reg(R19); // R19_method
  1.3884 +
  1.3885 +  // Method Oop Register when calling interpreter.
  1.3886 +  interpreter_method_oop_reg(R19); // R19_method
  1.3887 +
  1.3888 +  // Optional: name the operand used by cisc-spilling to access
  1.3889 +  // [stack_pointer + offset].
  1.3890 +  cisc_spilling_operand_name(indOffset);
  1.3891 +
  1.3892 +  // Number of stack slots consumed by a Monitor enter.
  1.3893 +  sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  1.3894 +
  1.3895 +  // Compiled code's Frame Pointer.
  1.3896 +  frame_pointer(R1); // R1_SP
  1.3897 +
  1.3898 +  // Interpreter stores its frame pointer in a register which is
  1.3899 +  // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  1.3900 +  // interpreted java to compiled java.
  1.3901 +  //
  1.3902 +  // R14_state holds pointer to caller's cInterpreter.
  1.3903 +  interpreter_frame_pointer(R14); // R14_state
  1.3904 +
  1.3905 +  stack_alignment(frame::alignment_in_bytes);
  1.3906 +
  1.3907 +  in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  1.3908 +
  1.3909 +  // Number of outgoing stack slots killed above the
  1.3910 +  // out_preserve_stack_slots for calls to C. Supports the var-args
  1.3911 +  // backing area for register parms.
  1.3912 +  //
  1.3913 +  varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  1.3914 +
  1.3915 +  // The after-PROLOG location of the return address. Location of
  1.3916 +  // return address specifies a type (REG or STACK) and a number
  1.3917 +  // representing the register number (i.e. - use a register name) or
  1.3918 +  // stack slot.
  1.3919 +  //
  1.3920 +  // A: Link register is stored in stack slot ...
  1.3921 +  // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  1.3922 +  // J: Therefore, we make sure that the link register is also in R11_scratch1
  1.3923 +  //    at the end of the prolog.
  1.3924 +  // B: We use R20, now.
  1.3925 +  //return_addr(REG R20);
  1.3926 +
  1.3927 +  // G: After reading the comments made by all the luminaries on their
  1.3928 +  //    failure to tell the compiler where the return address really is,
  1.3929 +  //    I hardly dare to try myself.  However, I'm convinced it's in slot
  1.3930 +  //    4 what apparently works and saves us some spills.
  1.3931 +  return_addr(STACK 4);
  1.3932 +
  1.3933 +  // This is the body of the function
  1.3934 +  //
  1.3935 +  // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  1.3936 +  //                                  uint length,      // length of array
  1.3937 +  //                                  bool is_outgoing)
  1.3938 +  //
  1.3939 +  // The `sig' array is to be updated. sig[j] represents the location
  1.3940 +  // of the j-th argument, either a register or a stack slot.
  1.3941 +
  1.3942 +  // Comment taken from i486.ad:
  1.3943 +  // Body of function which returns an integer array locating
  1.3944 +  // arguments either in registers or in stack slots. Passed an array
  1.3945 +  // of ideal registers called "sig" and a "length" count. Stack-slot
  1.3946 +  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  1.3947 +  // arguments for a CALLEE. Incoming stack arguments are
  1.3948 +  // automatically biased by the preserve_stack_slots field above.
  1.3949 +  calling_convention %{
  1.3950 +    // No difference between ingoing/outgoing. Just pass false.
  1.3951 +    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  1.3952 +  %}
  1.3953 +
  1.3954 +  // Comment taken from i486.ad:
  1.3955 +  // Body of function which returns an integer array locating
  1.3956 +  // arguments either in registers or in stack slots. Passed an array
  1.3957 +  // of ideal registers called "sig" and a "length" count. Stack-slot
  1.3958 +  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  1.3959 +  // arguments for a CALLEE. Incoming stack arguments are
  1.3960 +  // automatically biased by the preserve_stack_slots field above.
  1.3961 +  c_calling_convention %{
  1.3962 +    // This is obviously always outgoing.
  1.3963 +    // C argument in register AND stack slot.
  1.3964 +    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  1.3965 +  %}
  1.3966 +
  1.3967 +  // Location of native (C/C++) and interpreter return values. This
  1.3968 +  // is specified to be the same as Java. In the 32-bit VM, long
  1.3969 +  // values are actually returned from native calls in O0:O1 and
  1.3970 +  // returned to the interpreter in I0:I1. The copying to and from
  1.3971 +  // the register pairs is done by the appropriate call and epilog
  1.3972 +  // opcodes. This simplifies the register allocator.
  1.3973 +  c_return_value %{
  1.3974 +    assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  1.3975 +            (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  1.3976 +            "only return normal values");
  1.3977 +    // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  1.3978 +    static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  1.3979 +    static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  1.3980 +    return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  1.3981 +  %}
  1.3982 +
  1.3983 +  // Location of compiled Java return values.  Same as C
  1.3984 +  return_value %{
  1.3985 +    assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  1.3986 +            (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  1.3987 +            "only return normal values");
  1.3988 +    // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  1.3989 +    static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  1.3990 +    static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  1.3991 +    return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  1.3992 +  %}
  1.3993 +%}
  1.3994 +
  1.3995 +
  1.3996 +//----------ATTRIBUTES---------------------------------------------------------
  1.3997 +
  1.3998 +//----------Operand Attributes-------------------------------------------------
  1.3999 +op_attrib op_cost(1);          // Required cost attribute.
  1.4000 +
  1.4001 +//----------Instruction Attributes---------------------------------------------
  1.4002 +
  1.4003 +// Cost attribute. required.
  1.4004 +ins_attrib ins_cost(DEFAULT_COST);
  1.4005 +
  1.4006 +// Is this instruction a non-matching short branch variant of some
  1.4007 +// long branch? Not required.
  1.4008 +ins_attrib ins_short_branch(0);
  1.4009 +
  1.4010 +ins_attrib ins_is_TrapBasedCheckNode(true);
  1.4011 +
  1.4012 +// Number of constants.
  1.4013 +// This instruction uses the given number of constants
  1.4014 +// (optional attribute).
  1.4015 +// This is needed to determine in time whether the constant pool will
  1.4016 +// exceed 4000 entries. Before postalloc_expand the overall number of constants
  1.4017 +// is determined. It's also used to compute the constant pool size
  1.4018 +// in Output().
  1.4019 +ins_attrib ins_num_consts(0);
  1.4020 +
  1.4021 +// Required alignment attribute (must be a power of 2) specifies the
  1.4022 +// alignment that some part of the instruction (not necessarily the
  1.4023 +// start) requires. If > 1, a compute_padding() function must be
  1.4024 +// provided for the instruction.
  1.4025 +ins_attrib ins_alignment(1);
  1.4026 +
  1.4027 +// Enforce/prohibit rematerializations.
  1.4028 +// - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  1.4029 +//   then rematerialization of that instruction is prohibited and the
  1.4030 +//   instruction's value will be spilled if necessary.
  1.4031 +//   Causes that MachNode::rematerialize() returns false.
  1.4032 +// - If an instruction is attributed with 'ins_should_rematerialize(true)'
  1.4033 +//   then rematerialization should be enforced and a copy of the instruction
  1.4034 +//   should be inserted if possible; rematerialization is not guaranteed.
  1.4035 +//   Note: this may result in rematerializations in front of every use.
  1.4036 +//   Causes that MachNode::rematerialize() can return true.
  1.4037 +// (optional attribute)
  1.4038 +ins_attrib ins_cannot_rematerialize(false);
  1.4039 +ins_attrib ins_should_rematerialize(false);
  1.4040 +
  1.4041 +// Instruction has variable size depending on alignment.
  1.4042 +ins_attrib ins_variable_size_depending_on_alignment(false);
  1.4043 +
  1.4044 +// Instruction is a nop.
  1.4045 +ins_attrib ins_is_nop(false);
  1.4046 +
  1.4047 +// Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  1.4048 +ins_attrib ins_use_mach_if_fast_lock_node(false);
  1.4049 +
  1.4050 +// Field for the toc offset of a constant.
  1.4051 +//
  1.4052 +// This is needed if the toc offset is not encodable as an immediate in
  1.4053 +// the PPC load instruction. If so, the upper (hi) bits of the offset are
  1.4054 +// added to the toc, and from this a load with immediate is performed.
  1.4055 +// With postalloc expand, we get two nodes that require the same offset
  1.4056 +// but which don't know about each other. The offset is only known
  1.4057 +// when the constant is added to the constant pool during emitting.
  1.4058 +// It is generated in the 'hi'-node adding the upper bits, and saved
  1.4059 +// in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  1.4060 +// the offset from there when it gets encoded.
  1.4061 +ins_attrib ins_field_const_toc_offset(0);
  1.4062 +ins_attrib ins_field_const_toc_offset_hi_node(0);
  1.4063 +
  1.4064 +// A field that can hold the instructions offset in the code buffer.
  1.4065 +// Set in the nodes emitter.
  1.4066 +ins_attrib ins_field_cbuf_insts_offset(-1);
  1.4067 +
  1.4068 +// Fields for referencing a call's load-IC-node.
  1.4069 +// If the toc offset can not be encoded as an immediate in a load, we
  1.4070 +// use two nodes.
  1.4071 +ins_attrib ins_field_load_ic_hi_node(0);
  1.4072 +ins_attrib ins_field_load_ic_node(0);
  1.4073 +
  1.4074 +//----------OPERANDS-----------------------------------------------------------
  1.4075 +// Operand definitions must precede instruction definitions for correct
  1.4076 +// parsing in the ADLC because operands constitute user defined types
  1.4077 +// which are used in instruction definitions.
  1.4078 +//
  1.4079 +// Formats are generated automatically for constants and base registers.
  1.4080 +
  1.4081 +//----------Simple Operands----------------------------------------------------
  1.4082 +// Immediate Operands
  1.4083 +
  1.4084 +// Integer Immediate: 32-bit
  1.4085 +operand immI() %{
  1.4086 +  match(ConI);
  1.4087 +  op_cost(40);
  1.4088 +  format %{ %}
  1.4089 +  interface(CONST_INTER);
  1.4090 +%}
  1.4091 +
  1.4092 +operand immI8() %{
  1.4093 +  predicate(Assembler::is_simm(n->get_int(), 8));
  1.4094 +  op_cost(0);
  1.4095 +  match(ConI);
  1.4096 +  format %{ %}
  1.4097 +  interface(CONST_INTER);
  1.4098 +%}
  1.4099 +
  1.4100 +// Integer Immediate: 16-bit
  1.4101 +operand immI16() %{
  1.4102 +  predicate(Assembler::is_simm(n->get_int(), 16));
  1.4103 +  op_cost(0);
  1.4104 +  match(ConI);
  1.4105 +  format %{ %}
  1.4106 +  interface(CONST_INTER);
  1.4107 +%}
  1.4108 +
  1.4109 +// Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  1.4110 +operand immIhi16() %{
  1.4111 +  predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  1.4112 +  match(ConI);
  1.4113 +  op_cost(0);
  1.4114 +  format %{ %}
  1.4115 +  interface(CONST_INTER);
  1.4116 +%}
  1.4117 +
  1.4118 +operand immInegpow2() %{
  1.4119 +  predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  1.4120 +  match(ConI);
  1.4121 +  op_cost(0);
  1.4122 +  format %{ %}
  1.4123 +  interface(CONST_INTER);
  1.4124 +%}
  1.4125 +
  1.4126 +operand immIpow2minus1() %{
  1.4127 +  predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  1.4128 +  match(ConI);
  1.4129 +  op_cost(0);
  1.4130 +  format %{ %}
  1.4131 +  interface(CONST_INTER);
  1.4132 +%}
  1.4133 +
  1.4134 +operand immIpowerOf2() %{
  1.4135 +  predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  1.4136 +  match(ConI);
  1.4137 +  op_cost(0);
  1.4138 +  format %{ %}
  1.4139 +  interface(CONST_INTER);
  1.4140 +%}
  1.4141 +
  1.4142 +// Unsigned Integer Immediate: the values 0-31
  1.4143 +operand uimmI5() %{
  1.4144 +  predicate(Assembler::is_uimm(n->get_int(), 5));
  1.4145 +  match(ConI);
  1.4146 +  op_cost(0);
  1.4147 +  format %{ %}
  1.4148 +  interface(CONST_INTER);
  1.4149 +%}
  1.4150 +
  1.4151 +// Unsigned Integer Immediate: 6-bit
  1.4152 +operand uimmI6() %{
  1.4153 +  predicate(Assembler::is_uimm(n->get_int(), 6));
  1.4154 +  match(ConI);
  1.4155 +  op_cost(0);
  1.4156 +  format %{ %}
  1.4157 +  interface(CONST_INTER);
  1.4158 +%}
  1.4159 +
  1.4160 +// Unsigned Integer Immediate:  6-bit int, greater than 32
  1.4161 +operand uimmI6_ge32() %{
  1.4162 +  predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  1.4163 +  match(ConI);
  1.4164 +  op_cost(0);
  1.4165 +  format %{ %}
  1.4166 +  interface(CONST_INTER);
  1.4167 +%}
  1.4168 +
  1.4169 +// Unsigned Integer Immediate: 15-bit
  1.4170 +operand uimmI15() %{
  1.4171 +  predicate(Assembler::is_uimm(n->get_int(), 15));
  1.4172 +  match(ConI);
  1.4173 +  op_cost(0);
  1.4174 +  format %{ %}
  1.4175 +  interface(CONST_INTER);
  1.4176 +%}
  1.4177 +
  1.4178 +// Unsigned Integer Immediate: 16-bit
  1.4179 +operand uimmI16() %{
  1.4180 +  predicate(Assembler::is_uimm(n->get_int(), 16));
  1.4181 +  match(ConI);
  1.4182 +  op_cost(0);
  1.4183 +  format %{ %}
  1.4184 +  interface(CONST_INTER);
  1.4185 +%}
  1.4186 +
  1.4187 +// constant 'int 0'.
  1.4188 +operand immI_0() %{
  1.4189 +  predicate(n->get_int() == 0);
  1.4190 +  match(ConI);
  1.4191 +  op_cost(0);
  1.4192 +  format %{ %}
  1.4193 +  interface(CONST_INTER);
  1.4194 +%}
  1.4195 +
  1.4196 +// constant 'int 1'.
  1.4197 +operand immI_1() %{
  1.4198 +  predicate(n->get_int() == 1);
  1.4199 +  match(ConI);
  1.4200 +  op_cost(0);
  1.4201 +  format %{ %}
  1.4202 +  interface(CONST_INTER);
  1.4203 +%}
  1.4204 +
  1.4205 +// constant 'int -1'.
  1.4206 +operand immI_minus1() %{
  1.4207 +  predicate(n->get_int() == -1);
  1.4208 +  match(ConI);
  1.4209 +  op_cost(0);
  1.4210 +  format %{ %}
  1.4211 +  interface(CONST_INTER);
  1.4212 +%}
  1.4213 +
  1.4214 +// int value 16.
  1.4215 +operand immI_16() %{
  1.4216 +  predicate(n->get_int() == 16);
  1.4217 +  match(ConI);
  1.4218 +  op_cost(0);
  1.4219 +  format %{ %}
  1.4220 +  interface(CONST_INTER);
  1.4221 +%}
  1.4222 +
  1.4223 +// int value 24.
  1.4224 +operand immI_24() %{
  1.4225 +  predicate(n->get_int() == 24);
  1.4226 +  match(ConI);
  1.4227 +  op_cost(0);
  1.4228 +  format %{ %}
  1.4229 +  interface(CONST_INTER);
  1.4230 +%}
  1.4231 +
  1.4232 +// Compressed oops constants
  1.4233 +// Pointer Immediate
  1.4234 +operand immN() %{
  1.4235 +  match(ConN);
  1.4236 +
  1.4237 +  op_cost(10);
  1.4238 +  format %{ %}
  1.4239 +  interface(CONST_INTER);
  1.4240 +%}
  1.4241 +
  1.4242 +// NULL Pointer Immediate
  1.4243 +operand immN_0() %{
  1.4244 +  predicate(n->get_narrowcon() == 0);
  1.4245 +  match(ConN);
  1.4246 +
  1.4247 +  op_cost(0);
  1.4248 +  format %{ %}
  1.4249 +  interface(CONST_INTER);
  1.4250 +%}
  1.4251 +
  1.4252 +// Compressed klass constants
  1.4253 +operand immNKlass() %{
  1.4254 +  match(ConNKlass);
  1.4255 +
  1.4256 +  op_cost(0);
  1.4257 +  format %{ %}
  1.4258 +  interface(CONST_INTER);
  1.4259 +%}
  1.4260 +
  1.4261 +// This operand can be used to avoid matching of an instruct
  1.4262 +// with chain rule.
  1.4263 +operand immNKlass_NM() %{
  1.4264 +  match(ConNKlass);
  1.4265 +  predicate(false);
  1.4266 +  op_cost(0);
  1.4267 +  format %{ %}
  1.4268 +  interface(CONST_INTER);
  1.4269 +%}
  1.4270 +
  1.4271 +// Pointer Immediate: 64-bit
  1.4272 +operand immP() %{
  1.4273 +  match(ConP);
  1.4274 +  op_cost(0);
  1.4275 +  format %{ %}
  1.4276 +  interface(CONST_INTER);
  1.4277 +%}
  1.4278 +
  1.4279 +// Operand to avoid match of loadConP.
  1.4280 +// This operand can be used to avoid matching of an instruct
  1.4281 +// with chain rule.
  1.4282 +operand immP_NM() %{
  1.4283 +  match(ConP);
  1.4284 +  predicate(false);
  1.4285 +  op_cost(0);
  1.4286 +  format %{ %}
  1.4287 +  interface(CONST_INTER);
  1.4288 +%}
  1.4289 +
  1.4290 +// costant 'pointer 0'.
  1.4291 +operand immP_0() %{
  1.4292 +  predicate(n->get_ptr() == 0);
  1.4293 +  match(ConP);
  1.4294 +  op_cost(0);
  1.4295 +  format %{ %}
  1.4296 +  interface(CONST_INTER);
  1.4297 +%}
  1.4298 +
  1.4299 +// pointer 0x0 or 0x1
  1.4300 +operand immP_0or1() %{
  1.4301 +  predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  1.4302 +  match(ConP);
  1.4303 +  op_cost(0);
  1.4304 +  format %{ %}
  1.4305 +  interface(CONST_INTER);
  1.4306 +%}
  1.4307 +
  1.4308 +operand immL() %{
  1.4309 +  match(ConL);
  1.4310 +  op_cost(40);
  1.4311 +  format %{ %}
  1.4312 +  interface(CONST_INTER);
  1.4313 +%}
  1.4314 +
  1.4315 +// Long Immediate: 16-bit
  1.4316 +operand immL16() %{
  1.4317 +  predicate(Assembler::is_simm(n->get_long(), 16));
  1.4318 +  match(ConL);
  1.4319 +  op_cost(0);
  1.4320 +  format %{ %}
  1.4321 +  interface(CONST_INTER);
  1.4322 +%}
  1.4323 +
  1.4324 +// Long Immediate: 16-bit, 4-aligned
  1.4325 +operand immL16Alg4() %{
  1.4326 +  predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  1.4327 +  match(ConL);
  1.4328 +  op_cost(0);
  1.4329 +  format %{ %}
  1.4330 +  interface(CONST_INTER);
  1.4331 +%}
  1.4332 +
  1.4333 +// Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  1.4334 +operand immL32hi16() %{
  1.4335 +  predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  1.4336 +  match(ConL);
  1.4337 +  op_cost(0);
  1.4338 +  format %{ %}
  1.4339 +  interface(CONST_INTER);
  1.4340 +%}
  1.4341 +
  1.4342 +// Long Immediate: 32-bit
  1.4343 +operand immL32() %{
  1.4344 +  predicate(Assembler::is_simm(n->get_long(), 32));
  1.4345 +  match(ConL);
  1.4346 +  op_cost(0);
  1.4347 +  format %{ %}
  1.4348 +  interface(CONST_INTER);
  1.4349 +%}
  1.4350 +
  1.4351 +// Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  1.4352 +operand immLhighest16() %{
  1.4353 +  predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  1.4354 +  match(ConL);
  1.4355 +  op_cost(0);
  1.4356 +  format %{ %}
  1.4357 +  interface(CONST_INTER);
  1.4358 +%}
  1.4359 +
  1.4360 +operand immLnegpow2() %{
  1.4361 +  predicate(is_power_of_2_long((jlong)-(n->get_long())));
  1.4362 +  match(ConL);
  1.4363 +  op_cost(0);
  1.4364 +  format %{ %}
  1.4365 +  interface(CONST_INTER);
  1.4366 +%}
  1.4367 +
  1.4368 +operand immLpow2minus1() %{
  1.4369 +  predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  1.4370 +            (n->get_long() != (jlong)0xffffffffffffffffL));
  1.4371 +  match(ConL);
  1.4372 +  op_cost(0);
  1.4373 +  format %{ %}
  1.4374 +  interface(CONST_INTER);
  1.4375 +%}
  1.4376 +
  1.4377 +// constant 'long 0'.
  1.4378 +operand immL_0() %{
  1.4379 +  predicate(n->get_long() == 0L);
  1.4380 +  match(ConL);
  1.4381 +  op_cost(0);
  1.4382 +  format %{ %}
  1.4383 +  interface(CONST_INTER);
  1.4384 +%}
  1.4385 +
  1.4386 +// constat ' long -1'.
  1.4387 +operand immL_minus1() %{
  1.4388 +  predicate(n->get_long() == -1L);
  1.4389 +  match(ConL);
  1.4390 +  op_cost(0);
  1.4391 +  format %{ %}
  1.4392 +  interface(CONST_INTER);
  1.4393 +%}
  1.4394 +
  1.4395 +// Long Immediate: low 32-bit mask
  1.4396 +operand immL_32bits() %{
  1.4397 +  predicate(n->get_long() == 0xFFFFFFFFL);
  1.4398 +  match(ConL);
  1.4399 +  op_cost(0);
  1.4400 +  format %{ %}
  1.4401 +  interface(CONST_INTER);
  1.4402 +%}
  1.4403 +
  1.4404 +// Unsigned Long Immediate: 16-bit
  1.4405 +operand uimmL16() %{
  1.4406 +  predicate(Assembler::is_uimm(n->get_long(), 16));
  1.4407 +  match(ConL);
  1.4408 +  op_cost(0);
  1.4409 +  format %{ %}
  1.4410 +  interface(CONST_INTER);
  1.4411 +%}
  1.4412 +
  1.4413 +// Float Immediate
  1.4414 +operand immF() %{
  1.4415 +  match(ConF);
  1.4416 +  op_cost(40);
  1.4417 +  format %{ %}
  1.4418 +  interface(CONST_INTER);
  1.4419 +%}
  1.4420 +
  1.4421 +// constant 'float +0.0'.
  1.4422 +operand immF_0() %{
  1.4423 +  predicate((n->getf() == 0) &&
  1.4424 +            (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
  1.4425 +  match(ConF);
  1.4426 +  op_cost(0);
  1.4427 +  format %{ %}
  1.4428 +  interface(CONST_INTER);
  1.4429 +%}
  1.4430 +
  1.4431 +// Double Immediate
  1.4432 +operand immD() %{
  1.4433 +  match(ConD);
  1.4434 +  op_cost(40);
  1.4435 +  format %{ %}
  1.4436 +  interface(CONST_INTER);
  1.4437 +%}
  1.4438 +
  1.4439 +// Integer Register Operands
  1.4440 +// Integer Destination Register
  1.4441 +// See definition of reg_class bits32_reg_rw.
  1.4442 +operand iRegIdst() %{
  1.4443 +  constraint(ALLOC_IN_RC(bits32_reg_rw));
  1.4444 +  match(RegI);
  1.4445 +  match(rscratch1RegI);
  1.4446 +  match(rscratch2RegI);
  1.4447 +  match(rarg1RegI);
  1.4448 +  match(rarg2RegI);
  1.4449 +  match(rarg3RegI);
  1.4450 +  match(rarg4RegI);
  1.4451 +  format %{ %}
  1.4452 +  interface(REG_INTER);
  1.4453 +%}
  1.4454 +
  1.4455 +// Integer Source Register
  1.4456 +// See definition of reg_class bits32_reg_ro.
  1.4457 +operand iRegIsrc() %{
  1.4458 +  constraint(ALLOC_IN_RC(bits32_reg_ro));
  1.4459 +  match(RegI);
  1.4460 +  match(rscratch1RegI);
  1.4461 +  match(rscratch2RegI);
  1.4462 +  match(rarg1RegI);
  1.4463 +  match(rarg2RegI);
  1.4464 +  match(rarg3RegI);
  1.4465 +  match(rarg4RegI);
  1.4466 +  format %{ %}
  1.4467 +  interface(REG_INTER);
  1.4468 +%}
  1.4469 +
  1.4470 +operand rscratch1RegI() %{
  1.4471 +  constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  1.4472 +  match(iRegIdst);
  1.4473 +  format %{ %}
  1.4474 +  interface(REG_INTER);
  1.4475 +%}
  1.4476 +
  1.4477 +operand rscratch2RegI() %{
  1.4478 +  constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  1.4479 +  match(iRegIdst);
  1.4480 +  format %{ %}
  1.4481 +  interface(REG_INTER);
  1.4482 +%}
  1.4483 +
  1.4484 +operand rarg1RegI() %{
  1.4485 +  constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  1.4486 +  match(iRegIdst);
  1.4487 +  format %{ %}
  1.4488 +  interface(REG_INTER);
  1.4489 +%}
  1.4490 +
  1.4491 +operand rarg2RegI() %{
  1.4492 +  constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  1.4493 +  match(iRegIdst);
  1.4494 +  format %{ %}
  1.4495 +  interface(REG_INTER);
  1.4496 +%}
  1.4497 +
  1.4498 +operand rarg3RegI() %{
  1.4499 +  constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  1.4500 +  match(iRegIdst);
  1.4501 +  format %{ %}
  1.4502 +  interface(REG_INTER);
  1.4503 +%}
  1.4504 +
  1.4505 +operand rarg4RegI() %{
  1.4506 +  constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  1.4507 +  match(iRegIdst);
  1.4508 +  format %{ %}
  1.4509 +  interface(REG_INTER);
  1.4510 +%}
  1.4511 +
  1.4512 +operand rarg1RegL() %{
  1.4513 +  constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  1.4514 +  match(iRegLdst);
  1.4515 +  format %{ %}
  1.4516 +  interface(REG_INTER);
  1.4517 +%}
  1.4518 +
  1.4519 +operand rarg2RegL() %{
  1.4520 +  constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  1.4521 +  match(iRegLdst);
  1.4522 +  format %{ %}
  1.4523 +  interface(REG_INTER);
  1.4524 +%}
  1.4525 +
  1.4526 +operand rarg3RegL() %{
  1.4527 +  constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  1.4528 +  match(iRegLdst);
  1.4529 +  format %{ %}
  1.4530 +  interface(REG_INTER);
  1.4531 +%}
  1.4532 +
  1.4533 +operand rarg4RegL() %{
  1.4534 +  constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  1.4535 +  match(iRegLdst);
  1.4536 +  format %{ %}
  1.4537 +  interface(REG_INTER);
  1.4538 +%}
  1.4539 +
  1.4540 +// Pointer Destination Register
  1.4541 +// See definition of reg_class bits64_reg_rw.
  1.4542 +operand iRegPdst() %{
  1.4543 +  constraint(ALLOC_IN_RC(bits64_reg_rw));
  1.4544 +  match(RegP);
  1.4545 +  match(rscratch1RegP);
  1.4546 +  match(rscratch2RegP);
  1.4547 +  match(rarg1RegP);
  1.4548 +  match(rarg2RegP);
  1.4549 +  match(rarg3RegP);
  1.4550 +  match(rarg4RegP);
  1.4551 +  format %{ %}
  1.4552 +  interface(REG_INTER);
  1.4553 +%}
  1.4554 +
  1.4555 +// Pointer Destination Register
  1.4556 +// Operand not using r11 and r12 (killed in epilog).
  1.4557 +operand iRegPdstNoScratch() %{
  1.4558 +  constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  1.4559 +  match(RegP);
  1.4560 +  match(rarg1RegP);
  1.4561 +  match(rarg2RegP);
  1.4562 +  match(rarg3RegP);
  1.4563 +  match(rarg4RegP);
  1.4564 +  format %{ %}
  1.4565 +  interface(REG_INTER);
  1.4566 +%}
  1.4567 +
  1.4568 +// Pointer Source Register
  1.4569 +// See definition of reg_class bits64_reg_ro.
  1.4570 +operand iRegPsrc() %{
  1.4571 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4572 +  match(RegP);
  1.4573 +  match(iRegPdst);
  1.4574 +  match(rscratch1RegP);
  1.4575 +  match(rscratch2RegP);
  1.4576 +  match(rarg1RegP);
  1.4577 +  match(rarg2RegP);
  1.4578 +  match(rarg3RegP);
  1.4579 +  match(rarg4RegP);
  1.4580 +  match(threadRegP);
  1.4581 +  format %{ %}
  1.4582 +  interface(REG_INTER);
  1.4583 +%}
  1.4584 +
  1.4585 +// Thread operand.
  1.4586 +operand threadRegP() %{
  1.4587 +  constraint(ALLOC_IN_RC(thread_bits64_reg));
  1.4588 +  match(iRegPdst);
  1.4589 +  format %{ "R16" %}
  1.4590 +  interface(REG_INTER);
  1.4591 +%}
  1.4592 +
  1.4593 +operand rscratch1RegP() %{
  1.4594 +  constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  1.4595 +  match(iRegPdst);
  1.4596 +  format %{ "R11" %}
  1.4597 +  interface(REG_INTER);
  1.4598 +%}
  1.4599 +
  1.4600 +operand rscratch2RegP() %{
  1.4601 +  constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  1.4602 +  match(iRegPdst);
  1.4603 +  format %{ %}
  1.4604 +  interface(REG_INTER);
  1.4605 +%}
  1.4606 +
  1.4607 +operand rarg1RegP() %{
  1.4608 +  constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  1.4609 +  match(iRegPdst);
  1.4610 +  format %{ %}
  1.4611 +  interface(REG_INTER);
  1.4612 +%}
  1.4613 +
  1.4614 +operand rarg2RegP() %{
  1.4615 +  constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  1.4616 +  match(iRegPdst);
  1.4617 +  format %{ %}
  1.4618 +  interface(REG_INTER);
  1.4619 +%}
  1.4620 +
  1.4621 +operand rarg3RegP() %{
  1.4622 +  constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  1.4623 +  match(iRegPdst);
  1.4624 +  format %{ %}
  1.4625 +  interface(REG_INTER);
  1.4626 +%}
  1.4627 +
  1.4628 +operand rarg4RegP() %{
  1.4629 +  constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  1.4630 +  match(iRegPdst);
  1.4631 +  format %{ %}
  1.4632 +  interface(REG_INTER);
  1.4633 +%}
  1.4634 +
  1.4635 +operand iRegNsrc() %{
  1.4636 +  constraint(ALLOC_IN_RC(bits32_reg_ro));
  1.4637 +  match(RegN);
  1.4638 +  match(iRegNdst);
  1.4639 +
  1.4640 +  format %{ %}
  1.4641 +  interface(REG_INTER);
  1.4642 +%}
  1.4643 +
  1.4644 +operand iRegNdst() %{
  1.4645 +  constraint(ALLOC_IN_RC(bits32_reg_rw));
  1.4646 +  match(RegN);
  1.4647 +
  1.4648 +  format %{ %}
  1.4649 +  interface(REG_INTER);
  1.4650 +%}
  1.4651 +
  1.4652 +// Long Destination Register
  1.4653 +// See definition of reg_class bits64_reg_rw.
  1.4654 +operand iRegLdst() %{
  1.4655 +  constraint(ALLOC_IN_RC(bits64_reg_rw));
  1.4656 +  match(RegL);
  1.4657 +  match(rscratch1RegL);
  1.4658 +  match(rscratch2RegL);
  1.4659 +  format %{ %}
  1.4660 +  interface(REG_INTER);
  1.4661 +%}
  1.4662 +
  1.4663 +// Long Source Register
  1.4664 +// See definition of reg_class bits64_reg_ro.
  1.4665 +operand iRegLsrc() %{
  1.4666 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4667 +  match(RegL);
  1.4668 +  match(iRegLdst);
  1.4669 +  match(rscratch1RegL);
  1.4670 +  match(rscratch2RegL);
  1.4671 +  format %{ %}
  1.4672 +  interface(REG_INTER);
  1.4673 +%}
  1.4674 +
  1.4675 +// Special operand for ConvL2I.
  1.4676 +operand iRegL2Isrc(iRegLsrc reg) %{
  1.4677 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4678 +  match(ConvL2I reg);
  1.4679 +  format %{ "ConvL2I($reg)" %}
  1.4680 +  interface(REG_INTER)
  1.4681 +%}
  1.4682 +
  1.4683 +operand rscratch1RegL() %{
  1.4684 +  constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  1.4685 +  match(RegL);
  1.4686 +  format %{ %}
  1.4687 +  interface(REG_INTER);
  1.4688 +%}
  1.4689 +
  1.4690 +operand rscratch2RegL() %{
  1.4691 +  constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  1.4692 +  match(RegL);
  1.4693 +  format %{ %}
  1.4694 +  interface(REG_INTER);
  1.4695 +%}
  1.4696 +
  1.4697 +// Condition Code Flag Registers
  1.4698 +operand flagsReg() %{
  1.4699 +  constraint(ALLOC_IN_RC(int_flags));
  1.4700 +  match(RegFlags);
  1.4701 +  format %{ %}
  1.4702 +  interface(REG_INTER);
  1.4703 +%}
  1.4704 +
  1.4705 +// Condition Code Flag Register CR0
  1.4706 +operand flagsRegCR0() %{
  1.4707 +  constraint(ALLOC_IN_RC(int_flags_CR0));
  1.4708 +  match(RegFlags);
  1.4709 +  format %{ "CR0" %}
  1.4710 +  interface(REG_INTER);
  1.4711 +%}
  1.4712 +
  1.4713 +operand flagsRegCR1() %{
  1.4714 +  constraint(ALLOC_IN_RC(int_flags_CR1));
  1.4715 +  match(RegFlags);
  1.4716 +  format %{ "CR1" %}
  1.4717 +  interface(REG_INTER);
  1.4718 +%}
  1.4719 +
  1.4720 +operand flagsRegCR6() %{
  1.4721 +  constraint(ALLOC_IN_RC(int_flags_CR6));
  1.4722 +  match(RegFlags);
  1.4723 +  format %{ "CR6" %}
  1.4724 +  interface(REG_INTER);
  1.4725 +%}
  1.4726 +
  1.4727 +operand regCTR() %{
  1.4728 +  constraint(ALLOC_IN_RC(ctr_reg));
  1.4729 +  // RegFlags should work. Introducing a RegSpecial type would cause a
  1.4730 +  // lot of changes.
  1.4731 +  match(RegFlags);
  1.4732 +  format %{"SR_CTR" %}
  1.4733 +  interface(REG_INTER);
  1.4734 +%}
  1.4735 +
  1.4736 +operand regD() %{
  1.4737 +  constraint(ALLOC_IN_RC(dbl_reg));
  1.4738 +  match(RegD);
  1.4739 +  format %{ %}
  1.4740 +  interface(REG_INTER);
  1.4741 +%}
  1.4742 +
  1.4743 +operand regF() %{
  1.4744 +  constraint(ALLOC_IN_RC(flt_reg));
  1.4745 +  match(RegF);
  1.4746 +  format %{ %}
  1.4747 +  interface(REG_INTER);
  1.4748 +%}
  1.4749 +
  1.4750 +// Special Registers
  1.4751 +
  1.4752 +// Method Register
  1.4753 +operand inline_cache_regP(iRegPdst reg) %{
  1.4754 +  constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  1.4755 +  match(reg);
  1.4756 +  format %{ %}
  1.4757 +  interface(REG_INTER);
  1.4758 +%}
  1.4759 +
  1.4760 +operand compiler_method_oop_regP(iRegPdst reg) %{
  1.4761 +  constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  1.4762 +  match(reg);
  1.4763 +  format %{ %}
  1.4764 +  interface(REG_INTER);
  1.4765 +%}
  1.4766 +
  1.4767 +operand interpreter_method_oop_regP(iRegPdst reg) %{
  1.4768 +  constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  1.4769 +  match(reg);
  1.4770 +  format %{ %}
  1.4771 +  interface(REG_INTER);
  1.4772 +%}
  1.4773 +
  1.4774 +// Operands to remove register moves in unscaled mode.
  1.4775 +// Match read/write registers with an EncodeP node if neither shift nor add are required.
  1.4776 +operand iRegP2N(iRegPsrc reg) %{
  1.4777 +  predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  1.4778 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4779 +  match(EncodeP reg);
  1.4780 +  format %{ "$reg" %}
  1.4781 +  interface(REG_INTER)
  1.4782 +%}
  1.4783 +
  1.4784 +operand iRegN2P(iRegNsrc reg) %{
  1.4785 +  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  1.4786 +  constraint(ALLOC_IN_RC(bits32_reg_ro));
  1.4787 +  match(DecodeN reg);
  1.4788 +  match(DecodeNKlass reg);
  1.4789 +  format %{ "$reg" %}
  1.4790 +  interface(REG_INTER)
  1.4791 +%}
  1.4792 +
  1.4793 +//----------Complex Operands---------------------------------------------------
  1.4794 +// Indirect Memory Reference
  1.4795 +operand indirect(iRegPsrc reg) %{
  1.4796 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4797 +  match(reg);
  1.4798 +  op_cost(100);
  1.4799 +  format %{ "[$reg]" %}
  1.4800 +  interface(MEMORY_INTER) %{
  1.4801 +    base($reg);
  1.4802 +    index(0x0);
  1.4803 +    scale(0x0);
  1.4804 +    disp(0x0);
  1.4805 +  %}
  1.4806 +%}
  1.4807 +
  1.4808 +// Indirect with Offset
  1.4809 +operand indOffset16(iRegPsrc reg, immL16 offset) %{
  1.4810 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4811 +  match(AddP reg offset);
  1.4812 +  op_cost(100);
  1.4813 +  format %{ "[$reg + $offset]" %}
  1.4814 +  interface(MEMORY_INTER) %{
  1.4815 +    base($reg);
  1.4816 +    index(0x0);
  1.4817 +    scale(0x0);
  1.4818 +    disp($offset);
  1.4819 +  %}
  1.4820 +%}
  1.4821 +
  1.4822 +// Indirect with 4-aligned Offset
  1.4823 +operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  1.4824 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4825 +  match(AddP reg offset);
  1.4826 +  op_cost(100);
  1.4827 +  format %{ "[$reg + $offset]" %}
  1.4828 +  interface(MEMORY_INTER) %{
  1.4829 +    base($reg);
  1.4830 +    index(0x0);
  1.4831 +    scale(0x0);
  1.4832 +    disp($offset);
  1.4833 +  %}
  1.4834 +%}
  1.4835 +
  1.4836 +//----------Complex Operands for Compressed OOPs-------------------------------
  1.4837 +// Compressed OOPs with narrow_oop_shift == 0.
  1.4838 +
  1.4839 +// Indirect Memory Reference, compressed OOP
  1.4840 +operand indirectNarrow(iRegNsrc reg) %{
  1.4841 +  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  1.4842 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4843 +  match(DecodeN reg);
  1.4844 +  match(DecodeNKlass reg);
  1.4845 +  op_cost(100);
  1.4846 +  format %{ "[$reg]" %}
  1.4847 +  interface(MEMORY_INTER) %{
  1.4848 +    base($reg);
  1.4849 +    index(0x0);
  1.4850 +    scale(0x0);
  1.4851 +    disp(0x0);
  1.4852 +  %}
  1.4853 +%}
  1.4854 +
  1.4855 +// Indirect with Offset, compressed OOP
  1.4856 +operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  1.4857 +  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  1.4858 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4859 +  match(AddP (DecodeN reg) offset);
  1.4860 +  match(AddP (DecodeNKlass reg) offset);
  1.4861 +  op_cost(100);
  1.4862 +  format %{ "[$reg + $offset]" %}
  1.4863 +  interface(MEMORY_INTER) %{
  1.4864 +    base($reg);
  1.4865 +    index(0x0);
  1.4866 +    scale(0x0);
  1.4867 +    disp($offset);
  1.4868 +  %}
  1.4869 +%}
  1.4870 +
  1.4871 +// Indirect with 4-aligned Offset, compressed OOP
  1.4872 +operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  1.4873 +  predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  1.4874 +  constraint(ALLOC_IN_RC(bits64_reg_ro));
  1.4875 +  match(AddP (DecodeN reg) offset);
  1.4876 +  match(AddP (DecodeNKlass reg) offset);
  1.4877 +  op_cost(100);
  1.4878 +  format %{ "[$reg + $offset]" %}
  1.4879 +  interface(MEMORY_INTER) %{
  1.4880 +    base($reg);
  1.4881 +    index(0x0);
  1.4882 +    scale(0x0);
  1.4883 +    disp($offset);
  1.4884 +  %}
  1.4885 +%}
  1.4886 +
  1.4887 +//----------Special Memory Operands--------------------------------------------
  1.4888 +// Stack Slot Operand
  1.4889 +//
  1.4890 +// This operand is used for loading and storing temporary values on
  1.4891 +// the stack where a match requires a value to flow through memory.
