src/cpu/sparc/vm/assembler_sparc.hpp

changeset 4323
f0c2369fda5a
parent 4159
8e47bac5643a
child 4412
ffa87474d7a4
     1.1 --- a/src/cpu/sparc/vm/assembler_sparc.hpp	Mon Nov 26 15:11:55 2012 +0100
     1.2 +++ b/src/cpu/sparc/vm/assembler_sparc.hpp	Thu Dec 06 09:57:41 2012 -0800
     1.3 @@ -25,554 +25,13 @@
     1.4  #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
     1.5  #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
     1.6  
     1.7 -class BiasedLockingCounters;
     1.8 -
     1.9 -// <sys/trap.h> promises that the system will not use traps 16-31
    1.10 -#define ST_RESERVED_FOR_USER_0 0x10
    1.11 -
    1.12 -/* Written: David Ungar 4/19/97 */
    1.13 -
    1.14 -// Contains all the definitions needed for sparc assembly code generation.
    1.15 -
    1.16 -// Register aliases for parts of the system:
    1.17 -
    1.18 -// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
    1.19 -// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
    1.20 -// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
    1.21 -
    1.22 -// g2-g4 are scratch registers called "application globals".  Their
    1.23 -// meaning is reserved to the "compilation system"--which means us!
    1.24 -// They are are not supposed to be touched by ordinary C code, although
    1.25 -// highly-optimized C code might steal them for temps.  They are safe
    1.26 -// across thread switches, and the ABI requires that they be safe
    1.27 -// across function calls.
    1.28 -//
    1.29 -// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
    1.30 -// across func calls, and V8+ also allows g5 to be clobbered across
    1.31 -// func calls.  Also, g1 and g5 can get touched while doing shared
    1.32 -// library loading.
    1.33 -//
    1.34 -// We must not touch g7 (it is the thread-self register) and g6 is
    1.35 -// reserved for certain tools.  g0, of course, is always zero.
    1.36 -//
    1.37 -// (Sources:  SunSoft Compilers Group, thread library engineers.)
    1.38 -
    1.39 -// %%%% The interpreter should be revisited to reduce global scratch regs.
    1.40 -
    1.41 -// This global always holds the current JavaThread pointer:
    1.42 -
    1.43 -REGISTER_DECLARATION(Register, G2_thread , G2);
    1.44 -REGISTER_DECLARATION(Register, G6_heapbase , G6);
    1.45 -
    1.46 -// The following globals are part of the Java calling convention:
    1.47 -
    1.48 -REGISTER_DECLARATION(Register, G5_method             , G5);
    1.49 -REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
    1.50 -REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
    1.51 -
    1.52 -// The following globals are used for the new C1 & interpreter calling convention:
    1.53 -REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
    1.54 -
    1.55 -// This local is used to preserve G2_thread in the interpreter and in stubs:
    1.56 -REGISTER_DECLARATION(Register, L7_thread_cache , L7);
    1.57 -
    1.58 -// These globals are used as scratch registers in the interpreter:
    1.59 -
    1.60 -REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
    1.61 -REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
    1.62 -REGISTER_DECLARATION(Register, G3_scratch    , G3);
    1.63 -REGISTER_DECLARATION(Register, G4_scratch    , G4);
    1.64 -
    1.65 -// These globals are used as short-lived scratch registers in the compiler:
    1.66 -
    1.67 -REGISTER_DECLARATION(Register, Gtemp  , G5);
    1.68 -
    1.69 -// JSR 292 fixed register usages:
    1.70 -REGISTER_DECLARATION(Register, G5_method_type        , G5);
    1.71 -REGISTER_DECLARATION(Register, G3_method_handle      , G3);
    1.72 -REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
    1.73 -
    1.74 -// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
    1.75 -// because a single patchable "set" instruction (NativeMovConstReg,
    1.76 -// or NativeMovConstPatching for compiler1) instruction
    1.77 -// serves to set up either quantity, depending on whether the compiled
    1.78 -// call site is an inline cache or is megamorphic.  See the function
    1.79 -// CompiledIC::set_to_megamorphic.
    1.80 -//
    1.81 -// If a inline cache targets an interpreted method, then the
    1.82 -// G5 register will be used twice during the call.  First,
    1.83 -// the call site will be patched to load a compiledICHolder
    1.84 -// into G5. (This is an ordered pair of ic_klass, method.)
    1.85 -// The c2i adapter will first check the ic_klass, then load
    1.86 -// G5_method with the method part of the pair just before
    1.87 -// jumping into the interpreter.
    1.88 -//
    1.89 -// Note that G5_method is only the method-self for the interpreter,
    1.90 -// and is logically unrelated to G5_megamorphic_method.
    1.91 -//
    1.92 -// Invariants on G2_thread (the JavaThread pointer):
    1.93 -//  - it should not be used for any other purpose anywhere
    1.94 -//  - it must be re-initialized by StubRoutines::call_stub()
    1.95 -//  - it must be preserved around every use of call_VM
    1.96 -
    1.97 -// We can consider using g2/g3/g4 to cache more values than the
    1.98 -// JavaThread, such as the card-marking base or perhaps pointers into
    1.99 -// Eden.  It's something of a waste to use them as scratch temporaries,
   1.100 -// since they are not supposed to be volatile.  (Of course, if we find
   1.101 -// that Java doesn't benefit from application globals, then we can just
   1.102 -// use them as ordinary temporaries.)
   1.103 -//
   1.104 -// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
   1.105 -// it makes sense to use them routinely for procedure linkage,
   1.106 -// whenever the On registers are not applicable.  Examples:  G5_method,
   1.107 -// G5_inline_cache_klass, and a double handful of miscellaneous compiler
   1.108 -// stubs.  This means that compiler stubs, etc., should be kept to a
   1.109 -// maximum of two or three G-register arguments.
   1.110 -
   1.111 -
   1.112 -// stub frames
   1.113 -
   1.114 -REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
   1.115 -
   1.116 -// Interpreter frames
   1.117 -
   1.118 -#ifdef CC_INTERP
   1.119 -REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
   1.120 -REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
   1.121 -REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
   1.122 -REGISTER_DECLARATION(Register, L2_scratch       , L2);
   1.123 -REGISTER_DECLARATION(Register, L3_scratch       , L3);
   1.124 -REGISTER_DECLARATION(Register, L4_scratch       , L4);
   1.125 -REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
   1.126 -REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
   1.127 -REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
   1.128 -REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   1.129 -REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   1.130 -                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
   1.131 -                                                       // is added and removed as needed in the frame code.
   1.132 -// Interface to signature handler
   1.133 -REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
   1.134 -REGISTER_DECLARATION(Register, Lmethod          , L6); // Method* when calling signature handler
   1.135 -
   1.136 -#else
   1.137 -REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
   1.138 -REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
   1.139 -REGISTER_DECLARATION(Register, Lmethod          , L2);
   1.140 -REGISTER_DECLARATION(Register, Llocals          , L3);
   1.141 -REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
   1.142 -                                                       // must match Llocals in asm interpreter
   1.143 -REGISTER_DECLARATION(Register, Lmonitors        , L4);
   1.144 -REGISTER_DECLARATION(Register, Lbyte_code       , L5);
   1.145 -// When calling out from the interpreter we record SP so that we can remove any extra stack
   1.146 -// space allocated during adapter transitions. This register is only live from the point
   1.147 -// of the call until we return.
   1.148 -REGISTER_DECLARATION(Register, Llast_SP         , L5);
   1.149 -REGISTER_DECLARATION(Register, Lscratch         , L5);
   1.150 -REGISTER_DECLARATION(Register, Lscratch2        , L6);
   1.151 -REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
   1.152 -
   1.153 -REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   1.154 -REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   1.155 -                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
   1.156 -                                                       // is added and removed as needed in the frame code.
   1.157 -REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
   1.158 -REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
   1.159 -REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
   1.160 -#endif /* CC_INTERP */
   1.161 -
   1.162 -// NOTE: Lscratch2 and LcpoolCache point to the same registers in
   1.163 -//       the interpreter code. If Lscratch2 needs to be used for some
   1.164 -//       purpose than LcpoolCache should be restore after that for
   1.165 -//       the interpreter to work right
   1.166 -// (These assignments must be compatible with L7_thread_cache; see above.)
   1.167 -
   1.168 -// Since Lbcp points into the middle of the method object,
   1.169 -// it is temporarily converted into a "bcx" during GC.