  1.4892 +operand stackSlotI(sRegI reg) %{
  1.4893 +  constraint(ALLOC_IN_RC(stack_slots));
  1.4894 +  op_cost(100);
  1.4895 +  //match(RegI);
  1.4896 +  format %{ "[sp+$reg]" %}
  1.4897 +  interface(MEMORY_INTER) %{
  1.4898 +    base(0x1);   // R1_SP
  1.4899 +    index(0x0);
  1.4900 +    scale(0x0);
  1.4901 +    disp($reg);  // Stack Offset
  1.4902 +  %}
  1.4903 +%}
  1.4904 +
  1.4905 +operand stackSlotL(sRegL reg) %{
  1.4906 +  constraint(ALLOC_IN_RC(stack_slots));
  1.4907 +  op_cost(100);
  1.4908 +  //match(RegL);
  1.4909 +  format %{ "[sp+$reg]" %}
  1.4910 +  interface(MEMORY_INTER) %{
  1.4911 +    base(0x1);   // R1_SP
  1.4912 +    index(0x0);
  1.4913 +    scale(0x0);
  1.4914 +    disp($reg);  // Stack Offset
  1.4915 +  %}
  1.4916 +%}
  1.4917 +
  1.4918 +operand stackSlotP(sRegP reg) %{
  1.4919 +  constraint(ALLOC_IN_RC(stack_slots));
  1.4920 +  op_cost(100);
  1.4921 +  //match(RegP);
  1.4922 +  format %{ "[sp+$reg]" %}
  1.4923 +  interface(MEMORY_INTER) %{
  1.4924 +    base(0x1);   // R1_SP
  1.4925 +    index(0x0);
  1.4926 +    scale(0x0);
  1.4927 +    disp($reg);  // Stack Offset
  1.4928 +  %}
  1.4929 +%}
  1.4930 +
  1.4931 +operand stackSlotF(sRegF reg) %{
  1.4932 +  constraint(ALLOC_IN_RC(stack_slots));
  1.4933 +  op_cost(100);
  1.4934 +  //match(RegF);
  1.4935 +  format %{ "[sp+$reg]" %}
  1.4936 +  interface(MEMORY_INTER) %{
  1.4937 +    base(0x1);   // R1_SP
  1.4938 +    index(0x0);
  1.4939 +    scale(0x0);
  1.4940 +    disp($reg);  // Stack Offset
  1.4941 +  %}
  1.4942 +%}
  1.4943 +
  1.4944 +operand stackSlotD(sRegD reg) %{
  1.4945 +  constraint(ALLOC_IN_RC(stack_slots));
  1.4946 +  op_cost(100);
  1.4947 +  //match(RegD);
  1.4948 +  format %{ "[sp+$reg]" %}
  1.4949 +  interface(MEMORY_INTER) %{
  1.4950 +    base(0x1);   // R1_SP
  1.4951 +    index(0x0);
  1.4952 +    scale(0x0);
  1.4953 +    disp($reg);  // Stack Offset
  1.4954 +  %}
  1.4955 +%}
  1.4956 +
  1.4957 +// Operands for expressing Control Flow
  1.4958 +// NOTE: Label is a predefined operand which should not be redefined in
  1.4959 +//       the AD file. It is generically handled within the ADLC.
  1.4960 +
  1.4961 +//----------Conditional Branch Operands----------------------------------------
  1.4962 +// Comparison Op
  1.4963 +//
  1.4964 +// This is the operation of the comparison, and is limited to the
  1.4965 +// following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  1.4966 +// (!=).
  1.4967 +//
  1.4968 +// Other attributes of the comparison, such as unsignedness, are specified
  1.4969 +// by the comparison instruction that sets a condition code flags register.
  1.4970 +// That result is represented by a flags operand whose subtype is appropriate
  1.4971 +// to the unsignedness (etc.) of the comparison.
  1.4972 +//
  1.4973 +// Later, the instruction which matches both the Comparison Op (a Bool) and
  1.4974 +// the flags (produced by the Cmp) specifies the coding of the comparison op
  1.4975 +// by matching a specific subtype of Bool operand below.
  1.4976 +
  1.4977 +// When used for floating point comparisons: unordered same as less.
  1.4978 +operand cmpOp() %{
  1.4979 +  match(Bool);
  1.4980 +  format %{ "" %}
  1.4981 +  interface(COND_INTER) %{
  1.4982 +                           // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  1.4983 +                           //           BO          &  BI
  1.4984 +    equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  1.4985 +    not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  1.4986 +    less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  1.4987 +    greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  1.4988 +    less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  1.4989 +    greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  1.4990 +    overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  1.4991 +    no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  1.4992 +  %}
  1.4993 +%}
  1.4994 +
  1.4995 +//----------OPERAND CLASSES----------------------------------------------------
  1.4996 +// Operand Classes are groups of operands that are used to simplify
  1.4997 +// instruction definitions by not requiring the AD writer to specify
  1.4998 +// seperate instructions for every form of operand when the
  1.4999 +// instruction accepts multiple operand types with the same basic
  1.5000 +// encoding and format. The classic case of this is memory operands.
  1.5001 +// Indirect is not included since its use is limited to Compare & Swap.
  1.5002 +
  1.5003 +opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  1.5004 +// Memory operand where offsets are 4-aligned. Required for ld, std.
  1.5005 +opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  1.5006 +opclass indirectMemory(indirect, indirectNarrow);
  1.5007 +
  1.5008 +// Special opclass for I and ConvL2I.
  1.5009 +opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  1.5010 +
  1.5011 +// Operand classes to match encode and decode. iRegN_P2N is only used
  1.5012 +// for storeN. I have never seen an encode node elsewhere.
  1.5013 +opclass iRegN_P2N(iRegNsrc, iRegP2N);
  1.5014 +opclass iRegP_N2P(iRegPsrc, iRegN2P);
  1.5015 +
  1.5016 +//----------PIPELINE-----------------------------------------------------------
  1.5017 +
  1.5018 +pipeline %{
  1.5019 +
  1.5020 +// See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  1.5021 +// J. Res. & Dev., No. 1, Jan. 2002.
  1.5022 +
  1.5023 +//----------ATTRIBUTES---------------------------------------------------------
  1.5024 +attributes %{
  1.5025 +
  1.5026 +  // Power4 instructions are of fixed length.
  1.5027 +  fixed_size_instructions;
  1.5028 +
  1.5029 +  // TODO: if `bundle' means number of instructions fetched
  1.5030 +  // per cycle, this is 8. If `bundle' means Power4 `group', that is
  1.5031 +  // max instructions issued per cycle, this is 5.
  1.5032 +  max_instructions_per_bundle = 8;
  1.5033 +
  1.5034 +  // A Power4 instruction is 4 bytes long.
  1.5035 +  instruction_unit_size = 4;
  1.5036 +
  1.5037 +  // The Power4 processor fetches 64 bytes...
  1.5038 +  instruction_fetch_unit_size = 64;
  1.5039 +
  1.5040 +  // ...in one line
  1.5041 +  instruction_fetch_units = 1
  1.5042 +
  1.5043 +  // Unused, list one so that array generated by adlc is not empty.
  1.5044 +  // Aix compiler chokes if _nop_count = 0.
  1.5045 +  nops(fxNop);
  1.5046 +%}
  1.5047 +
  1.5048 +//----------RESOURCES----------------------------------------------------------
  1.5049 +// Resources are the functional units available to the machine
  1.5050 +resources(
  1.5051 +   PPC_BR,         // branch unit
  1.5052 +   PPC_CR,         // condition unit
  1.5053 +   PPC_FX1,        // integer arithmetic unit 1
  1.5054 +   PPC_FX2,        // integer arithmetic unit 2
  1.5055 +   PPC_LDST1,      // load/store unit 1
  1.5056 +   PPC_LDST2,      // load/store unit 2
  1.5057 +   PPC_FP1,        // float arithmetic unit 1
  1.5058 +   PPC_FP2,        // float arithmetic unit 2
  1.5059 +   PPC_LDST = PPC_LDST1 | PPC_LDST2,
  1.5060 +   PPC_FX = PPC_FX1 | PPC_FX2,
  1.5061 +   PPC_FP = PPC_FP1 | PPC_FP2
  1.5062 + );
  1.5063 +
  1.5064 +//----------PIPELINE DESCRIPTION-----------------------------------------------
  1.5065 +// Pipeline Description specifies the stages in the machine's pipeline
  1.5066 +pipe_desc(
  1.5067 +   // Power4 longest pipeline path
  1.5068 +   PPC_IF,   // instruction fetch
  1.5069 +   PPC_IC,
  1.5070 +   //PPC_BP, // branch prediction
  1.5071 +   PPC_D0,   // decode
  1.5072 +   PPC_D1,   // decode
  1.5073 +   PPC_D2,   // decode
  1.5074 +   PPC_D3,   // decode
  1.5075 +   PPC_Xfer1,
  1.5076 +   PPC_GD,   // group definition
  1.5077 +   PPC_MP,   // map
  1.5078 +   PPC_ISS,  // issue
  1.5079 +   PPC_RF,   // resource fetch
  1.5080 +   PPC_EX1,  // execute (all units)
  1.5081 +   PPC_EX2,  // execute (FP, LDST)
  1.5082 +   PPC_EX3,  // execute (FP, LDST)
  1.5083 +   PPC_EX4,  // execute (FP)
  1.5084 +   PPC_EX5,  // execute (FP)
  1.5085 +   PPC_EX6,  // execute (FP)
  1.5086 +   PPC_WB,   // write back
  1.5087 +   PPC_Xfer2,
  1.5088 +   PPC_CP
  1.5089 + );
  1.5090 +
  1.5091 +//----------PIPELINE CLASSES---------------------------------------------------
  1.5092 +// Pipeline Classes describe the stages in which input and output are
  1.5093 +// referenced by the hardware pipeline.
  1.5094 +
  1.5095 +// Simple pipeline classes.
  1.5096 +
  1.5097 +// Default pipeline class.
  1.5098 +pipe_class pipe_class_default() %{
  1.5099 +  single_instruction;
  1.5100 +  fixed_latency(2);
  1.5101 +%}
  1.5102 +
  1.5103 +// Pipeline class for empty instructions.
  1.5104 +pipe_class pipe_class_empty() %{
  1.5105 +  single_instruction;
  1.5106 +  fixed_latency(0);
  1.5107 +%}
  1.5108 +
  1.5109 +// Pipeline class for compares.
  1.5110 +pipe_class pipe_class_compare() %{
  1.5111 +  single_instruction;
  1.5112 +  fixed_latency(16);
  1.5113 +%}
  1.5114 +
  1.5115 +// Pipeline class for traps.
  1.5116 +pipe_class pipe_class_trap() %{
  1.5117 +  single_instruction;
  1.5118 +  fixed_latency(100);
  1.5119 +%}
  1.5120 +
  1.5121 +// Pipeline class for memory operations.
  1.5122 +pipe_class pipe_class_memory() %{
  1.5123 +  single_instruction;
  1.5124 +  fixed_latency(16);
  1.5125 +%}
  1.5126 +
  1.5127 +// Pipeline class for call.
  1.5128 +pipe_class pipe_class_call() %{
  1.5129 +  single_instruction;
  1.5130 +  fixed_latency(100);
  1.5131 +%}
  1.5132 +
  1.5133 +// Define the class for the Nop node.
  1.5134 +define %{
  1.5135 +   MachNop = pipe_class_default;
  1.5136 +%}
  1.5137 +
  1.5138 +%}
  1.5139 +
  1.5140 +//----------INSTRUCTIONS-------------------------------------------------------
  1.5141 +
  1.5142 +// Naming of instructions:
  1.5143 +//   opA_operB / opA_operB_operC:
  1.5144 +//     Operation 'op' with one or two source operands 'oper'. Result
  1.5145 +//     type is A, source operand types are B and C.
  1.5146 +//     Iff A == B == C, B and C are left out.
  1.5147 +//
  1.5148 +// The instructions are ordered according to the following scheme:
  1.5149 +//  - loads
  1.5150 +//  - load constants
  1.5151 +//  - prefetch
  1.5152 +//  - store
  1.5153 +//  - encode/decode
  1.5154 +//  - membar
  1.5155 +//  - conditional moves
  1.5156 +//  - compare & swap
  1.5157 +//  - arithmetic and logic operations
  1.5158 +//    * int: Add, Sub, Mul, Div, Mod
  1.5159 +//    * int: lShift, arShift, urShift, rot
  1.5160 +//    * float: Add, Sub, Mul, Div
  1.5161 +//    * and, or, xor ...
  1.5162 +//  - register moves: float <-> int, reg <-> stack, repl
  1.5163 +//  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  1.5164 +//  - conv (low level type cast requiring bit changes (sign extend etc)
  1.5165 +//  - compares, range & zero checks.
  1.5166 +//  - branches
  1.5167 +//  - complex operations, intrinsics, min, max, replicate
  1.5168 +//  - lock
  1.5169 +//  - Calls
  1.5170 +//
  1.5171 +// If there are similar instructions with different types they are sorted:
  1.5172 +// int before float
  1.5173 +// small before big
  1.5174 +// signed before unsigned
  1.5175 +// e.g., loadS before loadUS before loadI before loadF.
  1.5176 +
  1.5177 +
  1.5178 +//----------Load/Store Instructions--------------------------------------------
  1.5179 +
  1.5180 +//----------Load Instructions--------------------------------------------------
  1.5181 +
  1.5182 +// Converts byte to int.
  1.5183 +// As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  1.5184 +// reuses the 'amount' operand, but adlc expects that operand specification
  1.5185 +// and operands in match rule are equivalent.
  1.5186 +instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  1.5187 +  effect(DEF dst, USE src);
  1.5188 +  format %{ "EXTSB   $dst, $src \t// byte->int" %}
  1.5189 +  size(4);
  1.5190 +  ins_encode %{
  1.5191 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  1.5192 +    __ extsb($dst$$Register, $src$$Register);
  1.5193 +  %}
  1.5194 +  ins_pipe(pipe_class_default);
  1.5195 +%}
  1.5196 +
  1.5197 +instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  1.5198 +  // match-rule, false predicate
  1.5199 +  match(Set dst (LoadB mem));
  1.5200 +  predicate(false);
  1.5201 +
  1.5202 +  format %{ "LBZ     $dst, $mem" %}
  1.5203 +  size(4);
  1.5204 +  ins_encode( enc_lbz(dst, mem) );
  1.5205 +  ins_pipe(pipe_class_memory);
  1.5206 +%}
  1.5207 +
  1.5208 +instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  1.5209 +  // match-rule, false predicate
  1.5210 +  match(Set dst (LoadB mem));
  1.5211 +  predicate(false);
  1.5212 +
  1.5213 +  format %{ "LBZ     $dst, $mem\n\t"
  1.5214 +            "TWI     $dst\n\t"
  1.5215 +            "ISYNC" %}
  1.5216 +  size(12);
  1.5217 +  ins_encode( enc_lbz_ac(dst, mem) );
  1.5218 +  ins_pipe(pipe_class_memory);
  1.5219 +%}
  1.5220 +
  1.5221 +// Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  1.5222 +instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  1.5223 +  match(Set dst (LoadB mem));
  1.5224 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5225 +  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  1.5226 +  expand %{
  1.5227 +    iRegIdst tmp;
  1.5228 +    loadUB_indirect(tmp, mem);
  1.5229 +    convB2I_reg_2(dst, tmp);
  1.5230 +  %}
  1.5231 +%}
  1.5232 +
  1.5233 +instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  1.5234 +  match(Set dst (LoadB mem));
  1.5235 +  ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  1.5236 +  expand %{
  1.5237 +    iRegIdst tmp;
  1.5238 +    loadUB_indirect_ac(tmp, mem);
  1.5239 +    convB2I_reg_2(dst, tmp);
  1.5240 +  %}
  1.5241 +%}
  1.5242 +
  1.5243 +instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  1.5244 +  // match-rule, false predicate
  1.5245 +  match(Set dst (LoadB mem));
  1.5246 +  predicate(false);
  1.5247 +
  1.5248 +  format %{ "LBZ     $dst, $mem" %}
  1.5249 +  size(4);
  1.5250 +  ins_encode( enc_lbz(dst, mem) );
  1.5251 +  ins_pipe(pipe_class_memory);
  1.5252 +%}
  1.5253 +
  1.5254 +instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  1.5255 +  // match-rule, false predicate
  1.5256 +  match(Set dst (LoadB mem));
  1.5257 +  predicate(false);
  1.5258 +
  1.5259 +  format %{ "LBZ     $dst, $mem\n\t"
  1.5260 +            "TWI     $dst\n\t"
  1.5261 +            "ISYNC" %}
  1.5262 +  size(12);
  1.5263 +  ins_encode( enc_lbz_ac(dst, mem) );
  1.5264 +  ins_pipe(pipe_class_memory);
  1.5265 +%}
  1.5266 +
  1.5267 +// Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  1.5268 +instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  1.5269 +  match(Set dst (LoadB mem));
  1.5270 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5271 +  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  1.5272 +
  1.5273 +  expand %{
  1.5274 +    iRegIdst tmp;
  1.5275 +    loadUB_indOffset16(tmp, mem);
  1.5276 +    convB2I_reg_2(dst, tmp);
  1.5277 +  %}
  1.5278 +%}
  1.5279 +
  1.5280 +instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  1.5281 +  match(Set dst (LoadB mem));
  1.5282 +  ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  1.5283 +
  1.5284 +  expand %{
  1.5285 +    iRegIdst tmp;
  1.5286 +    loadUB_indOffset16_ac(tmp, mem);
  1.5287 +    convB2I_reg_2(dst, tmp);
  1.5288 +  %}
  1.5289 +%}
  1.5290 +
  1.5291 +// Load Unsigned Byte (8bit UNsigned) into an int reg.
  1.5292 +instruct loadUB(iRegIdst dst, memory mem) %{
  1.5293 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5294 +  match(Set dst (LoadUB mem));
  1.5295 +  ins_cost(MEMORY_REF_COST);
  1.5296 +
  1.5297 +  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  1.5298 +  size(4);
  1.5299 +  ins_encode( enc_lbz(dst, mem) );
  1.5300 +  ins_pipe(pipe_class_memory);
  1.5301 +%}
  1.5302 +
  1.5303 +// Load  Unsigned Byte (8bit UNsigned) acquire.
  1.5304 +instruct loadUB_ac(iRegIdst dst, memory mem) %{
  1.5305 +  match(Set dst (LoadUB mem));
  1.5306 +  ins_cost(3*MEMORY_REF_COST);
  1.5307 +
  1.5308 +  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  1.5309 +            "TWI     $dst\n\t"
  1.5310 +            "ISYNC" %}
  1.5311 +  size(12);
  1.5312 +  ins_encode( enc_lbz_ac(dst, mem) );
  1.5313 +  ins_pipe(pipe_class_memory);
  1.5314 +%}
  1.5315 +
  1.5316 +// Load Unsigned Byte (8bit UNsigned) into a Long Register.
  1.5317 +instruct loadUB2L(iRegLdst dst, memory mem) %{
  1.5318 +  match(Set dst (ConvI2L (LoadUB mem)));
  1.5319 +  predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  1.5320 +  ins_cost(MEMORY_REF_COST);
  1.5321 +
  1.5322 +  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  1.5323 +  size(4);
  1.5324 +  ins_encode( enc_lbz(dst, mem) );
  1.5325 +  ins_pipe(pipe_class_memory);
  1.5326 +%}
  1.5327 +
  1.5328 +instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  1.5329 +  match(Set dst (ConvI2L (LoadUB mem)));
  1.5330 +  ins_cost(3*MEMORY_REF_COST);
  1.5331 +
  1.5332 +  format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  1.5333 +            "TWI     $dst\n\t"
  1.5334 +            "ISYNC" %}
  1.5335 +  size(12);
  1.5336 +  ins_encode( enc_lbz_ac(dst, mem) );
  1.5337 +  ins_pipe(pipe_class_memory);
  1.5338 +%}
  1.5339 +
  1.5340 +// Load Short (16bit signed)
  1.5341 +instruct loadS(iRegIdst dst, memory mem) %{
  1.5342 +  match(Set dst (LoadS mem));
  1.5343 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5344 +  ins_cost(MEMORY_REF_COST);
  1.5345 +
  1.5346 +  format %{ "LHA     $dst, $mem" %}
  1.5347 +  size(4);
  1.5348 +  ins_encode %{
  1.5349 +    // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  1.5350 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5351 +    __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  1.5352 +  %}
  1.5353 +  ins_pipe(pipe_class_memory);
  1.5354 +%}
  1.5355 +
  1.5356 +// Load Short (16bit signed) acquire.
  1.5357 +instruct loadS_ac(iRegIdst dst, memory mem) %{
  1.5358 +  match(Set dst (LoadS mem));
  1.5359 +  ins_cost(3*MEMORY_REF_COST);
  1.5360 +
  1.5361 +  format %{ "LHA     $dst, $mem\t acquire\n\t"
  1.5362 +            "TWI     $dst\n\t"
  1.5363 +            "ISYNC" %}
  1.5364 +  size(12);
  1.5365 +  ins_encode %{
  1.5366 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.5367 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5368 +    __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  1.5369 +    __ twi_0($dst$$Register);
  1.5370 +    __ isync();
  1.5371 +  %}
  1.5372 +  ins_pipe(pipe_class_memory);
  1.5373 +%}
  1.5374 +
  1.5375 +// Load Char (16bit unsigned)
  1.5376 +instruct loadUS(iRegIdst dst, memory mem) %{
  1.5377 +  match(Set dst (LoadUS mem));
  1.5378 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5379 +  ins_cost(MEMORY_REF_COST);
  1.5380 +
  1.5381 +  format %{ "LHZ     $dst, $mem" %}
  1.5382 +  size(4);
  1.5383 +  ins_encode( enc_lhz(dst, mem) );
  1.5384 +  ins_pipe(pipe_class_memory);
  1.5385 +%}
  1.5386 +
  1.5387 +// Load Char (16bit unsigned) acquire.
  1.5388 +instruct loadUS_ac(iRegIdst dst, memory mem) %{
  1.5389 +  match(Set dst (LoadUS mem));
  1.5390 +  ins_cost(3*MEMORY_REF_COST);
  1.5391 +
  1.5392 +  format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  1.5393 +            "TWI     $dst\n\t"
  1.5394 +            "ISYNC" %}
  1.5395 +  size(12);
  1.5396 +  ins_encode( enc_lhz_ac(dst, mem) );
  1.5397 +  ins_pipe(pipe_class_memory);
  1.5398 +%}
  1.5399 +
  1.5400 +// Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  1.5401 +instruct loadUS2L(iRegLdst dst, memory mem) %{
  1.5402 +  match(Set dst (ConvI2L (LoadUS mem)));
  1.5403 +  predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  1.5404 +  ins_cost(MEMORY_REF_COST);
  1.5405 +
  1.5406 +  format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  1.5407 +  size(4);
  1.5408 +  ins_encode( enc_lhz(dst, mem) );
  1.5409 +  ins_pipe(pipe_class_memory);
  1.5410 +%}
  1.5411 +
  1.5412 +// Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  1.5413 +instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  1.5414 +  match(Set dst (ConvI2L (LoadUS mem)));
  1.5415 +  ins_cost(3*MEMORY_REF_COST);
  1.5416 +
  1.5417 +  format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  1.5418 +            "TWI     $dst\n\t"
  1.5419 +            "ISYNC" %}
  1.5420 +  size(12);
  1.5421 +  ins_encode( enc_lhz_ac(dst, mem) );
  1.5422 +  ins_pipe(pipe_class_memory);
  1.5423 +%}
  1.5424 +
  1.5425 +// Load Integer.
  1.5426 +instruct loadI(iRegIdst dst, memory mem) %{
  1.5427 +  match(Set dst (LoadI mem));
  1.5428 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5429 +  ins_cost(MEMORY_REF_COST);
  1.5430 +
  1.5431 +  format %{ "LWZ     $dst, $mem" %}
  1.5432 +  size(4);
  1.5433 +  ins_encode( enc_lwz(dst, mem) );
  1.5434 +  ins_pipe(pipe_class_memory);
  1.5435 +%}
  1.5436 +
  1.5437 +// Load Integer acquire.
  1.5438 +instruct loadI_ac(iRegIdst dst, memory mem) %{
  1.5439 +  match(Set dst (LoadI mem));
  1.5440 +  ins_cost(3*MEMORY_REF_COST);
  1.5441 +
  1.5442 +  format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  1.5443 +            "TWI     $dst\n\t"
  1.5444 +            "ISYNC" %}
  1.5445 +  size(12);
  1.5446 +  ins_encode( enc_lwz_ac(dst, mem) );
  1.5447 +  ins_pipe(pipe_class_memory);
  1.5448 +%}
  1.5449 +
  1.5450 +// Match loading integer and casting it to unsigned int in
  1.5451 +// long register.
  1.5452 +// LoadI + ConvI2L + AndL 0xffffffff.
  1.5453 +instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  1.5454 +  match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  1.5455 +  predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  1.5456 +  ins_cost(MEMORY_REF_COST);
  1.5457 +
  1.5458 +  format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  1.5459 +  size(4);
  1.5460 +  ins_encode( enc_lwz(dst, mem) );
  1.5461 +  ins_pipe(pipe_class_memory);
  1.5462 +%}
  1.5463 +
  1.5464 +// Match loading integer and casting it to long.
  1.5465 +instruct loadI2L(iRegLdst dst, memory mem) %{
  1.5466 +  match(Set dst (ConvI2L (LoadI mem)));
  1.5467 +  predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  1.5468 +  ins_cost(MEMORY_REF_COST);
  1.5469 +
  1.5470 +  format %{ "LWA     $dst, $mem \t// loadI2L" %}
  1.5471 +  size(4);
  1.5472 +  ins_encode %{
  1.5473 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  1.5474 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5475 +    __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  1.5476 +  %}
  1.5477 +  ins_pipe(pipe_class_memory);
  1.5478 +%}
  1.5479 +
  1.5480 +// Match loading integer and casting it to long - acquire.
  1.5481 +instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  1.5482 +  match(Set dst (ConvI2L (LoadI mem)));
  1.5483 +  ins_cost(3*MEMORY_REF_COST);
  1.5484 +
  1.5485 +  format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  1.5486 +            "TWI     $dst\n\t"
  1.5487 +            "ISYNC" %}
  1.5488 +  size(12);
  1.5489 +  ins_encode %{
  1.5490 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  1.5491 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5492 +    __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  1.5493 +    __ twi_0($dst$$Register);
  1.5494 +    __ isync();
  1.5495 +  %}
  1.5496 +  ins_pipe(pipe_class_memory);
  1.5497 +%}
  1.5498 +
  1.5499 +// Load Long - aligned
  1.5500 +instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  1.5501 +  match(Set dst (LoadL mem));
  1.5502 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5503 +  ins_cost(MEMORY_REF_COST);
  1.5504 +
  1.5505 +  format %{ "LD      $dst, $mem \t// long" %}
  1.5506 +  size(4);
  1.5507 +  ins_encode( enc_ld(dst, mem) );
  1.5508 +  ins_pipe(pipe_class_memory);
  1.5509 +%}
  1.5510 +
  1.5511 +// Load Long - aligned acquire.
  1.5512 +instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  1.5513 +  match(Set dst (LoadL mem));
  1.5514 +  ins_cost(3*MEMORY_REF_COST);
  1.5515 +
  1.5516 +  format %{ "LD      $dst, $mem \t// long acquire\n\t"
  1.5517 +            "TWI     $dst\n\t"
  1.5518 +            "ISYNC" %}
  1.5519 +  size(12);
  1.5520 +  ins_encode( enc_ld_ac(dst, mem) );
  1.5521 +  ins_pipe(pipe_class_memory);
  1.5522 +%}
  1.5523 +
  1.5524 +// Load Long - UNaligned
  1.5525 +instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  1.5526 +  match(Set dst (LoadL_unaligned mem));
  1.5527 +  // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  1.5528 +  ins_cost(MEMORY_REF_COST);
  1.5529 +
  1.5530 +  format %{ "LD      $dst, $mem \t// unaligned long" %}
  1.5531 +  size(4);
  1.5532 +  ins_encode( enc_ld(dst, mem) );
  1.5533 +  ins_pipe(pipe_class_memory);
  1.5534 +%}
  1.5535 +
  1.5536 +// Load nodes for superwords
  1.5537 +
  1.5538 +// Load Aligned Packed Byte
  1.5539 +instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  1.5540 +  predicate(n->as_LoadVector()->memory_size() == 8);
  1.5541 +  match(Set dst (LoadVector mem));
  1.5542 +  ins_cost(MEMORY_REF_COST);
  1.5543 +
  1.5544 +  format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  1.5545 +  size(4);
  1.5546 +  ins_encode( enc_ld(dst, mem) );
  1.5547 +  ins_pipe(pipe_class_memory);
  1.5548 +%}
  1.5549 +
  1.5550 +// Load Range, range = array length (=jint)
  1.5551 +instruct loadRange(iRegIdst dst, memory mem) %{
  1.5552 +  match(Set dst (LoadRange mem));
  1.5553 +  ins_cost(MEMORY_REF_COST);
  1.5554 +
  1.5555 +  format %{ "LWZ     $dst, $mem \t// range" %}
  1.5556 +  size(4);
  1.5557 +  ins_encode( enc_lwz(dst, mem) );
  1.5558 +  ins_pipe(pipe_class_memory);
  1.5559 +%}
  1.5560 +
  1.5561 +// Load Compressed Pointer
  1.5562 +instruct loadN(iRegNdst dst, memory mem) %{
  1.5563 +  match(Set dst (LoadN mem));
  1.5564 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5565 +  ins_cost(MEMORY_REF_COST);
  1.5566 +
  1.5567 +  format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  1.5568 +  size(4);
  1.5569 +  ins_encode( enc_lwz(dst, mem) );
  1.5570 +  ins_pipe(pipe_class_memory);
  1.5571 +%}
  1.5572 +
  1.5573 +// Load Compressed Pointer acquire.
  1.5574 +instruct loadN_ac(iRegNdst dst, memory mem) %{
  1.5575 +  match(Set dst (LoadN mem));
  1.5576 +  ins_cost(3*MEMORY_REF_COST);
  1.5577 +
  1.5578 +  format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  1.5579 +            "TWI     $dst\n\t"
  1.5580 +            "ISYNC" %}
  1.5581 +  size(12);
  1.5582 +  ins_encode( enc_lwz_ac(dst, mem) );
  1.5583 +  ins_pipe(pipe_class_memory);
  1.5584 +%}
  1.5585 +
  1.5586 +// Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  1.5587 +instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  1.5588 +  match(Set dst (DecodeN (LoadN mem)));
  1.5589 +  predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  1.5590 +  ins_cost(MEMORY_REF_COST);
  1.5591 +
  1.5592 +  format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  1.5593 +  size(4);
  1.5594 +  ins_encode( enc_lwz(dst, mem) );
  1.5595 +  ins_pipe(pipe_class_memory);
  1.5596 +%}
  1.5597 +
  1.5598 +// Load Pointer
  1.5599 +instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  1.5600 +  match(Set dst (LoadP mem));
  1.5601 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5602 +  ins_cost(MEMORY_REF_COST);
  1.5603 +
  1.5604 +  format %{ "LD      $dst, $mem \t// ptr" %}
  1.5605 +  size(4);
  1.5606 +  ins_encode( enc_ld(dst, mem) );
  1.5607 +  ins_pipe(pipe_class_memory);
  1.5608 +%}
  1.5609 +
  1.5610 +// Load Pointer acquire.
  1.5611 +instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  1.5612 +  match(Set dst (LoadP mem));
  1.5613 +  ins_cost(3*MEMORY_REF_COST);
  1.5614 +
  1.5615 +  format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  1.5616 +            "TWI     $dst\n\t"
  1.5617 +            "ISYNC" %}
  1.5618 +  size(12);
  1.5619 +  ins_encode( enc_ld_ac(dst, mem) );
  1.5620 +  ins_pipe(pipe_class_memory);
  1.5621 +%}
  1.5622 +
  1.5623 +// LoadP + CastP2L
  1.5624 +instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  1.5625 +  match(Set dst (CastP2X (LoadP mem)));
  1.5626 +  predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  1.5627 +  ins_cost(MEMORY_REF_COST);
  1.5628 +
  1.5629 +  format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  1.5630 +  size(4);
  1.5631 +  ins_encode( enc_ld(dst, mem) );
  1.5632 +  ins_pipe(pipe_class_memory);
  1.5633 +%}
  1.5634 +
  1.5635 +// Load compressed klass pointer.
  1.5636 +instruct loadNKlass(iRegNdst dst, memory mem) %{
  1.5637 +  match(Set dst (LoadNKlass mem));
  1.5638 +  ins_cost(MEMORY_REF_COST);
  1.5639 +
  1.5640 +  format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  1.5641 +  size(4);
  1.5642 +  ins_encode( enc_lwz(dst, mem) );
  1.5643 +  ins_pipe(pipe_class_memory);
  1.5644 +%}
  1.5645 +
  1.5646 +//// Load compressed klass and decode it if narrow_klass_shift == 0.
  1.5647 +//// TODO: will narrow_klass_shift ever be 0?
  1.5648 +//instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
  1.5649 +//  match(Set dst (DecodeNKlass (LoadNKlass mem)));
  1.5650 +//  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
  1.5651 +//  ins_cost(MEMORY_REF_COST);
  1.5652 +//
  1.5653 +//  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
  1.5654 +//  size(4);
  1.5655 +//  ins_encode( enc_lwz(dst, mem) );
  1.5656 +//  ins_pipe(pipe_class_memory);
  1.5657 +//%}
  1.5658 +
  1.5659 +// Load Klass Pointer
  1.5660 +instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  1.5661 +  match(Set dst (LoadKlass mem));
  1.5662 +  ins_cost(MEMORY_REF_COST);
  1.5663 +
  1.5664 +  format %{ "LD      $dst, $mem \t// klass ptr" %}
  1.5665 +  size(4);
  1.5666 +  ins_encode( enc_ld(dst, mem) );
  1.5667 +  ins_pipe(pipe_class_memory);
  1.5668 +%}
  1.5669 +
  1.5670 +// Load Float
  1.5671 +instruct loadF(regF dst, memory mem) %{
  1.5672 +  match(Set dst (LoadF mem));
  1.5673 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5674 +  ins_cost(MEMORY_REF_COST);
  1.5675 +
  1.5676 +  format %{ "LFS     $dst, $mem" %}
  1.5677 +  size(4);
  1.5678 +  ins_encode %{
  1.5679 +    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  1.5680 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5681 +    __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  1.5682 +  %}
  1.5683 +  ins_pipe(pipe_class_memory);
  1.5684 +%}
  1.5685 +
  1.5686 +// Load Float acquire.
  1.5687 +instruct loadF_ac(regF dst, memory mem) %{
  1.5688 +  match(Set dst (LoadF mem));
  1.5689 +  ins_cost(3*MEMORY_REF_COST);
  1.5690 +
  1.5691 +  format %{ "LFS     $dst, $mem \t// acquire\n\t"
  1.5692 +            "FCMPU   cr0, $dst, $dst\n\t"
  1.5693 +            "BNE     cr0, next\n"
  1.5694 +            "next:\n\t"
  1.5695 +            "ISYNC" %}
  1.5696 +  size(16);
  1.5697 +  ins_encode %{
  1.5698 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.5699 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5700 +    Label next;
  1.5701 +    __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  1.5702 +    __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  1.5703 +    __ bne(CCR0, next);
  1.5704 +    __ bind(next);
  1.5705 +    __ isync();
  1.5706 +  %}
  1.5707 +  ins_pipe(pipe_class_memory);
  1.5708 +%}
  1.5709 +
  1.5710 +// Load Double - aligned
  1.5711 +instruct loadD(regD dst, memory mem) %{
  1.5712 +  match(Set dst (LoadD mem));
  1.5713 +  predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  1.5714 +  ins_cost(MEMORY_REF_COST);
  1.5715 +
  1.5716 +  format %{ "LFD     $dst, $mem" %}
  1.5717 +  size(4);
  1.5718 +  ins_encode( enc_lfd(dst, mem) );
  1.5719 +  ins_pipe(pipe_class_memory);
  1.5720 +%}
  1.5721 +
  1.5722 +// Load Double - aligned acquire.
  1.5723 +instruct loadD_ac(regD dst, memory mem) %{
  1.5724 +  match(Set dst (LoadD mem));
  1.5725 +  ins_cost(3*MEMORY_REF_COST);
  1.5726 +
  1.5727 +  format %{ "LFD     $dst, $mem \t// acquire\n\t"
  1.5728 +            "FCMPU   cr0, $dst, $dst\n\t"
  1.5729 +            "BNE     cr0, next\n"
  1.5730 +            "next:\n\t"
  1.5731 +            "ISYNC" %}
  1.5732 +  size(16);
  1.5733 +  ins_encode %{
  1.5734 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.5735 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.5736 +    Label next;
  1.5737 +    __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  1.5738 +    __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  1.5739 +    __ bne(CCR0, next);
  1.5740 +    __ bind(next);
  1.5741 +    __ isync();
  1.5742 +  %}
  1.5743 +  ins_pipe(pipe_class_memory);
  1.5744 +%}
  1.5745 +
  1.5746 +// Load Double - UNaligned
  1.5747 +instruct loadD_unaligned(regD dst, memory mem) %{
  1.5748 +  match(Set dst (LoadD_unaligned mem));
  1.5749 +  // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  1.5750 +  ins_cost(MEMORY_REF_COST);
  1.5751 +
  1.5752 +  format %{ "LFD     $dst, $mem" %}
  1.5753 +  size(4);
  1.5754 +  ins_encode( enc_lfd(dst, mem) );
  1.5755 +  ins_pipe(pipe_class_memory);
  1.5756 +%}
  1.5757 +
  1.5758 +//----------Constants--------------------------------------------------------
  1.5759 +
  1.5760 +// Load MachConstantTableBase: add hi offset to global toc.
  1.5761 +// TODO: Handle hidden register r29 in bundler!
  1.5762 +instruct loadToc_hi(iRegLdst dst) %{
  1.5763 +  effect(DEF dst);
  1.5764 +  ins_cost(DEFAULT_COST);
  1.5765 +
  1.5766 +  format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  1.5767 +  size(4);
  1.5768 +  ins_encode %{
  1.5769 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.5770 +    __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  1.5771 +  %}
  1.5772 +  ins_pipe(pipe_class_default);
  1.5773 +%}
  1.5774 +
  1.5775 +// Load MachConstantTableBase: add lo offset to global toc.
  1.5776 +instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  1.5777 +  effect(DEF dst, USE src);
  1.5778 +  ins_cost(DEFAULT_COST);
  1.5779 +
  1.5780 +  format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  1.5781 +  size(4);
  1.5782 +  ins_encode %{
  1.5783 +    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  1.5784 +    __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  1.5785 +  %}
  1.5786 +  ins_pipe(pipe_class_default);
  1.5787 +%}
  1.5788 +
  1.5789 +// Load 16-bit integer constant 0xssss????
  1.5790 +instruct loadConI16(iRegIdst dst, immI16 src) %{
  1.5791 +  match(Set dst src);
  1.5792 +
  1.5793 +  format %{ "LI      $dst, $src" %}
  1.5794 +  size(4);
  1.5795 +  ins_encode %{
  1.5796 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.5797 +    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  1.5798 +  %}
  1.5799 +  ins_pipe(pipe_class_default);
  1.5800 +%}
  1.5801 +
  1.5802 +// Load integer constant 0x????0000
  1.5803 +instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  1.5804 +  match(Set dst src);
  1.5805 +  ins_cost(DEFAULT_COST);
  1.5806 +
  1.5807 +  format %{ "LIS     $dst, $src.hi" %}
  1.5808 +  size(4);
  1.5809 +  ins_encode %{
  1.5810 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.5811 +    // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  1.5812 +    __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  1.5813 +  %}
  1.5814 +  ins_pipe(pipe_class_default);
  1.5815 +%}
  1.5816 +
  1.5817 +// Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  1.5818 +// and sign extended), this adds the low 16 bits.
  1.5819 +instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  1.5820 +  // no match-rule, false predicate
  1.5821 +  effect(DEF dst, USE src1, USE src2);
  1.5822 +  predicate(false);
  1.5823 +
  1.5824 +  format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  1.5825 +  size(4);
  1.5826 +  ins_encode %{
  1.5827 +    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  1.5828 +    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  1.5829 +  %}
  1.5830 +  ins_pipe(pipe_class_default);
  1.5831 +%}
  1.5832 +
  1.5833 +instruct loadConI_Ex(iRegIdst dst, immI src) %{
  1.5834 +  match(Set dst src);
  1.5835 +  ins_cost(DEFAULT_COST*2);
  1.5836 +
  1.5837 +  expand %{
  1.5838 +    // Would like to use $src$$constant.
  1.5839 +    immI16 srcLo %{ _opnds[1]->constant() %}
  1.5840 +    // srcHi can be 0000 if srcLo sign-extends to a negative number.