   1.170 -
   1.171 -// Exception processing
   1.172 -// These registers are passed into exception handlers.
   1.173 -// All exception handlers require the exception object being thrown.
   1.174 -// In addition, an nmethod's exception handler must be passed
   1.175 -// the address of the call site within the nmethod, to allow
   1.176 -// proper selection of the applicable catch block.
   1.177 -// (Interpreter frames use their own bcp() for this purpose.)
   1.178 -//
   1.179 -// The Oissuing_pc value is not always needed.  When jumping to a
   1.180 -// handler that is known to be interpreted, the Oissuing_pc value can be
   1.181 -// omitted.  An actual catch block in compiled code receives (from its
   1.182 -// nmethod's exception handler) the thrown exception in the Oexception,
   1.183 -// but it doesn't need the Oissuing_pc.
   1.184 -//
   1.185 -// If an exception handler (either interpreted or compiled)
   1.186 -// discovers there is no applicable catch block, it updates
   1.187 -// the Oissuing_pc to the continuation PC of its own caller,
   1.188 -// pops back to that caller's stack frame, and executes that
   1.189 -// caller's exception handler.  Obviously, this process will
   1.190 -// iterate until the control stack is popped back to a method
   1.191 -// containing an applicable catch block.  A key invariant is
   1.192 -// that the Oissuing_pc value is always a value local to
   1.193 -// the method whose exception handler is currently executing.
   1.194 -//
   1.195 -// Note:  The issuing PC value is __not__ a raw return address (I7 value).
   1.196 -// It is a "return pc", the address __following__ the call.
   1.197 -// Raw return addresses are converted to issuing PCs by frame::pc(),
   1.198 -// or by stubs.  Issuing PCs can be used directly with PC range tables.
   1.199 -//
   1.200 -REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
   1.201 -REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
   1.202 -
   1.203 -
   1.204 -// These must occur after the declarations above
   1.205 -#ifndef DONT_USE_REGISTER_DEFINES
   1.206 -
   1.207 -#define Gthread             AS_REGISTER(Register, Gthread)
   1.208 -#define Gmethod             AS_REGISTER(Register, Gmethod)
   1.209 -#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
   1.210 -#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
   1.211 -#define Gargs               AS_REGISTER(Register, Gargs)
   1.212 -#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
   1.213 -#define Gframe_size         AS_REGISTER(Register, Gframe_size)
   1.214 -#define Gtemp               AS_REGISTER(Register, Gtemp)
   1.215 -
   1.216 -#ifdef CC_INTERP
   1.217 -#define Lstate              AS_REGISTER(Register, Lstate)
   1.218 -#define Lesp                AS_REGISTER(Register, Lesp)
   1.219 -#define L1_scratch          AS_REGISTER(Register, L1_scratch)
   1.220 -#define Lmirror             AS_REGISTER(Register, Lmirror)
   1.221 -#define L2_scratch          AS_REGISTER(Register, L2_scratch)
   1.222 -#define L3_scratch          AS_REGISTER(Register, L3_scratch)
   1.223 -#define L4_scratch          AS_REGISTER(Register, L4_scratch)
   1.224 -#define Lscratch            AS_REGISTER(Register, Lscratch)
   1.225 -#define Lscratch2           AS_REGISTER(Register, Lscratch2)
   1.226 -#define L7_scratch          AS_REGISTER(Register, L7_scratch)
   1.227 -#define Ostate              AS_REGISTER(Register, Ostate)
   1.228 -#else
   1.229 -#define Lesp                AS_REGISTER(Register, Lesp)
   1.230 -#define Lbcp                AS_REGISTER(Register, Lbcp)
   1.231 -#define Lmethod             AS_REGISTER(Register, Lmethod)
   1.232 -#define Llocals             AS_REGISTER(Register, Llocals)
   1.233 -#define Lmonitors           AS_REGISTER(Register, Lmonitors)
   1.234 -#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
   1.235 -#define Lscratch            AS_REGISTER(Register, Lscratch)
   1.236 -#define Lscratch2           AS_REGISTER(Register, Lscratch2)
   1.237 -#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
   1.238 -#endif /* ! CC_INTERP */
   1.239 -
   1.240 -#define Lentry_args         AS_REGISTER(Register, Lentry_args)
   1.241 -#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
   1.242 -#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
   1.243 -#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
   1.244 -#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
   1.245 -#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
   1.246 -
   1.247 -#define Oexception          AS_REGISTER(Register, Oexception)
   1.248 -#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
   1.249 -
   1.250 -
   1.251 -#endif
   1.252 -
   1.253 -// Address is an abstraction used to represent a memory location.
   1.254 -//
   1.255 -// Note: A register location is represented via a Register, not
   1.256 -//       via an address for efficiency & simplicity reasons.
   1.257 -
   1.258 -class Address VALUE_OBJ_CLASS_SPEC {
   1.259 - private:
   1.260 -  Register           _base;           // Base register.
   1.261 -  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
   1.262 -  RelocationHolder   _rspec;
   1.263 -
   1.264 - public:
   1.265 -  Address() : _base(noreg), _index_or_disp(noreg) {}
   1.266 -
   1.267 -  Address(Register base, RegisterOrConstant index_or_disp)
   1.268 -    : _base(base),
   1.269 -      _index_or_disp(index_or_disp) {
   1.270 -  }
   1.271 -
   1.272 -  Address(Register base, Register index)
   1.273 -    : _base(base),
   1.274 -      _index_or_disp(index) {
   1.275 -  }
   1.276 -
   1.277 -  Address(Register base, int disp)
   1.278 -    : _base(base),
   1.279 -      _index_or_disp(disp) {
   1.280 -  }
   1.281 -
   1.282 -#ifdef ASSERT
   1.283 -  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   1.284 -  Address(Register base, ByteSize disp)
   1.285 -    : _base(base),
   1.286 -      _index_or_disp(in_bytes(disp)) {
   1.287 -  }
   1.288 -#endif
   1.289 -
   1.290 -  // accessors
   1.291 -  Register base()             const { return _base; }
   1.292 -  Register index()            const { return _index_or_disp.as_register(); }
   1.293 -  int      disp()             const { return _index_or_disp.as_constant(); }
   1.294 -
   1.295 -  bool     has_index()        const { return _index_or_disp.is_register(); }
   1.296 -  bool     has_disp()         const { return _index_or_disp.is_constant(); }
   1.297 -
   1.298 -  bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
   1.299 -
   1.300 -  const relocInfo::relocType rtype() { return _rspec.type(); }
   1.301 -  const RelocationHolder&    rspec() { return _rspec; }
   1.302 -
   1.303 -  RelocationHolder rspec(int offset) const {
   1.304 -    return offset == 0 ? _rspec : _rspec.plus(offset);
   1.305 -  }
   1.306 -
   1.307 -  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
   1.308 -
   1.309 -  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
   1.310 -    assert(_index_or_disp.is_constant(), "must have a displacement");
   1.311 -    Address a(base(), disp() + plusdisp);
   1.312 -    return a;
   1.313 -  }
   1.314 -  bool is_same_address(Address a) const {
   1.315 -    // disregard _rspec
   1.316 -    return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
   1.317 -  }
   1.318 -
   1.319 -  Address after_save() const {
   1.320 -    Address a = (*this);
   1.321 -    a._base = a._base->after_save();
   1.322 -    return a;
   1.323 -  }
   1.324 -
   1.325 -  Address after_restore() const {
   1.326 -    Address a = (*this);
   1.327 -    a._base = a._base->after_restore();
   1.328 -    return a;
   1.329 -  }
   1.330 -
   1.331 -  // Convert the raw encoding form into the form expected by the
   1.332 -  // constructor for Address.