  1.5841 +    immIhi16 srcHi %{ _opnds[1]->constant() %}
  1.5842 +    iRegIdst tmpI;
  1.5843 +    loadConIhi16(tmpI, srcHi);
  1.5844 +    loadConI32_lo16(dst, tmpI, srcLo);
  1.5845 +  %}
  1.5846 +%}
  1.5847 +
  1.5848 +// No constant pool entries required.
  1.5849 +instruct loadConL16(iRegLdst dst, immL16 src) %{
  1.5850 +  match(Set dst src);
  1.5851 +
  1.5852 +  format %{ "LI      $dst, $src \t// long" %}
  1.5853 +  size(4);
  1.5854 +  ins_encode %{
  1.5855 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.5856 +    __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  1.5857 +  %}
  1.5858 +  ins_pipe(pipe_class_default);
  1.5859 +%}
  1.5860 +
  1.5861 +// Load long constant 0xssssssss????0000
  1.5862 +instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  1.5863 +  match(Set dst src);
  1.5864 +  ins_cost(DEFAULT_COST);
  1.5865 +
  1.5866 +  format %{ "LIS     $dst, $src.hi \t// long" %}
  1.5867 +  size(4);
  1.5868 +  ins_encode %{
  1.5869 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.5870 +    __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  1.5871 +  %}
  1.5872 +  ins_pipe(pipe_class_default);
  1.5873 +%}
  1.5874 +
  1.5875 +// To load a 32 bit constant: merge lower 16 bits into already loaded
  1.5876 +// high 16 bits.
  1.5877 +instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  1.5878 +  // no match-rule, false predicate
  1.5879 +  effect(DEF dst, USE src1, USE src2);
  1.5880 +  predicate(false);
  1.5881 +
  1.5882 +  format %{ "ORI     $dst, $src1, $src2.lo" %}
  1.5883 +  size(4);
  1.5884 +  ins_encode %{
  1.5885 +    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  1.5886 +    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  1.5887 +  %}
  1.5888 +  ins_pipe(pipe_class_default);
  1.5889 +%}
  1.5890 +
  1.5891 +// Load 32-bit long constant
  1.5892 +instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  1.5893 +  match(Set dst src);
  1.5894 +  ins_cost(DEFAULT_COST*2);
  1.5895 +
  1.5896 +  expand %{
  1.5897 +    // Would like to use $src$$constant.
  1.5898 +    immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  1.5899 +    // srcHi can be 0000 if srcLo sign-extends to a negative number.
  1.5900 +    immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  1.5901 +    iRegLdst tmpL;
  1.5902 +    loadConL32hi16(tmpL, srcHi);
  1.5903 +    loadConL32_lo16(dst, tmpL, srcLo);
  1.5904 +  %}
  1.5905 +%}
  1.5906 +
  1.5907 +// Load long constant 0x????000000000000.
  1.5908 +instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  1.5909 +  match(Set dst src);
  1.5910 +  ins_cost(DEFAULT_COST);
  1.5911 +
  1.5912 +  expand %{
  1.5913 +    immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  1.5914 +    immI shift32 %{ 32 %}
  1.5915 +    iRegLdst tmpL;
  1.5916 +    loadConL32hi16(tmpL, srcHi);
  1.5917 +    lshiftL_regL_immI(dst, tmpL, shift32);
  1.5918 +  %}
  1.5919 +%}
  1.5920 +
  1.5921 +// Expand node for constant pool load: small offset.
  1.5922 +instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  1.5923 +  effect(DEF dst, USE src, USE toc);
  1.5924 +  ins_cost(MEMORY_REF_COST);
  1.5925 +
  1.5926 +  ins_num_consts(1);
  1.5927 +  // Needed so that CallDynamicJavaDirect can compute the address of this
  1.5928 +  // instruction for relocation.
  1.5929 +  ins_field_cbuf_insts_offset(int);
  1.5930 +
  1.5931 +  format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  1.5932 +  size(4);
  1.5933 +  ins_encode( enc_load_long_constL(dst, src, toc) );
  1.5934 +  ins_pipe(pipe_class_memory);
  1.5935 +%}
  1.5936 +
  1.5937 +// Expand node for constant pool load: large offset.
  1.5938 +instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  1.5939 +  effect(DEF dst, USE src, USE toc);
  1.5940 +  predicate(false);
  1.5941 +
  1.5942 +  ins_num_consts(1);
  1.5943 +  ins_field_const_toc_offset(int);
  1.5944 +  // Needed so that CallDynamicJavaDirect can compute the address of this
  1.5945 +  // instruction for relocation.
  1.5946 +  ins_field_cbuf_insts_offset(int);
  1.5947 +
  1.5948 +  format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  1.5949 +  size(4);
  1.5950 +  ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  1.5951 +  ins_pipe(pipe_class_default);
  1.5952 +%}
  1.5953 +
  1.5954 +// Expand node for constant pool load: large offset.
  1.5955 +// No constant pool entries required.
  1.5956 +instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  1.5957 +  effect(DEF dst, USE src, USE base);
  1.5958 +  predicate(false);
  1.5959 +
  1.5960 +  ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  1.5961 +
  1.5962 +  format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  1.5963 +  size(4);
  1.5964 +  ins_encode %{
  1.5965 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.5966 +    int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  1.5967 +    __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  1.5968 +  %}
  1.5969 +  ins_pipe(pipe_class_memory);
  1.5970 +%}
  1.5971 +
  1.5972 +// Load long constant from constant table. Expand in case of
  1.5973 +// offset > 16 bit is needed.
  1.5974 +// Adlc adds toc node MachConstantTableBase.
  1.5975 +instruct loadConL_Ex(iRegLdst dst, immL src) %{
  1.5976 +  match(Set dst src);
  1.5977 +  ins_cost(MEMORY_REF_COST);
  1.5978 +
  1.5979 +  format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  1.5980 +  // We can not inline the enc_class for the expand as that does not support constanttablebase.
  1.5981 +  postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  1.5982 +%}
  1.5983 +
  1.5984 +// Load NULL as compressed oop.
  1.5985 +instruct loadConN0(iRegNdst dst, immN_0 src) %{
  1.5986 +  match(Set dst src);
  1.5987 +  ins_cost(DEFAULT_COST);
  1.5988 +
  1.5989 +  format %{ "LI      $dst, $src \t// compressed ptr" %}
  1.5990 +  size(4);
  1.5991 +  ins_encode %{
  1.5992 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.5993 +    __ li($dst$$Register, 0);
  1.5994 +  %}
  1.5995 +  ins_pipe(pipe_class_default);
  1.5996 +%}
  1.5997 +
  1.5998 +// Load hi part of compressed oop constant.
  1.5999 +instruct loadConN_hi(iRegNdst dst, immN src) %{
  1.6000 +  effect(DEF dst, USE src);
  1.6001 +  ins_cost(DEFAULT_COST);
  1.6002 +
  1.6003 +  format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  1.6004 +  size(4);
  1.6005 +  ins_encode %{
  1.6006 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.6007 +    __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  1.6008 +  %}
  1.6009 +  ins_pipe(pipe_class_default);
  1.6010 +%}
  1.6011 +
  1.6012 +// Add lo part of compressed oop constant to already loaded hi part.
  1.6013 +instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  1.6014 +  effect(DEF dst, USE src1, USE src2);
  1.6015 +  ins_cost(DEFAULT_COST);
  1.6016 +
  1.6017 +  format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  1.6018 +  size(4);
  1.6019 +  ins_encode %{
  1.6020 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.6021 +    assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1.6022 +    int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  1.6023 +    RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1.6024 +    __ relocate(rspec, 1);
  1.6025 +    __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  1.6026 +  %}
  1.6027 +  ins_pipe(pipe_class_default);
  1.6028 +%}
  1.6029 +
  1.6030 +// Needed to postalloc expand loadConN: ConN is loaded as ConI
  1.6031 +// leaving the upper 32 bits with sign-extension bits.
  1.6032 +// This clears these bits: dst = src & 0xFFFFFFFF.
  1.6033 +// TODO: Eventually call this maskN_regN_FFFFFFFF.
  1.6034 +instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  1.6035 +  effect(DEF dst, USE src);
  1.6036 +  predicate(false);
  1.6037 +
  1.6038 +  format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  1.6039 +  size(4);
  1.6040 +  ins_encode %{
  1.6041 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6042 +    __ clrldi($dst$$Register, $src$$Register, 0x20);
  1.6043 +  %}
  1.6044 +  ins_pipe(pipe_class_default);
  1.6045 +%}
  1.6046 +
  1.6047 +// Loading ConN must be postalloc expanded so that edges between
  1.6048 +// the nodes are safe. They may not interfere with a safepoint.
  1.6049 +// GL TODO: This needs three instructions: better put this into the constant pool.
  1.6050 +instruct loadConN_Ex(iRegNdst dst, immN src) %{
  1.6051 +  match(Set dst src);
  1.6052 +  ins_cost(DEFAULT_COST*2);
  1.6053 +
  1.6054 +  format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  1.6055 +  postalloc_expand %{
  1.6056 +    MachNode *m1 = new (C) loadConN_hiNode();
  1.6057 +    MachNode *m2 = new (C) loadConN_loNode();
  1.6058 +    MachNode *m3 = new (C) clearMs32bNode();
  1.6059 +    m1->add_req(NULL);
  1.6060 +    m2->add_req(NULL, m1);
  1.6061 +    m3->add_req(NULL, m2);
  1.6062 +    m1->_opnds[0] = op_dst;
  1.6063 +    m1->_opnds[1] = op_src;
  1.6064 +    m2->_opnds[0] = op_dst;
  1.6065 +    m2->_opnds[1] = op_dst;
  1.6066 +    m2->_opnds[2] = op_src;
  1.6067 +    m3->_opnds[0] = op_dst;
  1.6068 +    m3->_opnds[1] = op_dst;
  1.6069 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6070 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6071 +    ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6072 +    nodes->push(m1);
  1.6073 +    nodes->push(m2);
  1.6074 +    nodes->push(m3);
  1.6075 +  %}
  1.6076 +%}
  1.6077 +
  1.6078 +instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
  1.6079 +  effect(DEF dst, USE src);
  1.6080 +  ins_cost(DEFAULT_COST);
  1.6081 +
  1.6082 +  format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  1.6083 +  size(4);
  1.6084 +  ins_encode %{
  1.6085 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.6086 +    intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  1.6087 +    __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  1.6088 +  %}
  1.6089 +  ins_pipe(pipe_class_default);
  1.6090 +%}
  1.6091 +
  1.6092 +// This needs a match rule so that build_oop_map knows this is
  1.6093 +// not a narrow oop.
  1.6094 +instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  1.6095 +  match(Set dst src1);
  1.6096 +  effect(TEMP src2);
  1.6097 +  ins_cost(DEFAULT_COST);
  1.6098 +
  1.6099 +  format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
  1.6100 +  size(4);
  1.6101 +  ins_encode %{
  1.6102 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.6103 +    intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  1.6104 +    assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1.6105 +    int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  1.6106 +    RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  1.6107 +
  1.6108 +    __ relocate(rspec, 1);
  1.6109 +    __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  1.6110 +  %}
  1.6111 +  ins_pipe(pipe_class_default);
  1.6112 +%}
  1.6113 +
  1.6114 +// Loading ConNKlass must be postalloc expanded so that edges between
  1.6115 +// the nodes are safe. They may not interfere with a safepoint.
  1.6116 +instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  1.6117 +  match(Set dst src);
  1.6118 +  ins_cost(DEFAULT_COST*2);
  1.6119 +
  1.6120 +  format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  1.6121 +  postalloc_expand %{
  1.6122 +    // Load high bits into register. Sign extended.
  1.6123 +    MachNode *m1 = new (C) loadConNKlass_hiNode();
  1.6124 +    m1->add_req(NULL);
  1.6125 +    m1->_opnds[0] = op_dst;
  1.6126 +    m1->_opnds[1] = op_src;
  1.6127 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6128 +    nodes->push(m1);
  1.6129 +
  1.6130 +    MachNode *m2 = m1;
  1.6131 +    if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  1.6132 +      // Value might be 1-extended. Mask out these bits.
  1.6133 +      m2 = new (C) clearMs32bNode();
  1.6134 +      m2->add_req(NULL, m1);
  1.6135 +      m2->_opnds[0] = op_dst;
  1.6136 +      m2->_opnds[1] = op_dst;
  1.6137 +      ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6138 +      nodes->push(m2);
  1.6139 +    }
  1.6140 +
  1.6141 +    MachNode *m3 = new (C) loadConNKlass_loNode();
  1.6142 +    m3->add_req(NULL, m2);
  1.6143 +    m3->_opnds[0] = op_dst;
  1.6144 +    m3->_opnds[1] = op_src;
  1.6145 +    m3->_opnds[2] = op_dst;
  1.6146 +    ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.6147 +    nodes->push(m3);
  1.6148 +  %}
  1.6149 +%}
  1.6150 +
  1.6151 +// 0x1 is used in object initialization (initial object header).
  1.6152 +// No constant pool entries required.
  1.6153 +instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  1.6154 +  match(Set dst src);
  1.6155 +
  1.6156 +  format %{ "LI      $dst, $src \t// ptr" %}
  1.6157 +  size(4);
  1.6158 +  ins_encode %{
  1.6159 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.6160 +    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  1.6161 +  %}
  1.6162 +  ins_pipe(pipe_class_default);
  1.6163 +%}
  1.6164 +
  1.6165 +// Expand node for constant pool load: small offset.
  1.6166 +// The match rule is needed to generate the correct bottom_type(),
  1.6167 +// however this node should never match. The use of predicate is not
  1.6168 +// possible since ADLC forbids predicates for chain rules. The higher
  1.6169 +// costs do not prevent matching in this case. For that reason the
  1.6170 +// operand immP_NM with predicate(false) is used.
  1.6171 +instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  1.6172 +  match(Set dst src);
  1.6173 +  effect(TEMP toc);
  1.6174 +
  1.6175 +  ins_num_consts(1);
  1.6176 +
  1.6177 +  format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  1.6178 +  size(4);
  1.6179 +  ins_encode( enc_load_long_constP(dst, src, toc) );
  1.6180 +  ins_pipe(pipe_class_memory);
  1.6181 +%}
  1.6182 +
  1.6183 +// Expand node for constant pool load: large offset.
  1.6184 +instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  1.6185 +  effect(DEF dst, USE src, USE toc);
  1.6186 +  predicate(false);
  1.6187 +
  1.6188 +  ins_num_consts(1);
  1.6189 +  ins_field_const_toc_offset(int);
  1.6190 +
  1.6191 +  format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  1.6192 +  size(4);
  1.6193 +  ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  1.6194 +  ins_pipe(pipe_class_default);
  1.6195 +%}
  1.6196 +
  1.6197 +// Expand node for constant pool load: large offset.
  1.6198 +instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  1.6199 +  match(Set dst src);
  1.6200 +  effect(TEMP base);
  1.6201 +
  1.6202 +  ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  1.6203 +
  1.6204 +  format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  1.6205 +  size(4);
  1.6206 +  ins_encode %{
  1.6207 +    // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  1.6208 +    int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  1.6209 +    __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  1.6210 +  %}
  1.6211 +  ins_pipe(pipe_class_memory);
  1.6212 +%}
  1.6213 +
  1.6214 +// Load pointer constant from constant table. Expand in case an
  1.6215 +// offset > 16 bit is needed.
  1.6216 +// Adlc adds toc node MachConstantTableBase.
  1.6217 +instruct loadConP_Ex(iRegPdst dst, immP src) %{
  1.6218 +  match(Set dst src);
  1.6219 +  ins_cost(MEMORY_REF_COST);
  1.6220 +
  1.6221 +  // This rule does not use "expand" because then
  1.6222 +  // the result type is not known to be an Oop.  An ADLC
  1.6223 +  // enhancement will be needed to make that work - not worth it!
  1.6224 +
  1.6225 +  // If this instruction rematerializes, it prolongs the live range
  1.6226 +  // of the toc node, causing illegal graphs.
  1.6227 +  // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  1.6228 +  ins_cannot_rematerialize(true);
  1.6229 +
  1.6230 +  format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  1.6231 +  postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  1.6232 +%}
  1.6233 +
  1.6234 +// Expand node for constant pool load: small offset.
  1.6235 +instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  1.6236 +  effect(DEF dst, USE src, USE toc);
  1.6237 +  ins_cost(MEMORY_REF_COST);
  1.6238 +
  1.6239 +  ins_num_consts(1);
  1.6240 +
  1.6241 +  format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  1.6242 +  size(4);
  1.6243 +  ins_encode %{
  1.6244 +    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  1.6245 +    address float_address = __ float_constant($src$$constant);
  1.6246 +    __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  1.6247 +  %}
  1.6248 +  ins_pipe(pipe_class_memory);
  1.6249 +%}
  1.6250 +
  1.6251 +// Expand node for constant pool load: large offset.
  1.6252 +instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  1.6253 +  effect(DEF dst, USE src, USE toc);
  1.6254 +  ins_cost(MEMORY_REF_COST);
  1.6255 +
  1.6256 +  ins_num_consts(1);
  1.6257 +
  1.6258 +  format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  1.6259 +            "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  1.6260 +            "ADDIS   $toc, $toc, -offset_hi"%}
  1.6261 +  size(12);
  1.6262 +  ins_encode %{
  1.6263 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.6264 +    FloatRegister Rdst    = $dst$$FloatRegister;
  1.6265 +    Register Rtoc         = $toc$$Register;
  1.6266 +    address float_address = __ float_constant($src$$constant);
  1.6267 +    int offset            = __ offset_to_method_toc(float_address);
  1.6268 +    int hi = (offset + (1<<15))>>16;
  1.6269 +    int lo = offset - hi * (1<<16);
  1.6270 +
  1.6271 +    __ addis(Rtoc, Rtoc, hi);
  1.6272 +    __ lfs(Rdst, lo, Rtoc);
  1.6273 +    __ addis(Rtoc, Rtoc, -hi);
  1.6274 +  %}
  1.6275 +  ins_pipe(pipe_class_memory);
  1.6276 +%}
  1.6277 +
  1.6278 +// Adlc adds toc node MachConstantTableBase.
  1.6279 +instruct loadConF_Ex(regF dst, immF src) %{
  1.6280 +  match(Set dst src);
  1.6281 +  ins_cost(MEMORY_REF_COST);
  1.6282 +
  1.6283 +  // See loadConP.
  1.6284 +  ins_cannot_rematerialize(true);
  1.6285 +
  1.6286 +  format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  1.6287 +  postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  1.6288 +%}
  1.6289 +
  1.6290 +// Expand node for constant pool load: small offset.
  1.6291 +instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  1.6292 +  effect(DEF dst, USE src, USE toc);
  1.6293 +  ins_cost(MEMORY_REF_COST);
  1.6294 +
  1.6295 +  ins_num_consts(1);
  1.6296 +
  1.6297 +  format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  1.6298 +  size(4);
  1.6299 +  ins_encode %{
  1.6300 +    // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  1.6301 +    int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  1.6302 +    __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  1.6303 +  %}
  1.6304 +  ins_pipe(pipe_class_memory);
  1.6305 +%}
  1.6306 +
  1.6307 +// Expand node for constant pool load: large offset.
  1.6308 +instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  1.6309 +  effect(DEF dst, USE src, USE toc);
  1.6310 +  ins_cost(MEMORY_REF_COST);
  1.6311 +
  1.6312 +  ins_num_consts(1);
  1.6313 +
  1.6314 +  format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  1.6315 +            "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  1.6316 +            "ADDIS   $toc, $toc, -offset_hi" %}
  1.6317 +  size(12);
  1.6318 +  ins_encode %{
  1.6319 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.6320 +    FloatRegister Rdst    = $dst$$FloatRegister;
  1.6321 +    Register      Rtoc    = $toc$$Register;
  1.6322 +    address float_address = __ double_constant($src$$constant);
  1.6323 +    int offset            = __ offset_to_method_toc(float_address);
  1.6324 +    int hi = (offset + (1<<15))>>16;
  1.6325 +    int lo = offset - hi * (1<<16);
  1.6326 +
  1.6327 +    __ addis(Rtoc, Rtoc, hi);
  1.6328 +    __ lfd(Rdst, lo, Rtoc);
  1.6329 +    __ addis(Rtoc, Rtoc, -hi);
  1.6330 +  %}
  1.6331 +  ins_pipe(pipe_class_memory);
  1.6332 +%}
  1.6333 +
  1.6334 +// Adlc adds toc node MachConstantTableBase.
  1.6335 +instruct loadConD_Ex(regD dst, immD src) %{
  1.6336 +  match(Set dst src);
  1.6337 +  ins_cost(MEMORY_REF_COST);
  1.6338 +
  1.6339 +  // See loadConP.
  1.6340 +  ins_cannot_rematerialize(true);
  1.6341 +
  1.6342 +  format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  1.6343 +  postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  1.6344 +%}
  1.6345 +
  1.6346 +// Prefetch instructions.
  1.6347 +// Must be safe to execute with invalid address (cannot fault).
  1.6348 +
  1.6349 +instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  1.6350 +  match(PrefetchRead (AddP mem src));
  1.6351 +  ins_cost(MEMORY_REF_COST);
  1.6352 +
  1.6353 +  format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  1.6354 +  size(4);
  1.6355 +  ins_encode %{
  1.6356 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  1.6357 +    __ dcbt($src$$Register, $mem$$base$$Register);
  1.6358 +  %}
  1.6359 +  ins_pipe(pipe_class_memory);
  1.6360 +%}
  1.6361 +
  1.6362 +instruct prefetchr_no_offset(indirectMemory mem) %{
  1.6363 +  match(PrefetchRead mem);
  1.6364 +  ins_cost(MEMORY_REF_COST);
  1.6365 +
  1.6366 +  format %{ "PREFETCH $mem" %}
  1.6367 +  size(4);
  1.6368 +  ins_encode %{
  1.6369 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  1.6370 +    __ dcbt($mem$$base$$Register);
  1.6371 +  %}
  1.6372 +  ins_pipe(pipe_class_memory);
  1.6373 +%}
  1.6374 +
  1.6375 +instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  1.6376 +  match(PrefetchWrite (AddP mem src));
  1.6377 +  ins_cost(MEMORY_REF_COST);
  1.6378 +
  1.6379 +  format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  1.6380 +  size(4);
  1.6381 +  ins_encode %{
  1.6382 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6383 +    __ dcbtst($src$$Register, $mem$$base$$Register);
  1.6384 +  %}
  1.6385 +  ins_pipe(pipe_class_memory);
  1.6386 +%}
  1.6387 +
  1.6388 +instruct prefetchw_no_offset(indirectMemory mem) %{
  1.6389 +  match(PrefetchWrite mem);
  1.6390 +  ins_cost(MEMORY_REF_COST);
  1.6391 +
  1.6392 +  format %{ "PREFETCH $mem" %}
  1.6393 +  size(4);
  1.6394 +  ins_encode %{
  1.6395 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6396 +    __ dcbtst($mem$$base$$Register);
  1.6397 +  %}
  1.6398 +  ins_pipe(pipe_class_memory);
  1.6399 +%}
  1.6400 +
  1.6401 +// Special prefetch versions which use the dcbz instruction.
  1.6402 +instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  1.6403 +  match(PrefetchAllocation (AddP mem src));
  1.6404 +  predicate(AllocatePrefetchStyle == 3);
  1.6405 +  ins_cost(MEMORY_REF_COST);
  1.6406 +
  1.6407 +  format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  1.6408 +  size(4);
  1.6409 +  ins_encode %{
  1.6410 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6411 +    __ dcbz($src$$Register, $mem$$base$$Register);
  1.6412 +  %}
  1.6413 +  ins_pipe(pipe_class_memory);
  1.6414 +%}
  1.6415 +
  1.6416 +instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  1.6417 +  match(PrefetchAllocation mem);
  1.6418 +  predicate(AllocatePrefetchStyle == 3);
  1.6419 +  ins_cost(MEMORY_REF_COST);
  1.6420 +
  1.6421 +  format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  1.6422 +  size(4);
  1.6423 +  ins_encode %{
  1.6424 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6425 +    __ dcbz($mem$$base$$Register);
  1.6426 +  %}
  1.6427 +  ins_pipe(pipe_class_memory);
  1.6428 +%}
  1.6429 +
  1.6430 +instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  1.6431 +  match(PrefetchAllocation (AddP mem src));
  1.6432 +  predicate(AllocatePrefetchStyle != 3);
  1.6433 +  ins_cost(MEMORY_REF_COST);
  1.6434 +
  1.6435 +  format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  1.6436 +  size(4);
  1.6437 +  ins_encode %{
  1.6438 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6439 +    __ dcbtst($src$$Register, $mem$$base$$Register);
  1.6440 +  %}
  1.6441 +  ins_pipe(pipe_class_memory);
  1.6442 +%}
  1.6443 +
  1.6444 +instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  1.6445 +  match(PrefetchAllocation mem);
  1.6446 +  predicate(AllocatePrefetchStyle != 3);
  1.6447 +  ins_cost(MEMORY_REF_COST);
  1.6448 +
  1.6449 +  format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  1.6450 +  size(4);
  1.6451 +  ins_encode %{
  1.6452 +    // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  1.6453 +    __ dcbtst($mem$$base$$Register);
  1.6454 +  %}
  1.6455 +  ins_pipe(pipe_class_memory);
  1.6456 +%}
  1.6457 +
  1.6458 +//----------Store Instructions-------------------------------------------------
  1.6459 +
  1.6460 +// Store Byte
  1.6461 +instruct storeB(memory mem, iRegIsrc src) %{
  1.6462 +  match(Set mem (StoreB mem src));
  1.6463 +  ins_cost(MEMORY_REF_COST);
  1.6464 +
  1.6465 +  format %{ "STB     $src, $mem \t// byte" %}
  1.6466 +  size(4);
  1.6467 +  ins_encode %{
  1.6468 +    // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  1.6469 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.6470 +    __ stb($src$$Register, Idisp, $mem$$base$$Register);
  1.6471 +  %}
  1.6472 +  ins_pipe(pipe_class_memory);
  1.6473 +%}
  1.6474 +
  1.6475 +// Store Char/Short
  1.6476 +instruct storeC(memory mem, iRegIsrc src) %{
  1.6477 +  match(Set mem (StoreC mem src));
  1.6478 +  ins_cost(MEMORY_REF_COST);
  1.6479 +
  1.6480 +  format %{ "STH     $src, $mem \t// short" %}
  1.6481 +  size(4);
  1.6482 +  ins_encode %{
  1.6483 +    // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  1.6484 +    int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  1.6485 +    __ sth($src$$Register, Idisp, $mem$$base$$Register);
  1.6486 +  %}
  1.6487 +  ins_pipe(pipe_class_memory);
  1.6488 +%}
  1.6489 +
  1.6490 +// Store Integer
  1.6491 +instruct storeI(memory mem, iRegIsrc src) %{
  1.6492 +  match(Set mem (StoreI mem src));
  1.6493 +  ins_cost(MEMORY_REF_COST);
  1.6494 +
  1.6495 +  format %{ "STW     $src, $mem" %}
  1.6496 +  size(4);
  1.6497 +  ins_encode( enc_stw(src, mem) );
  1.6498 +  ins_pipe(pipe_class_memory);
  1.6499 +%}
  1.6500 +
  1.6501 +// ConvL2I + StoreI.
  1.6502 +instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  1.6503 +  match(Set mem (StoreI mem (ConvL2I src)));
  1.6504 +  ins_cost(MEMORY_REF_COST);
  1.6505 +
  1.6506 +  format %{ "STW     l2i($src), $mem" %}
  1.6507 +  size(4);
  1.6508 +  ins_encode( enc_stw(src, mem) );
  1.6509 +  ins_pipe(pipe_class_memory);
  1.6510 +%}
  1.6511 +
  1.6512 +// Store Long
  1.6513 +instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  1.6514 +  match(Set mem (StoreL mem src));
  1.6515 +  ins_cost(MEMORY_REF_COST);
  1.6516 +
  1.6517 +  format %{ "STD     $src, $mem \t// long" %}
  1.6518 +  size(4);
  1.6519 +  ins_encode( enc_std(src, mem) );
  1.6520 +  ins_pipe(pipe_class_memory);
  1.6521 +%}
  1.6522 +
  1.6523 +// Store super word nodes.
  1.6524 +
  1.6525 +// Store Aligned Packed Byte long register to memory
  1.6526 +instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  1.6527 +  predicate(n->as_StoreVector()->memory_size() == 8);
  1.6528 +  match(Set mem (StoreVector mem src));
  1.6529 +  ins_cost(MEMORY_REF_COST);
  1.6530 +
  1.6531 +  format %{ "STD     $mem, $src \t// packed8B" %}
  1.6532 +  size(4);
  1.6533 +  ins_encode( enc_std(src, mem) );
  1.6534 +  ins_pipe(pipe_class_memory);
  1.6535 +%}
  1.6536 +
  1.6537 +// Store Compressed Oop
  1.6538 +instruct storeN(memory dst, iRegN_P2N src) %{
  1.6539 +  match(Set dst (StoreN dst src));
  1.6540 +  ins_cost(MEMORY_REF_COST);
  1.6541 +
  1.6542 +  format %{ "STW     $src, $dst \t// compressed oop" %}
  1.6543 +  size(4);
  1.6544 +  ins_encode( enc_stw(src, dst) );
  1.6545 +  ins_pipe(pipe_class_memory);
  1.6546 +%}
  1.6547 +
  1.6548 +// Store Compressed KLass
  1.6549 +instruct storeNKlass(memory dst, iRegN_P2N src) %{
  1.6550 +  match(Set dst (StoreNKlass dst src));
  1.6551 +  ins_cost(MEMORY_REF_COST);
  1.6552 +
  1.6553 +  format %{ "STW     $src, $dst \t// compressed klass" %}
  1.6554 +  size(4);
  1.6555 +  ins_encode( enc_stw(src, dst) );
  1.6556 +  ins_pipe(pipe_class_memory);
  1.6557 +%}
  1.6558 +
  1.6559 +// Store Pointer
  1.6560 +instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  1.6561 +  match(Set dst (StoreP dst src));
  1.6562 +  ins_cost(MEMORY_REF_COST);
  1.6563 +
  1.6564 +  format %{ "STD     $src, $dst \t// ptr" %}
  1.6565 +  size(4);
  1.6566 +  ins_encode( enc_std(src, dst) );
  1.6567 +  ins_pipe(pipe_class_memory);
  1.6568 +%}
  1.6569 +
  1.6570 +// Store Float
  1.6571 +instruct storeF(memory mem, regF src) %{
  1.6572 +  match(Set mem (StoreF mem src));
  1.6573 +  ins_cost(MEMORY_REF_COST);
  1.6574 +
  1.6575 +  format %{ "STFS    $src, $mem" %}
  1.6576 +  size(4);
  1.6577 +  ins_encode( enc_stfs(src, mem) );
  1.6578 +  ins_pipe(pipe_class_memory);
  1.6579 +%}
  1.6580 +
  1.6581 +// Store Double
  1.6582 +instruct storeD(memory mem, regD src) %{
  1.6583 +  match(Set mem (StoreD mem src));
  1.6584 +  ins_cost(MEMORY_REF_COST);
  1.6585 +
  1.6586 +  format %{ "STFD    $src, $mem" %}
  1.6587 +  size(4);
  1.6588 +  ins_encode( enc_stfd(src, mem) );
  1.6589 +  ins_pipe(pipe_class_memory);
  1.6590 +%}
  1.6591 +
  1.6592 +//----------Store Instructions With Zeros--------------------------------------
  1.6593 +
  1.6594 +// Card-mark for CMS garbage collection.
  1.6595 +// This cardmark does an optimization so that it must not always
  1.6596 +// do a releasing store. For this, it gets the address of
  1.6597 +// CMSCollectorCardTableModRefBSExt::_requires_release as input.
  1.6598 +// (Using releaseFieldAddr in the match rule is a hack.)
  1.6599 +instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  1.6600 +  match(Set mem (StoreCM mem releaseFieldAddr));
  1.6601 +  predicate(false);
  1.6602 +  ins_cost(MEMORY_REF_COST);
  1.6603 +
  1.6604 +  // See loadConP.
  1.6605 +  ins_cannot_rematerialize(true);
  1.6606 +
  1.6607 +  format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  1.6608 +  ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  1.6609 +  ins_pipe(pipe_class_memory);
  1.6610 +%}
  1.6611 +
  1.6612 +// Card-mark for CMS garbage collection.
  1.6613 +// This cardmark does an optimization so that it must not always
  1.6614 +// do a releasing store. For this, it needs the constant address of
  1.6615 +// CMSCollectorCardTableModRefBSExt::_requires_release.
  1.6616 +// This constant address is split off here by expand so we can use
  1.6617 +// adlc / matcher functionality to load it from the constant section.
  1.6618 +instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  1.6619 +  match(Set mem (StoreCM mem zero));
  1.6620 +  predicate(UseConcMarkSweepGC);
  1.6621 +
  1.6622 +  expand %{
  1.6623 +    immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  1.6624 +    iRegLdst releaseFieldAddress;
  1.6625 +    loadConL_Ex(releaseFieldAddress, baseImm);
  1.6626 +    storeCM_CMS(mem, releaseFieldAddress);
  1.6627 +  %}
  1.6628 +%}
  1.6629 +
  1.6630 +instruct storeCM_G1(memory mem, immI_0 zero) %{
  1.6631 +  match(Set mem (StoreCM mem zero));
  1.6632 +  predicate(UseG1GC);
  1.6633 +  ins_cost(MEMORY_REF_COST);
  1.6634 +
  1.6635 +  ins_cannot_rematerialize(true);
  1.6636 +
  1.6637 +  format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  1.6638 +  size(8);
  1.6639 +  ins_encode %{
  1.6640 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.6641 +    __ li(R0, 0);
  1.6642 +    //__ release(); // G1: oops are allowed to get visible after dirty marking
  1.6643 +    guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  1.6644 +    __ stb(R0, $mem$$disp, $mem$$base$$Register);
  1.6645 +  %}
  1.6646 +  ins_pipe(pipe_class_memory);
  1.6647 +%}
  1.6648 +
  1.6649 +// Convert oop pointer into compressed form.
  1.6650 +
  1.6651 +// Nodes for postalloc expand.
  1.6652 +
  1.6653 +// Shift node for expand.
  1.6654 +instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  1.6655 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6656 +  match(Set dst (EncodeP src));
  1.6657 +  predicate(false);
  1.6658 +
  1.6659 +  format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  1.6660 +  size(4);
  1.6661 +  ins_encode %{
  1.6662 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6663 +    __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  1.6664 +  %}
  1.6665 +  ins_pipe(pipe_class_default);
  1.6666 +%}
  1.6667 +
  1.6668 +// Add node for expand.
  1.6669 +instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  1.6670 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6671 +  match(Set dst (EncodeP src));
  1.6672 +  predicate(false);
  1.6673 +
  1.6674 +  format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  1.6675 +  size(4);
  1.6676 +  ins_encode %{
  1.6677 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  1.6678 +    __ subf($dst$$Register, R30, $src$$Register);
  1.6679 +  %}
  1.6680 +  ins_pipe(pipe_class_default);
  1.6681 +%}
  1.6682 +
  1.6683 +// Conditional sub base.
  1.6684 +instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  1.6685 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6686 +  match(Set dst (EncodeP (Binary crx src1)));
  1.6687 +  predicate(false);
  1.6688 +
  1.6689 +  ins_variable_size_depending_on_alignment(true);
  1.6690 +
  1.6691 +  format %{ "BEQ     $crx, done\n\t"
  1.6692 +            "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  1.6693 +            "done:" %}
  1.6694 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.6695 +  ins_encode %{
  1.6696 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.6697 +    Label done;
  1.6698 +    __ beq($crx$$CondRegister, done);
  1.6699 +    __ subf($dst$$Register, R30, $src1$$Register);
  1.6700 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.6701 +    __ bind(done);
  1.6702 +  %}
  1.6703 +  ins_pipe(pipe_class_default);
  1.6704 +%}
  1.6705 +
  1.6706 +// Power 7 can use isel instruction
  1.6707 +instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  1.6708 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6709 +  match(Set dst (EncodeP (Binary crx src1)));
  1.6710 +  predicate(false);
  1.6711 +
  1.6712 +  format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  1.6713 +  size(4);
  1.6714 +  ins_encode %{
  1.6715 +    // This is a Power7 instruction for which no machine description exists.
  1.6716 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.6717 +    __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  1.6718 +  %}
  1.6719 +  ins_pipe(pipe_class_default);
  1.6720 +%}
  1.6721 +
  1.6722 +// base != 0
  1.6723 +// 32G aligned narrow oop base.
  1.6724 +instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  1.6725 +  match(Set dst (EncodeP src));
  1.6726 +  predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  1.6727 +
  1.6728 +  format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  1.6729 +  size(4);
  1.6730 +  ins_encode %{
  1.6731 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6732 +    __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  1.6733 +  %}
  1.6734 +  ins_pipe(pipe_class_default);
  1.6735 +%}
  1.6736 +
  1.6737 +// shift != 0, base != 0
  1.6738 +instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  1.6739 +  match(Set dst (EncodeP src));
  1.6740 +  effect(TEMP crx);
  1.6741 +  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  1.6742 +            Universe::narrow_oop_shift() != 0 &&
  1.6743 +            true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  1.6744 +
  1.6745 +  format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  1.6746 +  postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  1.6747 +%}
  1.6748 +
  1.6749 +// shift != 0, base != 0
  1.6750 +instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  1.6751 +  match(Set dst (EncodeP src));
  1.6752 +  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  1.6753 +            Universe::narrow_oop_shift() != 0 &&
  1.6754 +            true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  1.6755 +
  1.6756 +  format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  1.6757 +  postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  1.6758 +%}
  1.6759 +
  1.6760 +// shift != 0, base == 0
  1.6761 +// TODO: This is the same as encodeP_shift. Merge!
  1.6762 +instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  1.6763 +  match(Set dst (EncodeP src));
  1.6764 +  predicate(Universe::narrow_oop_shift() != 0 &&
  1.6765 +            Universe::narrow_oop_base() ==0);
  1.6766 +
  1.6767 +  format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  1.6768 +  size(4);
  1.6769 +  ins_encode %{
  1.6770 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6771 +    __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  1.6772 +  %}
  1.6773 +  ins_pipe(pipe_class_default);
  1.6774 +%}
  1.6775 +
  1.6776 +// Compressed OOPs with narrow_oop_shift == 0.
  1.6777 +// shift == 0, base == 0
  1.6778 +instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  1.6779 +  match(Set dst (EncodeP src));
  1.6780 +  predicate(Universe::narrow_oop_shift() == 0);
  1.6781 +
  1.6782 +  format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  1.6783 +  // variable size, 0 or 4.
  1.6784 +  ins_encode %{
  1.6785 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.6786 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.6787 +  %}
  1.6788 +  ins_pipe(pipe_class_default);
  1.6789 +%}
  1.6790 +
  1.6791 +// Decode nodes.
  1.6792 +
  1.6793 +// Shift node for expand.
  1.6794 +instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  1.6795 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6796 +  match(Set dst (DecodeN src));
  1.6797 +  predicate(false);
  1.6798 +
  1.6799 +  format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  1.6800 +  size(4);
  1.6801 +  ins_encode %{
  1.6802 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.6803 +    __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  1.6804 +  %}
  1.6805 +  ins_pipe(pipe_class_default);
  1.6806 +%}
  1.6807 +
  1.6808 +// Add node for expand.
  1.6809 +instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  1.6810 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6811 +  match(Set dst (DecodeN src));
  1.6812 +  predicate(false);
  1.6813 +
  1.6814 +  format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  1.6815 +  size(4);
  1.6816 +  ins_encode %{
  1.6817 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.6818 +    __ add($dst$$Register, $src$$Register, R30);
  1.6819 +  %}
  1.6820 +  ins_pipe(pipe_class_default);
  1.6821 +%}
  1.6822 +
  1.6823 +// conditianal add base for expand
  1.6824 +instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  1.6825 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6826 +  // NOTICE that the rule is nonsense - we just have to make sure that:
  1.6827 +  //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  1.6828 +  //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  1.6829 +  match(Set dst (DecodeN (Binary crx src1)));
  1.6830 +  predicate(false);
  1.6831 +
  1.6832 +  ins_variable_size_depending_on_alignment(true);
  1.6833 +
  1.6834 +  format %{ "BEQ     $crx, done\n\t"
  1.6835 +            "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  1.6836 +            "done:" %}
  1.6837 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  1.6838 +  ins_encode %{
  1.6839 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.6840 +    Label done;
  1.6841 +    __ beq($crx$$CondRegister, done);
  1.6842 +    __ add($dst$$Register, $src1$$Register, R30);
  1.6843 +    // TODO PPC port  __ endgroup_if_needed(_size == 12);
  1.6844 +    __ bind(done);
  1.6845 +  %}
  1.6846 +  ins_pipe(pipe_class_default);
  1.6847 +%}
  1.6848 +
  1.6849 +instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  1.6850 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6851 +  // NOTICE that the rule is nonsense - we just have to make sure that:
  1.6852 +  //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  1.6853 +  //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  1.6854 +  match(Set dst (DecodeN (Binary crx src1)));
  1.6855 +  predicate(false);
  1.6856 +
  1.6857 +  format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  1.6858 +  size(4);
  1.6859 +  ins_encode %{
  1.6860 +    // This is a Power7 instruction for which no machine description exists.
  1.6861 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.6862 +    __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  1.6863 +  %}
  1.6864 +  ins_pipe(pipe_class_default);
  1.6865 +%}
  1.6866 +
  1.6867 +//  shift != 0, base != 0
  1.6868 +instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  1.6869 +  match(Set dst (DecodeN src));
  1.6870 +  predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  1.6871 +             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  1.6872 +            Universe::narrow_oop_shift() != 0 &&
  1.6873 +            Universe::narrow_oop_base() != 0);
  1.6874 +  effect(TEMP crx);
  1.6875 +
  1.6876 +  format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  1.6877 +  postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  1.6878 +%}
  1.6879 +
  1.6880 +// shift != 0, base == 0
  1.6881 +instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  1.6882 +  match(Set dst (DecodeN src));
  1.6883 +  predicate(Universe::narrow_oop_shift() != 0 &&
  1.6884 +            Universe::narrow_oop_base() == 0);
  1.6885 +
  1.6886 +  format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  1.6887 +  size(4);
  1.6888 +  ins_encode %{
  1.6889 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.6890 +    __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  1.6891 +  %}
  1.6892 +  ins_pipe(pipe_class_default);
  1.6893 +%}
  1.6894 +
  1.6895 +// src != 0, shift != 0, base != 0
  1.6896 +instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  1.6897 +  match(Set dst (DecodeN src));
  1.6898 +  predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  1.6899 +             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  1.6900 +            Universe::narrow_oop_shift() != 0 &&
  1.6901 +            Universe::narrow_oop_base() != 0);
  1.6902 +
  1.6903 +  format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  1.6904 +  postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  1.6905 +%}
  1.6906 +
  1.6907 +// Compressed OOPs with narrow_oop_shift == 0.
  1.6908 +instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  1.6909 +  match(Set dst (DecodeN src));
  1.6910 +  predicate(Universe::narrow_oop_shift() == 0);
  1.6911 +  ins_cost(DEFAULT_COST);
  1.6912 +
  1.6913 +  format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  1.6914 +  // variable size, 0 or 4.
  1.6915 +  ins_encode %{
  1.6916 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.6917 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.6918 +  %}
  1.6919 +  ins_pipe(pipe_class_default);
  1.6920 +%}
  1.6921 +
  1.6922 +// Convert compressed oop into int for vectors alignment masking.
  1.6923 +instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  1.6924 +  match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  1.6925 +  predicate(Universe::narrow_oop_shift() == 0);
  1.6926 +  ins_cost(DEFAULT_COST);
  1.6927 +
  1.6928 +  format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  1.6929 +  // variable size, 0 or 4.
  1.6930 +  ins_encode %{
  1.6931 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.6932 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.6933 +  %}
  1.6934 +  ins_pipe(pipe_class_default);
  1.6935 +%}
  1.6936 +
  1.6937 +// Convert klass pointer into compressed form.
  1.6938 +
  1.6939 +// Nodes for postalloc expand.
  1.6940 +
  1.6941 +// Shift node for expand.
  1.6942 +instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  1.6943 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6944 +  match(Set dst (EncodePKlass src));
  1.6945 +  predicate(false);
  1.6946 +
  1.6947 +  format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  1.6948 +  size(4);
  1.6949 +  ins_encode %{
  1.6950 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6951 +    __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  1.6952 +  %}
  1.6953 +  ins_pipe(pipe_class_default);
  1.6954 +%}
  1.6955 +
  1.6956 +// Add node for expand.
  1.6957 +instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  1.6958 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.6959 +  match(Set dst (EncodePKlass (Binary base src)));
  1.6960 +  predicate(false);
  1.6961 +
  1.6962 +  format %{ "SUB     $dst, $base, $src \t// encode" %}
  1.6963 +  size(4);
  1.6964 +  ins_encode %{
  1.6965 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  1.6966 +    __ subf($dst$$Register, $base$$Register, $src$$Register);
  1.6967 +  %}
  1.6968 +  ins_pipe(pipe_class_default);
  1.6969 +%}
  1.6970 +
  1.6971 +// base != 0
  1.6972 +// 32G aligned narrow oop base.
  1.6973 +instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  1.6974 +  match(Set dst (EncodePKlass src));
  1.6975 +  predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  1.6976 +
  1.6977 +  format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  1.6978 +  size(4);
  1.6979 +  ins_encode %{
  1.6980 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.6981 +    __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  1.6982 +  %}
  1.6983 +  ins_pipe(pipe_class_default);
  1.6984 +%}
  1.6985 +
  1.6986 +// shift != 0, base != 0
  1.6987 +instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  1.6988 +  match(Set dst (EncodePKlass (Binary base src)));
  1.6989 +  predicate(false);
  1.6990 +
  1.6991 +  format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  1.6992 +  postalloc_expand %{
  1.6993 +    encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  1.6994 +    n1->add_req(n_region, n_base, n_src);
  1.6995 +    n1->_opnds[0] = op_dst;
  1.6996 +    n1->_opnds[1] = op_base;
  1.6997 +    n1->_opnds[2] = op_src;
  1.6998 +    n1->_bottom_type = _bottom_type;
  1.6999 +
  1.7000 +    encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  1.7001 +    n2->add_req(n_region, n1);
  1.7002 +    n2->_opnds[0] = op_dst;
  1.7003 +    n2->_opnds[1] = op_dst;
  1.7004 +    n2->_bottom_type = _bottom_type;
  1.7005 +    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.7006 +    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.7007 +
  1.7008 +    nodes->push(n1);
  1.7009 +    nodes->push(n2);
  1.7010 +  %}
  1.7011 +%}
  1.7012 +
  1.7013 +// shift != 0, base != 0
  1.7014 +instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  1.7015 +  match(Set dst (EncodePKlass src));
  1.7016 +  //predicate(Universe::narrow_klass_shift() != 0 &&
  1.7017 +  //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  1.7018 +
  1.7019 +  //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  1.7020 +  ins_cost(DEFAULT_COST*2);  // Don't count constant.
  1.7021 +  expand %{
  1.7022 +    immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  1.7023 +    iRegLdst base;
  1.7024 +    loadConL_Ex(base, baseImm);
  1.7025 +    encodePKlass_not_null_Ex(dst, base, src);
  1.7026 +  %}
  1.7027 +%}
  1.7028 +
  1.7029 +// Decode nodes.
  1.7030 +
  1.7031 +// Shift node for expand.
  1.7032 +instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  1.7033 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.7034 +  match(Set dst (DecodeNKlass src));
  1.7035 +  predicate(false);
  1.7036 +
  1.7037 +  format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  1.7038 +  size(4);
  1.7039 +  ins_encode %{
  1.7040 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.7041 +    __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  1.7042 +  %}
  1.7043 +  ins_pipe(pipe_class_default);
  1.7044 +%}
  1.7045 +
  1.7046 +// Add node for expand.
  1.7047 +
  1.7048 +instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  1.7049 +  // The match rule is needed to make it a 'MachTypeNode'!
  1.7050 +  match(Set dst (DecodeNKlass (Binary base src)));
  1.7051 +  predicate(false);
  1.7052 +
  1.7053 +  format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  1.7054 +  size(4);
  1.7055 +  ins_encode %{
  1.7056 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7057 +    __ add($dst$$Register, $base$$Register, $src$$Register);
  1.7058 +  %}
  1.7059 +  ins_pipe(pipe_class_default);
  1.7060 +%}
  1.7061 +
  1.7062 +// src != 0, shift != 0, base != 0
  1.7063 +instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  1.7064 +  match(Set dst (DecodeNKlass (Binary base src)));
  1.7065 +  //effect(kill src); // We need a register for the immediate result after shifting.
  1.7066 +  predicate(false);
  1.7067 +
  1.7068 +  format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  1.7069 +  postalloc_expand %{
  1.7070 +    decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  1.7071 +    n1->add_req(n_region, n_base, n_src);
  1.7072 +    n1->_opnds[0] = op_dst;
  1.7073 +    n1->_opnds[1] = op_base;
  1.7074 +    n1->_opnds[2] = op_src;
  1.7075 +    n1->_bottom_type = _bottom_type;
  1.7076 +
  1.7077 +    decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  1.7078 +    n2->add_req(n_region, n1);
  1.7079 +    n2->_opnds[0] = op_dst;
  1.7080 +    n2->_opnds[1] = op_dst;
  1.7081 +    n2->_bottom_type = _bottom_type;
  1.7082 +
  1.7083 +    ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.7084 +    ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1.7085 +
  1.7086 +    nodes->push(n1);
  1.7087 +    nodes->push(n2);
  1.7088 +  %}
  1.7089 +%}
  1.7090 +
  1.7091 +// src != 0, shift != 0, base != 0
  1.7092 +instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  1.7093 +  match(Set dst (DecodeNKlass src));
  1.7094 +  // predicate(Universe::narrow_klass_shift() != 0 &&
  1.7095 +  //           Universe::narrow_klass_base() != 0);
  1.7096 +
  1.7097 +  //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  1.7098 +
  1.7099 +  ins_cost(DEFAULT_COST*2);  // Don't count constant.
  1.7100 +  expand %{
  1.7101 +    // We add first, then we shift. Like this, we can get along with one register less.
  1.7102 +    // But we have to load the base pre-shifted.
  1.7103 +    immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  1.7104 +    iRegLdst base;
  1.7105 +    loadConL_Ex(base, baseImm);
  1.7106 +    decodeNKlass_notNull_addBase_Ex(dst, base, src);
  1.7107 +  %}
  1.7108 +%}
  1.7109 +
  1.7110 +//----------MemBar Instructions-----------------------------------------------
  1.7111 +// Memory barrier flavors
  1.7112 +
  1.7113 +instruct membar_acquire() %{
  1.7114 +  match(LoadFence);
  1.7115 +  ins_cost(4*MEMORY_REF_COST);
  1.7116 +
  1.7117 +  format %{ "MEMBAR-acquire" %}
  1.7118 +  size(4);
  1.7119 +  ins_encode %{
  1.7120 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  1.7121 +    __ acquire();
  1.7122 +  %}
  1.7123 +  ins_pipe(pipe_class_default);
  1.7124 +%}
  1.7125 +
  1.7126 +instruct unnecessary_membar_acquire() %{
  1.7127 +  match(MemBarAcquire);
  1.7128 +  ins_cost(0);
  1.7129 +
  1.7130 +  format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  1.7131 +  size(0);
  1.7132 +  ins_encode( /*empty*/ );
  1.7133 +  ins_pipe(pipe_class_default);
  1.7134 +%}
  1.7135 +
  1.7136 +instruct membar_acquire_lock() %{
  1.7137 +  match(MemBarAcquireLock);
  1.7138 +  ins_cost(0);
  1.7139 +
  1.7140 +  format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  1.7141 +  size(0);
  1.7142 +  ins_encode( /*empty*/ );
  1.7143 +  ins_pipe(pipe_class_default);
  1.7144 +%}
  1.7145 +
  1.7146 +instruct membar_release() %{
  1.7147 +  match(MemBarRelease);
  1.7148 +  match(StoreFence);
  1.7149 +  ins_cost(4*MEMORY_REF_COST);
  1.7150 +
  1.7151 +  format %{ "MEMBAR-release" %}
  1.7152 +  size(4);
  1.7153 +  ins_encode %{
  1.7154 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  1.7155 +    __ release();
  1.7156 +  %}
  1.7157 +  ins_pipe(pipe_class_default);
  1.7158 +%}
  1.7159 +
  1.7160 +instruct membar_storestore() %{
  1.7161 +  match(MemBarStoreStore);
  1.7162 +  ins_cost(4*MEMORY_REF_COST);
  1.7163 +
  1.7164 +  format %{ "MEMBAR-store-store" %}
  1.7165 +  size(4);
  1.7166 +  ins_encode %{
  1.7167 +    // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  1.7168 +    __ membar(Assembler::StoreStore);
  1.7169 +  %}
  1.7170 +  ins_pipe(pipe_class_default);
  1.7171 +%}
  1.7172 +
  1.7173 +instruct membar_release_lock() %{
  1.7174 +  match(MemBarReleaseLock);
  1.7175 +  ins_cost(0);
  1.7176 +
  1.7177 +  format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  1.7178 +  size(0);
  1.7179 +  ins_encode( /*empty*/ );
  1.7180 +  ins_pipe(pipe_class_default);
  1.7181 +%}
  1.7182 +
  1.7183 +instruct membar_volatile() %{
  1.7184 +  match(MemBarVolatile);
  1.7185 +  ins_cost(4*MEMORY_REF_COST);
  1.7186 +
  1.7187 +  format %{ "MEMBAR-volatile" %}
  1.7188 +  size(4);
  1.7189 +  ins_encode %{
  1.7190 +    // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  1.7191 +    __ fence();
  1.7192 +  %}
  1.7193 +  ins_pipe(pipe_class_default);
  1.7194 +%}
  1.7195 +
  1.7196 +// This optimization is wrong on PPC. The following pattern is not supported:
  1.7197 +//  MemBarVolatile
  1.7198 +//   ^        ^
  1.7199 +//   |        |
  1.7200 +//  CtrlProj MemProj
  1.7201 +//   ^        ^
  1.7202 +//   |        |
  1.7203 +//   |       Load
  1.7204 +//   |
  1.7205 +//  MemBarVolatile
  1.7206 +//
  1.7207 +//  The first MemBarVolatile could get optimized out! According to
  1.7208 +//  Vladimir, this pattern can not occur on Oracle platforms.
  1.7209 +//  However, it does occur on PPC64 (because of membars in
  1.7210 +//  inline_unsafe_load_store).
  1.7211 +//
  1.7212 +// Add this node again if we found a good solution for inline_unsafe_load_store().
  1.7213 +// Don't forget to look at the implementation of post_store_load_barrier again,
  1.7214 +// we did other fixes in that method.
  1.7215 +//instruct unnecessary_membar_volatile() %{
  1.7216 +//  match(MemBarVolatile);
  1.7217 +//  predicate(Matcher::post_store_load_barrier(n));
  1.7218 +//  ins_cost(0);
  1.7219 +//
  1.7220 +//  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  1.7221 +//  size(0);
  1.7222 +//  ins_encode( /*empty*/ );
  1.7223 +//  ins_pipe(pipe_class_default);
  1.7224 +//%}
  1.7225 +
  1.7226 +instruct membar_CPUOrder() %{
  1.7227 +  match(MemBarCPUOrder);
  1.7228 +  ins_cost(0);
  1.7229 +
  1.7230 +  format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  1.7231 +  size(0);
  1.7232 +  ins_encode( /*empty*/ );
  1.7233 +  ins_pipe(pipe_class_default);
  1.7234 +%}
  1.7235 +
  1.7236 +//----------Conditional Move---------------------------------------------------
  1.7237 +
  1.7238 +// Cmove using isel.
  1.7239 +instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  1.7240 +  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  1.7241 +  predicate(VM_Version::has_isel());
  1.7242 +  ins_cost(DEFAULT_COST);
  1.7243 +
  1.7244 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7245 +  size(4);
  1.7246 +  ins_encode %{
  1.7247 +    // This is a Power7 instruction for which no machine description
  1.7248 +    // exists. Anyways, the scheduler should be off on Power7.
  1.7249 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7250 +    int cc        = $cmp$$cmpcode;
  1.7251 +    __ isel($dst$$Register, $crx$$CondRegister,
  1.7252 +            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  1.7253 +  %}
  1.7254 +  ins_pipe(pipe_class_default);
  1.7255 +%}
  1.7256 +
  1.7257 +instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  1.7258 +  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  1.7259 +  predicate(!VM_Version::has_isel());
  1.7260 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7261 +
  1.7262 +  ins_variable_size_depending_on_alignment(true);
  1.7263 +
  1.7264 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7265 +  // Worst case is branch + move + stop, no stop without scheduler
  1.7266 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7267 +  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  1.7268 +  ins_pipe(pipe_class_default);
  1.7269 +%}
  1.7270 +
  1.7271 +instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  1.7272 +  match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  1.7273 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7274 +
  1.7275 +  ins_variable_size_depending_on_alignment(true);
  1.7276 +
  1.7277 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7278 +  // Worst case is branch + move + stop, no stop without scheduler
  1.7279 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7280 +  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  1.7281 +  ins_pipe(pipe_class_default);
  1.7282 +%}
  1.7283 +
  1.7284 +// Cmove using isel.
  1.7285 +instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  1.7286 +  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  1.7287 +  predicate(VM_Version::has_isel());
  1.7288 +  ins_cost(DEFAULT_COST);
  1.7289 +
  1.7290 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7291 +  size(4);
  1.7292 +  ins_encode %{
  1.7293 +    // This is a Power7 instruction for which no machine description
  1.7294 +    // exists. Anyways, the scheduler should be off on Power7.
  1.7295 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7296 +    int cc        = $cmp$$cmpcode;
  1.7297 +    __ isel($dst$$Register, $crx$$CondRegister,
  1.7298 +            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  1.7299 +  %}
  1.7300 +  ins_pipe(pipe_class_default);
  1.7301 +%}
  1.7302 +
  1.7303 +instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  1.7304 +  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  1.7305 +  predicate(!VM_Version::has_isel());
  1.7306 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7307 +
  1.7308 +  ins_variable_size_depending_on_alignment(true);
  1.7309 +
  1.7310 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7311 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7312 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7313 +  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  1.7314 +  ins_pipe(pipe_class_default);
  1.7315 +%}
  1.7316 +
  1.7317 +instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  1.7318 +  match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  1.7319 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7320 +
  1.7321 +  ins_variable_size_depending_on_alignment(true);
  1.7322 +
  1.7323 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7324 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7325 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7326 +  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  1.7327 +  ins_pipe(pipe_class_default);
  1.7328 +%}
  1.7329 +
  1.7330 +// Cmove using isel.
  1.7331 +instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  1.7332 +  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  1.7333 +  predicate(VM_Version::has_isel());
  1.7334 +  ins_cost(DEFAULT_COST);
  1.7335 +
  1.7336 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7337 +  size(4);
  1.7338 +  ins_encode %{
  1.7339 +    // This is a Power7 instruction for which no machine description
  1.7340 +    // exists. Anyways, the scheduler should be off on Power7.
  1.7341 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7342 +    int cc        = $cmp$$cmpcode;
  1.7343 +    __ isel($dst$$Register, $crx$$CondRegister,
  1.7344 +            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  1.7345 +  %}
  1.7346 +  ins_pipe(pipe_class_default);
  1.7347 +%}
  1.7348 +
  1.7349 +// Conditional move for RegN. Only cmov(reg, reg).
  1.7350 +instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  1.7351 +  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  1.7352 +  predicate(!VM_Version::has_isel());
  1.7353 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7354 +
  1.7355 +  ins_variable_size_depending_on_alignment(true);
  1.7356 +
  1.7357 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7358 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7359 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7360 +  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  1.7361 +  ins_pipe(pipe_class_default);
  1.7362 +%}
  1.7363 +
  1.7364 +instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  1.7365 +  match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  1.7366 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7367 +
  1.7368 +  ins_variable_size_depending_on_alignment(true);
  1.7369 +
  1.7370 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7371 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7372 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7373 +  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  1.7374 +  ins_pipe(pipe_class_default);
  1.7375 +%}
  1.7376 +
  1.7377 +// Cmove using isel.
  1.7378 +instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  1.7379 +  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  1.7380 +  predicate(VM_Version::has_isel());
  1.7381 +  ins_cost(DEFAULT_COST);
  1.7382 +
  1.7383 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7384 +  size(4);
  1.7385 +  ins_encode %{
  1.7386 +    // This is a Power7 instruction for which no machine description
  1.7387 +    // exists. Anyways, the scheduler should be off on Power7.
  1.7388 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7389 +    int cc        = $cmp$$cmpcode;
  1.7390 +    __ isel($dst$$Register, $crx$$CondRegister,
  1.7391 +            (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  1.7392 +  %}
  1.7393 +  ins_pipe(pipe_class_default);
  1.7394 +%}
  1.7395 +
  1.7396 +instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  1.7397 +  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  1.7398 +  predicate(!VM_Version::has_isel());
  1.7399 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7400 +
  1.7401 +  ins_variable_size_depending_on_alignment(true);
  1.7402 +
  1.7403 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7404 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7405 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7406 +  ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  1.7407 +  ins_pipe(pipe_class_default);
  1.7408 +%}
  1.7409 +
  1.7410 +instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  1.7411 +  match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  1.7412 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7413 +
  1.7414 +  ins_variable_size_depending_on_alignment(true);
  1.7415 +
  1.7416 +  format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  1.7417 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7418 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.7419 +  ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  1.7420 +  ins_pipe(pipe_class_default);
  1.7421 +%}
  1.7422 +
  1.7423 +instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  1.7424 +  match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  1.7425 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7426 +
  1.7427 +  ins_variable_size_depending_on_alignment(true);
  1.7428 +
  1.7429 +  format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  1.7430 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7431 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.7432 +  ins_encode %{
  1.7433 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  1.7434 +    Label done;
  1.7435 +    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  1.7436 +    // Branch if not (cmp crx).
  1.7437 +    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  1.7438 +    __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  1.7439 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.7440 +    __ bind(done);
  1.7441 +  %}
  1.7442 +  ins_pipe(pipe_class_default);
  1.7443 +%}
  1.7444 +
  1.7445 +instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  1.7446 +  match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  1.7447 +  ins_cost(DEFAULT_COST+BRANCH_COST);
  1.7448 +
  1.7449 +  ins_variable_size_depending_on_alignment(true);
  1.7450 +
  1.7451 +  format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  1.7452 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.7453 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.7454 +  ins_encode %{
  1.7455 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  1.7456 +    Label done;
  1.7457 +    assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  1.7458 +    // Branch if not (cmp crx).
  1.7459 +    __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  1.7460 +    __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  1.7461 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.7462 +    __ bind(done);
  1.7463 +  %}
  1.7464 +  ins_pipe(pipe_class_default);
  1.7465 +%}
  1.7466 +
  1.7467 +//----------Conditional_store--------------------------------------------------
  1.7468 +// Conditional-store of the updated heap-top.
  1.7469 +// Used during allocation of the shared heap.
  1.7470 +// Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  1.7471 +
  1.7472 +// As compareAndSwapL, but return flag register instead of boolean value in
  1.7473 +// int register.
  1.7474 +// Used by sun/misc/AtomicLongCSImpl.java.
  1.7475 +// Mem_ptr must be a memory operand, else this node does not get
  1.7476 +// Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  1.7477 +// can be rematerialized which leads to errors.
  1.7478 +instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  1.7479 +  match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  1.7480 +  format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  1.7481 +  ins_encode %{
  1.7482 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7483 +    __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  1.7484 +                MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7485 +                noreg, NULL, true);
  1.7486 +  %}
  1.7487 +  ins_pipe(pipe_class_default);
  1.7488 +%}
  1.7489 +
  1.7490 +// As compareAndSwapP, but return flag register instead of boolean value in
  1.7491 +// int register.
  1.7492 +// This instruction is matched if UseTLAB is off.
  1.7493 +// Mem_ptr must be a memory operand, else this node does not get
  1.7494 +// Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  1.7495 +// can be rematerialized which leads to errors.
  1.7496 +instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  1.7497 +  match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  1.7498 +  format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  1.7499 +  ins_encode %{
  1.7500 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7501 +    __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  1.7502 +                MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7503 +                noreg, NULL, true);
  1.7504 +  %}
  1.7505 +  ins_pipe(pipe_class_default);
  1.7506 +%}
  1.7507 +
  1.7508 +// Implement LoadPLocked. Must be ordered against changes of the memory location
  1.7509 +// by storePConditional.
  1.7510 +// Don't know whether this is ever used.
  1.7511 +instruct loadPLocked(iRegPdst dst, memory mem) %{
  1.7512 +  match(Set dst (LoadPLocked mem));
  1.7513 +  ins_cost(MEMORY_REF_COST);
  1.7514 +
  1.7515 +  format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  1.7516 +            "TWI     $dst\n\t"
  1.7517 +            "ISYNC" %}
  1.7518 +  size(12);
  1.7519 +  ins_encode( enc_ld_ac(dst, mem) );
  1.7520 +  ins_pipe(pipe_class_memory);
  1.7521 +%}
  1.7522 +
  1.7523 +//----------Compare-And-Swap---------------------------------------------------
  1.7524 +
  1.7525 +// CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  1.7526 +// (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  1.7527 +// matched.
  1.7528 +
  1.7529 +instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  1.7530 +  match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  1.7531 +  format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  1.7532 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7533 +  ins_encode %{
  1.7534 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7535 +    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  1.7536 +    __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  1.7537 +                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7538 +                $res$$Register, true);
  1.7539 +  %}
  1.7540 +  ins_pipe(pipe_class_default);
  1.7541 +%}
  1.7542 +
  1.7543 +instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  1.7544 +  match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  1.7545 +  format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  1.7546 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7547 +  ins_encode %{
  1.7548 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7549 +    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  1.7550 +    __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  1.7551 +                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7552 +                $res$$Register, true);
  1.7553 +  %}
  1.7554 +  ins_pipe(pipe_class_default);
  1.7555 +%}
  1.7556 +
  1.7557 +instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  1.7558 +  match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  1.7559 +  format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  1.7560 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7561 +  ins_encode %{
  1.7562 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7563 +    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  1.7564 +    __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  1.7565 +                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7566 +                $res$$Register, NULL, true);
  1.7567 +  %}
  1.7568 +  ins_pipe(pipe_class_default);
  1.7569 +%}
  1.7570 +
  1.7571 +instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  1.7572 +  match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  1.7573 +  format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  1.7574 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7575 +  ins_encode %{
  1.7576 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  1.7577 +    // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  1.7578 +    __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  1.7579 +                MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  1.7580 +                $res$$Register, NULL, true);
  1.7581 +  %}
  1.7582 +  ins_pipe(pipe_class_default);
  1.7583 +%}
  1.7584 +
  1.7585 +instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  1.7586 +  match(Set res (GetAndAddI mem_ptr src));
  1.7587 +  format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  1.7588 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7589 +  ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  1.7590 +  ins_pipe(pipe_class_default);
  1.7591 +%}
  1.7592 +
  1.7593 +instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  1.7594 +  match(Set res (GetAndAddL mem_ptr src));
  1.7595 +  format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  1.7596 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7597 +  ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  1.7598 +  ins_pipe(pipe_class_default);
  1.7599 +%}
  1.7600 +
  1.7601 +instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  1.7602 +  match(Set res (GetAndSetI mem_ptr src));
  1.7603 +  format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  1.7604 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7605 +  ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  1.7606 +  ins_pipe(pipe_class_default);
  1.7607 +%}
  1.7608 +
  1.7609 +instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  1.7610 +  match(Set res (GetAndSetL mem_ptr src));
  1.7611 +  format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  1.7612 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7613 +  ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  1.7614 +  ins_pipe(pipe_class_default);
  1.7615 +%}
  1.7616 +
  1.7617 +instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  1.7618 +  match(Set res (GetAndSetP mem_ptr src));
  1.7619 +  format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  1.7620 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7621 +  ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  1.7622 +  ins_pipe(pipe_class_default);
  1.7623 +%}
  1.7624 +
  1.7625 +instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  1.7626 +  match(Set res (GetAndSetN mem_ptr src));
  1.7627 +  format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  1.7628 +  // Variable size: instruction count smaller if regs are disjoint.
  1.7629 +  ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  1.7630 +  ins_pipe(pipe_class_default);
  1.7631 +%}
  1.7632 +
  1.7633 +//----------Arithmetic Instructions--------------------------------------------
  1.7634 +// Addition Instructions
  1.7635 +
  1.7636 +// Register Addition
  1.7637 +instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  1.7638 +  match(Set dst (AddI src1 src2));
  1.7639 +  format %{ "ADD     $dst, $src1, $src2" %}
  1.7640 +  size(4);
  1.7641 +  ins_encode %{
  1.7642 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7643 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7644 +  %}
  1.7645 +  ins_pipe(pipe_class_default);
  1.7646 +%}
  1.7647 +
  1.7648 +// Expand does not work with above instruct. (??)
  1.7649 +instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.7650 +  // no match-rule
  1.7651 +  effect(DEF dst, USE src1, USE src2);
  1.7652 +  format %{ "ADD     $dst, $src1, $src2" %}
  1.7653 +  size(4);
  1.7654 +  ins_encode %{
  1.7655 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7656 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7657 +  %}
  1.7658 +  ins_pipe(pipe_class_default);
  1.7659 +%}
  1.7660 +
  1.7661 +instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  1.7662 +  match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  1.7663 +  ins_cost(DEFAULT_COST*3);
  1.7664 +
  1.7665 +  expand %{
  1.7666 +    // FIXME: we should do this in the ideal world.
  1.7667 +    iRegIdst tmp1;
  1.7668 +    iRegIdst tmp2;
  1.7669 +    addI_reg_reg(tmp1, src1, src2);
  1.7670 +    addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  1.7671 +    addI_reg_reg(dst, tmp1, tmp2);
  1.7672 +  %}
  1.7673 +%}
  1.7674 +
  1.7675 +// Immediate Addition
  1.7676 +instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  1.7677 +  match(Set dst (AddI src1 src2));
  1.7678 +  format %{ "ADDI    $dst, $src1, $src2" %}
  1.7679 +  size(4);
  1.7680 +  ins_encode %{
  1.7681 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.7682 +    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  1.7683 +  %}
  1.7684 +  ins_pipe(pipe_class_default);
  1.7685 +%}
  1.7686 +
  1.7687 +// Immediate Addition with 16-bit shifted operand
  1.7688 +instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  1.7689 +  match(Set dst (AddI src1 src2));
  1.7690 +  format %{ "ADDIS   $dst, $src1, $src2" %}
  1.7691 +  size(4);
  1.7692 +  ins_encode %{
  1.7693 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.7694 +    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  1.7695 +  %}
  1.7696 +  ins_pipe(pipe_class_default);
  1.7697 +%}
  1.7698 +
  1.7699 +// Long Addition
  1.7700 +instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.7701 +  match(Set dst (AddL src1 src2));
  1.7702 +  format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  1.7703 +  size(4);
  1.7704 +  ins_encode %{
  1.7705 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7706 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7707 +  %}
  1.7708 +  ins_pipe(pipe_class_default);
  1.7709 +%}
  1.7710 +
  1.7711 +// Expand does not work with above instruct. (??)
  1.7712 +instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.7713 +  // no match-rule
  1.7714 +  effect(DEF dst, USE src1, USE src2);
  1.7715 +  format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  1.7716 +  size(4);
  1.7717 +  ins_encode %{
  1.7718 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7719 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7720 +  %}
  1.7721 +  ins_pipe(pipe_class_default);
  1.7722 +%}
  1.7723 +
  1.7724 +instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  1.7725 +  match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  1.7726 +  ins_cost(DEFAULT_COST*3);
  1.7727 +
  1.7728 +  expand %{
  1.7729 +    // FIXME: we should do this in the ideal world.
  1.7730 +    iRegLdst tmp1;
  1.7731 +    iRegLdst tmp2;
  1.7732 +    addL_reg_reg(tmp1, src1, src2);
  1.7733 +    addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  1.7734 +    addL_reg_reg(dst, tmp1, tmp2);
  1.7735 +  %}
  1.7736 +%}
  1.7737 +
  1.7738 +// AddL + ConvL2I.
  1.7739 +instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.7740 +  match(Set dst (ConvL2I (AddL src1 src2)));
  1.7741 +
  1.7742 +  format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  1.7743 +  size(4);
  1.7744 +  ins_encode %{
  1.7745 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7746 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7747 +  %}
  1.7748 +  ins_pipe(pipe_class_default);
  1.7749 +%}
  1.7750 +
  1.7751 +// No constant pool entries required.
  1.7752 +instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  1.7753 +  match(Set dst (AddL src1 src2));
  1.7754 +
  1.7755 +  format %{ "ADDI    $dst, $src1, $src2" %}
  1.7756 +  size(4);
  1.7757 +  ins_encode %{
  1.7758 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.7759 +    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  1.7760 +  %}
  1.7761 +  ins_pipe(pipe_class_default);
  1.7762 +%}
  1.7763 +
  1.7764 +// Long Immediate Addition with 16-bit shifted operand.
  1.7765 +// No constant pool entries required.
  1.7766 +instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  1.7767 +  match(Set dst (AddL src1 src2));
  1.7768 +
  1.7769 +  format %{ "ADDIS   $dst, $src1, $src2" %}
  1.7770 +  size(4);
  1.7771 +  ins_encode %{
  1.7772 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.7773 +    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  1.7774 +  %}
  1.7775 +  ins_pipe(pipe_class_default);
  1.7776 +%}
  1.7777 +
  1.7778 +// Pointer Register Addition
  1.7779 +instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  1.7780 +  match(Set dst (AddP src1 src2));
  1.7781 +  format %{ "ADD     $dst, $src1, $src2" %}
  1.7782 +  size(4);
  1.7783 +  ins_encode %{
  1.7784 +    // TODO: PPC port $archOpcode(ppc64Opcode_add);
  1.7785 +    __ add($dst$$Register, $src1$$Register, $src2$$Register);
  1.7786 +  %}
  1.7787 +  ins_pipe(pipe_class_default);
  1.7788 +%}
  1.7789 +
  1.7790 +// Pointer Immediate Addition
  1.7791 +// No constant pool entries required.
  1.7792 +instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  1.7793 +  match(Set dst (AddP src1 src2));
  1.7794 +
  1.7795 +  format %{ "ADDI    $dst, $src1, $src2" %}
  1.7796 +  size(4);
  1.7797 +  ins_encode %{
  1.7798 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.7799 +    __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  1.7800 +  %}
  1.7801 +  ins_pipe(pipe_class_default);
  1.7802 +%}
  1.7803 +
  1.7804 +// Pointer Immediate Addition with 16-bit shifted operand.
  1.7805 +// No constant pool entries required.
  1.7806 +instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  1.7807 +  match(Set dst (AddP src1 src2));
  1.7808 +
  1.7809 +  format %{ "ADDIS   $dst, $src1, $src2" %}
  1.7810 +  size(4);
  1.7811 +  ins_encode %{
  1.7812 +    // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  1.7813 +    __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  1.7814 +  %}
  1.7815 +  ins_pipe(pipe_class_default);
  1.7816 +%}
  1.7817 +
  1.7818 +//---------------------
  1.7819 +// Subtraction Instructions
  1.7820 +
  1.7821 +// Register Subtraction
  1.7822 +instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.7823 +  match(Set dst (SubI src1 src2));
  1.7824 +  format %{ "SUBF    $dst, $src2, $src1" %}
  1.7825 +  size(4);
  1.7826 +  ins_encode %{
  1.7827 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  1.7828 +    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  1.7829 +  %}
  1.7830 +  ins_pipe(pipe_class_default);
  1.7831 +%}
  1.7832 +
  1.7833 +// Immediate Subtraction
  1.7834 +// The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  1.7835 +// so this rule seems to be unused.
  1.7836 +instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  1.7837 +  match(Set dst (SubI src1 src2));
  1.7838 +  format %{ "SUBI    $dst, $src1, $src2" %}
  1.7839 +  size(4);
  1.7840 +  ins_encode %{
  1.7841 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.7842 +    __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  1.7843 +  %}
  1.7844 +  ins_pipe(pipe_class_default);
  1.7845 +%}
  1.7846 +
  1.7847 +// SubI from constant (using subfic).
  1.7848 +instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  1.7849 +  match(Set dst (SubI src1 src2));
  1.7850 +  format %{ "SUBI    $dst, $src1, $src2" %}
  1.7851 +
  1.7852 +  size(4);
  1.7853 +  ins_encode %{
  1.7854 +    // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  1.7855 +    __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  1.7856 +  %}
  1.7857 +  ins_pipe(pipe_class_default);
  1.7858 +%}
  1.7859 +
  1.7860 +// Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  1.7861 +// positive integers and 0xF...F for negative ones.
  1.7862 +instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  1.7863 +  // no match-rule, false predicate
  1.7864 +  effect(DEF dst, USE src);
  1.7865 +  predicate(false);
  1.7866 +
  1.7867 +  format %{ "SRAWI   $dst, $src, #31" %}
  1.7868 +  size(4);
  1.7869 +  ins_encode %{
  1.7870 +    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  1.7871 +    __ srawi($dst$$Register, $src$$Register, 0x1f);
  1.7872 +  %}
  1.7873 +  ins_pipe(pipe_class_default);
  1.7874 +%}
  1.7875 +
  1.7876 +instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  1.7877 +  match(Set dst (AbsI src));
  1.7878 +  ins_cost(DEFAULT_COST*3);
  1.7879 +
  1.7880 +  expand %{
  1.7881 +    iRegIdst tmp1;
  1.7882 +    iRegIdst tmp2;
  1.7883 +    signmask32I_regI(tmp1, src);
  1.7884 +    xorI_reg_reg(tmp2, tmp1, src);
  1.7885 +    subI_reg_reg(dst, tmp2, tmp1);
  1.7886 +  %}
  1.7887 +%}
  1.7888 +
  1.7889 +instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  1.7890 +  match(Set dst (SubI zero src2));
  1.7891 +  format %{ "NEG     $dst, $src2" %}
  1.7892 +  size(4);
  1.7893 +  ins_encode %{
  1.7894 +    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  1.7895 +    __ neg($dst$$Register, $src2$$Register);
  1.7896 +  %}
  1.7897 +  ins_pipe(pipe_class_default);
  1.7898 +%}
  1.7899 +
  1.7900 +// Long subtraction
  1.7901 +instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.7902 +  match(Set dst (SubL src1 src2));
  1.7903 +  format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  1.7904 +  size(4);
  1.7905 +  ins_encode %{
  1.7906 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  1.7907 +    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  1.7908 +  %}
  1.7909 +  ins_pipe(pipe_class_default);
  1.7910 +%}
  1.7911 +
  1.7912 +// SubL + convL2I.
  1.7913 +instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.7914 +  match(Set dst (ConvL2I (SubL src1 src2)));
  1.7915 +
  1.7916 +  format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  1.7917 +  size(4);
  1.7918 +  ins_encode %{
  1.7919 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  1.7920 +    __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  1.7921 +  %}
  1.7922 +  ins_pipe(pipe_class_default);
  1.7923 +%}
  1.7924 +
  1.7925 +// Immediate Subtraction
  1.7926 +// The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  1.7927 +// so this rule seems to be unused.
  1.7928 +// No constant pool entries required.
  1.7929 +instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  1.7930 +  match(Set dst (SubL src1 src2));
  1.7931 +
  1.7932 +  format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  1.7933 +  size(4);
  1.7934 +  ins_encode %{
  1.7935 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  1.7936 +    __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  1.7937 +  %}
  1.7938 +  ins_pipe(pipe_class_default);
  1.7939 +%}
  1.7940 +
  1.7941 +// Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  1.7942 +// positive longs and 0xF...F for negative ones.
  1.7943 +instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  1.7944 +  // no match-rule, false predicate
  1.7945 +  effect(DEF dst, USE src);
  1.7946 +  predicate(false);
  1.7947 +
  1.7948 +  format %{ "SRADI   $dst, $src, #63" %}
  1.7949 +  size(4);
  1.7950 +  ins_encode %{
  1.7951 +    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  1.7952 +    __ sradi($dst$$Register, $src$$Register, 0x3f);
  1.7953 +  %}
  1.7954 +  ins_pipe(pipe_class_default);
  1.7955 +%}
  1.7956 +
  1.7957 +// Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  1.7958 +// positive longs and 0xF...F for negative ones.
  1.7959 +instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  1.7960 +  // no match-rule, false predicate
  1.7961 +  effect(DEF dst, USE src);
  1.7962 +  predicate(false);
  1.7963 +
  1.7964 +  format %{ "SRADI   $dst, $src, #63" %}
  1.7965 +  size(4);
  1.7966 +  ins_encode %{
  1.7967 +    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  1.7968 +    __ sradi($dst$$Register, $src$$Register, 0x3f);
  1.7969 +  %}
  1.7970 +  ins_pipe(pipe_class_default);
  1.7971 +%}
  1.7972 +
  1.7973 +// Long negation
  1.7974 +instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  1.7975 +  match(Set dst (SubL zero src2));
  1.7976 +  format %{ "NEG     $dst, $src2 \t// long" %}
  1.7977 +  size(4);
  1.7978 +  ins_encode %{
  1.7979 +    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  1.7980 +    __ neg($dst$$Register, $src2$$Register);
  1.7981 +  %}
  1.7982 +  ins_pipe(pipe_class_default);
  1.7983 +%}
  1.7984 +
  1.7985 +// NegL + ConvL2I.