   1.333 -  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
   1.334 -
   1.335 -  friend class Assembler;
   1.336 -};
   1.337 -
   1.338 -
   1.339 -class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   1.340 - private:
   1.341 -  address          _address;
   1.342 -  RelocationHolder _rspec;
   1.343 -
   1.344 -  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
   1.345 -    switch (rtype) {
   1.346 -    case relocInfo::external_word_type:
   1.347 -      return external_word_Relocation::spec(addr);
   1.348 -    case relocInfo::internal_word_type:
   1.349 -      return internal_word_Relocation::spec(addr);
   1.350 -#ifdef _LP64
   1.351 -    case relocInfo::opt_virtual_call_type:
   1.352 -      return opt_virtual_call_Relocation::spec();
   1.353 -    case relocInfo::static_call_type:
   1.354 -      return static_call_Relocation::spec();
   1.355 -    case relocInfo::runtime_call_type:
   1.356 -      return runtime_call_Relocation::spec();
   1.357 -#endif
   1.358 -    case relocInfo::none:
   1.359 -      return RelocationHolder();
   1.360 -    default:
   1.361 -      ShouldNotReachHere();
   1.362 -      return RelocationHolder();
   1.363 -    }
   1.364 -  }
   1.365 -
   1.366 - protected:
   1.367 -  // creation
   1.368 -  AddressLiteral() : _address(NULL), _rspec(NULL) {}
   1.369 -
   1.370 - public:
   1.371 -  AddressLiteral(address addr, RelocationHolder const& rspec)
   1.372 -    : _address(addr),
   1.373 -      _rspec(rspec) {}
   1.374 -
   1.375 -  // Some constructors to avoid casting at the call site.
   1.376 -  AddressLiteral(jobject obj, RelocationHolder const& rspec)
   1.377 -    : _address((address) obj),
   1.378 -      _rspec(rspec) {}
   1.379 -
   1.380 -  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
   1.381 -    : _address((address) value),
   1.382 -      _rspec(rspec) {}
   1.383 -
   1.384 -  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
   1.385 -    : _address((address) addr),
   1.386 -    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.387 -
   1.388 -  // Some constructors to avoid casting at the call site.
   1.389 -  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
   1.390 -    : _address((address) addr),
   1.391 -    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.392 -
   1.393 -  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
   1.394 -    : _address((address) addr),
   1.395 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.396 -
   1.397 -  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
   1.398 -    : _address((address) addr),
   1.399 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.400 -
   1.401 -  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
   1.402 -    : _address((address) addr),
   1.403 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.404 -
   1.405 -  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
   1.406 -    : _address((address) addr),
   1.407 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.408 -
   1.409 -  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
   1.410 -    : _address((address) addr),
   1.411 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.412 -
   1.413 -#ifdef _LP64
   1.414 -  // 32-bit complains about a multiple declaration for int*.
   1.415 -  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
   1.416 -    : _address((address) addr),
   1.417 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.418 -#endif
   1.419 -
   1.420 -  AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
   1.421 -    : _address((address) addr),
   1.422 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.423 -
   1.424 -  AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
   1.425 -    : _address((address) addr),
   1.426 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.427 -
   1.428 -  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
   1.429 -    : _address((address) addr),
   1.430 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.431 -
   1.432 -  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
   1.433 -    : _address((address) addr),
   1.434 -      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   1.435 -
   1.436 -  intptr_t value() const { return (intptr_t) _address; }
   1.437 -  int      low10() const;
   1.438 -
   1.439 -  const relocInfo::relocType rtype() const { return _rspec.type(); }
   1.440 -  const RelocationHolder&    rspec() const { return _rspec; }
   1.441 -
   1.442 -  RelocationHolder rspec(int offset) const {
   1.443 -    return offset == 0 ? _rspec : _rspec.plus(offset);
   1.444 -  }
   1.445 -};
   1.446 -
   1.447 -// Convenience classes
   1.448 -class ExternalAddress: public AddressLiteral {
   1.449 - private:
   1.450 -  static relocInfo::relocType reloc_for_target(address target) {
   1.451 -    // Sometimes ExternalAddress is used for values which aren't
   1.452 -    // exactly addresses, like the card table base.
   1.453 -    // external_word_type can't be used for values in the first page
   1.454 -    // so just skip the reloc in that case.
   1.455 -    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
   1.456 -  }
   1.457 -
   1.458 - public:
   1.459 -  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
   1.460 -  ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
   1.461 -};
   1.462 -
   1.463 -inline Address RegisterImpl::address_in_saved_window() const {
   1.464 -   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
   1.465 -}
   1.466 -
   1.467 -
   1.468 -
   1.469 -// Argument is an abstraction used to represent an outgoing
   1.470 -// actual argument or an incoming formal parameter, whether
   1.471 -// it resides in memory or in a register, in a manner consistent
   1.472 -// with the SPARC Application Binary Interface, or ABI.  This is
   1.473 -// often referred to as the native or C calling convention.
   1.474 -
   1.475 -class Argument VALUE_OBJ_CLASS_SPEC {
   1.476 - private:
   1.477 -  int _number;
   1.478 -  bool _is_in;
   1.479 -
   1.480 - public:
   1.481 -#ifdef _LP64
   1.482 -  enum {
   1.483 -    n_register_parameters = 6,          // only 6 registers may contain integer parameters
   1.484 -    n_float_register_parameters = 16    // Can have up to 16 floating registers
   1.485 -  };
   1.486 -#else
   1.487 -  enum {
   1.488 -    n_register_parameters = 6           // only 6 registers may contain integer parameters
   1.489 -  };
   1.490 -#endif
   1.491 -
   1.492 -  // creation
   1.493 -  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
   1.494 -
   1.495 -  int  number() const  { return _number;  }
   1.496 -  bool is_in()  const  { return _is_in;   }
   1.497 -  bool is_out() const  { return !is_in(); }
   1.498 -
   1.499 -  Argument successor() const  { return Argument(number() + 1, is_in()); }
   1.500 -  Argument as_in()     const  { return Argument(number(), true ); }
   1.501 -  Argument as_out()    const  { return Argument(number(), false); }
   1.502 -
   1.503 -  // locating register-based arguments:
   1.504 -  bool is_register() const { return _number < n_register_parameters; }
   1.505 -
   1.506 -#ifdef _LP64
   1.507 -  // locating Floating Point register-based arguments:
   1.508 -  bool is_float_register() const { return _number < n_float_register_parameters; }
   1.509 -
   1.510 -  FloatRegister as_float_register() const {
   1.511 -    assert(is_float_register(), "must be a register argument");
   1.512 -    return as_FloatRegister(( number() *2 ) + 1);
   1.513 -  }
   1.514 -  FloatRegister as_double_register() const {
   1.515 -    assert(is_float_register(), "must be a register argument");
   1.516 -    return as_FloatRegister(( number() *2 ));
   1.517 -  }
   1.518 -#endif
   1.519 -
   1.520 -  Register as_register() const {
   1.521 -    assert(is_register(), "must be a register argument");
   1.522 -    return is_in() ? as_iRegister(number()) : as_oRegister(number());
   1.523 -  }
   1.524 -
   1.525 -  // locating memory-based arguments
   1.526 -  Address as_address() const {
   1.527 -    assert(!is_register(), "must be a memory argument");
   1.528 -    return address_in_frame();
   1.529 -  }
   1.530 -
   1.531 -  // When applied to a register-based argument, give the corresponding address
   1.532 -  // into the 6-word area "into which callee may store register arguments"
   1.533 -  // (This is a different place than the corresponding register-save area location.)
   1.534 -  Address address_in_frame() const;
   1.535 -
   1.536 -  // debugging
   1.537 -  const char* name() const;
   1.538 -
   1.539 -  friend class Assembler;
   1.540 -};
   1.541 -
   1.542 +#include "asm/register.hpp"
   1.543  
   1.544  // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
   1.545  // level; i.e., what you write
   1.546  // is what you get. The Assembler is generating code into a CodeBuffer.
   1.547  
   1.548  class Assembler : public AbstractAssembler  {
   1.549 - protected:
   1.550 -
   1.551 -  static void print_instruction(int inst);
   1.552 -  static int  patched_branch(int dest_pos, int inst, int inst_pos);
   1.553 -  static int  branch_destination(int inst, int pos);
   1.554 -
   1.555 -
   1.556    friend class AbstractAssembler;
   1.557    friend class AddressLiteral;
   1.558  
   1.559 @@ -1230,10 +689,7 @@
   1.560    // pp 135 (addc was addx in v8)
   1.561  
   1.562    inline void add(Register s1, Register s2, Register d );
   1.563 -  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
   1.564 -  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
   1.565 -  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
   1.566 -  inline void add(const Address& a, Register d, int offset = 0);
   1.567 +  inline void add(Register s1, int simm13a, Register d );
   1.568  
   1.569    void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.570    void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.571 @@ -1395,12 +851,9 @@
   1.572  
   1.573    // 171
   1.574  
   1.575 -  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
   1.576    inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   1.577    inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
   1.578  
   1.579 -  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
   1.580 -
   1.581  
   1.582    inline void ldfsr(  Register s1, Register s2 );
   1.583    inline void ldfsr(  Register s1, int simm13a);
   1.584 @@ -1438,36 +891,9 @@
   1.585    inline void lduw(  Register s1, int simm13a, Register d);
   1.586    inline void ldx(   Register s1, Register s2, Register d );
   1.587    inline void ldx(   Register s1, int simm13a, Register d);
   1.588 -  inline void ld(    Register s1, Register s2, Register d );
   1.589 -  inline void ld(    Register s1, int simm13a, Register d);
   1.590    inline void ldd(   Register s1, Register s2, Register d );
   1.591    inline void ldd(   Register s1, int simm13a, Register d);
   1.592  
   1.593 -#ifdef ASSERT
   1.594 -  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   1.595 -  inline void ld(    Register s1, ByteSize simm13a, Register d);
   1.596 -#endif
   1.597 -
   1.598 -  inline void ldsb(const Address& a, Register d, int offset = 0);
   1.599 -  inline void ldsh(const Address& a, Register d, int offset = 0);
   1.600 -  inline void ldsw(const Address& a, Register d, int offset = 0);
   1.601 -  inline void ldub(const Address& a, Register d, int offset = 0);
   1.602 -  inline void lduh(const Address& a, Register d, int offset = 0);
   1.603 -  inline void lduw(const Address& a, Register d, int offset = 0);
   1.604 -  inline void ldx( const Address& a, Register d, int offset = 0);
   1.605 -  inline void ld(  const Address& a, Register d, int offset = 0);
   1.606 -  inline void ldd( const Address& a, Register d, int offset = 0);
   1.607 -
   1.608 -  inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
   1.609 -  inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
   1.610 -  inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
   1.611 -  inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
   1.612 -  inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
   1.613 -  inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
   1.614 -  inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
   1.615 -  inline void ld(    Register s1, RegisterOrConstant s2, Register d );
   1.616 -  inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
   1.617 -
   1.618    // pp 177
   1.619  
   1.620    void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.621 @@ -1505,7 +931,6 @@
   1.622    void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.623    void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   1.624    void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.625 -  void andn(    Register s1, RegisterOrConstant s2, Register d);
   1.626    void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   1.627    void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.628    void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
   1.629 @@ -1584,13 +1009,12 @@
   1.630  
   1.631    // pp 203
   1.632  
   1.633 -  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
   1.634 -  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
   1.635 +  void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   1.636 +  void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   1.637 +
   1.638    void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.639    void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.640  
   1.641 -  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
   1.642 -
   1.643    // pp 208
   1.644  
   1.645    // not implementing read privileged register
   1.646 @@ -1653,10 +1077,8 @@
   1.647  
   1.648    // pp 222
   1.649  
   1.650 -  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
   1.651    inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
   1.652    inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
   1.653 -  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
   1.654  
   1.655    inline void stfsr(  Register s1, Register s2 );
   1.656    inline void stfsr(  Register s1, int simm13a);
   1.657 @@ -1676,32 +1098,11 @@
   1.658    inline void sth(  Register d, Register s1, int simm13a);
   1.659    inline void stw(  Register d, Register s1, Register s2 );
   1.660    inline void stw(  Register d, Register s1, int simm13a);
   1.661 -  inline void st(   Register d, Register s1, Register s2 );
   1.662 -  inline void st(   Register d, Register s1, int simm13a);
   1.663    inline void stx(  Register d, Register s1, Register s2 );
   1.664    inline void stx(  Register d, Register s1, int simm13a);
   1.665    inline void std(  Register d, Register s1, Register s2 );
   1.666    inline void std(  Register d, Register s1, int simm13a);
   1.667  
   1.668 -#ifdef ASSERT
   1.669 -  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   1.670 -  inline void st(   Register d, Register s1, ByteSize simm13a);
   1.671 -#endif
   1.672 -
   1.673 -  inline void stb(  Register d, const Address& a, int offset = 0 );
   1.674 -  inline void sth(  Register d, const Address& a, int offset = 0 );
   1.675 -  inline void stw(  Register d, const Address& a, int offset = 0 );
   1.676 -  inline void stx(  Register d, const Address& a, int offset = 0 );
   1.677 -  inline void st(   Register d, const Address& a, int offset = 0 );
   1.678 -  inline void std(  Register d, const Address& a, int offset = 0 );
   1.679 -
   1.680 -  inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
   1.681 -  inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
   1.682 -  inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
   1.683 -  inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
   1.684 -  inline void std(  Register d, Register s1, RegisterOrConstant s2 );
   1.685 -  inline void st(   Register d, Register s1, RegisterOrConstant s2 );
   1.686 -
   1.687    // pp 177
   1.688  
   1.689    void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   1.690 @@ -1731,9 +1132,6 @@
   1.691    void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
   1.692    void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.693  
   1.694 -  // Note: offset is added to s2.
   1.695 -  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
   1.696 -
   1.697    void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
   1.698    void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   1.699    void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
   1.700 @@ -1745,7 +1143,6 @@
   1.701  
   1.702    inline void swap( Register s1, Register s2, Register d );
   1.703    inline void swap( Register s1, int simm13a, Register d);
   1.704 -  inline void swap( Address& a,               Register d, int offset = 0 );
   1.705  
   1.706    // pp 232
   1.707  
   1.708 @@ -1799,879 +1196,12 @@
   1.709    void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
   1.710    void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
   1.711  
   1.712 -
   1.713 -
   1.714 -
   1.715 -  // For a given register condition, return the appropriate condition code
   1.716 -  // Condition (the one you would use to get the same effect after "tst" on
   1.717 -  // the target register.)
   1.718 -  Assembler::Condition reg_cond_to_cc_cond(RCondition in);
   1.719 -
   1.720 -
   1.721    // Creation
   1.722    Assembler(CodeBuffer* code) : AbstractAssembler(code) {
   1.723  #ifdef CHECK_DELAY
   1.724      delay_state = no_delay;
   1.725  #endif
   1.726    }
   1.727 -
   1.728 -  // Testing
   1.729 -#ifndef PRODUCT
   1.730 -  void test_v9();
   1.731 -  void test_v8_onlys();
   1.732 -#endif
   1.733  };
   1.734  
   1.735 -
   1.736 -class RegistersForDebugging : public StackObj {
   1.737 - public:
   1.738 -  intptr_t i[8], l[8], o[8], g[8];
   1.739 -  float    f[32];
   1.740 -  double   d[32];
   1.741 -
   1.742 -  void print(outputStream* s);
   1.743 -
   1.744 -  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
   1.745 -  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
   1.746 -  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
   1.747 -  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
   1.748 -  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
   1.749 -  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
   1.750 -
   1.751 -  // gen asm code to save regs
   1.752 -  static void save_registers(MacroAssembler* a);
   1.753 -
   1.754 -  // restore global registers in case C code disturbed them
   1.755 -  static void restore_registers(MacroAssembler* a, Register r);
   1.756 -
   1.757 -
   1.758 -};
   1.759 -
   1.760 -
   1.761 -// MacroAssembler extends Assembler by a few frequently used macros.
   1.762 -//
   1.763 -// Most of the standard SPARC synthetic ops are defined here.
   1.764 -// Instructions for which a 'better' code sequence exists depending
   1.765 -// on arguments should also go in here.
   1.766 -
   1.767 -#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
   1.768 -#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
   1.769 -#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
   1.770 -#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
   1.771 -
   1.772 -
   1.773 -class MacroAssembler: public Assembler {
   1.774 - protected:
   1.775 -  // Support for VM calls
   1.776 -  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
   1.777 -  // may customize this version by overriding it for its purposes (e.g., to save/restore
   1.778 -  // additional registers when doing a VM call).
   1.779 -#ifdef CC_INTERP
   1.780 -  #define VIRTUAL
   1.781 -#else
   1.782 -  #define VIRTUAL virtual
   1.783 -#endif
   1.784 -
   1.785 -  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
   1.786 -
   1.787 -  //
   1.788 -  // It is imperative that all calls into the VM are handled via the call_VM macros.
   1.789 -  // They make sure that the stack linkage is setup correctly. call_VM's correspond
   1.790 -  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   1.791 -  //
   1.792 -  // This is the base routine called by the different versions of call_VM. The interpreter
   1.793 -  // may customize this version by overriding it for its purposes (e.g., to save/restore
   1.794 -  // additional registers when doing a VM call).