  1.7986 +instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  1.7987 +  match(Set dst (ConvL2I (SubL zero src2)));
  1.7988 +
  1.7989 +  format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  1.7990 +  size(4);
  1.7991 +  ins_encode %{
  1.7992 +    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  1.7993 +    __ neg($dst$$Register, $src2$$Register);
  1.7994 +  %}
  1.7995 +  ins_pipe(pipe_class_default);
  1.7996 +%}
  1.7997 +
  1.7998 +// Multiplication Instructions
  1.7999 +// Integer Multiplication
  1.8000 +
  1.8001 +// Register Multiplication
  1.8002 +instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8003 +  match(Set dst (MulI src1 src2));
  1.8004 +  ins_cost(DEFAULT_COST);
  1.8005 +
  1.8006 +  format %{ "MULLW   $dst, $src1, $src2" %}
  1.8007 +  size(4);
  1.8008 +  ins_encode %{
  1.8009 +    // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  1.8010 +    __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  1.8011 +  %}
  1.8012 +  ins_pipe(pipe_class_default);
  1.8013 +%}
  1.8014 +
  1.8015 +// Immediate Multiplication
  1.8016 +instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  1.8017 +  match(Set dst (MulI src1 src2));
  1.8018 +  ins_cost(DEFAULT_COST);
  1.8019 +
  1.8020 +  format %{ "MULLI   $dst, $src1, $src2" %}
  1.8021 +  size(4);
  1.8022 +  ins_encode %{
  1.8023 +    // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  1.8024 +    __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  1.8025 +  %}
  1.8026 +  ins_pipe(pipe_class_default);
  1.8027 +%}
  1.8028 +
  1.8029 +instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.8030 +  match(Set dst (MulL src1 src2));
  1.8031 +  ins_cost(DEFAULT_COST);
  1.8032 +
  1.8033 +  format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  1.8034 +  size(4);
  1.8035 +  ins_encode %{
  1.8036 +    // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  1.8037 +    __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  1.8038 +  %}
  1.8039 +  ins_pipe(pipe_class_default);
  1.8040 +%}
  1.8041 +
  1.8042 +// Multiply high for optimized long division by constant.
  1.8043 +instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.8044 +  match(Set dst (MulHiL src1 src2));
  1.8045 +  ins_cost(DEFAULT_COST);
  1.8046 +
  1.8047 +  format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  1.8048 +  size(4);
  1.8049 +  ins_encode %{
  1.8050 +    // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  1.8051 +    __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  1.8052 +  %}
  1.8053 +  ins_pipe(pipe_class_default);
  1.8054 +%}
  1.8055 +
  1.8056 +// Immediate Multiplication
  1.8057 +instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  1.8058 +  match(Set dst (MulL src1 src2));
  1.8059 +  ins_cost(DEFAULT_COST);
  1.8060 +
  1.8061 +  format %{ "MULLI   $dst, $src1, $src2" %}
  1.8062 +  size(4);
  1.8063 +  ins_encode %{
  1.8064 +    // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  1.8065 +    __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  1.8066 +  %}
  1.8067 +  ins_pipe(pipe_class_default);
  1.8068 +%}
  1.8069 +
  1.8070 +// Integer Division with Immediate -1: Negate.
  1.8071 +instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  1.8072 +  match(Set dst (DivI src1 src2));
  1.8073 +  ins_cost(DEFAULT_COST);
  1.8074 +
  1.8075 +  format %{ "NEG     $dst, $src1 \t// /-1" %}
  1.8076 +  size(4);
  1.8077 +  ins_encode %{
  1.8078 +    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  1.8079 +    __ neg($dst$$Register, $src1$$Register);
  1.8080 +  %}
  1.8081 +  ins_pipe(pipe_class_default);
  1.8082 +%}
  1.8083 +
  1.8084 +// Integer Division with constant, but not -1.
  1.8085 +// We should be able to improve this by checking the type of src2.
  1.8086 +// It might well be that src2 is known to be positive.
  1.8087 +instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8088 +  match(Set dst (DivI src1 src2));
  1.8089 +  predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  1.8090 +  ins_cost(2*DEFAULT_COST);
  1.8091 +
  1.8092 +  format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  1.8093 +  size(4);
  1.8094 +  ins_encode %{
  1.8095 +    // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  1.8096 +    __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  1.8097 +  %}
  1.8098 +  ins_pipe(pipe_class_default);
  1.8099 +%}
  1.8100 +
  1.8101 +instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  1.8102 +  effect(USE_DEF dst, USE src1, USE crx);
  1.8103 +  predicate(false);
  1.8104 +
  1.8105 +  ins_variable_size_depending_on_alignment(true);
  1.8106 +
  1.8107 +  format %{ "CMOVE   $dst, neg($src1), $crx" %}
  1.8108 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.8109 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.8110 +  ins_encode %{
  1.8111 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.8112 +    Label done;
  1.8113 +    __ bne($crx$$CondRegister, done);
  1.8114 +    __ neg($dst$$Register, $src1$$Register);
  1.8115 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.8116 +    __ bind(done);
  1.8117 +  %}
  1.8118 +  ins_pipe(pipe_class_default);
  1.8119 +%}
  1.8120 +
  1.8121 +// Integer Division with Registers not containing constants.
  1.8122 +instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8123 +  match(Set dst (DivI src1 src2));
  1.8124 +  ins_cost(10*DEFAULT_COST);
  1.8125 +
  1.8126 +  expand %{
  1.8127 +    immI16 imm %{ (int)-1 %}
  1.8128 +    flagsReg tmp1;
  1.8129 +    cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  1.8130 +    divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  1.8131 +    cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  1.8132 +  %}
  1.8133 +%}
  1.8134 +
  1.8135 +// Long Division with Immediate -1: Negate.
  1.8136 +instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  1.8137 +  match(Set dst (DivL src1 src2));
  1.8138 +  ins_cost(DEFAULT_COST);
  1.8139 +
  1.8140 +  format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  1.8141 +  size(4);
  1.8142 +  ins_encode %{
  1.8143 +    // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  1.8144 +    __ neg($dst$$Register, $src1$$Register);
  1.8145 +  %}
  1.8146 +  ins_pipe(pipe_class_default);
  1.8147 +%}
  1.8148 +
  1.8149 +// Long Division with constant, but not -1.
  1.8150 +instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.8151 +  match(Set dst (DivL src1 src2));
  1.8152 +  predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  1.8153 +  ins_cost(2*DEFAULT_COST);
  1.8154 +
  1.8155 +  format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  1.8156 +  size(4);
  1.8157 +  ins_encode %{
  1.8158 +    // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  1.8159 +    __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  1.8160 +  %}
  1.8161 +  ins_pipe(pipe_class_default);
  1.8162 +%}
  1.8163 +
  1.8164 +instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  1.8165 +  effect(USE_DEF dst, USE src1, USE crx);
  1.8166 +  predicate(false);
  1.8167 +
  1.8168 +  ins_variable_size_depending_on_alignment(true);
  1.8169 +
  1.8170 +  format %{ "CMOVE   $dst, neg($src1), $crx" %}
  1.8171 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.8172 +  size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.8173 +  ins_encode %{
  1.8174 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  1.8175 +    Label done;
  1.8176 +    __ bne($crx$$CondRegister, done);
  1.8177 +    __ neg($dst$$Register, $src1$$Register);
  1.8178 +    // TODO PPC port __ endgroup_if_needed(_size == 12);
  1.8179 +    __ bind(done);
  1.8180 +  %}
  1.8181 +  ins_pipe(pipe_class_default);
  1.8182 +%}
  1.8183 +
  1.8184 +// Long Division with Registers not containing constants.
  1.8185 +instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.8186 +  match(Set dst (DivL src1 src2));
  1.8187 +  ins_cost(10*DEFAULT_COST);
  1.8188 +
  1.8189 +  expand %{
  1.8190 +    immL16 imm %{ (int)-1 %}
  1.8191 +    flagsReg tmp1;
  1.8192 +    cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  1.8193 +    divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  1.8194 +    cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  1.8195 +  %}
  1.8196 +%}
  1.8197 +
  1.8198 +// Integer Remainder with registers.
  1.8199 +instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8200 +  match(Set dst (ModI src1 src2));
  1.8201 +  ins_cost(10*DEFAULT_COST);
  1.8202 +
  1.8203 +  expand %{
  1.8204 +    immI16 imm %{ (int)-1 %}
  1.8205 +    flagsReg tmp1;
  1.8206 +    iRegIdst tmp2;
  1.8207 +    iRegIdst tmp3;
  1.8208 +    cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  1.8209 +    divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  1.8210 +    cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  1.8211 +    mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  1.8212 +    subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  1.8213 +  %}
  1.8214 +%}
  1.8215 +
  1.8216 +// Long Remainder with registers
  1.8217 +instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  1.8218 +  match(Set dst (ModL src1 src2));
  1.8219 +  ins_cost(10*DEFAULT_COST);
  1.8220 +
  1.8221 +  expand %{
  1.8222 +    immL16 imm %{ (int)-1 %}
  1.8223 +    flagsReg tmp1;
  1.8224 +    iRegLdst tmp2;
  1.8225 +    iRegLdst tmp3;
  1.8226 +    cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  1.8227 +    divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  1.8228 +    cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  1.8229 +    mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  1.8230 +    subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  1.8231 +  %}
  1.8232 +%}
  1.8233 +
  1.8234 +// Integer Shift Instructions
  1.8235 +
  1.8236 +// Register Shift Left
  1.8237 +
  1.8238 +// Clear all but the lowest #mask bits.
  1.8239 +// Used to normalize shift amounts in registers.
  1.8240 +instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  1.8241 +  // no match-rule, false predicate
  1.8242 +  effect(DEF dst, USE src, USE mask);
  1.8243 +  predicate(false);
  1.8244 +
  1.8245 +  format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  1.8246 +  size(4);
  1.8247 +  ins_encode %{
  1.8248 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8249 +    __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  1.8250 +  %}
  1.8251 +  ins_pipe(pipe_class_default);
  1.8252 +%}
  1.8253 +
  1.8254 +instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8255 +  // no match-rule, false predicate
  1.8256 +  effect(DEF dst, USE src1, USE src2);
  1.8257 +  predicate(false);
  1.8258 +
  1.8259 +  format %{ "SLW     $dst, $src1, $src2" %}
  1.8260 +  size(4);
  1.8261 +  ins_encode %{
  1.8262 +    // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  1.8263 +    __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  1.8264 +  %}
  1.8265 +  ins_pipe(pipe_class_default);
  1.8266 +%}
  1.8267 +
  1.8268 +instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8269 +  match(Set dst (LShiftI src1 src2));
  1.8270 +  ins_cost(DEFAULT_COST*2);
  1.8271 +  expand %{
  1.8272 +    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  1.8273 +    iRegIdst tmpI;
  1.8274 +    maskI_reg_imm(tmpI, src2, mask);
  1.8275 +    lShiftI_reg_reg(dst, src1, tmpI);
  1.8276 +  %}
  1.8277 +%}
  1.8278 +
  1.8279 +// Register Shift Left Immediate
  1.8280 +instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  1.8281 +  match(Set dst (LShiftI src1 src2));
  1.8282 +
  1.8283 +  format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  1.8284 +  size(4);
  1.8285 +  ins_encode %{
  1.8286 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.8287 +    __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  1.8288 +  %}
  1.8289 +  ins_pipe(pipe_class_default);
  1.8290 +%}
  1.8291 +
  1.8292 +// AndI with negpow2-constant + LShiftI
  1.8293 +instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  1.8294 +  match(Set dst (LShiftI (AndI src1 src2) src3));
  1.8295 +  predicate(UseRotateAndMaskInstructionsPPC64);
  1.8296 +
  1.8297 +  format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  1.8298 +  size(4);
  1.8299 +  ins_encode %{
  1.8300 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  1.8301 +    long src2      = $src2$$constant;
  1.8302 +    long src3      = $src3$$constant;
  1.8303 +    long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  1.8304 +    if (maskbits >= 32) {
  1.8305 +      __ li($dst$$Register, 0); // addi
  1.8306 +    } else {
  1.8307 +      __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  1.8308 +    }
  1.8309 +  %}
  1.8310 +  ins_pipe(pipe_class_default);
  1.8311 +%}
  1.8312 +
  1.8313 +// RShiftI + AndI with negpow2-constant + LShiftI
  1.8314 +instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  1.8315 +  match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  1.8316 +  predicate(UseRotateAndMaskInstructionsPPC64);
  1.8317 +
  1.8318 +  format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  1.8319 +  size(4);
  1.8320 +  ins_encode %{
  1.8321 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  1.8322 +    long src2      = $src2$$constant;
  1.8323 +    long src3      = $src3$$constant;
  1.8324 +    long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  1.8325 +    if (maskbits >= 32) {
  1.8326 +      __ li($dst$$Register, 0); // addi
  1.8327 +    } else {
  1.8328 +      __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  1.8329 +    }
  1.8330 +  %}
  1.8331 +  ins_pipe(pipe_class_default);
  1.8332 +%}
  1.8333 +
  1.8334 +instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8335 +  // no match-rule, false predicate
  1.8336 +  effect(DEF dst, USE src1, USE src2);
  1.8337 +  predicate(false);
  1.8338 +
  1.8339 +  format %{ "SLD     $dst, $src1, $src2" %}
  1.8340 +  size(4);
  1.8341 +  ins_encode %{
  1.8342 +    // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  1.8343 +    __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  1.8344 +  %}
  1.8345 +  ins_pipe(pipe_class_default);
  1.8346 +%}
  1.8347 +
  1.8348 +// Register Shift Left
  1.8349 +instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8350 +  match(Set dst (LShiftL src1 src2));
  1.8351 +  ins_cost(DEFAULT_COST*2);
  1.8352 +  expand %{
  1.8353 +    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  1.8354 +    iRegIdst tmpI;
  1.8355 +    maskI_reg_imm(tmpI, src2, mask);
  1.8356 +    lShiftL_regL_regI(dst, src1, tmpI);
  1.8357 +  %}
  1.8358 +%}
  1.8359 +
  1.8360 +// Register Shift Left Immediate
  1.8361 +instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  1.8362 +  match(Set dst (LShiftL src1 src2));
  1.8363 +  format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  1.8364 +  size(4);
  1.8365 +  ins_encode %{
  1.8366 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.8367 +    __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8368 +  %}
  1.8369 +  ins_pipe(pipe_class_default);
  1.8370 +%}
  1.8371 +
  1.8372 +// If we shift more than 32 bits, we need not convert I2L.
  1.8373 +instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  1.8374 +  match(Set dst (LShiftL (ConvI2L src1) src2));
  1.8375 +  ins_cost(DEFAULT_COST);
  1.8376 +
  1.8377 +  size(4);
  1.8378 +  format %{ "SLDI    $dst, i2l($src1), $src2" %}
  1.8379 +  ins_encode %{
  1.8380 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.8381 +    __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8382 +  %}
  1.8383 +  ins_pipe(pipe_class_default);
  1.8384 +%}
  1.8385 +
  1.8386 +// Shift a postivie int to the left.
  1.8387 +// Clrlsldi clears the upper 32 bits and shifts.
  1.8388 +instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  1.8389 +  match(Set dst (LShiftL (ConvI2L src1) src2));
  1.8390 +  predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  1.8391 +
  1.8392 +  format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  1.8393 +  size(4);
  1.8394 +  ins_encode %{
  1.8395 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  1.8396 +    __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  1.8397 +  %}
  1.8398 +  ins_pipe(pipe_class_default);
  1.8399 +%}
  1.8400 +
  1.8401 +instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8402 +  // no match-rule, false predicate
  1.8403 +  effect(DEF dst, USE src1, USE src2);
  1.8404 +  predicate(false);
  1.8405 +
  1.8406 +  format %{ "SRAW    $dst, $src1, $src2" %}
  1.8407 +  size(4);
  1.8408 +  ins_encode %{
  1.8409 +    // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  1.8410 +    __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  1.8411 +  %}
  1.8412 +  ins_pipe(pipe_class_default);
  1.8413 +%}
  1.8414 +
  1.8415 +// Register Arithmetic Shift Right
  1.8416 +instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8417 +  match(Set dst (RShiftI src1 src2));
  1.8418 +  ins_cost(DEFAULT_COST*2);
  1.8419 +  expand %{
  1.8420 +    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  1.8421 +    iRegIdst tmpI;
  1.8422 +    maskI_reg_imm(tmpI, src2, mask);
  1.8423 +    arShiftI_reg_reg(dst, src1, tmpI);
  1.8424 +  %}
  1.8425 +%}
  1.8426 +
  1.8427 +// Register Arithmetic Shift Right Immediate
  1.8428 +instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  1.8429 +  match(Set dst (RShiftI src1 src2));
  1.8430 +
  1.8431 +  format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  1.8432 +  size(4);
  1.8433 +  ins_encode %{
  1.8434 +    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  1.8435 +    __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  1.8436 +  %}
  1.8437 +  ins_pipe(pipe_class_default);
  1.8438 +%}
  1.8439 +
  1.8440 +instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8441 +  // no match-rule, false predicate
  1.8442 +  effect(DEF dst, USE src1, USE src2);
  1.8443 +  predicate(false);
  1.8444 +
  1.8445 +  format %{ "SRAD    $dst, $src1, $src2" %}
  1.8446 +  size(4);
  1.8447 +  ins_encode %{
  1.8448 +    // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  1.8449 +    __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  1.8450 +  %}
  1.8451 +  ins_pipe(pipe_class_default);
  1.8452 +%}
  1.8453 +
  1.8454 +// Register Shift Right Arithmetic Long
  1.8455 +instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8456 +  match(Set dst (RShiftL src1 src2));
  1.8457 +  ins_cost(DEFAULT_COST*2);
  1.8458 +
  1.8459 +  expand %{
  1.8460 +    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  1.8461 +    iRegIdst tmpI;
  1.8462 +    maskI_reg_imm(tmpI, src2, mask);
  1.8463 +    arShiftL_regL_regI(dst, src1, tmpI);
  1.8464 +  %}
  1.8465 +%}
  1.8466 +
  1.8467 +// Register Shift Right Immediate
  1.8468 +instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  1.8469 +  match(Set dst (RShiftL src1 src2));
  1.8470 +
  1.8471 +  format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  1.8472 +  size(4);
  1.8473 +  ins_encode %{
  1.8474 +    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  1.8475 +    __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8476 +  %}
  1.8477 +  ins_pipe(pipe_class_default);
  1.8478 +%}
  1.8479 +
  1.8480 +// RShiftL + ConvL2I
  1.8481 +instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  1.8482 +  match(Set dst (ConvL2I (RShiftL src1 src2)));
  1.8483 +
  1.8484 +  format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  1.8485 +  size(4);
  1.8486 +  ins_encode %{
  1.8487 +    // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  1.8488 +    __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8489 +  %}
  1.8490 +  ins_pipe(pipe_class_default);
  1.8491 +%}
  1.8492 +
  1.8493 +instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8494 +  // no match-rule, false predicate
  1.8495 +  effect(DEF dst, USE src1, USE src2);
  1.8496 +  predicate(false);
  1.8497 +
  1.8498 +  format %{ "SRW     $dst, $src1, $src2" %}
  1.8499 +  size(4);
  1.8500 +  ins_encode %{
  1.8501 +    // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  1.8502 +    __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  1.8503 +  %}
  1.8504 +  ins_pipe(pipe_class_default);
  1.8505 +%}
  1.8506 +
  1.8507 +// Register Shift Right
  1.8508 +instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8509 +  match(Set dst (URShiftI src1 src2));
  1.8510 +  ins_cost(DEFAULT_COST*2);
  1.8511 +
  1.8512 +  expand %{
  1.8513 +    uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  1.8514 +    iRegIdst tmpI;
  1.8515 +    maskI_reg_imm(tmpI, src2, mask);
  1.8516 +    urShiftI_reg_reg(dst, src1, tmpI);
  1.8517 +  %}
  1.8518 +%}
  1.8519 +
  1.8520 +// Register Shift Right Immediate
  1.8521 +instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  1.8522 +  match(Set dst (URShiftI src1 src2));
  1.8523 +
  1.8524 +  format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  1.8525 +  size(4);
  1.8526 +  ins_encode %{
  1.8527 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.8528 +    __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  1.8529 +  %}
  1.8530 +  ins_pipe(pipe_class_default);
  1.8531 +%}
  1.8532 +
  1.8533 +instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8534 +  // no match-rule, false predicate
  1.8535 +  effect(DEF dst, USE src1, USE src2);
  1.8536 +  predicate(false);
  1.8537 +
  1.8538 +  format %{ "SRD     $dst, $src1, $src2" %}
  1.8539 +  size(4);
  1.8540 +  ins_encode %{
  1.8541 +    // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  1.8542 +    __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  1.8543 +  %}
  1.8544 +  ins_pipe(pipe_class_default);
  1.8545 +%}
  1.8546 +
  1.8547 +// Register Shift Right
  1.8548 +instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  1.8549 +  match(Set dst (URShiftL src1 src2));
  1.8550 +  ins_cost(DEFAULT_COST*2);
  1.8551 +
  1.8552 +  expand %{
  1.8553 +    uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  1.8554 +    iRegIdst tmpI;
  1.8555 +    maskI_reg_imm(tmpI, src2, mask);
  1.8556 +    urShiftL_regL_regI(dst, src1, tmpI);
  1.8557 +  %}
  1.8558 +%}
  1.8559 +
  1.8560 +// Register Shift Right Immediate
  1.8561 +instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  1.8562 +  match(Set dst (URShiftL src1 src2));
  1.8563 +
  1.8564 +  format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  1.8565 +  size(4);
  1.8566 +  ins_encode %{
  1.8567 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8568 +    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8569 +  %}
  1.8570 +  ins_pipe(pipe_class_default);
  1.8571 +%}
  1.8572 +
  1.8573 +// URShiftL + ConvL2I.
  1.8574 +instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  1.8575 +  match(Set dst (ConvL2I (URShiftL src1 src2)));
  1.8576 +
  1.8577 +  format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  1.8578 +  size(4);
  1.8579 +  ins_encode %{
  1.8580 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8581 +    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8582 +  %}
  1.8583 +  ins_pipe(pipe_class_default);
  1.8584 +%}
  1.8585 +
  1.8586 +// Register Shift Right Immediate with a CastP2X
  1.8587 +instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  1.8588 +  match(Set dst (URShiftL (CastP2X src1) src2));
  1.8589 +
  1.8590 +  format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  1.8591 +  size(4);
  1.8592 +  ins_encode %{
  1.8593 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8594 +    __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  1.8595 +  %}
  1.8596 +  ins_pipe(pipe_class_default);
  1.8597 +%}
  1.8598 +
  1.8599 +instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  1.8600 +  match(Set dst (ConvL2I (ConvI2L src)));
  1.8601 +
  1.8602 +  format %{ "EXTSW   $dst, $src \t// int->int" %}
  1.8603 +  size(4);
  1.8604 +  ins_encode %{
  1.8605 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  1.8606 +    __ extsw($dst$$Register, $src$$Register);
  1.8607 +  %}
  1.8608 +  ins_pipe(pipe_class_default);
  1.8609 +%}
  1.8610 +
  1.8611 +//----------Rotate Instructions------------------------------------------------
  1.8612 +
  1.8613 +// Rotate Left by 8-bit immediate
  1.8614 +instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  1.8615 +  match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  1.8616 +  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  1.8617 +
  1.8618 +  format %{ "ROTLWI  $dst, $src, $lshift" %}
  1.8619 +  size(4);
  1.8620 +  ins_encode %{
  1.8621 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.8622 +    __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  1.8623 +  %}
  1.8624 +  ins_pipe(pipe_class_default);
  1.8625 +%}
  1.8626 +
  1.8627 +// Rotate Right by 8-bit immediate
  1.8628 +instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  1.8629 +  match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  1.8630 +  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  1.8631 +
  1.8632 +  format %{ "ROTRWI  $dst, $rshift" %}
  1.8633 +  size(4);
  1.8634 +  ins_encode %{
  1.8635 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.8636 +    __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  1.8637 +  %}
  1.8638 +  ins_pipe(pipe_class_default);
  1.8639 +%}
  1.8640 +
  1.8641 +//----------Floating Point Arithmetic Instructions-----------------------------
  1.8642 +
  1.8643 +// Add float single precision
  1.8644 +instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  1.8645 +  match(Set dst (AddF src1 src2));
  1.8646 +
  1.8647 +  format %{ "FADDS   $dst, $src1, $src2" %}
  1.8648 +  size(4);
  1.8649 +  ins_encode %{
  1.8650 +    // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  1.8651 +    __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8652 +  %}
  1.8653 +  ins_pipe(pipe_class_default);
  1.8654 +%}
  1.8655 +
  1.8656 +// Add float double precision
  1.8657 +instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  1.8658 +  match(Set dst (AddD src1 src2));
  1.8659 +
  1.8660 +  format %{ "FADD    $dst, $src1, $src2" %}
  1.8661 +  size(4);
  1.8662 +  ins_encode %{
  1.8663 +    // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  1.8664 +    __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8665 +  %}
  1.8666 +  ins_pipe(pipe_class_default);
  1.8667 +%}
  1.8668 +
  1.8669 +// Sub float single precision
  1.8670 +instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  1.8671 +  match(Set dst (SubF src1 src2));
  1.8672 +
  1.8673 +  format %{ "FSUBS   $dst, $src1, $src2" %}
  1.8674 +  size(4);
  1.8675 +  ins_encode %{
  1.8676 +    // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  1.8677 +    __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8678 +  %}
  1.8679 +  ins_pipe(pipe_class_default);
  1.8680 +%}
  1.8681 +
  1.8682 +// Sub float double precision
  1.8683 +instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  1.8684 +  match(Set dst (SubD src1 src2));
  1.8685 +  format %{ "FSUB    $dst, $src1, $src2" %}
  1.8686 +  size(4);
  1.8687 +  ins_encode %{
  1.8688 +    // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  1.8689 +    __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8690 +  %}
  1.8691 +  ins_pipe(pipe_class_default);
  1.8692 +%}
  1.8693 +
  1.8694 +// Mul float single precision
  1.8695 +instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  1.8696 +  match(Set dst (MulF src1 src2));
  1.8697 +  format %{ "FMULS   $dst, $src1, $src2" %}
  1.8698 +  size(4);
  1.8699 +  ins_encode %{
  1.8700 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  1.8701 +    __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8702 +  %}
  1.8703 +  ins_pipe(pipe_class_default);
  1.8704 +%}
  1.8705 +
  1.8706 +// Mul float double precision
  1.8707 +instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  1.8708 +  match(Set dst (MulD src1 src2));
  1.8709 +  format %{ "FMUL    $dst, $src1, $src2" %}
  1.8710 +  size(4);
  1.8711 +  ins_encode %{
  1.8712 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  1.8713 +    __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8714 +  %}
  1.8715 +  ins_pipe(pipe_class_default);
  1.8716 +%}
  1.8717 +
  1.8718 +// Div float single precision
  1.8719 +instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  1.8720 +  match(Set dst (DivF src1 src2));
  1.8721 +  format %{ "FDIVS   $dst, $src1, $src2" %}
  1.8722 +  size(4);
  1.8723 +  ins_encode %{
  1.8724 +    // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  1.8725 +    __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8726 +  %}
  1.8727 +  ins_pipe(pipe_class_default);
  1.8728 +%}
  1.8729 +
  1.8730 +// Div float double precision
  1.8731 +instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  1.8732 +  match(Set dst (DivD src1 src2));
  1.8733 +  format %{ "FDIV    $dst, $src1, $src2" %}
  1.8734 +  size(4);
  1.8735 +  ins_encode %{
  1.8736 +    // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  1.8737 +    __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  1.8738 +  %}
  1.8739 +  ins_pipe(pipe_class_default);
  1.8740 +%}
  1.8741 +
  1.8742 +// Absolute float single precision
  1.8743 +instruct absF_reg(regF dst, regF src) %{
  1.8744 +  match(Set dst (AbsF src));
  1.8745 +  format %{ "FABS    $dst, $src \t// float" %}
  1.8746 +  size(4);
  1.8747 +  ins_encode %{
  1.8748 +    // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  1.8749 +    __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  1.8750 +  %}
  1.8751 +  ins_pipe(pipe_class_default);
  1.8752 +%}
  1.8753 +
  1.8754 +// Absolute float double precision
  1.8755 +instruct absD_reg(regD dst, regD src) %{
  1.8756 +  match(Set dst (AbsD src));
  1.8757 +  format %{ "FABS    $dst, $src \t// double" %}
  1.8758 +  size(4);
  1.8759 +  ins_encode %{
  1.8760 +    // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  1.8761 +    __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  1.8762 +  %}
  1.8763 +  ins_pipe(pipe_class_default);
  1.8764 +%}
  1.8765 +
  1.8766 +instruct negF_reg(regF dst, regF src) %{
  1.8767 +  match(Set dst (NegF src));
  1.8768 +  format %{ "FNEG    $dst, $src \t// float" %}
  1.8769 +  size(4);
  1.8770 +  ins_encode %{
  1.8771 +    // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  1.8772 +    __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  1.8773 +  %}
  1.8774 +  ins_pipe(pipe_class_default);
  1.8775 +%}
  1.8776 +
  1.8777 +instruct negD_reg(regD dst, regD src) %{
  1.8778 +  match(Set dst (NegD src));
  1.8779 +  format %{ "FNEG    $dst, $src \t// double" %}
  1.8780 +  size(4);
  1.8781 +  ins_encode %{
  1.8782 +    // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  1.8783 +    __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  1.8784 +  %}
  1.8785 +  ins_pipe(pipe_class_default);
  1.8786 +%}
  1.8787 +
  1.8788 +// AbsF + NegF.
  1.8789 +instruct negF_absF_reg(regF dst, regF src) %{
  1.8790 +  match(Set dst (NegF (AbsF src)));
  1.8791 +  format %{ "FNABS   $dst, $src \t// float" %}
  1.8792 +  size(4);
  1.8793 +  ins_encode %{
  1.8794 +    // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  1.8795 +    __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  1.8796 +  %}
  1.8797 +  ins_pipe(pipe_class_default);
  1.8798 +%}
  1.8799 +
  1.8800 +// AbsD + NegD.
  1.8801 +instruct negD_absD_reg(regD dst, regD src) %{
  1.8802 +  match(Set dst (NegD (AbsD src)));
  1.8803 +  format %{ "FNABS   $dst, $src \t// double" %}
  1.8804 +  size(4);
  1.8805 +  ins_encode %{
  1.8806 +    // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  1.8807 +    __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  1.8808 +  %}
  1.8809 +  ins_pipe(pipe_class_default);
  1.8810 +%}
  1.8811 +
  1.8812 +// VM_Version::has_fsqrt() decides if this node will be used.
  1.8813 +// Sqrt float double precision
  1.8814 +instruct sqrtD_reg(regD dst, regD src) %{
  1.8815 +  match(Set dst (SqrtD src));
  1.8816 +  format %{ "FSQRT   $dst, $src" %}
  1.8817 +  size(4);
  1.8818 +  ins_encode %{
  1.8819 +    // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  1.8820 +    __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  1.8821 +  %}
  1.8822 +  ins_pipe(pipe_class_default);
  1.8823 +%}
  1.8824 +
  1.8825 +// Single-precision sqrt.
  1.8826 +instruct sqrtF_reg(regF dst, regF src) %{
  1.8827 +  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  1.8828 +  predicate(VM_Version::has_fsqrts());
  1.8829 +  ins_cost(DEFAULT_COST);
  1.8830 +
  1.8831 +  format %{ "FSQRTS  $dst, $src" %}
  1.8832 +  size(4);
  1.8833 +  ins_encode %{
  1.8834 +    // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  1.8835 +    __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  1.8836 +  %}
  1.8837 +  ins_pipe(pipe_class_default);
  1.8838 +%}
  1.8839 +
  1.8840 +instruct roundDouble_nop(regD dst) %{
  1.8841 +  match(Set dst (RoundDouble dst));
  1.8842 +  ins_cost(0);
  1.8843 +
  1.8844 +  format %{ " -- \t// RoundDouble not needed - empty" %}
  1.8845 +  size(0);
  1.8846 +  // PPC results are already "rounded" (i.e., normal-format IEEE).
  1.8847 +  ins_encode( /*empty*/ );
  1.8848 +  ins_pipe(pipe_class_default);
  1.8849 +%}
  1.8850 +
  1.8851 +instruct roundFloat_nop(regF dst) %{
  1.8852 +  match(Set dst (RoundFloat dst));
  1.8853 +  ins_cost(0);
  1.8854 +
  1.8855 +  format %{ " -- \t// RoundFloat not needed - empty" %}
  1.8856 +  size(0);
  1.8857 +  // PPC results are already "rounded" (i.e., normal-format IEEE).
  1.8858 +  ins_encode( /*empty*/ );
  1.8859 +  ins_pipe(pipe_class_default);
  1.8860 +%}
  1.8861 +
  1.8862 +//----------Logical Instructions-----------------------------------------------
  1.8863 +
  1.8864 +// And Instructions
  1.8865 +
  1.8866 +// Register And
  1.8867 +instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.8868 +  match(Set dst (AndI src1 src2));
  1.8869 +  format %{ "AND     $dst, $src1, $src2" %}
  1.8870 +  size(4);
  1.8871 +  ins_encode %{
  1.8872 +    // TODO: PPC port $archOpcode(ppc64Opcode_and);
  1.8873 +    __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  1.8874 +  %}
  1.8875 +  ins_pipe(pipe_class_default);
  1.8876 +%}
  1.8877 +
  1.8878 +// Immediate And
  1.8879 +instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  1.8880 +  match(Set dst (AndI src1 src2));
  1.8881 +  effect(KILL cr0);
  1.8882 +
  1.8883 +  format %{ "ANDI    $dst, $src1, $src2" %}
  1.8884 +  size(4);
  1.8885 +  ins_encode %{
  1.8886 +    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  1.8887 +    // FIXME: avoid andi_ ?
  1.8888 +    __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  1.8889 +  %}
  1.8890 +  ins_pipe(pipe_class_default);
  1.8891 +%}
  1.8892 +
  1.8893 +// Immediate And where the immediate is a negative power of 2.
  1.8894 +instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  1.8895 +  match(Set dst (AndI src1 src2));
  1.8896 +  format %{ "ANDWI   $dst, $src1, $src2" %}
  1.8897 +  size(4);
  1.8898 +  ins_encode %{
  1.8899 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.8900 +    __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  1.8901 +  %}
  1.8902 +  ins_pipe(pipe_class_default);
  1.8903 +%}
  1.8904 +
  1.8905 +instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  1.8906 +  match(Set dst (AndI src1 src2));
  1.8907 +  format %{ "ANDWI   $dst, $src1, $src2" %}
  1.8908 +  size(4);
  1.8909 +  ins_encode %{
  1.8910 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8911 +    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  1.8912 +  %}
  1.8913 +  ins_pipe(pipe_class_default);
  1.8914 +%}
  1.8915 +
  1.8916 +instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  1.8917 +  match(Set dst (AndI src1 src2));
  1.8918 +  predicate(UseRotateAndMaskInstructionsPPC64);
  1.8919 +  format %{ "ANDWI   $dst, $src1, $src2" %}
  1.8920 +  size(4);
  1.8921 +  ins_encode %{
  1.8922 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.8923 +    __ rlwinm($dst$$Register, $src1$$Register, 0,
  1.8924 +              (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  1.8925 +  %}
  1.8926 +  ins_pipe(pipe_class_default);
  1.8927 +%}
  1.8928 +
  1.8929 +// Register And Long
  1.8930 +instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.8931 +  match(Set dst (AndL src1 src2));
  1.8932 +  ins_cost(DEFAULT_COST);
  1.8933 +
  1.8934 +  format %{ "AND     $dst, $src1, $src2 \t// long" %}
  1.8935 +  size(4);
  1.8936 +  ins_encode %{
  1.8937 +    // TODO: PPC port $archOpcode(ppc64Opcode_and);
  1.8938 +    __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  1.8939 +  %}
  1.8940 +  ins_pipe(pipe_class_default);
  1.8941 +%}
  1.8942 +
  1.8943 +// Immediate And long
  1.8944 +instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  1.8945 +  match(Set dst (AndL src1 src2));
  1.8946 +  effect(KILL cr0);
  1.8947 +  ins_cost(DEFAULT_COST);
  1.8948 +
  1.8949 +  format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  1.8950 +  size(4);
  1.8951 +  ins_encode %{
  1.8952 +    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  1.8953 +    // FIXME: avoid andi_ ?
  1.8954 +    __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  1.8955 +  %}
  1.8956 +  ins_pipe(pipe_class_default);
  1.8957 +%}
  1.8958 +
  1.8959 +// Immediate And Long where the immediate is a negative power of 2.
  1.8960 +instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  1.8961 +  match(Set dst (AndL src1 src2));
  1.8962 +  format %{ "ANDDI   $dst, $src1, $src2" %}
  1.8963 +  size(4);
  1.8964 +  ins_encode %{
  1.8965 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  1.8966 +    __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  1.8967 +  %}
  1.8968 +  ins_pipe(pipe_class_default);
  1.8969 +%}
  1.8970 +
  1.8971 +instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  1.8972 +  match(Set dst (AndL src1 src2));
  1.8973 +  format %{ "ANDDI   $dst, $src1, $src2" %}
  1.8974 +  size(4);
  1.8975 +  ins_encode %{
  1.8976 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8977 +    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  1.8978 +  %}
  1.8979 +  ins_pipe(pipe_class_default);
  1.8980 +%}
  1.8981 +
  1.8982 +// AndL + ConvL2I.
  1.8983 +instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  1.8984 +  match(Set dst (ConvL2I (AndL src1 src2)));
  1.8985 +  ins_cost(DEFAULT_COST);
  1.8986 +
  1.8987 +  format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  1.8988 +  size(4);
  1.8989 +  ins_encode %{
  1.8990 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.8991 +    __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  1.8992 +  %}
  1.8993 +  ins_pipe(pipe_class_default);
  1.8994 +%}
  1.8995 +
  1.8996 +// Or Instructions
  1.8997 +
  1.8998 +// Register Or
  1.8999 +instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.9000 +  match(Set dst (OrI src1 src2));
  1.9001 +  format %{ "OR      $dst, $src1, $src2" %}
  1.9002 +  size(4);
  1.9003 +  ins_encode %{
  1.9004 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9005 +    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  1.9006 +  %}
  1.9007 +  ins_pipe(pipe_class_default);
  1.9008 +%}
  1.9009 +
  1.9010 +// Expand does not work with above instruct. (??)
  1.9011 +instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.9012 +  // no match-rule
  1.9013 +  effect(DEF dst, USE src1, USE src2);
  1.9014 +  format %{ "OR      $dst, $src1, $src2" %}
  1.9015 +  size(4);
  1.9016 +  ins_encode %{
  1.9017 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9018 +    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  1.9019 +  %}
  1.9020 +  ins_pipe(pipe_class_default);
  1.9021 +%}
  1.9022 +
  1.9023 +instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  1.9024 +  match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  1.9025 +  ins_cost(DEFAULT_COST*3);
  1.9026 +
  1.9027 +  expand %{
  1.9028 +    // FIXME: we should do this in the ideal world.
  1.9029 +    iRegIdst tmp1;
  1.9030 +    iRegIdst tmp2;
  1.9031 +    orI_reg_reg(tmp1, src1, src2);
  1.9032 +    orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  1.9033 +    orI_reg_reg(dst, tmp1, tmp2);
  1.9034 +  %}
  1.9035 +%}
  1.9036 +
  1.9037 +// Immediate Or
  1.9038 +instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  1.9039 +  match(Set dst (OrI src1 src2));
  1.9040 +  format %{ "ORI     $dst, $src1, $src2" %}
  1.9041 +  size(4);
  1.9042 +  ins_encode %{
  1.9043 +    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  1.9044 +    __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  1.9045 +  %}
  1.9046 +  ins_pipe(pipe_class_default);
  1.9047 +%}
  1.9048 +
  1.9049 +// Register Or Long
  1.9050 +instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.9051 +  match(Set dst (OrL src1 src2));
  1.9052 +  ins_cost(DEFAULT_COST);
  1.9053 +
  1.9054 +  size(4);
  1.9055 +  format %{ "OR      $dst, $src1, $src2 \t// long" %}
  1.9056 +  ins_encode %{
  1.9057 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9058 +    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  1.9059 +  %}
  1.9060 +  ins_pipe(pipe_class_default);
  1.9061 +%}
  1.9062 +
  1.9063 +// OrL + ConvL2I.
  1.9064 +instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.9065 +  match(Set dst (ConvL2I (OrL src1 src2)));
  1.9066 +  ins_cost(DEFAULT_COST);
  1.9067 +
  1.9068 +  format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  1.9069 +  size(4);
  1.9070 +  ins_encode %{
  1.9071 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9072 +    __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  1.9073 +  %}
  1.9074 +  ins_pipe(pipe_class_default);
  1.9075 +%}
  1.9076 +
  1.9077 +// Immediate Or long
  1.9078 +instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  1.9079 +  match(Set dst (OrL src1 con));
  1.9080 +  ins_cost(DEFAULT_COST);
  1.9081 +
  1.9082 +  format %{ "ORI     $dst, $src1, $con \t// long" %}
  1.9083 +  size(4);
  1.9084 +  ins_encode %{
  1.9085 +    // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  1.9086 +    __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  1.9087 +  %}
  1.9088 +  ins_pipe(pipe_class_default);
  1.9089 +%}
  1.9090 +
  1.9091 +// Xor Instructions
  1.9092 +
  1.9093 +// Register Xor
  1.9094 +instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.9095 +  match(Set dst (XorI src1 src2));
  1.9096 +  format %{ "XOR     $dst, $src1, $src2" %}
  1.9097 +  size(4);
  1.9098 +  ins_encode %{
  1.9099 +    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  1.9100 +    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  1.9101 +  %}
  1.9102 +  ins_pipe(pipe_class_default);
  1.9103 +%}
  1.9104 +
  1.9105 +// Expand does not work with above instruct. (??)