   1.795 -  //
   1.796 -  // A non-volatile java_thread_cache register should be specified so
   1.797 -  // that the G2_thread value can be preserved across the call.
   1.798 -  // (If java_thread_cache is noreg, then a slow get_thread call
   1.799 -  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
   1.800 -  // thread.
   1.801 -  //
   1.802 -  // If no last_java_sp is specified (noreg) than SP will be used instead.
   1.803 -
   1.804 -  virtual void call_VM_base(
   1.805 -    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
   1.806 -    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
   1.807 -    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
   1.808 -    address         entry_point,            // the entry point
   1.809 -    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
   1.810 -    bool            check_exception=true    // flag which indicates if exception should be checked
   1.811 -  );
   1.812 -
   1.813 -  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
   1.814 -  // The implementation is only non-empty for the InterpreterMacroAssembler,
   1.815 -  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
   1.816 -  virtual void check_and_handle_popframe(Register scratch_reg);
   1.817 -  virtual void check_and_handle_earlyret(Register scratch_reg);
   1.818 -
   1.819 - public:
   1.820 -  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
   1.821 -
   1.822 -  // Support for NULL-checks
   1.823 -  //
   1.824 -  // Generates code that causes a NULL OS exception if the content of reg is NULL.
   1.825 -  // If the accessed location is M[reg + offset] and the offset is known, provide the
   1.826 -  // offset.  No explicit code generation is needed if the offset is within a certain
   1.827 -  // range (0 <= offset <= page_size).
   1.828 -  //
   1.829 -  // %%%%%% Currently not done for SPARC
   1.830 -
   1.831 -  void null_check(Register reg, int offset = -1);
   1.832 -  static bool needs_explicit_null_check(intptr_t offset);
   1.833 -
   1.834 -  // support for delayed instructions
   1.835 -  MacroAssembler* delayed() { Assembler::delayed();  return this; }
   1.836 -
   1.837 -  // branches that use right instruction for v8 vs. v9
   1.838 -  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.839 -  inline void br( Condition c, bool a, Predict p, Label& L );
   1.840 -
   1.841 -  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.842 -  inline void fb( Condition c, bool a, Predict p, Label& L );
   1.843 -
   1.844 -  // compares register with zero (32 bit) and branches (V9 and V8 instructions)
   1.845 -  void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
   1.846 -  // Compares a pointer register with zero and branches on (not)null.
   1.847 -  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
   1.848 -  void br_null   ( Register s1, bool a, Predict p, Label& L );
   1.849 -  void br_notnull( Register s1, bool a, Predict p, Label& L );
   1.850 -
   1.851 -  //
   1.852 -  // Compare registers and branch with nop in delay slot or cbcond without delay slot.
   1.853 -  //
   1.854 -  // ATTENTION: use these instructions with caution because cbcond instruction
   1.855 -  //            has very short distance: 512 instructions (2Kbyte).
   1.856 -
   1.857 -  // Compare integer (32 bit) values (icc only).
   1.858 -  void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
   1.859 -  void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
   1.860 -  // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
   1.861 -  void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
   1.862 -  void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
   1.863 -
   1.864 -  // Short branch version for compares a pointer pwith zero.
   1.865 -  void br_null_short   ( Register s1, Predict p, Label& L );
   1.866 -  void br_notnull_short( Register s1, Predict p, Label& L );
   1.867 -
   1.868 -  // unconditional short branch
   1.869 -  void ba_short(Label& L);
   1.870 -
   1.871 -  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.872 -  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   1.873 -
   1.874 -  // Branch that tests xcc in LP64 and icc in !LP64
   1.875 -  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.876 -  inline void brx( Condition c, bool a, Predict p, Label& L );
   1.877 -
   1.878 -  // unconditional branch
   1.879 -  inline void ba( Label& L );
   1.880 -
   1.881 -  // Branch that tests fp condition codes
   1.882 -  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   1.883 -  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   1.884 -
   1.885 -  // get PC the best way
   1.886 -  inline int get_pc( Register d );
   1.887 -
   1.888 -  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
   1.889 -  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
   1.890 -  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
   1.891 -
   1.892 -  inline void jmp( Register s1, Register s2 );
   1.893 -  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
   1.894 -
   1.895 -  // Check if the call target is out of wdisp30 range (relative to the code cache)
   1.896 -  static inline bool is_far_target(address d);
   1.897 -  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   1.898 -  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   1.899 -  inline void callr( Register s1, Register s2 );
   1.900 -  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
   1.901 -
   1.902 -  // Emits nothing on V8
   1.903 -  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
   1.904 -  inline void iprefetch( Label& L);
   1.905 -
   1.906 -  inline void tst( Register s ) { orcc( G0, s, G0 ); }
   1.907 -
   1.908 -#ifdef PRODUCT
   1.909 -  inline void ret(  bool trace = TraceJumps )   { if (trace) {
   1.910 -                                                    mov(I7, O7); // traceable register
   1.911 -                                                    JMP(O7, 2 * BytesPerInstWord);
   1.912 -                                                  } else {
   1.913 -                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
   1.914 -                                                  }
   1.915 -                                                }
   1.916 -
   1.917 -  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   1.918 -                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   1.919 -#else
   1.920 -  void ret(  bool trace = TraceJumps );
   1.921 -  void retl( bool trace = TraceJumps );
   1.922 -#endif /* PRODUCT */
   1.923 -
   1.924 -  // Required platform-specific helpers for Label::patch_instructions.
   1.925 -  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   1.926 -  void pd_patch_instruction(address branch, address target);
   1.927 -#ifndef PRODUCT
   1.928 -  static void pd_print_patched_instruction(address branch);
   1.929 -#endif
   1.930 -
   1.931 -  // sethi Macro handles optimizations and relocations
   1.932 -private:
   1.933 -  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
   1.934 -public:
   1.935 -  void sethi(const AddressLiteral& addrlit, Register d);
   1.936 -  void patchable_sethi(const AddressLiteral& addrlit, Register d);
   1.937 -
   1.938 -  // compute the number of instructions for a sethi/set
   1.939 -  static int  insts_for_sethi( address a, bool worst_case = false );
   1.940 -  static int  worst_case_insts_for_set();
   1.941 -
   1.942 -  // set may be either setsw or setuw (high 32 bits may be zero or sign)
   1.943 -private:
   1.944 -  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
   1.945 -  static int insts_for_internal_set(intptr_t value);
   1.946 -public:
   1.947 -  void set(const AddressLiteral& addrlit, Register d);
   1.948 -  void set(intptr_t value, Register d);
   1.949 -  void set(address addr, Register d, RelocationHolder const& rspec);
   1.950 -  static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
   1.951 -
   1.952 -  void patchable_set(const AddressLiteral& addrlit, Register d);
   1.953 -  void patchable_set(intptr_t value, Register d);
   1.954 -  void set64(jlong value, Register d, Register tmp);
   1.955 -  static int insts_for_set64(jlong value);
   1.956 -
   1.957 -  // sign-extend 32 to 64
   1.958 -  inline void signx( Register s, Register d ) { sra( s, G0, d); }
   1.959 -  inline void signx( Register d )             { sra( d, G0, d); }
   1.960 -
   1.961 -  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
   1.962 -  inline void not1( Register d )             { xnor( d, G0, d ); }
   1.963 -
   1.964 -  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
   1.965 -  inline void neg( Register d )             { sub( G0, d, d ); }
   1.966 -
   1.967 -  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
   1.968 -  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
   1.969 -  // Functions for isolating 64 bit atomic swaps for LP64
   1.970 -  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
   1.971 -  inline void cas_ptr(  Register s1, Register s2, Register d) {
   1.972 -#ifdef _LP64
   1.973 -    casx( s1, s2, d );
   1.974 -#else
   1.975 -    cas( s1, s2, d );
   1.976 -#endif
   1.977 -  }
   1.978 -
   1.979 -  // Functions for isolating 64 bit shifts for LP64
   1.980 -  inline void sll_ptr( Register s1, Register s2, Register d );
   1.981 -  inline void sll_ptr( Register s1, int imm6a,   Register d );
   1.982 -  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
   1.983 -  inline void srl_ptr( Register s1, Register s2, Register d );
   1.984 -  inline void srl_ptr( Register s1, int imm6a,   Register d );
   1.985 -
   1.986 -  // little-endian
   1.987 -  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
   1.988 -  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
   1.989 -
   1.990 -  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
   1.991 -  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
   1.992 -
   1.993 -  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
   1.994 -  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
   1.995 -
   1.996 -  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
   1.997 -  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
   1.998 -
   1.999 -  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
  1.1000 -  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
  1.1001 -
  1.1002 -  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
  1.1003 -  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
  1.1004 -
  1.1005 -  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
  1.1006 -  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
  1.1007 -
  1.1008 -  inline void clr( Register d ) { or3( G0, G0, d ); }
  1.1009 -
  1.1010 -  inline void clrb( Register s1, Register s2);
  1.1011 -  inline void clrh( Register s1, Register s2);
  1.1012 -  inline void clr(  Register s1, Register s2);
  1.1013 -  inline void clrx( Register s1, Register s2);
  1.1014 -
  1.1015 -  inline void clrb( Register s1, int simm13a);
  1.1016 -  inline void clrh( Register s1, int simm13a);
  1.1017 -  inline void clr(  Register s1, int simm13a);
  1.1018 -  inline void clrx( Register s1, int simm13a);
  1.1019 -
  1.1020 -  // copy & clear upper word
  1.1021 -  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
  1.1022 -  // clear upper word
  1.1023 -  inline void clruwu( Register d ) { srl( d, G0, d); }
  1.1024 -
  1.1025 -  // membar psuedo instruction.  takes into account target memory model.