  1.9106 +instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.9107 +  // no match-rule
  1.9108 +  effect(DEF dst, USE src1, USE src2);
  1.9109 +  format %{ "XOR     $dst, $src1, $src2" %}
  1.9110 +  size(4);
  1.9111 +  ins_encode %{
  1.9112 +    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  1.9113 +    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  1.9114 +  %}
  1.9115 +  ins_pipe(pipe_class_default);
  1.9116 +%}
  1.9117 +
  1.9118 +instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  1.9119 +  match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  1.9120 +  ins_cost(DEFAULT_COST*3);
  1.9121 +
  1.9122 +  expand %{
  1.9123 +    // FIXME: we should do this in the ideal world.
  1.9124 +    iRegIdst tmp1;
  1.9125 +    iRegIdst tmp2;
  1.9126 +    xorI_reg_reg(tmp1, src1, src2);
  1.9127 +    xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  1.9128 +    xorI_reg_reg(dst, tmp1, tmp2);
  1.9129 +  %}
  1.9130 +%}
  1.9131 +
  1.9132 +// Immediate Xor
  1.9133 +instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  1.9134 +  match(Set dst (XorI src1 src2));
  1.9135 +  format %{ "XORI    $dst, $src1, $src2" %}
  1.9136 +  size(4);
  1.9137 +  ins_encode %{
  1.9138 +    // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  1.9139 +    __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  1.9140 +  %}
  1.9141 +  ins_pipe(pipe_class_default);
  1.9142 +%}
  1.9143 +
  1.9144 +// Register Xor Long
  1.9145 +instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.9146 +  match(Set dst (XorL src1 src2));
  1.9147 +  ins_cost(DEFAULT_COST);
  1.9148 +
  1.9149 +  format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  1.9150 +  size(4);
  1.9151 +  ins_encode %{
  1.9152 +    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  1.9153 +    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  1.9154 +  %}
  1.9155 +  ins_pipe(pipe_class_default);
  1.9156 +%}
  1.9157 +
  1.9158 +// XorL + ConvL2I.
  1.9159 +instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.9160 +  match(Set dst (ConvL2I (XorL src1 src2)));
  1.9161 +  ins_cost(DEFAULT_COST);
  1.9162 +
  1.9163 +  format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  1.9164 +  size(4);
  1.9165 +  ins_encode %{
  1.9166 +    // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  1.9167 +    __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  1.9168 +  %}
  1.9169 +  ins_pipe(pipe_class_default);
  1.9170 +%}
  1.9171 +
  1.9172 +// Immediate Xor Long
  1.9173 +instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  1.9174 +  match(Set dst (XorL src1 src2));
  1.9175 +  ins_cost(DEFAULT_COST);
  1.9176 +
  1.9177 +  format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  1.9178 +  size(4);
  1.9179 +  ins_encode %{
  1.9180 +    // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  1.9181 +    __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  1.9182 +  %}
  1.9183 +  ins_pipe(pipe_class_default);
  1.9184 +%}
  1.9185 +
  1.9186 +instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  1.9187 +  match(Set dst (XorI src1 src2));
  1.9188 +  ins_cost(DEFAULT_COST);
  1.9189 +
  1.9190 +  format %{ "NOT     $dst, $src1 ($src2)" %}
  1.9191 +  size(4);
  1.9192 +  ins_encode %{
  1.9193 +    // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  1.9194 +    __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  1.9195 +  %}
  1.9196 +  ins_pipe(pipe_class_default);
  1.9197 +%}
  1.9198 +
  1.9199 +instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  1.9200 +  match(Set dst (XorL src1 src2));
  1.9201 +  ins_cost(DEFAULT_COST);
  1.9202 +
  1.9203 +  format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  1.9204 +  size(4);
  1.9205 +  ins_encode %{
  1.9206 +    // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  1.9207 +    __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  1.9208 +  %}
  1.9209 +  ins_pipe(pipe_class_default);
  1.9210 +%}
  1.9211 +
  1.9212 +// And-complement
  1.9213 +instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  1.9214 +  match(Set dst (AndI (XorI src1 src2) src3));
  1.9215 +  ins_cost(DEFAULT_COST);
  1.9216 +
  1.9217 +  format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  1.9218 +  size(4);
  1.9219 +  ins_encode( enc_andc(dst, src3, src1) );
  1.9220 +  ins_pipe(pipe_class_default);
  1.9221 +%}
  1.9222 +
  1.9223 +// And-complement
  1.9224 +instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  1.9225 +  // no match-rule, false predicate
  1.9226 +  effect(DEF dst, USE src1, USE src2);
  1.9227 +  predicate(false);
  1.9228 +
  1.9229 +  format %{ "ANDC    $dst, $src1, $src2" %}
  1.9230 +  size(4);
  1.9231 +  ins_encode %{
  1.9232 +    // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  1.9233 +    __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  1.9234 +  %}
  1.9235 +  ins_pipe(pipe_class_default);
  1.9236 +%}
  1.9237 +
  1.9238 +//----------Moves between int/long and float/double----------------------------
  1.9239 +//
  1.9240 +// The following rules move values from int/long registers/stack-locations
  1.9241 +// to float/double registers/stack-locations and vice versa, without doing any
  1.9242 +// conversions. These rules are used to implement the bit-conversion methods
  1.9243 +// of java.lang.Float etc., e.g.
  1.9244 +//   int   floatToIntBits(float value)
  1.9245 +//   float intBitsToFloat(int bits)
  1.9246 +//
  1.9247 +// Notes on the implementation on ppc64:
  1.9248 +// We only provide rules which move between a register and a stack-location,
  1.9249 +// because we always have to go through memory when moving between a float
  1.9250 +// register and an integer register.
  1.9251 +
  1.9252 +//---------- Chain stack slots between similar types --------
  1.9253 +
  1.9254 +// These are needed so that the rules below can match.
  1.9255 +
  1.9256 +// Load integer from stack slot
  1.9257 +instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  1.9258 +  match(Set dst src);
  1.9259 +  ins_cost(MEMORY_REF_COST);
  1.9260 +
  1.9261 +  format %{ "LWZ     $dst, $src" %}
  1.9262 +  size(4);
  1.9263 +  ins_encode( enc_lwz(dst, src) );
  1.9264 +  ins_pipe(pipe_class_memory);
  1.9265 +%}
  1.9266 +
  1.9267 +// Store integer to stack slot
  1.9268 +instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  1.9269 +  match(Set dst src);
  1.9270 +  ins_cost(MEMORY_REF_COST);
  1.9271 +
  1.9272 +  format %{ "STW     $src, $dst \t// stk" %}
  1.9273 +  size(4);
  1.9274 +  ins_encode( enc_stw(src, dst) ); // rs=rt
  1.9275 +  ins_pipe(pipe_class_memory);
  1.9276 +%}
  1.9277 +
  1.9278 +// Load long from stack slot
  1.9279 +instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  1.9280 +  match(Set dst src);
  1.9281 +  ins_cost(MEMORY_REF_COST);
  1.9282 +
  1.9283 +  format %{ "LD      $dst, $src \t// long" %}
  1.9284 +  size(4);
  1.9285 +  ins_encode( enc_ld(dst, src) );
  1.9286 +  ins_pipe(pipe_class_memory);
  1.9287 +%}
  1.9288 +
  1.9289 +// Store long to stack slot
  1.9290 +instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  1.9291 +  match(Set dst src);
  1.9292 +  ins_cost(MEMORY_REF_COST);
  1.9293 +
  1.9294 +  format %{ "STD     $src, $dst \t// long" %}
  1.9295 +  size(4);
  1.9296 +  ins_encode( enc_std(src, dst) ); // rs=rt
  1.9297 +  ins_pipe(pipe_class_memory);
  1.9298 +%}
  1.9299 +
  1.9300 +//----------Moves between int and float
  1.9301 +
  1.9302 +// Move float value from float stack-location to integer register.
  1.9303 +instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  1.9304 +  match(Set dst (MoveF2I src));
  1.9305 +  ins_cost(MEMORY_REF_COST);
  1.9306 +
  1.9307 +  format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  1.9308 +  size(4);
  1.9309 +  ins_encode( enc_lwz(dst, src) );
  1.9310 +  ins_pipe(pipe_class_memory);
  1.9311 +%}
  1.9312 +
  1.9313 +// Move float value from float register to integer stack-location.
  1.9314 +instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  1.9315 +  match(Set dst (MoveF2I src));
  1.9316 +  ins_cost(MEMORY_REF_COST);
  1.9317 +
  1.9318 +  format %{ "STFS    $src, $dst \t// MoveF2I" %}
  1.9319 +  size(4);
  1.9320 +  ins_encode( enc_stfs(src, dst) );
  1.9321 +  ins_pipe(pipe_class_memory);
  1.9322 +%}
  1.9323 +
  1.9324 +// Move integer value from integer stack-location to float register.
  1.9325 +instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  1.9326 +  match(Set dst (MoveI2F src));
  1.9327 +  ins_cost(MEMORY_REF_COST);
  1.9328 +
  1.9329 +  format %{ "LFS     $dst, $src \t// MoveI2F" %}
  1.9330 +  size(4);
  1.9331 +  ins_encode %{
  1.9332 +    // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  1.9333 +    int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  1.9334 +    __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  1.9335 +  %}
  1.9336 +  ins_pipe(pipe_class_memory);
  1.9337 +%}
  1.9338 +
  1.9339 +// Move integer value from integer register to float stack-location.
  1.9340 +instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  1.9341 +  match(Set dst (MoveI2F src));
  1.9342 +  ins_cost(MEMORY_REF_COST);
  1.9343 +
  1.9344 +  format %{ "STW     $src, $dst \t// MoveI2F" %}
  1.9345 +  size(4);
  1.9346 +  ins_encode( enc_stw(src, dst) );
  1.9347 +  ins_pipe(pipe_class_memory);
  1.9348 +%}
  1.9349 +
  1.9350 +//----------Moves between long and float
  1.9351 +
  1.9352 +instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  1.9353 +  // no match-rule, false predicate
  1.9354 +  effect(DEF dst, USE src);
  1.9355 +  predicate(false);
  1.9356 +
  1.9357 +  format %{ "storeD  $src, $dst \t// STACK" %}
  1.9358 +  size(4);
  1.9359 +  ins_encode( enc_stfd(src, dst) );
  1.9360 +  ins_pipe(pipe_class_default);
  1.9361 +%}
  1.9362 +
  1.9363 +//----------Moves between long and double
  1.9364 +
  1.9365 +// Move double value from double stack-location to long register.
  1.9366 +instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  1.9367 +  match(Set dst (MoveD2L src));
  1.9368 +  ins_cost(MEMORY_REF_COST);
  1.9369 +  size(4);
  1.9370 +  format %{ "LD      $dst, $src \t// MoveD2L" %}
  1.9371 +  ins_encode( enc_ld(dst, src) );
  1.9372 +  ins_pipe(pipe_class_memory);
  1.9373 +%}
  1.9374 +
  1.9375 +// Move double value from double register to long stack-location.
  1.9376 +instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  1.9377 +  match(Set dst (MoveD2L src));
  1.9378 +  effect(DEF dst, USE src);
  1.9379 +  ins_cost(MEMORY_REF_COST);
  1.9380 +
  1.9381 +  format %{ "STFD    $src, $dst \t// MoveD2L" %}
  1.9382 +  size(4);
  1.9383 +  ins_encode( enc_stfd(src, dst) );
  1.9384 +  ins_pipe(pipe_class_memory);
  1.9385 +%}
  1.9386 +
  1.9387 +// Move long value from long stack-location to double register.
  1.9388 +instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  1.9389 +  match(Set dst (MoveL2D src));
  1.9390 +  ins_cost(MEMORY_REF_COST);
  1.9391 +
  1.9392 +  format %{ "LFD     $dst, $src \t// MoveL2D" %}
  1.9393 +  size(4);
  1.9394 +  ins_encode( enc_lfd(dst, src) );
  1.9395 +  ins_pipe(pipe_class_memory);
  1.9396 +%}
  1.9397 +
  1.9398 +// Move long value from long register to double stack-location.
  1.9399 +instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  1.9400 +  match(Set dst (MoveL2D src));
  1.9401 +  ins_cost(MEMORY_REF_COST);
  1.9402 +
  1.9403 +  format %{ "STD     $src, $dst \t// MoveL2D" %}
  1.9404 +  size(4);
  1.9405 +  ins_encode( enc_std(src, dst) );
  1.9406 +  ins_pipe(pipe_class_memory);
  1.9407 +%}
  1.9408 +
  1.9409 +//----------Register Move Instructions-----------------------------------------
  1.9410 +
  1.9411 +// Replicate for Superword
  1.9412 +
  1.9413 +instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  1.9414 +  predicate(false);
  1.9415 +  effect(DEF dst, USE src);
  1.9416 +
  1.9417 +  format %{ "MR      $dst, $src \t// replicate " %}
  1.9418 +  // variable size, 0 or 4.
  1.9419 +  ins_encode %{
  1.9420 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9421 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.9422 +  %}
  1.9423 +  ins_pipe(pipe_class_default);
  1.9424 +%}
  1.9425 +
  1.9426 +//----------Cast instructions (Java-level type cast)---------------------------
  1.9427 +
  1.9428 +// Cast Long to Pointer for unsafe natives.
  1.9429 +instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  1.9430 +  match(Set dst (CastX2P src));
  1.9431 +
  1.9432 +  format %{ "MR      $dst, $src \t// Long->Ptr" %}
  1.9433 +  // variable size, 0 or 4.
  1.9434 +  ins_encode %{
  1.9435 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9436 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.9437 +  %}
  1.9438 + ins_pipe(pipe_class_default);
  1.9439 +%}
  1.9440 +
  1.9441 +// Cast Pointer to Long for unsafe natives.
  1.9442 +instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  1.9443 +  match(Set dst (CastP2X src));
  1.9444 +
  1.9445 +  format %{ "MR      $dst, $src \t// Ptr->Long" %}
  1.9446 +  // variable size, 0 or 4.
  1.9447 +  ins_encode %{
  1.9448 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9449 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.9450 +  %}
  1.9451 +  ins_pipe(pipe_class_default);
  1.9452 +%}
  1.9453 +
  1.9454 +instruct castPP(iRegPdst dst) %{
  1.9455 +  match(Set dst (CastPP dst));
  1.9456 +  format %{ " -- \t// castPP of $dst" %}
  1.9457 +  size(0);
  1.9458 +  ins_encode( /*empty*/ );
  1.9459 +  ins_pipe(pipe_class_default);
  1.9460 +%}
  1.9461 +
  1.9462 +instruct castII(iRegIdst dst) %{
  1.9463 +  match(Set dst (CastII dst));
  1.9464 +  format %{ " -- \t// castII of $dst" %}
  1.9465 +  size(0);
  1.9466 +  ins_encode( /*empty*/ );
  1.9467 +  ins_pipe(pipe_class_default);
  1.9468 +%}
  1.9469 +
  1.9470 +instruct checkCastPP(iRegPdst dst) %{
  1.9471 +  match(Set dst (CheckCastPP dst));
  1.9472 +  format %{ " -- \t// checkcastPP of $dst" %}
  1.9473 +  size(0);
  1.9474 +  ins_encode( /*empty*/ );
  1.9475 +  ins_pipe(pipe_class_default);
  1.9476 +%}
  1.9477 +
  1.9478 +//----------Convert instructions-----------------------------------------------
  1.9479 +
  1.9480 +// Convert to boolean.
  1.9481 +
  1.9482 +// int_to_bool(src) : { 1   if src != 0
  1.9483 +//                    { 0   else
  1.9484 +//
  1.9485 +// strategy:
  1.9486 +// 1) Count leading zeros of 32 bit-value src,
  1.9487 +//    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  1.9488 +// 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  1.9489 +// 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  1.9490 +
  1.9491 +// convI2Bool
  1.9492 +instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  1.9493 +  match(Set dst (Conv2B src));
  1.9494 +  predicate(UseCountLeadingZerosInstructionsPPC64);
  1.9495 +  ins_cost(DEFAULT_COST);
  1.9496 +
  1.9497 +  expand %{
  1.9498 +    immI shiftAmount %{ 0x5 %}
  1.9499 +    uimmI16 mask %{ 0x1 %}
  1.9500 +    iRegIdst tmp1;
  1.9501 +    iRegIdst tmp2;
  1.9502 +    countLeadingZerosI(tmp1, src);
  1.9503 +    urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  1.9504 +    xorI_reg_uimm16(dst, tmp2, mask);
  1.9505 +  %}
  1.9506 +%}
  1.9507 +
  1.9508 +instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  1.9509 +  match(Set dst (Conv2B src));
  1.9510 +  effect(TEMP crx);
  1.9511 +  predicate(!UseCountLeadingZerosInstructionsPPC64);
  1.9512 +  ins_cost(DEFAULT_COST);
  1.9513 +
  1.9514 +  format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  1.9515 +            "LI      $dst, #0\n\t"
  1.9516 +            "BEQ     $crx, done\n\t"
  1.9517 +            "LI      $dst, #1\n"
  1.9518 +            "done:" %}
  1.9519 +  size(16);
  1.9520 +  ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  1.9521 +  ins_pipe(pipe_class_compare);
  1.9522 +%}
  1.9523 +
  1.9524 +// ConvI2B + XorI
  1.9525 +instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  1.9526 +  match(Set dst (XorI (Conv2B src) mask));
  1.9527 +  predicate(UseCountLeadingZerosInstructionsPPC64);
  1.9528 +  ins_cost(DEFAULT_COST);
  1.9529 +
  1.9530 +  expand %{
  1.9531 +    immI shiftAmount %{ 0x5 %}
  1.9532 +    iRegIdst tmp1;
  1.9533 +    countLeadingZerosI(tmp1, src);
  1.9534 +    urShiftI_reg_imm(dst, tmp1, shiftAmount);
  1.9535 +  %}
  1.9536 +%}
  1.9537 +
  1.9538 +instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  1.9539 +  match(Set dst (XorI (Conv2B src) mask));
  1.9540 +  effect(TEMP crx);
  1.9541 +  predicate(!UseCountLeadingZerosInstructionsPPC64);
  1.9542 +  ins_cost(DEFAULT_COST);
  1.9543 +
  1.9544 +  format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  1.9545 +            "LI      $dst, #1\n\t"
  1.9546 +            "BEQ     $crx, done\n\t"
  1.9547 +            "LI      $dst, #0\n"
  1.9548 +            "done:" %}
  1.9549 +  size(16);
  1.9550 +  ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  1.9551 +  ins_pipe(pipe_class_compare);
  1.9552 +%}
  1.9553 +
  1.9554 +// AndI 0b0..010..0 + ConvI2B
  1.9555 +instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  1.9556 +  match(Set dst (Conv2B (AndI src mask)));
  1.9557 +  predicate(UseRotateAndMaskInstructionsPPC64);
  1.9558 +  ins_cost(DEFAULT_COST);
  1.9559 +
  1.9560 +  format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  1.9561 +  size(4);
  1.9562 +  ins_encode %{
  1.9563 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  1.9564 +    __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  1.9565 +  %}
  1.9566 +  ins_pipe(pipe_class_default);
  1.9567 +%}
  1.9568 +
  1.9569 +// Convert pointer to boolean.
  1.9570 +//
  1.9571 +// ptr_to_bool(src) : { 1   if src != 0
  1.9572 +//                    { 0   else
  1.9573 +//
  1.9574 +// strategy:
  1.9575 +// 1) Count leading zeros of 64 bit-value src,
  1.9576 +//    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  1.9577 +// 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  1.9578 +// 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  1.9579 +
  1.9580 +// ConvP2B
  1.9581 +instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  1.9582 +  match(Set dst (Conv2B src));
  1.9583 +  predicate(UseCountLeadingZerosInstructionsPPC64);
  1.9584 +  ins_cost(DEFAULT_COST);
  1.9585 +
  1.9586 +  expand %{
  1.9587 +    immI shiftAmount %{ 0x6 %}
  1.9588 +    uimmI16 mask %{ 0x1 %}
  1.9589 +    iRegIdst tmp1;
  1.9590 +    iRegIdst tmp2;
  1.9591 +    countLeadingZerosP(tmp1, src);
  1.9592 +    urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  1.9593 +    xorI_reg_uimm16(dst, tmp2, mask);
  1.9594 +  %}
  1.9595 +%}
  1.9596 +
  1.9597 +instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  1.9598 +  match(Set dst (Conv2B src));
  1.9599 +  effect(TEMP crx);
  1.9600 +  predicate(!UseCountLeadingZerosInstructionsPPC64);
  1.9601 +  ins_cost(DEFAULT_COST);
  1.9602 +
  1.9603 +  format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  1.9604 +            "LI      $dst, #0\n\t"
  1.9605 +            "BEQ     $crx, done\n\t"
  1.9606 +            "LI      $dst, #1\n"
  1.9607 +            "done:" %}
  1.9608 +  size(16);
  1.9609 +  ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  1.9610 +  ins_pipe(pipe_class_compare);
  1.9611 +%}
  1.9612 +
  1.9613 +// ConvP2B + XorI
  1.9614 +instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  1.9615 +  match(Set dst (XorI (Conv2B src) mask));
  1.9616 +  predicate(UseCountLeadingZerosInstructionsPPC64);
  1.9617 +  ins_cost(DEFAULT_COST);
  1.9618 +
  1.9619 +  expand %{
  1.9620 +    immI shiftAmount %{ 0x6 %}
  1.9621 +    iRegIdst tmp1;
  1.9622 +    countLeadingZerosP(tmp1, src);
  1.9623 +    urShiftI_reg_imm(dst, tmp1, shiftAmount);
  1.9624 +  %}
  1.9625 +%}
  1.9626 +
  1.9627 +instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  1.9628 +  match(Set dst (XorI (Conv2B src) mask));
  1.9629 +  effect(TEMP crx);
  1.9630 +  predicate(!UseCountLeadingZerosInstructionsPPC64);
  1.9631 +  ins_cost(DEFAULT_COST);
  1.9632 +
  1.9633 +  format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  1.9634 +            "LI      $dst, #1\n\t"
  1.9635 +            "BEQ     $crx, done\n\t"
  1.9636 +            "LI      $dst, #0\n"
  1.9637 +            "done:" %}
  1.9638 +  size(16);
  1.9639 +  ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  1.9640 +  ins_pipe(pipe_class_compare);
  1.9641 +%}
  1.9642 +
  1.9643 +// if src1 < src2, return -1 else return 0
  1.9644 +instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  1.9645 +  match(Set dst (CmpLTMask src1 src2));
  1.9646 +  ins_cost(DEFAULT_COST*4);
  1.9647 +
  1.9648 +  expand %{
  1.9649 +    iRegLdst src1s;
  1.9650 +    iRegLdst src2s;
  1.9651 +    iRegLdst diff;
  1.9652 +    convI2L_reg(src1s, src1); // Ensure proper sign extension.
  1.9653 +    convI2L_reg(src2s, src2); // Ensure proper sign extension.
  1.9654 +    subL_reg_reg(diff, src1s, src2s);
  1.9655 +    // Need to consider >=33 bit result, therefore we need signmaskL.
  1.9656 +    signmask64I_regL(dst, diff);
  1.9657 +  %}
  1.9658 +%}
  1.9659 +
  1.9660 +instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  1.9661 +  match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  1.9662 +  format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  1.9663 +  size(4);
  1.9664 +  ins_encode %{
  1.9665 +    // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  1.9666 +    __ srawi($dst$$Register, $src1$$Register, 0x1f);
  1.9667 +  %}
  1.9668 +  ins_pipe(pipe_class_default);
  1.9669 +%}
  1.9670 +
  1.9671 +//----------Arithmetic Conversion Instructions---------------------------------
  1.9672 +
  1.9673 +// Convert to Byte  -- nop
  1.9674 +// Convert to Short -- nop
  1.9675 +
  1.9676 +// Convert to Int
  1.9677 +
  1.9678 +instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  1.9679 +  match(Set dst (RShiftI (LShiftI src amount) amount));
  1.9680 +  format %{ "EXTSB   $dst, $src \t// byte->int" %}
  1.9681 +  size(4);
  1.9682 +  ins_encode %{
  1.9683 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  1.9684 +    __ extsb($dst$$Register, $src$$Register);
  1.9685 +  %}
  1.9686 +  ins_pipe(pipe_class_default);
  1.9687 +%}
  1.9688 +
  1.9689 +// LShiftI 16 + RShiftI 16 converts short to int.
  1.9690 +instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  1.9691 +  match(Set dst (RShiftI (LShiftI src amount) amount));
  1.9692 +  format %{ "EXTSH   $dst, $src \t// short->int" %}
  1.9693 +  size(4);
  1.9694 +  ins_encode %{
  1.9695 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  1.9696 +    __ extsh($dst$$Register, $src$$Register);
  1.9697 +  %}
  1.9698 +  ins_pipe(pipe_class_default);
  1.9699 +%}
  1.9700 +
  1.9701 +// ConvL2I + ConvI2L: Sign extend int in long register.
  1.9702 +instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  1.9703 +  match(Set dst (ConvI2L (ConvL2I src)));
  1.9704 +
  1.9705 +  format %{ "EXTSW   $dst, $src \t// long->long" %}
  1.9706 +  size(4);
  1.9707 +  ins_encode %{
  1.9708 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  1.9709 +    __ extsw($dst$$Register, $src$$Register);
  1.9710 +  %}
  1.9711 +  ins_pipe(pipe_class_default);
  1.9712 +%}
  1.9713 +
  1.9714 +instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  1.9715 +  match(Set dst (ConvL2I src));
  1.9716 +  format %{ "MR      $dst, $src \t// long->int" %}
  1.9717 +  // variable size, 0 or 4
  1.9718 +  ins_encode %{
  1.9719 +    // TODO: PPC port $archOpcode(ppc64Opcode_or);
  1.9720 +    __ mr_if_needed($dst$$Register, $src$$Register);
  1.9721 +  %}
  1.9722 +  ins_pipe(pipe_class_default);
  1.9723 +%}
  1.9724 +
  1.9725 +instruct convD2IRaw_regD(regD dst, regD src) %{
  1.9726 +  // no match-rule, false predicate
  1.9727 +  effect(DEF dst, USE src);
  1.9728 +  predicate(false);
  1.9729 +
  1.9730 +  format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  1.9731 +  size(4);
  1.9732 +  ins_encode %{
  1.9733 +    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  1.9734 +    __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  1.9735 +  %}
  1.9736 +  ins_pipe(pipe_class_default);
  1.9737 +%}
  1.9738 +
  1.9739 +instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  1.9740 +  // no match-rule, false predicate
  1.9741 +  effect(DEF dst, USE crx, USE src);
  1.9742 +  predicate(false);
  1.9743 +
  1.9744 +  ins_variable_size_depending_on_alignment(true);
  1.9745 +
  1.9746 +  format %{ "cmovI   $crx, $dst, $src" %}
  1.9747 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.9748 +  size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  1.9749 +  ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  1.9750 +  ins_pipe(pipe_class_default);
  1.9751 +%}
  1.9752 +
  1.9753 +instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  1.9754 +  // no match-rule, false predicate
  1.9755 +  effect(DEF dst, USE crx, USE mem);
  1.9756 +  predicate(false);
  1.9757 +
  1.9758 +  format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  1.9759 +  postalloc_expand %{
  1.9760 +    //
  1.9761 +    // replaces
  1.9762 +    //
  1.9763 +    //   region  dst  crx  mem
  1.9764 +    //    \       |    |   /
  1.9765 +    //     dst=cmovI_bso_stackSlotL_conLvalue0
  1.9766 +    //
  1.9767 +    // with
  1.9768 +    //
  1.9769 +    //   region  dst
  1.9770 +    //    \       /
  1.9771 +    //     dst=loadConI16(0)
  1.9772 +    //      |
  1.9773 +    //      ^  region  dst  crx  mem
  1.9774 +    //      |   \       |    |    /
  1.9775 +    //      dst=cmovI_bso_stackSlotL
  1.9776 +    //
  1.9777 +
  1.9778 +    // Create new nodes.
  1.9779 +    MachNode *m1 = new (C) loadConI16Node();
  1.9780 +    MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  1.9781 +
  1.9782 +    // inputs for new nodes
  1.9783 +    m1->add_req(n_region);
  1.9784 +    m2->add_req(n_region, n_crx, n_mem);
  1.9785 +
  1.9786 +    // precedences for new nodes
  1.9787 +    m2->add_prec(m1);
  1.9788 +
  1.9789 +    // operands for new nodes
  1.9790 +    m1->_opnds[0] = op_dst;
  1.9791 +    m1->_opnds[1] = new (C) immI16Oper(0);
  1.9792 +
  1.9793 +    m2->_opnds[0] = op_dst;
  1.9794 +    m2->_opnds[1] = op_crx;
  1.9795 +    m2->_opnds[2] = op_mem;
  1.9796 +
  1.9797 +    // registers for new nodes
  1.9798 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  1.9799 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  1.9800 +
  1.9801 +    // Insert new nodes.
  1.9802 +    nodes->push(m1);
  1.9803 +    nodes->push(m2);
  1.9804 +  %}
  1.9805 +%}
  1.9806 +
  1.9807 +// Double to Int conversion, NaN is mapped to 0.
  1.9808 +instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  1.9809 +  match(Set dst (ConvD2I src));
  1.9810 +  ins_cost(DEFAULT_COST);
  1.9811 +
  1.9812 +  expand %{
  1.9813 +    regD tmpD;
  1.9814 +    stackSlotL tmpS;
  1.9815 +    flagsReg crx;
  1.9816 +    cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  1.9817 +    convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  1.9818 +    moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  1.9819 +    cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  1.9820 +  %}
  1.9821 +%}
  1.9822 +
  1.9823 +instruct convF2IRaw_regF(regF dst, regF src) %{
  1.9824 +  // no match-rule, false predicate
  1.9825 +  effect(DEF dst, USE src);
  1.9826 +  predicate(false);
  1.9827 +
  1.9828 +  format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  1.9829 +  size(4);
  1.9830 +  ins_encode %{
  1.9831 +    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  1.9832 +    __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  1.9833 +  %}
  1.9834 +  ins_pipe(pipe_class_default);
  1.9835 +%}
  1.9836 +
  1.9837 +// Float to Int conversion, NaN is mapped to 0.
  1.9838 +instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  1.9839 +  match(Set dst (ConvF2I src));
  1.9840 +  ins_cost(DEFAULT_COST);
  1.9841 +
  1.9842 +  expand %{
  1.9843 +    regF tmpF;
  1.9844 +    stackSlotL tmpS;
  1.9845 +    flagsReg crx;
  1.9846 +    cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  1.9847 +    convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  1.9848 +    moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  1.9849 +    cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  1.9850 +  %}
  1.9851 +%}
  1.9852 +
  1.9853 +// Convert to Long
  1.9854 +
  1.9855 +instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  1.9856 +  match(Set dst (ConvI2L src));
  1.9857 +  format %{ "EXTSW   $dst, $src \t// int->long" %}
  1.9858 +  size(4);
  1.9859 +  ins_encode %{
  1.9860 +    // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  1.9861 +    __ extsw($dst$$Register, $src$$Register);
  1.9862 +  %}
  1.9863 +  ins_pipe(pipe_class_default);
  1.9864 +%}
  1.9865 +
  1.9866 +// Zero-extend: convert unsigned int to long (convUI2L).
  1.9867 +instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  1.9868 +  match(Set dst (AndL (ConvI2L src) mask));
  1.9869 +  ins_cost(DEFAULT_COST);
  1.9870 +
  1.9871 +  format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  1.9872 +  size(4);
  1.9873 +  ins_encode %{
  1.9874 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.9875 +    __ clrldi($dst$$Register, $src$$Register, 32);
  1.9876 +  %}
  1.9877 +  ins_pipe(pipe_class_default);
  1.9878 +%}
  1.9879 +
  1.9880 +// Zero-extend: convert unsigned int to long in long register.
  1.9881 +instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  1.9882 +  match(Set dst (AndL src mask));
  1.9883 +  ins_cost(DEFAULT_COST);
  1.9884 +
  1.9885 +  format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  1.9886 +  size(4);
  1.9887 +  ins_encode %{
  1.9888 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  1.9889 +    __ clrldi($dst$$Register, $src$$Register, 32);
  1.9890 +  %}
  1.9891 +  ins_pipe(pipe_class_default);
  1.9892 +%}
  1.9893 +
  1.9894 +instruct convF2LRaw_regF(regF dst, regF src) %{
  1.9895 +  // no match-rule, false predicate
  1.9896 +  effect(DEF dst, USE src);
  1.9897 +  predicate(false);
  1.9898 +
  1.9899 +  format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  1.9900 +  size(4);
  1.9901 +  ins_encode %{
  1.9902 +    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  1.9903 +    __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  1.9904 +  %}
  1.9905 +  ins_pipe(pipe_class_default);
  1.9906 +%}
  1.9907 +
  1.9908 +instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  1.9909 +  // no match-rule, false predicate
  1.9910 +  effect(DEF dst, USE crx, USE src);
  1.9911 +  predicate(false);
  1.9912 +
  1.9913 +  ins_variable_size_depending_on_alignment(true);
  1.9914 +
  1.9915 +  format %{ "cmovL   $crx, $dst, $src" %}
  1.9916 +  // Worst case is branch + move + stop, no stop without scheduler.
  1.9917 +  size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  1.9918 +  ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  1.9919 +  ins_pipe(pipe_class_default);
  1.9920 +%}
  1.9921 +
  1.9922 +instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  1.9923 +  // no match-rule, false predicate
  1.9924 +  effect(DEF dst, USE crx, USE mem);
  1.9925 +  predicate(false);
  1.9926 +
  1.9927 +  format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  1.9928 +  postalloc_expand %{
  1.9929 +    //
  1.9930 +    // replaces
  1.9931 +    //
  1.9932 +    //   region  dst  crx  mem
  1.9933 +    //    \       |    |   /
  1.9934 +    //     dst=cmovL_bso_stackSlotL_conLvalue0
  1.9935 +    //
  1.9936 +    // with
  1.9937 +    //
  1.9938 +    //   region  dst
  1.9939 +    //    \       /
  1.9940 +    //     dst=loadConL16(0)
  1.9941 +    //      |
  1.9942 +    //      ^  region  dst  crx  mem
  1.9943 +    //      |   \       |    |    /
  1.9944 +    //      dst=cmovL_bso_stackSlotL
  1.9945 +    //
  1.9946 +
  1.9947 +    // Create new nodes.
  1.9948 +    MachNode *m1 = new (C) loadConL16Node();
  1.9949 +    MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  1.9950 +
  1.9951 +    // inputs for new nodes
  1.9952 +    m1->add_req(n_region);
  1.9953 +    m2->add_req(n_region, n_crx, n_mem);
  1.9954 +    m2->add_prec(m1);
  1.9955 +
  1.9956 +    // operands for new nodes
  1.9957 +    m1->_opnds[0] = op_dst;
  1.9958 +    m1->_opnds[1] = new (C) immL16Oper(0);
  1.9959 +    m2->_opnds[0] = op_dst;
  1.9960 +    m2->_opnds[1] = op_crx;
  1.9961 +    m2->_opnds[2] = op_mem;
  1.9962 +
  1.9963 +    // registers for new nodes
  1.9964 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  1.9965 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  1.9966 +
  1.9967 +    // Insert new nodes.
  1.9968 +    nodes->push(m1);
  1.9969 +    nodes->push(m2);
  1.9970 +  %}
  1.9971 +%}
  1.9972 +
  1.9973 +// Float to Long conversion, NaN is mapped to 0.
  1.9974 +instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  1.9975 +  match(Set dst (ConvF2L src));
  1.9976 +  ins_cost(DEFAULT_COST);
  1.9977 +
  1.9978 +  expand %{
  1.9979 +    regF tmpF;
  1.9980 +    stackSlotL tmpS;
  1.9981 +    flagsReg crx;
  1.9982 +    cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  1.9983 +    convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  1.9984 +    moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  1.9985 +    cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  1.9986 +  %}
  1.9987 +%}
  1.9988 +
  1.9989 +instruct convD2LRaw_regD(regD dst, regD src) %{
  1.9990 +  // no match-rule, false predicate
  1.9991 +  effect(DEF dst, USE src);
  1.9992 +  predicate(false);
  1.9993 +
  1.9994 +  format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
  1.9995 +  size(4);
  1.9996 +  ins_encode %{
  1.9997 +    // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  1.9998 +    __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  1.9999 +  %}
 1.10000 +  ins_pipe(pipe_class_default);
 1.10001 +%}
 1.10002 +
 1.10003 +// Double to Long conversion, NaN is mapped to 0.
 1.10004 +instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
 1.10005 +  match(Set dst (ConvD2L src));
 1.10006 +  ins_cost(DEFAULT_COST);
 1.10007 +
 1.10008 +  expand %{
 1.10009 +    regD tmpD;
 1.10010 +    stackSlotL tmpS;
 1.10011 +    flagsReg crx;
 1.10012 +    cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 1.10013 +    convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 1.10014 +    moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 1.10015 +    cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 1.10016 +  %}
 1.10017 +%}
 1.10018 +
 1.10019 +// Convert to Float
 1.10020 +
 1.10021 +// Placed here as needed in expand.
 1.10022 +instruct convL2DRaw_regD(regD dst, regD src) %{
 1.10023 +  // no match-rule, false predicate
 1.10024 +  effect(DEF dst, USE src);
 1.10025 +  predicate(false);
 1.10026 +
 1.10027 +  format %{ "FCFID $dst, $src \t// convL2D" %}
 1.10028 +  size(4);
 1.10029 +  ins_encode %{
 1.10030 +    // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 1.10031 +    __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 1.10032 +  %}
 1.10033 +  ins_pipe(pipe_class_default);
 1.10034 +%}
 1.10035 +
 1.10036 +// Placed here as needed in expand.
 1.10037 +instruct convD2F_reg(regF dst, regD src) %{
 1.10038 +  match(Set dst (ConvD2F src));
 1.10039 +  format %{ "FRSP    $dst, $src \t// convD2F" %}
 1.10040 +  size(4);
 1.10041 +  ins_encode %{
 1.10042 +    // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 1.10043 +    __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 1.10044 +  %}
 1.10045 +  ins_pipe(pipe_class_default);
 1.10046 +%}
 1.10047 +
 1.10048 +// Integer to Float conversion.
 1.10049 +instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 1.10050 +  match(Set dst (ConvI2F src));
 1.10051 +  predicate(!VM_Version::has_fcfids());
 1.10052 +  ins_cost(DEFAULT_COST);
 1.10053 +
 1.10054 +  expand %{
 1.10055 +    iRegLdst tmpL;
 1.10056 +    stackSlotL tmpS;
 1.10057 +    regD tmpD;
 1.10058 +    regD tmpD2;
 1.10059 +    convI2L_reg(tmpL, src);              // Sign-extension int to long.
 1.10060 +    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 1.10061 +    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 1.10062 +    convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 1.10063 +    convD2F_reg(dst, tmpD2);             // Convert double to float.
 1.10064 +  %}
 1.10065 +%}
 1.10066 +
 1.10067 +instruct convL2FRaw_regF(regF dst, regD src) %{
 1.10068 +  // no match-rule, false predicate
 1.10069 +  effect(DEF dst, USE src);
 1.10070 +  predicate(false);
 1.10071 +
 1.10072 +  format %{ "FCFIDS $dst, $src \t// convL2F" %}
 1.10073 +  size(4);
 1.10074 +  ins_encode %{
 1.10075 +    // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 1.10076 +    __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 1.10077 +  %}
 1.10078 +  ins_pipe(pipe_class_default);
 1.10079 +%}
 1.10080 +
 1.10081 +// Integer to Float conversion. Special version for Power7.
 1.10082 +instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 1.10083 +  match(Set dst (ConvI2F src));
 1.10084 +  predicate(VM_Version::has_fcfids());
 1.10085 +  ins_cost(DEFAULT_COST);
 1.10086 +
 1.10087 +  expand %{
 1.10088 +    iRegLdst tmpL;
 1.10089 +    stackSlotL tmpS;
 1.10090 +    regD tmpD;
 1.10091 +    convI2L_reg(tmpL, src);              // Sign-extension int to long.
 1.10092 +    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 1.10093 +    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 1.10094 +    convL2FRaw_regF(dst, tmpD);          // Convert to float.
 1.10095 +  %}
 1.10096 +%}
 1.10097 +
 1.10098 +// L2F to avoid runtime call.
 1.10099 +instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 1.10100 +  match(Set dst (ConvL2F src));
 1.10101 +  predicate(VM_Version::has_fcfids());
 1.10102 +  ins_cost(DEFAULT_COST);
 1.10103 +
 1.10104 +  expand %{
 1.10105 +    stackSlotL tmpS;
 1.10106 +    regD tmpD;
 1.10107 +    regL_to_stkL(tmpS, src);             // Store long to stack.
 1.10108 +    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 1.10109 +    convL2FRaw_regF(dst, tmpD);          // Convert to float.
 1.10110 +  %}
 1.10111 +%}
 1.10112 +
 1.10113 +// Moved up as used in expand.
 1.10114 +//instruct convD2F_reg(regF dst, regD src) %{%}
 1.10115 +
 1.10116 +// Convert to Double
 1.10117 +
 1.10118 +// Integer to Double conversion.
 1.10119 +instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 1.10120 +  match(Set dst (ConvI2D src));
 1.10121 +  ins_cost(DEFAULT_COST);
 1.10122 +
 1.10123 +  expand %{
 1.10124 +    iRegLdst tmpL;
 1.10125 +    stackSlotL tmpS;
 1.10126 +    regD tmpD;
 1.10127 +    convI2L_reg(tmpL, src);              // Sign-extension int to long.
 1.10128 +    regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 1.10129 +    moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 1.10130 +    convL2DRaw_regD(dst, tmpD);          // Convert to double.
 1.10131 +  %}
 1.10132 +%}
 1.10133 +
 1.10134 +// Long to Double conversion
 1.10135 +instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 1.10136 +  match(Set dst (ConvL2D src));
 1.10137 +  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 1.10138 +
 1.10139 +  expand %{
 1.10140 +    regD tmpD;
 1.10141 +    moveL2D_stack_reg(tmpD, src);
 1.10142 +    convL2DRaw_regD(dst, tmpD);
 1.10143 +  %}
 1.10144 +%}
 1.10145 +
 1.10146 +instruct convF2D_reg(regD dst, regF src) %{
 1.10147 +  match(Set dst (ConvF2D src));
 1.10148 +  format %{ "FMR     $dst, $src \t// float->double" %}
 1.10149 +  // variable size, 0 or 4
 1.10150 +  ins_encode %{
 1.10151 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 1.10152 +    __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 1.10153 +  %}
 1.10154 +  ins_pipe(pipe_class_default);
 1.10155 +%}
 1.10156 +
 1.10157 +//----------Control Flow Instructions------------------------------------------
 1.10158 +// Compare Instructions
 1.10159 +
 1.10160 +// Compare Integers
 1.10161 +instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 1.10162 +  match(Set crx (CmpI src1 src2));
 1.10163 +  size(4);
 1.10164 +  format %{ "CMPW    $crx, $src1, $src2" %}
 1.10165 +  ins_encode %{
 1.10166 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 1.10167 +    __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 1.10168 +  %}
 1.10169 +  ins_pipe(pipe_class_compare);
 1.10170 +%}
 1.10171 +
 1.10172 +instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 1.10173 +  match(Set crx (CmpI src1 src2));
 1.10174 +  format %{ "CMPWI   $crx, $src1, $src2" %}
 1.10175 +  size(4);
 1.10176 +  ins_encode %{
 1.10177 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 1.10178 +    __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 1.10179 +  %}
 1.10180 +  ins_pipe(pipe_class_compare);
 1.10181 +%}
 1.10182 +
 1.10183 +// (src1 & src2) == 0?
 1.10184 +instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 1.10185 +  match(Set cr0 (CmpI (AndI src1 src2) zero));
 1.10186 +  // r0 is killed
 1.10187 +  format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 1.10188 +  size(4);
 1.10189 +  ins_encode %{
 1.10190 +    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 1.10191 +    // FIXME: avoid andi_ ?
 1.10192 +    __ andi_(R0, $src1$$Register, $src2$$constant);
 1.10193 +  %}
 1.10194 +  ins_pipe(pipe_class_compare);
 1.10195 +%}
 1.10196 +
 1.10197 +instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 1.10198 +  match(Set crx (CmpL src1 src2));
 1.10199 +  format %{ "CMPD    $crx, $src1, $src2" %}
 1.10200 +  size(4);
 1.10201 +  ins_encode %{
 1.10202 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 1.10203 +    __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 1.10204 +  %}
 1.10205 +  ins_pipe(pipe_class_compare);
 1.10206 +%}
 1.10207 +
 1.10208 +instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 1.10209 +  match(Set crx (CmpL src1 src2));
 1.10210 +  format %{ "CMPDI   $crx, $src1, $src2" %}
 1.10211 +  size(4);
 1.10212 +  ins_encode %{
 1.10213 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 1.10214 +    __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 1.10215 +  %}
 1.10216 +  ins_pipe(pipe_class_compare);
 1.10217 +%}
 1.10218 +
 1.10219 +instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 1.10220 +  match(Set cr0 (CmpL (AndL src1 src2) zero));
 1.10221 +  // r0 is killed
 1.10222 +  format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 1.10223 +  size(4);
 1.10224 +  ins_encode %{
 1.10225 +    // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 1.10226 +    __ and_(R0, $src1$$Register, $src2$$Register);
 1.10227 +  %}
 1.10228 +  ins_pipe(pipe_class_compare);
 1.10229 +%}
 1.10230 +
 1.10231 +instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 1.10232 +  match(Set cr0 (CmpL (AndL src1 src2) zero));
 1.10233 +  // r0 is killed
 1.10234 +  format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 1.10235 +  size(4);
 1.10236 +  ins_encode %{
 1.10237 +    // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 1.10238 +    // FIXME: avoid andi_ ?
 1.10239 +    __ andi_(R0, $src1$$Register, $src2$$constant);
 1.10240 +  %}
 1.10241 +  ins_pipe(pipe_class_compare);
 1.10242 +%}
 1.10243 +
 1.10244 +instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 1.10245 +  // no match-rule, false predicate
 1.10246 +  effect(DEF dst, USE crx);
 1.10247 +  predicate(false);
 1.10248 +
 1.10249 +  ins_variable_size_depending_on_alignment(true);
 1.10250 +
 1.10251 +  format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 1.10252 +  // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 1.10253 +  size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 1.10254 +  ins_encode %{
 1.10255 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 1.10256 +    Label done;
 1.10257 +    // li(Rdst, 0);              // equal -> 0
 1.10258 +    __ beq($crx$$CondRegister, done);
 1.10259 +    __ li($dst$$Register, 1);    // greater -> +1
 1.10260 +    __ bgt($crx$$CondRegister, done);
 1.10261 +    __ li($dst$$Register, -1);   // unordered or less -> -1
 1.10262 +    // TODO: PPC port__ endgroup_if_needed(_size == 20);
 1.10263 +    __ bind(done);
 1.10264 +  %}
 1.10265 +  ins_pipe(pipe_class_compare);
 1.10266 +%}
 1.10267 +
 1.10268 +instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 1.10269 +  // no match-rule, false predicate
 1.10270 +  effect(DEF dst, USE crx);
 1.10271 +  predicate(false);
 1.10272 +
 1.10273 +  format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 1.10274 +  postalloc_expand %{
 1.10275 +    //
 1.10276 +    // replaces
 1.10277 +    //
 1.10278 +    //   region  crx
 1.10279 +    //    \       |
 1.10280 +    //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 1.10281 +    //
 1.10282 +    // with
 1.10283 +    //
 1.10284 +    //   region
 1.10285 +    //    \
 1.10286 +    //     dst=loadConI16(0)
 1.10287 +    //      |
 1.10288 +    //      ^  region  crx
 1.10289 +    //      |   \       |
 1.10290 +    //      dst=cmovI_conIvalueMinus1_conIvalue1
 1.10291 +    //
 1.10292 +
 1.10293 +    // Create new nodes.
 1.10294 +    MachNode *m1 = new (C) loadConI16Node();
 1.10295 +    MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 1.10296 +
 1.10297 +    // inputs for new nodes
 1.10298 +    m1->add_req(n_region);
 1.10299 +    m2->add_req(n_region, n_crx);
 1.10300 +    m2->add_prec(m1);
 1.10301 +
 1.10302 +    // operands for new nodes
 1.10303 +    m1->_opnds[0] = op_dst;
 1.10304 +    m1->_opnds[1] = new (C) immI16Oper(0);
 1.10305 +    m2->_opnds[0] = op_dst;
 1.10306 +    m2->_opnds[1] = op_crx;
 1.10307 +
 1.10308 +    // registers for new nodes
 1.10309 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 1.10310 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 1.10311 +
 1.10312 +    // Insert new nodes.
 1.10313 +    nodes->push(m1);
 1.10314 +    nodes->push(m2);
 1.10315 +  %}
 1.10316 +%}
 1.10317 +
 1.10318 +// Manifest a CmpL3 result in an integer register. Very painful.
 1.10319 +// This is the test to avoid.
 1.10320 +// (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 1.10321 +instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 1.10322 +  match(Set dst (CmpL3 src1 src2));
 1.10323 +  ins_cost(DEFAULT_COST*5+BRANCH_COST);
 1.10324 +
 1.10325 +  expand %{
 1.10326 +    flagsReg tmp1;
 1.10327 +    cmpL_reg_reg(tmp1, src1, src2);
 1.10328 +    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 1.10329 +  %}
 1.10330 +%}
 1.10331 +
 1.10332 +// Implicit range checks.
 1.10333 +// A range check in the ideal world has one of the following shapes:
 1.10334 +//  - (If le (CmpU length index)), (IfTrue  throw exception)
 1.10335 +//  - (If lt (CmpU index length)), (IfFalse throw exception)
 1.10336 +//
 1.10337 +// Match range check 'If le (CmpU length index)'.
 1.10338 +instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 1.10339 +  match(If cmp (CmpU src_length index));
 1.10340 +  effect(USE labl);
 1.10341 +  predicate(TrapBasedRangeChecks &&
 1.10342 +            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 1.10343 +            PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 1.10344 +            (Matcher::branches_to_uncommon_trap(_leaf)));
 1.10345 +
 1.10346 +  ins_is_TrapBasedCheckNode(true);
 1.10347 +
 1.10348 +  format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 1.10349 +  size(4);
 1.10350 +  ins_encode %{
 1.10351 +    // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 1.10352 +    if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 1.10353 +      __ trap_range_check_le($src_length$$Register, $index$$constant);
 1.10354 +    } else {
 1.10355 +      // Both successors are uncommon traps, probability is 0.
 1.10356 +      // Node got flipped during fixup flow.
 1.10357 +      assert($cmp$$cmpcode == 0x9, "must be greater");
 1.10358 +      __ trap_range_check_g($src_length$$Register, $index$$constant);
 1.10359 +    }
 1.10360 +  %}
 1.10361 +  ins_pipe(pipe_class_trap);
 1.10362 +%}
 1.10363 +
 1.10364 +// Match range check 'If lt (CmpU index length)'.
 1.10365 +instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 1.10366 +  match(If cmp (CmpU src_index src_length));
 1.10367 +  effect(USE labl);
 1.10368 +  predicate(TrapBasedRangeChecks &&
 1.10369 +            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 1.10370 +            _leaf->as_If()->_prob >= PROB_ALWAYS &&
 1.10371 +            (Matcher::branches_to_uncommon_trap(_leaf)));
 1.10372 +
 1.10373 +  ins_is_TrapBasedCheckNode(true);
 1.10374 +
 1.10375 +  format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 1.10376 +  size(4);
 1.10377 +  ins_encode %{
 1.10378 +    // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 1.10379 +    if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 1.10380 +      __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 1.10381 +    } else {
 1.10382 +      // Both successors are uncommon traps, probability is 0.
 1.10383 +      // Node got flipped during fixup flow.
 1.10384 +      assert($cmp$$cmpcode == 0x8, "must be less");
 1.10385 +      __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 1.10386 +    }
 1.10387 +  %}
 1.10388 +  ins_pipe(pipe_class_trap);
 1.10389 +%}
 1.10390 +
 1.10391 +// Match range check 'If lt (CmpU index length)'.
 1.10392 +instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 1.10393 +  match(If cmp (CmpU src_index length));
 1.10394 +  effect(USE labl);
 1.10395 +  predicate(TrapBasedRangeChecks &&
 1.10396 +            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 1.10397 +            _leaf->as_If()->_prob >= PROB_ALWAYS &&
 1.10398 +            (Matcher::branches_to_uncommon_trap(_leaf)));
 1.10399 +
 1.10400 +  ins_is_TrapBasedCheckNode(true);
 1.10401 +
 1.10402 +  format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 1.10403 +  size(4);
 1.10404 +  ins_encode %{
 1.10405 +    // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 1.10406 +    if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 1.10407 +      __ trap_range_check_ge($src_index$$Register, $length$$constant);
 1.10408 +    } else {
 1.10409 +      // Both successors are uncommon traps, probability is 0.
 1.10410 +      // Node got flipped during fixup flow.
 1.10411 +      assert($cmp$$cmpcode == 0x8, "must be less");
 1.10412 +      __ trap_range_check_l($src_index$$Register, $length$$constant);
 1.10413 +    }
 1.10414 +  %}
 1.10415 +  ins_pipe(pipe_class_trap);
 1.10416 +%}
 1.10417 +
 1.10418 +instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 1.10419 +  match(Set crx (CmpU src1 src2));
 1.10420 +  format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 1.10421 +  size(4);
 1.10422 +  ins_encode %{
 1.10423 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 1.10424 +    __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 1.10425 +  %}
 1.10426 +  ins_pipe(pipe_class_compare);
 1.10427 +%}
 1.10428 +
 1.10429 +instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 1.10430 +  match(Set crx (CmpU src1 src2));
 1.10431 +  size(4);
 1.10432 +  format %{ "CMPLWI  $crx, $src1, $src2" %}
 1.10433 +  ins_encode %{
 1.10434 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 1.10435 +    __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 1.10436 +  %}
 1.10437 +  ins_pipe(pipe_class_compare);
 1.10438 +%}
 1.10439 +
 1.10440 +// Implicit zero checks (more implicit null checks).
 1.10441 +// No constant pool entries required.
 1.10442 +instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 1.10443 +  match(If cmp (CmpN value zero));
 1.10444 +  effect(USE labl);
 1.10445 +  predicate(TrapBasedNullChecks &&
 1.10446 +            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 1.10447 +            _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 1.10448 +            Matcher::branches_to_uncommon_trap(_leaf));
 1.10449 +  ins_cost(1);
 1.10450 +
 1.10451 +  ins_is_TrapBasedCheckNode(true);
 1.10452 +
 1.10453 +  format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 1.10454 +  size(4);
 1.10455 +  ins_encode %{
 1.10456 +    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 1.10457 +    if ($cmp$$cmpcode == 0xA) {
 1.10458 +      __ trap_null_check($value$$Register);
 1.10459 +    } else {
 1.10460 +      // Both successors are uncommon traps, probability is 0.
 1.10461 +      // Node got flipped during fixup flow.
 1.10462 +      assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 1.10463 +      __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 1.10464 +    }
 1.10465 +  %}
 1.10466 +  ins_pipe(pipe_class_trap);
 1.10467 +%}
 1.10468 +
 1.10469 +// Compare narrow oops.
 1.10470 +instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 1.10471 +  match(Set crx (CmpN src1 src2));
 1.10472 +
 1.10473 +  size(4);
 1.10474 +  ins_cost(DEFAULT_COST);
 1.10475 +  format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 1.10476 +  ins_encode %{
 1.10477 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 1.10478 +    __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 1.10479 +  %}
 1.10480 +  ins_pipe(pipe_class_compare);
 1.10481 +%}
 1.10482 +
 1.10483 +instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 1.10484 +  match(Set crx (CmpN src1 src2));
 1.10485 +  // Make this more expensive than zeroCheckN_iReg_imm0.
 1.10486 +  ins_cost(DEFAULT_COST);
 1.10487 +
 1.10488 +  format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 1.10489 +  size(4);
 1.10490 +  ins_encode %{
 1.10491 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 1.10492 +    __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 1.10493 +  %}
 1.10494 +  ins_pipe(pipe_class_compare);
 1.10495 +%}
 1.10496 +
 1.10497 +// Implicit zero checks (more implicit null checks).
 1.10498 +// No constant pool entries required.
 1.10499 +instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 1.10500 +  match(If cmp (CmpP value zero));
 1.10501 +  effect(USE labl);
 1.10502 +  predicate(TrapBasedNullChecks &&
 1.10503 +            _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 1.10504 +            _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 1.10505 +            Matcher::branches_to_uncommon_trap(_leaf));
 1.10506 +
 1.10507 +  ins_is_TrapBasedCheckNode(true);
 1.10508 +
 1.10509 +  format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 1.10510 +  size(4);
 1.10511 +  ins_encode %{
 1.10512 +    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 1.10513 +    if ($cmp$$cmpcode == 0xA) {
 1.10514 +      __ trap_null_check($value$$Register);
 1.10515 +    } else {
 1.10516 +      // Both successors are uncommon traps, probability is 0.
 1.10517 +      // Node got flipped during fixup flow.
 1.10518 +      assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 1.10519 +      __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 1.10520 +    }
 1.10521 +  %}
 1.10522 +  ins_pipe(pipe_class_trap);
 1.10523 +%}
 1.10524 +
 1.10525 +// Compare Pointers
 1.10526 +instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 1.10527 +  match(Set crx (CmpP src1 src2));
 1.10528 +  format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 1.10529 +  size(4);
 1.10530 +  ins_encode %{
 1.10531 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 1.10532 +    __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 1.10533 +  %}
 1.10534 +  ins_pipe(pipe_class_compare);
 1.10535 +%}
 1.10536 +
 1.10537 +// Used in postalloc expand.
 1.10538 +instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 1.10539 +  // This match rule prevents reordering of node before a safepoint.
 1.10540 +  // This only makes sense if this instructions is used exclusively
 1.10541 +  // for the expansion of EncodeP!
 1.10542 +  match(Set crx (CmpP src1 src2));
 1.10543 +  predicate(false);
 1.10544 +
 1.10545 +  format %{ "CMPDI   $crx, $src1, $src2" %}
 1.10546 +  size(4);
 1.10547 +  ins_encode %{
 1.10548 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 1.10549 +    __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 1.10550 +  %}
 1.10551 +  ins_pipe(pipe_class_compare);
 1.10552 +%}
 1.10553 +
 1.10554 +//----------Float Compares----------------------------------------------------
 1.10555 +
 1.10556 +instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 1.10557 +  // no match-rule, false predicate
 1.10558 +  effect(DEF crx, USE src1, USE src2);
 1.10559 +  predicate(false);
 1.10560 +
 1.10561 +  format %{ "cmpFUrd $crx, $src1, $src2" %}
 1.10562 +  size(4);
 1.10563 +  ins_encode %{
 1.10564 +    // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 1.10565 +    __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 1.10566 +  %}
 1.10567 +  ins_pipe(pipe_class_default);
 1.10568 +%}
 1.10569 +
 1.10570 +instruct cmov_bns_less(flagsReg crx) %{
 1.10571 +  // no match-rule, false predicate
 1.10572 +  effect(DEF crx);
 1.10573 +  predicate(false);
 1.10574 +
 1.10575 +  ins_variable_size_depending_on_alignment(true);
 1.10576 +
 1.10577 +  format %{ "cmov    $crx" %}
 1.10578 +  // Worst case is branch + move + stop, no stop without scheduler.
 1.10579 +  size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 1.10580 +  ins_encode %{
 1.10581 +    // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 1.10582 +    Label done;
 1.10583 +    __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 1.10584 +    __ li(R0, 0);
 1.10585 +    __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 1.10586 +    // TODO PPC port __ endgroup_if_needed(_size == 16);
 1.10587 +    __ bind(done);
 1.10588 +  %}
 1.10589 +  ins_pipe(pipe_class_default);
 1.10590 +%}
 1.10591 +
 1.10592 +// Compare floating, generate condition code.
 1.10593 +instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 1.10594 +  // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 1.10595 +  //
 1.10596 +  // The following code sequence occurs a lot in mpegaudio:
 1.10597 +  //
 1.10598 +  // block BXX:
 1.10599 +  // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 1.10600 +  //    cmpFUrd CCR6, F11, F9
 1.10601 +  // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 1.10602 +  //    cmov CCR6
 1.10603 +  // 8: instruct branchConSched:
 1.10604 +  //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 1.10605 +  match(Set crx (CmpF src1 src2));
 1.10606 +  ins_cost(DEFAULT_COST+BRANCH_COST);
 1.10607 +
 1.10608 +  format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 1.10609 +  postalloc_expand %{
 1.10610 +    //
 1.10611 +    // replaces
 1.10612 +    //
 1.10613 +    //   region  src1  src2
 1.10614 +    //    \       |     |
 1.10615 +    //     crx=cmpF_reg_reg
 1.10616 +    //
 1.10617 +    // with
 1.10618 +    //
 1.10619 +    //   region  src1  src2
 1.10620 +    //    \       |     |
 1.10621 +    //     crx=cmpFUnordered_reg_reg
 1.10622 +    //      |
 1.10623 +    //      ^  region
 1.10624 +    //      |   \
 1.10625 +    //      crx=cmov_bns_less
 1.10626 +    //
 1.10627 +
 1.10628 +    // Create new nodes.
 1.10629 +    MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 1.10630 +    MachNode *m2 = new (C) cmov_bns_lessNode();
 1.10631 +
 1.10632 +    // inputs for new nodes
 1.10633 +    m1->add_req(n_region, n_src1, n_src2);
 1.10634 +    m2->add_req(n_region);
 1.10635 +    m2->add_prec(m1);
 1.10636 +
 1.10637 +    // operands for new nodes
 1.10638 +    m1->_opnds[0] = op_crx;
 1.10639 +    m1->_opnds[1] = op_src1;
 1.10640 +    m1->_opnds[2] = op_src2;
 1.10641 +    m2->_opnds[0] = op_crx;
 1.10642 +
 1.10643 +    // registers for new nodes
 1.10644 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 1.10645 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 1.10646 +
 1.10647 +    // Insert new nodes.
 1.10648 +    nodes->push(m1);
 1.10649 +    nodes->push(m2);
 1.10650 +  %}
 1.10651 +%}
 1.10652 +
 1.10653 +// Compare float, generate -1,0,1
 1.10654 +instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 1.10655 +  match(Set dst (CmpF3 src1 src2));
 1.10656 +  ins_cost(DEFAULT_COST*5+BRANCH_COST);
 1.10657 +
 1.10658 +  expand %{
 1.10659 +    flagsReg tmp1;
 1.10660 +    cmpFUnordered_reg_reg(tmp1, src1, src2);
 1.10661 +    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 1.10662 +  %}
 1.10663 +%}
 1.10664 +
 1.10665 +instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 1.10666 +  // no match-rule, false predicate
 1.10667 +  effect(DEF crx, USE src1, USE src2);
 1.10668 +  predicate(false);
 1.10669 +
 1.10670 +  format %{ "cmpFUrd $crx, $src1, $src2" %}
 1.10671 +  size(4);
 1.10672 +  ins_encode %{
 1.10673 +    // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 1.10674 +    __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 1.10675 +  %}
 1.10676 +  ins_pipe(pipe_class_default);
 1.10677 +%}
 1.10678 +
 1.10679 +instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 1.10680 +  match(Set crx (CmpD src1 src2));
 1.10681 +  ins_cost(DEFAULT_COST+BRANCH_COST);
 1.10682 +
 1.10683 +  format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 1.10684 +  postalloc_expand %{
 1.10685 +    //
 1.10686 +    // replaces
 1.10687 +    //
 1.10688 +    //   region  src1  src2
 1.10689 +    //    \       |     |
 1.10690 +    //     crx=cmpD_reg_reg
 1.10691 +    //
 1.10692 +    // with
 1.10693 +    //
 1.10694 +    //   region  src1  src2
 1.10695 +    //    \       |     |
 1.10696 +    //     crx=cmpDUnordered_reg_reg
 1.10697 +    //      |
 1.10698 +    //      ^  region
 1.10699 +    //      |   \
 1.10700 +    //      crx=cmov_bns_less
 1.10701 +    //
 1.10702 +
 1.10703 +    // create new nodes
 1.10704 +    MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 1.10705 +    MachNode *m2 = new (C) cmov_bns_lessNode();
 1.10706 +
 1.10707 +    // inputs for new nodes
 1.10708 +    m1->add_req(n_region, n_src1, n_src2);
 1.10709 +    m2->add_req(n_region);
 1.10710 +    m2->add_prec(m1);
 1.10711 +
 1.10712 +    // operands for new nodes
 1.10713 +    m1->_opnds[0] = op_crx;
 1.10714 +    m1->_opnds[1] = op_src1;
 1.10715 +    m1->_opnds[2] = op_src2;
 1.10716 +    m2->_opnds[0] = op_crx;
 1.10717 +
 1.10718 +    // registers for new nodes
 1.10719 +    ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 1.10720 +    ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 1.10721 +
 1.10722 +    // Insert new nodes.
 1.10723 +    nodes->push(m1);
 1.10724 +    nodes->push(m2);
 1.10725 +  %}
 1.10726 +%}
 1.10727 +
 1.10728 +// Compare double, generate -1,0,1
 1.10729 +instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 1.10730 +  match(Set dst (CmpD3 src1 src2));
 1.10731 +  ins_cost(DEFAULT_COST*5+BRANCH_COST);
 1.10732 +
 1.10733 +  expand %{
 1.10734 +    flagsReg tmp1;
 1.10735 +    cmpDUnordered_reg_reg(tmp1, src1, src2);
 1.10736 +    cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 1.10737 +  %}
 1.10738 +%}
 1.10739 +
 1.10740 +//----------Branches---------------------------------------------------------
 1.10741 +// Jump
 1.10742 +
 1.10743 +// Direct Branch.
 1.10744 +instruct branch(label labl) %{
 1.10745 +  match(Goto);
 1.10746 +  effect(USE labl);
 1.10747 +  ins_cost(BRANCH_COST);
 1.10748 +
 1.10749 +  format %{ "B       $labl" %}
 1.10750 +  size(4);
 1.10751 +  ins_encode %{
 1.10752 +    // TODO: PPC port $archOpcode(ppc64Opcode_b);
 1.10753 +     Label d;    // dummy
 1.10754 +     __ bind(d);
 1.10755 +     Label* p = $labl$$label;
 1.10756 +     // `p' is `NULL' when this encoding class is used only to
 1.10757 +     // determine the size of the encoded instruction.
 1.10758 +     Label& l = (NULL == p)? d : *(p);
 1.10759 +     __ b(l);
 1.10760 +  %}
 1.10761 +  ins_pipe(pipe_class_default);
 1.10762 +%}
 1.10763 +
 1.10764 +// Conditional Near Branch
 1.10765 +instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 1.10766 +  // Same match rule as `branchConFar'.
 1.10767 +  match(If cmp crx);
 1.10768 +  effect(USE lbl);
 1.10769 +  ins_cost(BRANCH_COST);
 1.10770 +
 1.10771 +  // If set to 1 this indicates that the current instruction is a
 1.10772 +  // short variant of a long branch. This avoids using this
 1.10773 +  // instruction in first-pass matching. It will then only be used in
 1.10774 +  // the `Shorten_branches' pass.
 1.10775 +  ins_short_branch(1);
 1.10776 +
 1.10777 +  format %{ "B$cmp     $crx, $lbl" %}
 1.10778 +  size(4);
 1.10779 +  ins_encode( enc_bc(crx, cmp, lbl) );
 1.10780 +  ins_pipe(pipe_class_default);
 1.10781 +%}
 1.10782 +
 1.10783 +// This is for cases when the ppc64 `bc' instruction does not
 1.10784 +// reach far enough. So we emit a far branch here, which is more
 1.10785 +// expensive.
 1.10786 +//
 1.10787 +// Conditional Far Branch
 1.10788 +instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 1.10789 +  // Same match rule as `branchCon'.
 1.10790 +  match(If cmp crx);
 1.10791 +  effect(USE crx, USE lbl);
 1.10792 +  predicate(!false /* TODO: PPC port HB_Schedule*/);
 1.10793 +  // Higher cost than `branchCon'.
 1.10794 +  ins_cost(5*BRANCH_COST);
 1.10795 +
 1.10796 +  // This is not a short variant of a branch, but the long variant.
 1.10797 +  ins_short_branch(0);
 1.10798 +
 1.10799 +  format %{ "B_FAR$cmp $crx, $lbl" %}
 1.10800 +  size(8);
 1.10801 +  ins_encode( enc_bc_far(crx, cmp, lbl) );
 1.10802 +  ins_pipe(pipe_class_default);
 1.10803 +%}
 1.10804 +
 1.10805 +// Conditional Branch used with Power6 scheduler (can be far or short).
 1.10806 +instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 1.10807 +  // Same match rule as `branchCon'.
 1.10808 +  match(If cmp crx);
 1.10809 +  effect(USE crx, USE lbl);
 1.10810 +  predicate(false /* TODO: PPC port HB_Schedule*/);
 1.10811 +  // Higher cost than `branchCon'.
 1.10812 +  ins_cost(5*BRANCH_COST);
 1.10813 +
 1.10814 +  // Actually size doesn't depend on alignment but on shortening.
 1.10815 +  ins_variable_size_depending_on_alignment(true);
 1.10816 +  // long variant.
 1.10817 +  ins_short_branch(0);
 1.10818 +
 1.10819 +  format %{ "B_FAR$cmp $crx, $lbl" %}
 1.10820 +  size(8); // worst case
 1.10821 +  ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 1.10822 +  ins_pipe(pipe_class_default);
 1.10823 +%}
 1.10824 +
 1.10825 +instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 1.10826 +  match(CountedLoopEnd cmp crx);
 1.10827 +  effect(USE labl);
 1.10828 +  ins_cost(BRANCH_COST);
 1.10829 +
 1.10830 +  // short variant.
 1.10831 +  ins_short_branch(1);
 1.10832 +
 1.10833 +  format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 1.10834 +  size(4);
 1.10835 +  ins_encode( enc_bc(crx, cmp, labl) );
 1.10836 +  ins_pipe(pipe_class_default);
 1.10837 +%}
 1.10838 +
 1.10839 +instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 1.10840 +  match(CountedLoopEnd cmp crx);
 1.10841 +  effect(USE labl);
 1.10842 +  predicate(!false /* TODO: PPC port HB_Schedule */);
 1.10843 +  ins_cost(BRANCH_COST);
 1.10844 +
 1.10845 +  // Long variant.
 1.10846 +  ins_short_branch(0);
 1.10847 +
 1.10848 +  format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 1.10849 +  size(8);
 1.10850 +  ins_encode( enc_bc_far(crx, cmp, labl) );
 1.10851 +  ins_pipe(pipe_class_default);
 1.10852 +%}
 1.10853 +
 1.10854 +// Conditional Branch used with Power6 scheduler (can be far or short).
 1.10855 +instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 1.10856 +  match(CountedLoopEnd cmp crx);
 1.10857 +  effect(USE labl);
 1.10858 +  predicate(false /* TODO: PPC port HB_Schedule */);
 1.10859 +  // Higher cost than `branchCon'.
 1.10860 +  ins_cost(5*BRANCH_COST);
 1.10861 +
 1.10862 +  // Actually size doesn't depend on alignment but on shortening.
 1.10863 +  ins_variable_size_depending_on_alignment(true);
 1.10864 +  // Long variant.
 1.10865 +  ins_short_branch(0);
 1.10866 +
 1.10867 +  format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 1.10868 +  size(8); // worst case
 1.10869 +  ins_encode( enc_bc_short_far(crx, cmp, labl) );
 1.10870 +  ins_pipe(pipe_class_default);
 1.10871 +%}
 1.10872 +
 1.10873 +// ============================================================================
 1.10874 +// Java runtime operations, intrinsics and other complex operations.
 1.10875 +
 1.10876 +// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 1.10877 +// array for an instance of the superklass. Set a hidden internal cache on a
 1.10878 +// hit (cache is checked with exposed code in gen_subtype_check()). Return
 1.10879 +// not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 1.10880 +//
 1.10881 +// GL TODO: Improve this.
 1.10882 +// - result should not be a TEMP
 1.10883 +// - Add match rule as on sparc avoiding additional Cmp.
 1.10884 +instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 1.10885 +                             iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 1.10886 +  match(Set result (PartialSubtypeCheck subklass superklass));
 1.10887 +  effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 1.10888 +  ins_cost(DEFAULT_COST*10);
 1.10889 +
 1.10890 +  format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 1.10891 +  ins_encode %{
 1.10892 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.10893 +    __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 1.10894 +                                     $tmp_klass$$Register, NULL, $result$$Register);
 1.10895 +  %}
 1.10896 +  ins_pipe(pipe_class_default);
 1.10897 +%}
 1.10898 +
 1.10899 +// inlined locking and unlocking
 1.10900 +
 1.10901 +instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 1.10902 +  match(Set crx (FastLock oop box));
 1.10903 +  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 1.10904 +  // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 1.10905 +
 1.10906 +  format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 1.10907 +  ins_encode %{
 1.10908 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.10909 +    __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 1.10910 +                                 $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 1.10911 +    // If locking was successfull, crx should indicate 'EQ'.
 1.10912 +    // The compiler generates a branch to the runtime call to
 1.10913 +    // _complete_monitor_locking_Java for the case where crx is 'NE'.
 1.10914 +  %}
 1.10915 +  ins_pipe(pipe_class_compare);
 1.10916 +%}
 1.10917 +
 1.10918 +instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 1.10919 +  match(Set crx (FastUnlock oop box));
 1.10920 +  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 1.10921 +
 1.10922 +  format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 1.10923 +  ins_encode %{
 1.10924 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.10925 +    __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 1.10926 +                                   $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 1.10927 +    // If unlocking was successfull, crx should indicate 'EQ'.
 1.10928 +    // The compiler generates a branch to the runtime call to
 1.10929 +    // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 1.10930 +  %}
 1.10931 +  ins_pipe(pipe_class_compare);
 1.10932 +%}
 1.10933 +
 1.10934 +// Align address.
 1.10935 +instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 1.10936 +  match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 1.10937 +
 1.10938 +  format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 1.10939 +  size(4);
 1.10940 +  ins_encode %{
 1.10941 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 1.10942 +    __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 1.10943 +  %}
 1.10944 +  ins_pipe(pipe_class_default);
 1.10945 +%}
 1.10946 +
 1.10947 +// Array size computation.
 1.10948 +instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 1.10949 +  match(Set dst (SubL (CastP2X end) (CastP2X start)));
 1.10950 +
 1.10951 +  format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 1.10952 +  size(4);
 1.10953 +  ins_encode %{
 1.10954 +    // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 1.10955 +    __ subf($dst$$Register, $start$$Register, $end$$Register);
 1.10956 +  %}
 1.10957 +  ins_pipe(pipe_class_default);
 1.10958 +%}
 1.10959 +
 1.10960 +// Clear-array with dynamic array-size.
 1.10961 +instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 1.10962 +  match(Set dummy (ClearArray cnt base));
 1.10963 +  effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 1.10964 +  ins_cost(MEMORY_REF_COST);
 1.10965 +
 1.10966 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.10967 +
 1.10968 +  format %{ "ClearArray $cnt, $base" %}
 1.10969 +  ins_encode %{
 1.10970 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.10971 +    __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 1.10972 +  %}
 1.10973 +  ins_pipe(pipe_class_default);
 1.10974 +%}
 1.10975 +
 1.10976 +// String_IndexOf for needle of length 1.
 1.10977 +//
 1.10978 +// Match needle into immediate operands: no loadConP node needed. Saves one
 1.10979 +// register and two instructions over string_indexOf_imm1Node.
 1.10980 +//
 1.10981 +// Assumes register result differs from all input registers.
 1.10982 +//
 1.10983 +// Preserves registers haystack, haycnt
 1.10984 +// Kills     registers tmp1, tmp2
 1.10985 +// Defines   registers result
 1.10986 +//
 1.10987 +// Use dst register classes if register gets killed, as it is the case for tmp registers!
 1.10988 +//
 1.10989 +// Unfortunately this does not match too often. In many situations the AddP is used
 1.10990 +// by several nodes, even several StrIndexOf nodes, breaking the match tree.
 1.10991 +instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 1.10992 +                                  immP needleImm, immL offsetImm, immI_1 needlecntImm,
 1.10993 +                                  iRegIdst tmp1, iRegIdst tmp2,
 1.10994 +                                  flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 1.10995 +  predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 1.10996 +  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 1.10997 +
 1.10998 +  effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 1.10999 +
 1.11000 +  ins_cost(150);
 1.11001 +  format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 1.11002 +            "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 1.11003 +
 1.11004 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 1.11005 +  ins_encode %{
 1.11006 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11007 +    immPOper *needleOper = (immPOper *)$needleImm;
 1.11008 +    const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 1.11009 +    ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 1.11010 +
 1.11011 +    __ string_indexof_1($result$$Register,
 1.11012 +                        $haystack$$Register, $haycnt$$Register,
 1.11013 +                        R0, needle_values->char_at(0),
 1.11014 +                        $tmp1$$Register, $tmp2$$Register);
 1.11015 +  %}
 1.11016 +  ins_pipe(pipe_class_compare);
 1.11017 +%}
 1.11018 +
 1.11019 +// String_IndexOf for needle of length 1.
 1.11020 +//
 1.11021 +// Special case requires less registers and emits less instructions.
 1.11022 +//
 1.11023 +// Assumes register result differs from all input registers.
 1.11024 +//
 1.11025 +// Preserves registers haystack, haycnt
 1.11026 +// Kills     registers tmp1, tmp2, needle
 1.11027 +// Defines   registers result
 1.11028 +//
 1.11029 +// Use dst register classes if register gets killed, as it is the case for tmp registers!
 1.11030 +instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 1.11031 +                             rscratch2RegP needle, immI_1 needlecntImm,
 1.11032 +                             iRegIdst tmp1, iRegIdst tmp2,
 1.11033 +                             flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 1.11034 +  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 1.11035 +  effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 1.11036 +         TEMP tmp1, TEMP tmp2);
 1.11037 +  // Required for EA: check if it is still a type_array.
 1.11038 +  predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 1.11039 +            n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 1.11040 +  ins_cost(180);
 1.11041 +
 1.11042 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11043 +
 1.11044 +  format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 1.11045 +            " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 1.11046 +  ins_encode %{
 1.11047 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11048 +    Node *ndl = in(operand_index($needle));  // The node that defines needle.
 1.11049 +    ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 1.11050 +    guarantee(needle_values, "sanity");
 1.11051 +    if (needle_values != NULL) {
 1.11052 +      __ string_indexof_1($result$$Register,
 1.11053 +                          $haystack$$Register, $haycnt$$Register,
 1.11054 +                          R0, needle_values->char_at(0),
 1.11055 +                          $tmp1$$Register, $tmp2$$Register);
 1.11056 +    } else {
 1.11057 +      __ string_indexof_1($result$$Register,
 1.11058 +                          $haystack$$Register, $haycnt$$Register,
 1.11059 +                          $needle$$Register, 0,
 1.11060 +                          $tmp1$$Register, $tmp2$$Register);
 1.11061 +    }
 1.11062 +  %}
 1.11063 +  ins_pipe(pipe_class_compare);
 1.11064 +%}
 1.11065 +
 1.11066 +// String_IndexOf.
 1.11067 +//
 1.11068 +// Length of needle as immediate. This saves instruction loading constant needle
 1.11069 +// length.
 1.11070 +// @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 1.11071 +// completely or do it in vector instruction. This should save registers for
 1.11072 +// needlecnt and needle.
 1.11073 +//
 1.11074 +// Assumes register result differs from all input registers.
 1.11075 +// Overwrites haycnt, needlecnt.
 1.11076 +// Use dst register classes if register gets killed, as it is the case for tmp registers!
 1.11077 +instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 1.11078 +                            iRegPsrc needle, uimmI15 needlecntImm,
 1.11079 +                            iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 1.11080 +                            flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 1.11081 +  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 1.11082 +  effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 1.11083 +         TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 1.11084 +  // Required for EA: check if it is still a type_array.
 1.11085 +  predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 1.11086 +            n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 1.11087 +  ins_cost(250);
 1.11088 +
 1.11089 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11090 +
 1.11091 +  format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 1.11092 +            " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 1.11093 +  ins_encode %{
 1.11094 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11095 +    Node *ndl = in(operand_index($needle));  // The node that defines needle.
 1.11096 +    ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 1.11097 +
 1.11098 +    __ string_indexof($result$$Register,
 1.11099 +                      $haystack$$Register, $haycnt$$Register,
 1.11100 +                      $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 1.11101 +                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 1.11102 +  %}
 1.11103 +  ins_pipe(pipe_class_compare);
 1.11104 +%}
 1.11105 +
 1.11106 +// StrIndexOf node.
 1.11107 +//
 1.11108 +// Assumes register result differs from all input registers.
 1.11109 +// Overwrites haycnt, needlecnt.
 1.11110 +// Use dst register classes if register gets killed, as it is the case for tmp registers!