  1.1026 -  inline void membar( Assembler::Membar_mask_bits const7a );
  1.1027 -
  1.1028 -  // returns if membar generates anything.
  1.1029 -  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
  1.1030 -
  1.1031 -  // mov pseudo instructions
  1.1032 -  inline void mov( Register s,  Register d) {
  1.1033 -    if ( s != d )    or3( G0, s, d);
  1.1034 -    else             assert_not_delayed();  // Put something useful in the delay slot!
  1.1035 -  }
  1.1036 -
  1.1037 -  inline void mov_or_nop( Register s,  Register d) {
  1.1038 -    if ( s != d )    or3( G0, s, d);
  1.1039 -    else             nop();
  1.1040 -  }
  1.1041 -
  1.1042 -  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
  1.1043 -
  1.1044 -  // address pseudos: make these names unlike instruction names to avoid confusion
  1.1045 -  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
  1.1046 -  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
  1.1047 -  inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
  1.1048 -  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
  1.1049 -  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
  1.1050 -  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
  1.1051 -  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
  1.1052 -  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
  1.1053 -  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
  1.1054 -
  1.1055 -  // ring buffer traceable jumps
  1.1056 -
  1.1057 -  void jmp2( Register r1, Register r2, const char* file, int line );
  1.1058 -  void jmp ( Register r1, int offset,  const char* file, int line );
  1.1059 -
  1.1060 -  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
  1.1061 -  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
  1.1062 -
  1.1063 -
  1.1064 -  // argument pseudos:
  1.1065 -
  1.1066 -  inline void load_argument( Argument& a, Register  d );
  1.1067 -  inline void store_argument( Register s, Argument& a );
  1.1068 -  inline void store_ptr_argument( Register s, Argument& a );
  1.1069 -  inline void store_float_argument( FloatRegister s, Argument& a );
  1.1070 -  inline void store_double_argument( FloatRegister s, Argument& a );
  1.1071 -  inline void store_long_argument( Register s, Argument& a );
  1.1072 -
  1.1073 -  // handy macros:
  1.1074 -
  1.1075 -  inline void round_to( Register r, int modulus ) {
  1.1076 -    assert_not_delayed();
  1.1077 -    inc( r, modulus - 1 );
  1.1078 -    and3( r, -modulus, r );
  1.1079 -  }
  1.1080 -
  1.1081 -  // --------------------------------------------------
  1.1082 -
  1.1083 -  // Functions for isolating 64 bit loads for LP64
  1.1084 -  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1.1085 -  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  1.1086 -  inline void ld_ptr(Register s1, Register s2, Register d);
  1.1087 -  inline void ld_ptr(Register s1, int simm13a, Register d);
  1.1088 -  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
  1.1089 -  inline void ld_ptr(const Address& a, Register d, int offset = 0);
  1.1090 -  inline void st_ptr(Register d, Register s1, Register s2);
  1.1091 -  inline void st_ptr(Register d, Register s1, int simm13a);
  1.1092 -  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
  1.1093 -  inline void st_ptr(Register d, const Address& a, int offset = 0);
  1.1094 -
  1.1095 -#ifdef ASSERT
  1.1096 -  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
  1.1097 -  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
  1.1098 -  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
  1.1099 -#endif
  1.1100 -
  1.1101 -  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
  1.1102 -  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
  1.1103 -  inline void ld_long(Register s1, Register s2, Register d);
  1.1104 -  inline void ld_long(Register s1, int simm13a, Register d);
  1.1105 -  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
  1.1106 -  inline void ld_long(const Address& a, Register d, int offset = 0);
  1.1107 -  inline void st_long(Register d, Register s1, Register s2);
  1.1108 -  inline void st_long(Register d, Register s1, int simm13a);
  1.1109 -  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
  1.1110 -  inline void st_long(Register d, const Address& a, int offset = 0);
  1.1111 -
  1.1112 -  // Helpers for address formation.
  1.1113 -  // - They emit only a move if s2 is a constant zero.
  1.1114 -  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
  1.1115 -  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
  1.1116 -  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1.1117 -  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1.1118 -  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1.1119 -
  1.1120 -  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
  1.1121 -    if (is_simm13(src.constant_or_zero()))
  1.1122 -      return src;               // register or short constant
  1.1123 -    guarantee(temp != noreg, "constant offset overflow");
  1.1124 -    set(src.as_constant(), temp);
  1.1125 -    return temp;
  1.1126 -  }
  1.1127 -
  1.1128 -  // --------------------------------------------------
  1.1129 -
  1.1130 - public:
  1.1131 -  // traps as per trap.h (SPARC ABI?)
  1.1132 -
  1.1133 -  void breakpoint_trap();
  1.1134 -  void breakpoint_trap(Condition c, CC cc);
  1.1135 -  void flush_windows_trap();
  1.1136 -  void clean_windows_trap();
  1.1137 -  void get_psr_trap();
  1.1138 -  void set_psr_trap();
  1.1139 -
  1.1140 -  // V8/V9 flush_windows
  1.1141 -  void flush_windows();
  1.1142 -
  1.1143 -  // Support for serializing memory accesses between threads
  1.1144 -  void serialize_memory(Register thread, Register tmp1, Register tmp2);
  1.1145 -
  1.1146 -  // Stack frame creation/removal
  1.1147 -  void enter();
  1.1148 -  void leave();
  1.1149 -
  1.1150 -  // V8/V9 integer multiply
  1.1151 -  void mult(Register s1, Register s2, Register d);
  1.1152 -  void mult(Register s1, int simm13a, Register d);
  1.1153 -
  1.1154 -  // V8/V9 read and write of condition codes.
  1.1155 -  void read_ccr(Register d);
  1.1156 -  void write_ccr(Register s);
  1.1157 -
  1.1158 -  // Manipulation of C++ bools
  1.1159 -  // These are idioms to flag the need for care with accessing bools but on
  1.1160 -  // this platform we assume byte size
  1.1161 -
  1.1162 -  inline void stbool(Register d, const Address& a) { stb(d, a); }
  1.1163 -  inline void ldbool(const Address& a, Register d) { ldub(a, d); }
  1.1164 -  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
  1.1165 -
  1.1166 -  // klass oop manipulations if compressed
  1.1167 -  void load_klass(Register src_oop, Register klass);
  1.1168 -  void store_klass(Register klass, Register dst_oop);
  1.1169 -  void store_klass_gap(Register s, Register dst_oop);
  1.1170 -
  1.1171 -   // oop manipulations
  1.1172 -  void load_heap_oop(const Address& s, Register d);
  1.1173 -  void load_heap_oop(Register s1, Register s2, Register d);
  1.1174 -  void load_heap_oop(Register s1, int simm13a, Register d);
  1.1175 -  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
  1.1176 -  void store_heap_oop(Register d, Register s1, Register s2);
  1.1177 -  void store_heap_oop(Register d, Register s1, int simm13a);
  1.1178 -  void store_heap_oop(Register d, const Address& a, int offset = 0);
  1.1179 -
  1.1180 -  void encode_heap_oop(Register src, Register dst);
  1.1181 -  void encode_heap_oop(Register r) {
  1.1182 -    encode_heap_oop(r, r);
  1.1183 -  }
  1.1184 -  void decode_heap_oop(Register src, Register dst);
  1.1185 -  void decode_heap_oop(Register r) {
  1.1186 -    decode_heap_oop(r, r);
  1.1187 -  }
  1.1188 -  void encode_heap_oop_not_null(Register r);
  1.1189 -  void decode_heap_oop_not_null(Register r);
  1.1190 -  void encode_heap_oop_not_null(Register src, Register dst);
  1.1191 -  void decode_heap_oop_not_null(Register src, Register dst);
  1.1192 -
  1.1193 -  void encode_klass_not_null(Register r);
  1.1194 -  void decode_klass_not_null(Register r);
  1.1195 -  void encode_klass_not_null(Register src, Register dst);
  1.1196 -  void decode_klass_not_null(Register src, Register dst);
  1.1197 -
  1.1198 -  // Support for managing the JavaThread pointer (i.e.; the reference to
  1.1199 -  // thread-local information).
  1.1200 -  void get_thread();                                // load G2_thread
  1.1201 -  void verify_thread();                             // verify G2_thread contents
  1.1202 -  void save_thread   (const Register threache); // save to cache
  1.1203 -  void restore_thread(const Register thread_cache); // restore from cache
  1.1204 -
  1.1205 -  // Support for last Java frame (but use call_VM instead where possible)
  1.1206 -  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  1.1207 -  void reset_last_Java_frame(void);
  1.1208 -
  1.1209 -  // Call into the VM.
  1.1210 -  // Passes the thread pointer (in O0) as a prepended argument.
  1.1211 -  // Makes sure oop return values are visible to the GC.
  1.1212 -  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1.1213 -  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  1.1214 -  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1.1215 -  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1.1216 -
  1.1217 -  // these overloadings are not presently used on SPARC:
  1.1218 -  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1.1219 -  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  1.1220 -  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1.1221 -  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1.1222 -
  1.1223 -  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  1.1224 -  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  1.1225 -  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  1.1226 -  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
  1.1227 -
  1.1228 -  void get_vm_result  (Register oop_result);
  1.1229 -  void get_vm_result_2(Register metadata_result);
  1.1230 -
  1.1231 -  // vm result is currently getting hijacked to for oop preservation
  1.1232 -  void set_vm_result(Register oop_result);
  1.1233 -
  1.1234 -  // Emit the CompiledIC call idiom
  1.1235 -  void ic_call(address entry, bool emit_delay = true);
  1.1236 -
  1.1237 -  // if call_VM_base was called with check_exceptions=false, then call
  1.1238 -  // check_and_forward_exception to handle exceptions when it is safe
  1.1239 -  void check_and_forward_exception(Register scratch_reg);
  1.1240 -
  1.1241 - private:
  1.1242 -  // For V8
  1.1243 -  void read_ccr_trap(Register ccr_save);
  1.1244 -  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
  1.1245 -
  1.1246 -#ifdef ASSERT
  1.1247 -  // For V8 debugging.  Uses V8 instruction sequence and checks
  1.1248 -  // result with V9 insturctions rdccr and wrccr.
  1.1249 -  // Uses Gscatch and Gscatch2
  1.1250 -  void read_ccr_v8_assert(Register ccr_save);
  1.1251 -  void write_ccr_v8_assert(Register ccr_save);
  1.1252 -#endif // ASSERT
  1.1253 -
  1.1254 - public:
  1.1255 -
  1.1256 -  // Write to card table for - register is destroyed afterwards.
  1.1257 -  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
  1.1258 -
  1.1259 -  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  1.1260 -
  1.1261 -#ifndef SERIALGC
  1.1262 -  // General G1 pre-barrier generator.
  1.1263 -  void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
  1.1264 -
  1.1265 -  // General G1 post-barrier generator
  1.1266 -  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  1.1267 -#endif // SERIALGC
  1.1268 -
  1.1269 -  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1.1270 -  void push_fTOS();
  1.1271 -
  1.1272 -  // pops double TOS element from CPU stack and pushes on FPU stack
  1.1273 -  void pop_fTOS();
  1.1274 -
  1.1275 -  void empty_FPU_stack();
  1.1276 -
  1.1277 -  void push_IU_state();
  1.1278 -  void pop_IU_state();
  1.1279 -
  1.1280 -  void push_FPU_state();
  1.1281 -  void pop_FPU_state();
  1.1282 -
  1.1283 -  void push_CPU_state();
  1.1284 -  void pop_CPU_state();
  1.1285 -
  1.1286 -  // if heap base register is used - reinit it with the correct value
  1.1287 -  void reinit_heapbase();
  1.1288 -
  1.1289 -  // Debugging
  1.1290 -  void _verify_oop(Register reg, const char * msg, const char * file, int line);
  1.1291 -  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
  1.1292 -
  1.1293 -  // TODO: verify_method and klass metadata (compare against vptr?)
  1.1294 -  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  1.1295 -  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
  1.1296 -
  1.1297 -#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
  1.1298 -#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
  1.1299 -#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
  1.1300 -#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
  1.1301 -
  1.1302 -        // only if +VerifyOops
  1.1303 -  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1.1304 -        // only if +VerifyFPU
  1.1305 -  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  1.1306 -  void warn(const char* msg);                          // prints msg, but don't stop
  1.1307 -  void untested(const char* what = "");
  1.1308 -  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  1.1309 -  void should_not_reach_here()                   { stop("should not reach here"); }
  1.1310 -  void print_CPU_state();
  1.1311 -
  1.1312 -  // oops in code
  1.1313 -  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
  1.1314 -  AddressLiteral constant_oop_address(jobject obj);                          // find_index
  1.1315 -  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
  1.1316 -  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
  1.1317 -  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
  1.1318 -
  1.1319 -  // metadata in code that we have to keep track of
  1.1320 -  AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
  1.1321 -  AddressLiteral constant_metadata_address(Metadata* obj); // find_index
  1.1322 -  inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
  1.1323 -  inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
  1.1324 -  inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
  1.1325 -
  1.1326 -  void set_narrow_oop( jobject obj, Register d );
  1.1327 -  void set_narrow_klass( Klass* k, Register d );
  1.1328 -
  1.1329 -  // nop padding
  1.1330 -  void align(int modulus);
  1.1331 -
  1.1332 -  // declare a safepoint
  1.1333 -  void safepoint();
  1.1334 -
  1.1335 -  // factor out part of stop into subroutine to save space
  1.1336 -  void stop_subroutine();
  1.1337 -  // factor out part of verify_oop into subroutine to save space
  1.1338 -  void verify_oop_subroutine();
  1.1339 -
  1.1340 -  // side-door communication with signalHandler in os_solaris.cpp
  1.1341 -  static address _verify_oop_implicit_branch[3];
  1.1342 -
  1.1343 -#ifndef PRODUCT
  1.1344 -  static void test();
  1.1345 -#endif
  1.1346 -
  1.1347 -  int total_frame_size_in_bytes(int extraWords);
  1.1348 -
  1.1349 -  // used when extraWords known statically
  1.1350 -  void save_frame(int extraWords = 0);
  1.1351 -  void save_frame_c1(int size_in_bytes);
  1.1352 -  // make a frame, and simultaneously pass up one or two register value
  1.1353 -  // into the new register window
  1.1354 -  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
  1.1355 -
  1.1356 -  // give no. (outgoing) params, calc # of words will need on frame
  1.1357 -  void calc_mem_param_words(Register Rparam_words, Register Rresult);
  1.1358 -
  1.1359 -  // used to calculate frame size dynamically
  1.1360 -  // result is in bytes and must be negated for save inst
  1.1361 -  void calc_frame_size(Register extraWords, Register resultReg);
  1.1362 -
  1.1363 -  // calc and also save
  1.1364 -  void calc_frame_size_and_save(Register extraWords, Register resultReg);
  1.1365 -
  1.1366 -  static void debug(char* msg, RegistersForDebugging* outWindow);
  1.1367 -
  1.1368 -  // implementations of bytecodes used by both interpreter and compiler
  1.1369 -
  1.1370 -  void lcmp( Register Ra_hi, Register Ra_low,
  1.1371 -             Register Rb_hi, Register Rb_low,
  1.1372 -             Register Rresult);
  1.1373 -
  1.1374 -  void lneg( Register Rhi, Register Rlow );
  1.1375 -
  1.1376 -  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1.1377 -              Register Rout_high, Register Rout_low, Register Rtemp );
  1.1378 -
  1.1379 -  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1.1380 -              Register Rout_high, Register Rout_low, Register Rtemp );
  1.1381 -
  1.1382 -  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
  1.1383 -              Register Rout_high, Register Rout_low, Register Rtemp );
  1.1384 -
  1.1385 -#ifdef _LP64
  1.1386 -  void lcmp( Register Ra, Register Rb, Register Rresult);
  1.1387 -#endif
  1.1388 -
  1.1389 -  // Load and store values by size and signed-ness
  1.1390 -  void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
  1.1391 -  void store_sized_value(Register src, Address dst, size_t size_in_bytes);
  1.1392 -
  1.1393 -  void float_cmp( bool is_float, int unordered_result,
  1.1394 -                  FloatRegister Fa, FloatRegister Fb,
  1.1395 -                  Register Rresult);
  1.1396 -
  1.1397 -  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.1398 -  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  1.1399 -  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.1400 -  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1.1401 -
  1.1402 -  void save_all_globals_into_locals();
  1.1403 -  void restore_globals_from_locals();
  1.1404 -
  1.1405 -  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1.1406 -    address lock_addr=0, bool use_call_vm=false);
  1.1407 -  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1.1408 -    address lock_addr=0, bool use_call_vm=false);
  1.1409 -  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
  1.1410 -
  1.1411 -  // These set the icc condition code to equal if the lock succeeded
  1.1412 -  // and notEqual if it failed and requires a slow case
  1.1413 -  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
  1.1414 -                            Register Rscratch,
  1.1415 -                            BiasedLockingCounters* counters = NULL,
  1.1416 -                            bool try_bias = UseBiasedLocking);
  1.1417 -  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
  1.1418 -                              Register Rscratch,
  1.1419 -                              bool try_bias = UseBiasedLocking);
  1.1420 -
  1.1421 -  // Biased locking support
  1.1422 -  // Upon entry, lock_reg must point to the lock record on the stack,
  1.1423 -  // obj_reg must contain the target object, and mark_reg must contain
  1.1424 -  // the target object's header.