 1.11111 +instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 1.11112 +                        iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 1.11113 +                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 1.11114 +  match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 1.11115 +  effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 1.11116 +         TEMP result,
 1.11117 +         TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 1.11118 +  predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 1.11119 +  ins_cost(300);
 1.11120 +
 1.11121 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11122 +
 1.11123 +  format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 1.11124 +             " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 1.11125 +  ins_encode %{
 1.11126 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11127 +    __ string_indexof($result$$Register,
 1.11128 +                      $haystack$$Register, $haycnt$$Register,
 1.11129 +                      $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 1.11130 +                      $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 1.11131 +  %}
 1.11132 +  ins_pipe(pipe_class_compare);
 1.11133 +%}
 1.11134 +
 1.11135 +// String equals with immediate.
 1.11136 +instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 1.11137 +                           iRegPdst tmp1, iRegPdst tmp2,
 1.11138 +                           flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 1.11139 +  match(Set result (StrEquals (Binary str1 str2) cntImm));
 1.11140 +  effect(TEMP result, TEMP tmp1, TEMP tmp2,
 1.11141 +         KILL cr0, KILL cr6, KILL ctr);
 1.11142 +  predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 1.11143 +  ins_cost(250);
 1.11144 +
 1.11145 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11146 +
 1.11147 +  format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 1.11148 +            " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 1.11149 +  ins_encode %{
 1.11150 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11151 +    __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 1.11152 +                             $result$$Register, $tmp1$$Register, $tmp2$$Register);
 1.11153 +  %}
 1.11154 +  ins_pipe(pipe_class_compare);
 1.11155 +%}
 1.11156 +
 1.11157 +// String equals.
 1.11158 +// Use dst register classes if register gets killed, as it is the case for TEMP operands!
 1.11159 +instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 1.11160 +                       iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 1.11161 +                       flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 1.11162 +  match(Set result (StrEquals (Binary str1 str2) cnt));
 1.11163 +  effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 1.11164 +         KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 1.11165 +  predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 1.11166 +  ins_cost(300);
 1.11167 +
 1.11168 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11169 +
 1.11170 +  format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 1.11171 +            " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 1.11172 +  ins_encode %{
 1.11173 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11174 +    __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 1.11175 +                          $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 1.11176 +  %}
 1.11177 +  ins_pipe(pipe_class_compare);
 1.11178 +%}
 1.11179 +
 1.11180 +// String compare.
 1.11181 +// Char[] pointers are passed in.
 1.11182 +// Use dst register classes if register gets killed, as it is the case for TEMP operands!
 1.11183 +instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 1.11184 +                        iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 1.11185 +  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 1.11186 +  effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 1.11187 +  ins_cost(300);
 1.11188 +
 1.11189 +  ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 1.11190 +
 1.11191 +  format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 1.11192 +            " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 1.11193 +  ins_encode %{
 1.11194 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11195 +    __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 1.11196 +                      $result$$Register, $tmp$$Register);
 1.11197 +  %}
 1.11198 +  ins_pipe(pipe_class_compare);
 1.11199 +%}
 1.11200 +
 1.11201 +//---------- Min/Max Instructions ---------------------------------------------
 1.11202 +
 1.11203 +instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 1.11204 +  match(Set dst (MinI src1 src2));
 1.11205 +  ins_cost(DEFAULT_COST*6);
 1.11206 +
 1.11207 +  expand %{
 1.11208 +    iRegLdst src1s;
 1.11209 +    iRegLdst src2s;
 1.11210 +    iRegLdst diff;
 1.11211 +    iRegLdst sm;
 1.11212 +    iRegLdst doz; // difference or zero
 1.11213 +    convI2L_reg(src1s, src1); // Ensure proper sign extension.
 1.11214 +    convI2L_reg(src2s, src2); // Ensure proper sign extension.
 1.11215 +    subL_reg_reg(diff, src2s, src1s);
 1.11216 +    // Need to consider >=33 bit result, therefore we need signmaskL.
 1.11217 +    signmask64L_regL(sm, diff);
 1.11218 +    andL_reg_reg(doz, diff, sm); // <=0
 1.11219 +    addI_regL_regL(dst, doz, src1s);
 1.11220 +  %}
 1.11221 +%}
 1.11222 +
 1.11223 +instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 1.11224 +  match(Set dst (MaxI src1 src2));
 1.11225 +  ins_cost(DEFAULT_COST*6);
 1.11226 +
 1.11227 +  expand %{
 1.11228 +    iRegLdst src1s;
 1.11229 +    iRegLdst src2s;
 1.11230 +    iRegLdst diff;
 1.11231 +    iRegLdst sm;
 1.11232 +    iRegLdst doz; // difference or zero
 1.11233 +    convI2L_reg(src1s, src1); // Ensure proper sign extension.
 1.11234 +    convI2L_reg(src2s, src2); // Ensure proper sign extension.
 1.11235 +    subL_reg_reg(diff, src2s, src1s);
 1.11236 +    // Need to consider >=33 bit result, therefore we need signmaskL.
 1.11237 +    signmask64L_regL(sm, diff);
 1.11238 +    andcL_reg_reg(doz, diff, sm); // >=0
 1.11239 +    addI_regL_regL(dst, doz, src1s);
 1.11240 +  %}
 1.11241 +%}
 1.11242 +
 1.11243 +//---------- Population Count Instructions ------------------------------------
 1.11244 +
 1.11245 +// Popcnt for Power7.
 1.11246 +instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 1.11247 +  match(Set dst (PopCountI src));
 1.11248 +  predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 1.11249 +  ins_cost(DEFAULT_COST);
 1.11250 +
 1.11251 +  format %{ "POPCNTW $dst, $src" %}
 1.11252 +  size(4);
 1.11253 +  ins_encode %{
 1.11254 +    // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 1.11255 +    __ popcntw($dst$$Register, $src$$Register);
 1.11256 +  %}
 1.11257 +  ins_pipe(pipe_class_default);
 1.11258 +%}
 1.11259 +
 1.11260 +// Popcnt for Power7.
 1.11261 +instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 1.11262 +  predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 1.11263 +  match(Set dst (PopCountL src));
 1.11264 +  ins_cost(DEFAULT_COST);
 1.11265 +
 1.11266 +  format %{ "POPCNTD $dst, $src" %}
 1.11267 +  size(4);
 1.11268 +  ins_encode %{
 1.11269 +    // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 1.11270 +    __ popcntd($dst$$Register, $src$$Register);
 1.11271 +  %}
 1.11272 +  ins_pipe(pipe_class_default);
 1.11273 +%}
 1.11274 +
 1.11275 +instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 1.11276 +  match(Set dst (CountLeadingZerosI src));
 1.11277 +  predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 1.11278 +  ins_cost(DEFAULT_COST);
 1.11279 +
 1.11280 +  format %{ "CNTLZW  $dst, $src" %}
 1.11281 +  size(4);
 1.11282 +  ins_encode %{
 1.11283 +    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 1.11284 +    __ cntlzw($dst$$Register, $src$$Register);
 1.11285 +  %}
 1.11286 +  ins_pipe(pipe_class_default);
 1.11287 +%}
 1.11288 +
 1.11289 +instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 1.11290 +  match(Set dst (CountLeadingZerosL src));
 1.11291 +  predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 1.11292 +  ins_cost(DEFAULT_COST);
 1.11293 +
 1.11294 +  format %{ "CNTLZD  $dst, $src" %}
 1.11295 +  size(4);
 1.11296 +  ins_encode %{
 1.11297 +    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 1.11298 +    __ cntlzd($dst$$Register, $src$$Register);
 1.11299 +  %}
 1.11300 +  ins_pipe(pipe_class_default);
 1.11301 +%}
 1.11302 +
 1.11303 +instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 1.11304 +  // no match-rule, false predicate
 1.11305 +  effect(DEF dst, USE src);
 1.11306 +  predicate(false);
 1.11307 +
 1.11308 +  format %{ "CNTLZD  $dst, $src" %}
 1.11309 +  size(4);
 1.11310 +  ins_encode %{
 1.11311 +    // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 1.11312 +    __ cntlzd($dst$$Register, $src$$Register);
 1.11313 +  %}
 1.11314 +  ins_pipe(pipe_class_default);
 1.11315 +%}
 1.11316 +
 1.11317 +instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 1.11318 +  match(Set dst (CountTrailingZerosI src));
 1.11319 +  predicate(UseCountLeadingZerosInstructionsPPC64);
 1.11320 +  ins_cost(DEFAULT_COST);
 1.11321 +
 1.11322 +  expand %{
 1.11323 +    immI16 imm1 %{ (int)-1 %}
 1.11324 +    immI16 imm2 %{ (int)32 %}
 1.11325 +    immI_minus1 m1 %{ -1 %}
 1.11326 +    iRegIdst tmpI1;
 1.11327 +    iRegIdst tmpI2;
 1.11328 +    iRegIdst tmpI3;
 1.11329 +    addI_reg_imm16(tmpI1, src, imm1);
 1.11330 +    andcI_reg_reg(tmpI2, src, m1, tmpI1);
 1.11331 +    countLeadingZerosI(tmpI3, tmpI2);
 1.11332 +    subI_imm16_reg(dst, imm2, tmpI3);
 1.11333 +  %}
 1.11334 +%}
 1.11335 +
 1.11336 +instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 1.11337 +  match(Set dst (CountTrailingZerosL src));
 1.11338 +  predicate(UseCountLeadingZerosInstructionsPPC64);
 1.11339 +  ins_cost(DEFAULT_COST);
 1.11340 +
 1.11341 +  expand %{
 1.11342 +    immL16 imm1 %{ (long)-1 %}
 1.11343 +    immI16 imm2 %{ (int)64 %}
 1.11344 +    iRegLdst tmpL1;
 1.11345 +    iRegLdst tmpL2;
 1.11346 +    iRegIdst tmpL3;
 1.11347 +    addL_reg_imm16(tmpL1, src, imm1);
 1.11348 +    andcL_reg_reg(tmpL2, tmpL1, src);
 1.11349 +    countLeadingZerosL(tmpL3, tmpL2);
 1.11350 +    subI_imm16_reg(dst, imm2, tmpL3);
 1.11351 + %}
 1.11352 +%}
 1.11353 +
 1.11354 +// Expand nodes for byte_reverse_int.
 1.11355 +instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 1.11356 +  effect(DEF dst, USE src, USE pos, USE shift);
 1.11357 +  predicate(false);
 1.11358 +
 1.11359 +  format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 1.11360 +  size(4);
 1.11361 +  ins_encode %{
 1.11362 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 1.11363 +    __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 1.11364 +  %}
 1.11365 +  ins_pipe(pipe_class_default);
 1.11366 +%}
 1.11367 +
 1.11368 +// As insrwi_a, but with USE_DEF.
 1.11369 +instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 1.11370 +  effect(USE_DEF dst, USE src, USE pos, USE shift);
 1.11371 +  predicate(false);
 1.11372 +
 1.11373 +  format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 1.11374 +  size(4);
 1.11375 +  ins_encode %{
 1.11376 +    // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 1.11377 +    __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 1.11378 +  %}
 1.11379 +  ins_pipe(pipe_class_default);
 1.11380 +%}
 1.11381 +
 1.11382 +// Just slightly faster than java implementation.
 1.11383 +instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 1.11384 +  match(Set dst (ReverseBytesI src));
 1.11385 +  predicate(UseCountLeadingZerosInstructionsPPC64);
 1.11386 +  ins_cost(DEFAULT_COST);
 1.11387 +
 1.11388 +  expand %{
 1.11389 +    immI16 imm24 %{ (int) 24 %}
 1.11390 +    immI16 imm16 %{ (int) 16 %}
 1.11391 +    immI16  imm8 %{ (int)  8 %}
 1.11392 +    immI16  imm4 %{ (int)  4 %}
 1.11393 +    immI16  imm0 %{ (int)  0 %}
 1.11394 +    iRegLdst tmpI1;
 1.11395 +    iRegLdst tmpI2;
 1.11396 +    iRegLdst tmpI3;
 1.11397 +
 1.11398 +    urShiftI_reg_imm(tmpI1, src, imm24);
 1.11399 +    insrwi_a(dst, tmpI1, imm24, imm8);
 1.11400 +    urShiftI_reg_imm(tmpI2, src, imm16);
 1.11401 +    insrwi(dst, tmpI2, imm8, imm16);
 1.11402 +    urShiftI_reg_imm(tmpI3, src, imm8);
 1.11403 +    insrwi(dst, tmpI3, imm8, imm8);
 1.11404 +    insrwi(dst, src, imm0, imm8);
 1.11405 +  %}
 1.11406 +%}
 1.11407 +
 1.11408 +//---------- Replicate Vector Instructions ------------------------------------
 1.11409 +
 1.11410 +// Insrdi does replicate if src == dst.
 1.11411 +instruct repl32(iRegLdst dst) %{
 1.11412 +  predicate(false);
 1.11413 +  effect(USE_DEF dst);
 1.11414 +
 1.11415 +  format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 1.11416 +  size(4);
 1.11417 +  ins_encode %{
 1.11418 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 1.11419 +    __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 1.11420 +  %}
 1.11421 +  ins_pipe(pipe_class_default);
 1.11422 +%}
 1.11423 +
 1.11424 +// Insrdi does replicate if src == dst.
 1.11425 +instruct repl48(iRegLdst dst) %{
 1.11426 +  predicate(false);
 1.11427 +  effect(USE_DEF dst);
 1.11428 +
 1.11429 +  format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 1.11430 +  size(4);
 1.11431 +  ins_encode %{
 1.11432 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 1.11433 +    __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 1.11434 +  %}
 1.11435 +  ins_pipe(pipe_class_default);
 1.11436 +%}
 1.11437 +
 1.11438 +// Insrdi does replicate if src == dst.
 1.11439 +instruct repl56(iRegLdst dst) %{
 1.11440 +  predicate(false);
 1.11441 +  effect(USE_DEF dst);
 1.11442 +
 1.11443 +  format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 1.11444 +  size(4);
 1.11445 +  ins_encode %{
 1.11446 +    // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 1.11447 +    __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 1.11448 +  %}
 1.11449 +  ins_pipe(pipe_class_default);
 1.11450 +%}
 1.11451 +
 1.11452 +instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 1.11453 +  match(Set dst (ReplicateB src));
 1.11454 +  predicate(n->as_Vector()->length() == 8);
 1.11455 +  expand %{
 1.11456 +    moveReg(dst, src);
 1.11457 +    repl56(dst);
 1.11458 +    repl48(dst);
 1.11459 +    repl32(dst);
 1.11460 +  %}
 1.11461 +%}
 1.11462 +
 1.11463 +instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 1.11464 +  match(Set dst (ReplicateB zero));
 1.11465 +  predicate(n->as_Vector()->length() == 8);
 1.11466 +  format %{ "LI      $dst, #0 \t// replicate8B" %}
 1.11467 +  size(4);
 1.11468 +  ins_encode %{
 1.11469 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11470 +    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 1.11471 +  %}
 1.11472 +  ins_pipe(pipe_class_default);
 1.11473 +%}
 1.11474 +
 1.11475 +instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 1.11476 +  match(Set dst (ReplicateB src));
 1.11477 +  predicate(n->as_Vector()->length() == 8);
 1.11478 +  format %{ "LI      $dst, #-1 \t// replicate8B" %}
 1.11479 +  size(4);
 1.11480 +  ins_encode %{
 1.11481 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11482 +    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 1.11483 +  %}
 1.11484 +  ins_pipe(pipe_class_default);
 1.11485 +%}
 1.11486 +
 1.11487 +instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 1.11488 +  match(Set dst (ReplicateS src));
 1.11489 +  predicate(n->as_Vector()->length() == 4);
 1.11490 +  expand %{
 1.11491 +    moveReg(dst, src);
 1.11492 +    repl48(dst);
 1.11493 +    repl32(dst);
 1.11494 +  %}
 1.11495 +%}
 1.11496 +
 1.11497 +instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 1.11498 +  match(Set dst (ReplicateS zero));
 1.11499 +  predicate(n->as_Vector()->length() == 4);
 1.11500 +  format %{ "LI      $dst, #0 \t// replicate4C" %}
 1.11501 +  size(4);
 1.11502 +  ins_encode %{
 1.11503 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11504 +    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 1.11505 +  %}
 1.11506 +  ins_pipe(pipe_class_default);
 1.11507 +%}
 1.11508 +
 1.11509 +instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 1.11510 +  match(Set dst (ReplicateS src));
 1.11511 +  predicate(n->as_Vector()->length() == 4);
 1.11512 +  format %{ "LI      $dst, -1 \t// replicate4C" %}
 1.11513 +  size(4);
 1.11514 +  ins_encode %{
 1.11515 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11516 +    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 1.11517 +  %}
 1.11518 +  ins_pipe(pipe_class_default);
 1.11519 +%}
 1.11520 +
 1.11521 +instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 1.11522 +  match(Set dst (ReplicateI src));
 1.11523 +  predicate(n->as_Vector()->length() == 2);
 1.11524 +  ins_cost(2 * DEFAULT_COST);
 1.11525 +  expand %{
 1.11526 +    moveReg(dst, src);
 1.11527 +    repl32(dst);
 1.11528 +  %}
 1.11529 +%}
 1.11530 +
 1.11531 +instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 1.11532 +  match(Set dst (ReplicateI zero));
 1.11533 +  predicate(n->as_Vector()->length() == 2);
 1.11534 +  format %{ "LI      $dst, #0 \t// replicate4C" %}
 1.11535 +  size(4);
 1.11536 +  ins_encode %{
 1.11537 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11538 +    __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 1.11539 +  %}
 1.11540 +  ins_pipe(pipe_class_default);
 1.11541 +%}
 1.11542 +
 1.11543 +instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 1.11544 +  match(Set dst (ReplicateI src));
 1.11545 +  predicate(n->as_Vector()->length() == 2);
 1.11546 +  format %{ "LI      $dst, -1 \t// replicate4C" %}
 1.11547 +  size(4);
 1.11548 +  ins_encode %{
 1.11549 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11550 +    __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 1.11551 +  %}
 1.11552 +  ins_pipe(pipe_class_default);
 1.11553 +%}
 1.11554 +
 1.11555 +// Move float to int register via stack, replicate.
 1.11556 +instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 1.11557 +  match(Set dst (ReplicateF src));
 1.11558 +  predicate(n->as_Vector()->length() == 2);
 1.11559 +  ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 1.11560 +  expand %{
 1.11561 +    stackSlotL tmpS;
 1.11562 +    iRegIdst tmpI;
 1.11563 +    moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 1.11564 +    moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 1.11565 +    moveReg(dst, tmpI);             // Move int to long reg.
 1.11566 +    repl32(dst);                    // Replicate bitpattern.
 1.11567 +  %}
 1.11568 +%}
 1.11569 +
 1.11570 +// Replicate scalar constant to packed float values in Double register
 1.11571 +instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 1.11572 +  match(Set dst (ReplicateF src));
 1.11573 +  predicate(n->as_Vector()->length() == 2);
 1.11574 +  ins_cost(5 * DEFAULT_COST);
 1.11575 +
 1.11576 +  format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 1.11577 +  postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 1.11578 +%}
 1.11579 +
 1.11580 +// Replicate scalar zero constant to packed float values in Double register
 1.11581 +instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 1.11582 +  match(Set dst (ReplicateF zero));
 1.11583 +  predicate(n->as_Vector()->length() == 2);
 1.11584 +
 1.11585 +  format %{ "LI      $dst, #0 \t// replicate2F" %}
 1.11586 +  ins_encode %{
 1.11587 +    // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 1.11588 +    __ li($dst$$Register, 0x0);
 1.11589 +  %}
 1.11590 +  ins_pipe(pipe_class_default);
 1.11591 +%}
 1.11592 +
 1.11593 +// ============================================================================
 1.11594 +// Safepoint Instruction
 1.11595 +
 1.11596 +instruct safePoint_poll(iRegPdst poll) %{
 1.11597 +  match(SafePoint poll);
 1.11598 +  predicate(LoadPollAddressFromThread);
 1.11599 +
 1.11600 +  // It caused problems to add the effect that r0 is killed, but this
 1.11601 +  // effect no longer needs to be mentioned, since r0 is not contained
 1.11602 +  // in a reg_class.
 1.11603 +
 1.11604 +  format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 1.11605 +  size(4);
 1.11606 +  ins_encode( enc_poll(0x0, poll) );
 1.11607 +  ins_pipe(pipe_class_default);
 1.11608 +%}
 1.11609 +
 1.11610 +// Safepoint without per-thread support. Load address of page to poll
 1.11611 +// as constant.
 1.11612 +// Rscratch2RegP is R12.
 1.11613 +// LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 1.11614 +// a seperate node so that the oop map is at the right location.
 1.11615 +instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 1.11616 +  match(SafePoint poll);
 1.11617 +  predicate(!LoadPollAddressFromThread);
 1.11618 +
 1.11619 +  // It caused problems to add the effect that r0 is killed, but this
 1.11620 +  // effect no longer needs to be mentioned, since r0 is not contained
 1.11621 +  // in a reg_class.
 1.11622 +
 1.11623 +  format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 1.11624 +  ins_encode( enc_poll(0x0, poll) );
 1.11625 +  ins_pipe(pipe_class_default);
 1.11626 +%}
 1.11627 +
 1.11628 +// ============================================================================
 1.11629 +// Call Instructions
 1.11630 +
 1.11631 +// Call Java Static Instruction
 1.11632 +
 1.11633 +// Schedulable version of call static node.
 1.11634 +instruct CallStaticJavaDirect(method meth) %{
 1.11635 +  match(CallStaticJava);
 1.11636 +  effect(USE meth);
 1.11637 +  predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 1.11638 +  ins_cost(CALL_COST);
 1.11639 +
 1.11640 +  ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 1.11641 +
 1.11642 +  format %{ "CALL,static $meth \t// ==> " %}
 1.11643 +  size(4);
 1.11644 +  ins_encode( enc_java_static_call(meth) );
 1.11645 +  ins_pipe(pipe_class_call);
 1.11646 +%}
 1.11647 +
 1.11648 +// Schedulable version of call static node.
 1.11649 +instruct CallStaticJavaDirectHandle(method meth) %{
 1.11650 +  match(CallStaticJava);
 1.11651 +  effect(USE meth);
 1.11652 +  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 1.11653 +  ins_cost(CALL_COST);
 1.11654 +
 1.11655 +  ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 1.11656 +
 1.11657 +  format %{ "CALL,static $meth \t// ==> " %}
 1.11658 +  ins_encode( enc_java_handle_call(meth) );
 1.11659 +  ins_pipe(pipe_class_call);
 1.11660 +%}
 1.11661 +
 1.11662 +// Call Java Dynamic Instruction
 1.11663 +
 1.11664 +// Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 1.11665 +// Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 1.11666 +// via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 1.11667 +// The call destination must still be placed in the constant pool.
 1.11668 +instruct CallDynamicJavaDirectSched(method meth) %{
 1.11669 +  match(CallDynamicJava); // To get all the data fields we need ...
 1.11670 +  effect(USE meth);
 1.11671 +  predicate(false);       // ... but never match.
 1.11672 +
 1.11673 +  ins_field_load_ic_hi_node(loadConL_hiNode*);
 1.11674 +  ins_field_load_ic_node(loadConLNode*);
 1.11675 +  ins_num_consts(1 /* 1 patchable constant: call destination */);
 1.11676 +
 1.11677 +  format %{ "BL        \t// dynamic $meth ==> " %}
 1.11678 +  size(4);
 1.11679 +  ins_encode( enc_java_dynamic_call_sched(meth) );
 1.11680 +  ins_pipe(pipe_class_call);
 1.11681 +%}
 1.11682 +
 1.11683 +// Schedulable (i.e. postalloc expanded) version of call dynamic java.
 1.11684 +// We use postalloc expanded calls if we use inline caches
 1.11685 +// and do not update method data.
 1.11686 +//
 1.11687 +// This instruction has two constants: inline cache (IC) and call destination.
 1.11688 +// Loading the inline cache will be postalloc expanded, thus leaving a call with
 1.11689 +// one constant.
 1.11690 +instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 1.11691 +  match(CallDynamicJava);
 1.11692 +  effect(USE meth);
 1.11693 +  predicate(UseInlineCaches);
 1.11694 +  ins_cost(CALL_COST);
 1.11695 +
 1.11696 +  ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 1.11697 +
 1.11698 +  format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 1.11699 +  postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 1.11700 +%}
 1.11701 +
 1.11702 +// Compound version of call dynamic java
 1.11703 +// We use postalloc expanded calls if we use inline caches
 1.11704 +// and do not update method data.
 1.11705 +instruct CallDynamicJavaDirect(method meth) %{
 1.11706 +  match(CallDynamicJava);
 1.11707 +  effect(USE meth);
 1.11708 +  predicate(!UseInlineCaches);
 1.11709 +  ins_cost(CALL_COST);
 1.11710 +
 1.11711 +  // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 1.11712 +  ins_num_consts(4);
 1.11713 +
 1.11714 +  format %{ "CALL,dynamic $meth \t// ==> " %}
 1.11715 +  ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 1.11716 +  ins_pipe(pipe_class_call);
 1.11717 +%}
 1.11718 +
 1.11719 +// Call Runtime Instruction
 1.11720 +
 1.11721 +instruct CallRuntimeDirect(method meth) %{
 1.11722 +  match(CallRuntime);
 1.11723 +  effect(USE meth);
 1.11724 +  ins_cost(CALL_COST);
 1.11725 +
 1.11726 +  // Enc_java_to_runtime_call needs up to 3 constants: call target,
 1.11727 +  // env for callee, C-toc.
 1.11728 +  ins_num_consts(3);
 1.11729 +
 1.11730 +  format %{ "CALL,runtime" %}
 1.11731 +  ins_encode( enc_java_to_runtime_call(meth) );
 1.11732 +  ins_pipe(pipe_class_call);
 1.11733 +%}
 1.11734 +
 1.11735 +// Call Leaf
 1.11736 +
 1.11737 +// Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 1.11738 +instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 1.11739 +  effect(DEF dst, USE src);
 1.11740 +
 1.11741 +  ins_num_consts(1);
 1.11742 +
 1.11743 +  format %{ "MTCTR   $src" %}
 1.11744 +  size(4);
 1.11745 +  ins_encode( enc_leaf_call_mtctr(src) );
 1.11746 +  ins_pipe(pipe_class_default);
 1.11747 +%}
 1.11748 +
 1.11749 +// Used by postalloc expand of CallLeafDirect_Ex (actual call).
 1.11750 +instruct CallLeafDirect(method meth) %{
 1.11751 +  match(CallLeaf);   // To get the data all the data fields we need ...
 1.11752 +  effect(USE meth);
 1.11753 +  predicate(false);  // but never match.
 1.11754 +
 1.11755 +  format %{ "BCTRL     \t// leaf call $meth ==> " %}
 1.11756 +  size(4);
 1.11757 +  ins_encode %{
 1.11758 +    // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 1.11759 +    __ bctrl();
 1.11760 +  %}
 1.11761 +  ins_pipe(pipe_class_call);
 1.11762 +%}
 1.11763 +
 1.11764 +// postalloc expand of CallLeafDirect.
 1.11765 +// Load adress to call from TOC, then bl to it.
 1.11766 +instruct CallLeafDirect_Ex(method meth) %{
 1.11767 +  match(CallLeaf);
 1.11768 +  effect(USE meth);
 1.11769 +  ins_cost(CALL_COST);
 1.11770 +
 1.11771 +  // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 1.11772 +  // env for callee, C-toc.
 1.11773 +  ins_num_consts(3);
 1.11774 +
 1.11775 +  format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 1.11776 +  postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 1.11777 +%}
 1.11778 +
 1.11779 +// Call runtime without safepoint - same as CallLeaf.
 1.11780 +// postalloc expand of CallLeafNoFPDirect.
 1.11781 +// Load adress to call from TOC, then bl to it.
 1.11782 +instruct CallLeafNoFPDirect_Ex(method meth) %{
 1.11783 +  match(CallLeafNoFP);
 1.11784 +  effect(USE meth);
 1.11785 +  ins_cost(CALL_COST);
 1.11786 +
 1.11787 +  // Enc_java_to_runtime_call needs up to 3 constants: call target,
 1.11788 +  // env for callee, C-toc.
 1.11789 +  ins_num_consts(3);
 1.11790 +
 1.11791 +  format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 1.11792 +  postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 1.11793 +%}
 1.11794 +
 1.11795 +// Tail Call; Jump from runtime stub to Java code.
 1.11796 +// Also known as an 'interprocedural jump'.
 1.11797 +// Target of jump will eventually return to caller.
 1.11798 +// TailJump below removes the return address.
 1.11799 +instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 1.11800 +  match(TailCall jump_target method_oop);
 1.11801 +  ins_cost(CALL_COST);
 1.11802 +
 1.11803 +  format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 1.11804 +            "BCTR         \t// tail call" %}
 1.11805 +  size(8);
 1.11806 +  ins_encode %{
 1.11807 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11808 +    __ mtctr($jump_target$$Register);
 1.11809 +    __ bctr();
 1.11810 +  %}
 1.11811 +  ins_pipe(pipe_class_call);
 1.11812 +%}
 1.11813 +
 1.11814 +// Return Instruction
 1.11815 +instruct Ret() %{
 1.11816 +  match(Return);
 1.11817 +  format %{ "BLR      \t// branch to link register" %}
 1.11818 +  size(4);
 1.11819 +  ins_encode %{
 1.11820 +    // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 1.11821 +    // LR is restored in MachEpilogNode. Just do the RET here.
 1.11822 +    __ blr();
 1.11823 +  %}
 1.11824 +  ins_pipe(pipe_class_default);
 1.11825 +%}
 1.11826 +
 1.11827 +// Tail Jump; remove the return address; jump to target.
 1.11828 +// TailCall above leaves the return address around.
 1.11829 +// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 1.11830 +// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 1.11831 +// "restore" before this instruction (in Epilogue), we need to materialize it
 1.11832 +// in %i0.
 1.11833 +instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 1.11834 +  match(TailJump jump_target ex_oop);
 1.11835 +  ins_cost(CALL_COST);
 1.11836 +
 1.11837 +  format %{ "LD      R4_ARG2 = LR\n\t"
 1.11838 +            "MTCTR   $jump_target\n\t"
 1.11839 +            "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 1.11840 +  size(12);
 1.11841 +  ins_encode %{
 1.11842 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11843 +    __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 1.11844 +    __ mtctr($jump_target$$Register);
 1.11845 +    __ bctr();
 1.11846 +  %}
 1.11847 +  ins_pipe(pipe_class_call);
 1.11848 +%}
 1.11849 +
 1.11850 +// Create exception oop: created by stack-crawling runtime code.
 1.11851 +// Created exception is now available to this handler, and is setup
 1.11852 +// just prior to jumping to this handler. No code emitted.
 1.11853 +instruct CreateException(rarg1RegP ex_oop) %{
 1.11854 +  match(Set ex_oop (CreateEx));
 1.11855 +  ins_cost(0);
 1.11856 +
 1.11857 +  format %{ " -- \t// exception oop; no code emitted" %}
 1.11858 +  size(0);
 1.11859 +  ins_encode( /*empty*/ );
 1.11860 +  ins_pipe(pipe_class_default);
 1.11861 +%}
 1.11862 +
 1.11863 +// Rethrow exception: The exception oop will come in the first
 1.11864 +// argument position. Then JUMP (not call) to the rethrow stub code.
 1.11865 +instruct RethrowException() %{
 1.11866 +  match(Rethrow);
 1.11867 +  ins_cost(CALL_COST);
 1.11868 +
 1.11869 +  format %{ "Jmp     rethrow_stub" %}
 1.11870 +  ins_encode %{
 1.11871 +    // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 1.11872 +    cbuf.set_insts_mark();
 1.11873 +    __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 1.11874 +  %}
 1.11875 +  ins_pipe(pipe_class_call);
 1.11876 +%}
 1.11877 +
 1.11878 +// Die now.
 1.11879 +instruct ShouldNotReachHere() %{
 1.11880 +  match(Halt);
 1.11881 +  ins_cost(CALL_COST);
 1.11882 +
 1.11883 +  format %{ "ShouldNotReachHere" %}
 1.11884 +  size(4);
 1.11885 +  ins_encode %{
 1.11886 +    // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 1.11887 +    __ trap_should_not_reach_here();
 1.11888 +  %}
 1.11889 +  ins_pipe(pipe_class_default);
 1.11890 +%}
 1.11891 +
 1.11892 +// This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 1.11893 +// forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 1.11894 +// Get a DEF on threadRegP, no costs, no encoding, use
 1.11895 +// 'ins_should_rematerialize(true)' to avoid spilling.
 1.11896 +instruct tlsLoadP(threadRegP dst) %{
 1.11897 +  match(Set dst (ThreadLocal));
 1.11898 +  ins_cost(0);
 1.11899 +
 1.11900 +  ins_should_rematerialize(true);
 1.11901 +
 1.11902 +  format %{ " -- \t// $dst=Thread::current(), empty" %}
 1.11903 +  size(0);
 1.11904 +  ins_encode( /*empty*/ );
 1.11905 +  ins_pipe(pipe_class_empty);
 1.11906 +%}
 1.11907 +
 1.11908 +//---Some PPC specific nodes---------------------------------------------------
 1.11909 +
 1.11910 +// Stop a group.
 1.11911 +instruct endGroup() %{
 1.11912 +  ins_cost(0);
 1.11913 +
 1.11914 +  ins_is_nop(true);
 1.11915 +
 1.11916 +  format %{ "End Bundle (ori r1, r1, 0)" %}
 1.11917 +  size(4);
 1.11918 +  ins_encode %{
 1.11919 +    // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 1.11920 +    __ endgroup();
 1.11921 +  %}
 1.11922 +  ins_pipe(pipe_class_default);
 1.11923 +%}
 1.11924 +
 1.11925 +// Nop instructions
 1.11926 +
 1.11927 +instruct fxNop() %{
 1.11928 +  ins_cost(0);
 1.11929 +
 1.11930 +  ins_is_nop(true);
 1.11931 +
 1.11932 +  format %{ "fxNop" %}
 1.11933 +  size(4);
 1.11934 +  ins_encode %{
 1.11935 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 1.11936 +    __ nop();
 1.11937 +  %}
 1.11938 +  ins_pipe(pipe_class_default);
 1.11939 +%}
 1.11940 +
 1.11941 +instruct fpNop0() %{
 1.11942 +  ins_cost(0);
 1.11943 +
 1.11944 +  ins_is_nop(true);
 1.11945 +
 1.11946 +  format %{ "fpNop0" %}
 1.11947 +  size(4);
 1.11948 +  ins_encode %{
 1.11949 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 1.11950 +    __ fpnop0();
 1.11951 +  %}
 1.11952 +  ins_pipe(pipe_class_default);
 1.11953 +%}
 1.11954 +
 1.11955 +instruct fpNop1() %{
 1.11956 +  ins_cost(0);
 1.11957 +
 1.11958 +  ins_is_nop(true);
 1.11959 +
 1.11960 +  format %{ "fpNop1" %}
 1.11961 +  size(4);
 1.11962 +  ins_encode %{
 1.11963 +    // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 1.11964 +    __ fpnop1();
 1.11965 +  %}
 1.11966 +  ins_pipe(pipe_class_default);
 1.11967 +%}
 1.11968 +
 1.11969 +instruct brNop0() %{
 1.11970 +  ins_cost(0);
 1.11971 +  size(4);
 1.11972 +  format %{ "brNop0" %}
 1.11973 +  ins_encode %{
 1.11974 +    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 1.11975 +    __ brnop0();
 1.11976 +  %}
 1.11977 +  ins_is_nop(true);
 1.11978 +  ins_pipe(pipe_class_default);
 1.11979 +%}
 1.11980 +
 1.11981 +instruct brNop1() %{
 1.11982 +  ins_cost(0);
 1.11983 +
 1.11984 +  ins_is_nop(true);
 1.11985 +
 1.11986 +  format %{ "brNop1" %}
 1.11987 +  size(4);
 1.11988 +  ins_encode %{
 1.11989 +    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 1.11990 +    __ brnop1();
 1.11991 +  %}
 1.11992 +  ins_pipe(pipe_class_default);
 1.11993 +%}
 1.11994 +
 1.11995 +instruct brNop2() %{
 1.11996 +  ins_cost(0);
 1.11997 +
 1.11998 +  ins_is_nop(true);
 1.11999 +
 1.12000 +  format %{ "brNop2" %}
 1.12001 +  size(4);
 1.12002 +  ins_encode %{
 1.12003 +    // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 1.12004 +    __ brnop2();
 1.12005 +  %}
 1.12006 +  ins_pipe(pipe_class_default);
 1.12007 +%}
 1.12008 +
 1.12009 +//----------PEEPHOLE RULES-----------------------------------------------------
 1.12010 +// These must follow all instruction definitions as they use the names
 1.12011 +// defined in the instructions definitions.
 1.12012 +//
 1.12013 +// peepmatch ( root_instr_name [preceeding_instruction]* );
 1.12014 +//
 1.12015 +// peepconstraint %{
 1.12016 +// (instruction_number.operand_name relational_op instruction_number.operand_name
 1.12017 +//  [, ...] );
 1.12018 +// // instruction numbers are zero-based using left to right order in peepmatch
 1.12019 +//
 1.12020 +// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 1.12021 +// // provide an instruction_number.operand_name for each operand that appears
 1.12022 +// // in the replacement instruction's match rule
 1.12023 +//
 1.12024 +// ---------VM FLAGS---------------------------------------------------------
 1.12025 +//
 1.12026 +// All peephole optimizations can be turned off using -XX:-OptoPeephole
 1.12027 +//
 1.12028 +// Each peephole rule is given an identifying number starting with zero and
 1.12029 +// increasing by one in the order seen by the parser. An individual peephole
 1.12030 +// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 1.12031 +// on the command-line.
 1.12032 +//
 1.12033 +// ---------CURRENT LIMITATIONS----------------------------------------------
 1.12034 +//
 1.12035 +// Only match adjacent instructions in same basic block
 1.12036 +// Only equality constraints
 1.12037 +// Only constraints between operands, not (0.dest_reg == EAX_enc)
 1.12038 +// Only one replacement instruction
 1.12039 +//
 1.12040 +// ---------EXAMPLE----------------------------------------------------------
 1.12041 +//
 1.12042 +// // pertinent parts of existing instructions in architecture description
 1.12043 +// instruct movI(eRegI dst, eRegI src) %{
 1.12044 +//   match(Set dst (CopyI src));
 1.12045 +// %}
 1.12046 +//
 1.12047 +// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 1.12048 +//   match(Set dst (AddI dst src));
 1.12049 +//   effect(KILL cr);
 1.12050 +// %}
 1.12051 +//
 1.12052 +// // Change (inc mov) to lea
 1.12053 +// peephole %{
 1.12054 +//   // increment preceeded by register-register move
 1.12055 +//   peepmatch ( incI_eReg movI );
 1.12056 +//   // require that the destination register of the increment
 1.12057 +//   // match the destination register of the move
 1.12058 +//   peepconstraint ( 0.dst == 1.dst );
 1.12059 +//   // construct a replacement instruction that sets
 1.12060 +//   // the destination to ( move's source register + one )
 1.12061 +//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 1.12062 +// %}
 1.12063 +//
 1.12064 +// Implementation no longer uses movX instructions since
 1.12065 +// machine-independent system no longer uses CopyX nodes.
 1.12066 +//
 1.12067 +// peephole %{
 1.12068 +//   peepmatch ( incI_eReg movI );
 1.12069 +//   peepconstraint ( 0.dst == 1.dst );
 1.12070 +//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 1.12071 +// %}
 1.12072 +//
 1.12073 +// peephole %{
 1.12074 +//   peepmatch ( decI_eReg movI );
 1.12075 +//   peepconstraint ( 0.dst == 1.dst );
 1.12076 +//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 1.12077 +// %}
 1.12078 +//
 1.12079 +// peephole %{
 1.12080 +//   peepmatch ( addI_eReg_imm movI );
 1.12081 +//   peepconstraint ( 0.dst == 1.dst );
 1.12082 +//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 1.12083 +// %}
 1.12084 +//
 1.12085 +// peephole %{
 1.12086 +//   peepmatch ( addP_eReg_imm movP );
 1.12087 +//   peepconstraint ( 0.dst == 1.dst );
 1.12088 +//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 1.12089 +// %}
 1.12090 +
 1.12091 +// // Change load of spilled value to only a spill
 1.12092 +// instruct storeI(memory mem, eRegI src) %{
 1.12093 +//   match(Set mem (StoreI mem src));
 1.12094 +// %}
 1.12095 +//
 1.12096 +// instruct loadI(eRegI dst, memory mem) %{
 1.12097 +//   match(Set dst (LoadI mem));
 1.12098 +// %}
 1.12099 +//
 1.12100 +peephole %{
 1.12101 +  peepmatch ( loadI storeI );
 1.12102 +  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 1.12103 +  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 1.12104 +%}
 1.12105 +
 1.12106 +peephole %{
 1.12107 +  peepmatch ( loadL storeL );
 1.12108 +  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 1.12109 +  peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 1.12110 +%}
 1.12111 +
 1.12112 +peephole %{
 1.12113 +  peepmatch ( loadP storeP );
 1.12114 +  peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 1.12115 +  peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 1.12116 +%}
 1.12117 +
 1.12118 +//----------SMARTSPILL RULES---------------------------------------------------
 1.12119 +// These must follow all instruction definitions as they use the names
 1.12120 +// defined in the instructions definitions.

mercurial