  1.1425 -  // Destroys mark_reg if an attempt is made to bias an anonymously
  1.1426 -  // biased lock. In this case a failure will go either to the slow
  1.1427 -  // case or fall through with the notEqual condition code set with
  1.1428 -  // the expectation that the slow case in the runtime will be called.
  1.1429 -  // In the fall-through case where the CAS-based lock is done,
  1.1430 -  // mark_reg is not destroyed.
  1.1431 -  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  1.1432 -                            Label& done, Label* slow_case = NULL,
  1.1433 -                            BiasedLockingCounters* counters = NULL);
  1.1434 -  // Upon entry, the base register of mark_addr must contain the oop.
  1.1435 -  // Destroys temp_reg.
  1.1436 -
  1.1437 -  // If allow_delay_slot_filling is set to true, the next instruction
  1.1438 -  // emitted after this one will go in an annulled delay slot if the
  1.1439 -  // biased locking exit case failed.
  1.1440 -  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
  1.1441 -
  1.1442 -  // allocation
  1.1443 -  void eden_allocate(
  1.1444 -    Register obj,                      // result: pointer to object after successful allocation
  1.1445 -    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1.1446 -    int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1.1447 -    Register t1,                       // temp register
  1.1448 -    Register t2,                       // temp register
  1.1449 -    Label&   slow_case                 // continuation point if fast allocation fails
  1.1450 -  );
  1.1451 -  void tlab_allocate(
  1.1452 -    Register obj,                      // result: pointer to object after successful allocation
  1.1453 -    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1.1454 -    int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1.1455 -    Register t1,                       // temp register
  1.1456 -    Label&   slow_case                 // continuation point if fast allocation fails
  1.1457 -  );
  1.1458 -  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1.1459 -  void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  1.1460 -                            Register t1, Register t2);
  1.1461 -
  1.1462 -  // interface method calling
  1.1463 -  void lookup_interface_method(Register recv_klass,
  1.1464 -                               Register intf_klass,
  1.1465 -                               RegisterOrConstant itable_index,
  1.1466 -                               Register method_result,
  1.1467 -                               Register temp_reg, Register temp2_reg,
  1.1468 -                               Label& no_such_interface);
  1.1469 -
  1.1470 -  // virtual method calling
  1.1471 -  void lookup_virtual_method(Register recv_klass,
  1.1472 -                             RegisterOrConstant vtable_index,
  1.1473 -                             Register method_result);
  1.1474 -
  1.1475 -  // Test sub_klass against super_klass, with fast and slow paths.
  1.1476 -
  1.1477 -  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1.1478 -  // One of the three labels can be NULL, meaning take the fall-through.
  1.1479 -  // If super_check_offset is -1, the value is loaded up from super_klass.
  1.1480 -  // No registers are killed, except temp_reg and temp2_reg.
  1.1481 -  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
  1.1482 -  void check_klass_subtype_fast_path(Register sub_klass,
  1.1483 -                                     Register super_klass,
  1.1484 -                                     Register temp_reg,
  1.1485 -                                     Register temp2_reg,
  1.1486 -                                     Label* L_success,
  1.1487 -                                     Label* L_failure,
  1.1488 -                                     Label* L_slow_path,
  1.1489 -                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1.1490 -
  1.1491 -  // The rest of the type check; must be wired to a corresponding fast path.
  1.1492 -  // It does not repeat the fast path logic, so don't use it standalone.
  1.1493 -  // The temp_reg can be noreg, if no temps are available.
  1.1494 -  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
  1.1495 -  // Updates the sub's secondary super cache as necessary.
  1.1496 -  void check_klass_subtype_slow_path(Register sub_klass,
  1.1497 -                                     Register super_klass,
  1.1498 -                                     Register temp_reg,
  1.1499 -                                     Register temp2_reg,
  1.1500 -                                     Register temp3_reg,
  1.1501 -                                     Register temp4_reg,
  1.1502 -                                     Label* L_success,
  1.1503 -                                     Label* L_failure);
  1.1504 -
  1.1505 -  // Simplified, combined version, good for typical uses.
  1.1506 -  // Falls through on failure.
  1.1507 -  void check_klass_subtype(Register sub_klass,
  1.1508 -                           Register super_klass,
  1.1509 -                           Register temp_reg,
  1.1510 -                           Register temp2_reg,
  1.1511 -                           Label& L_success);
  1.1512 -
  1.1513 -  // method handles (JSR 292)
  1.1514 -  // offset relative to Gargs of argument at tos[arg_slot].
  1.1515 -  // (arg_slot == 0 means the last argument, not the first).
  1.1516 -  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
  1.1517 -                                     Register temp_reg,
  1.1518 -                                     int extra_slot_offset = 0);
  1.1519 -  // Address of Gargs and argument_offset.
  1.1520 -  Address            argument_address(RegisterOrConstant arg_slot,
  1.1521 -                                      Register temp_reg = noreg,
  1.1522 -                                      int extra_slot_offset = 0);
  1.1523 -
  1.1524 -  // Stack overflow checking
  1.1525 -
  1.1526 -  // Note: this clobbers G3_scratch
  1.1527 -  void bang_stack_with_offset(int offset) {
  1.1528 -    // stack grows down, caller passes positive offset
  1.1529 -    assert(offset > 0, "must bang with negative offset");
  1.1530 -    set((-offset)+STACK_BIAS, G3_scratch);
  1.1531 -    st(G0, SP, G3_scratch);
  1.1532 -  }
  1.1533 -
  1.1534 -  // Writes to stack successive pages until offset reached to check for
  1.1535 -  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  1.1536 -  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
  1.1537 -
  1.1538 -  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
  1.1539 -
  1.1540 -  void verify_tlab();
  1.1541 -
  1.1542 -  Condition negate_condition(Condition cond);
  1.1543 -
  1.1544 -  // Helper functions for statistics gathering.
  1.1545 -  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  1.1546 -  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  1.1547 -  // Unconditional increment.
  1.1548 -  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
  1.1549 -  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
  1.1550 -
  1.1551 -  // Compare char[] arrays aligned to 4 bytes.
  1.1552 -  void char_arrays_equals(Register ary1, Register ary2,
  1.1553 -                          Register limit, Register result,
  1.1554 -                          Register chr1, Register chr2, Label& Ldone);
  1.1555 -  // Use BIS for zeroing
  1.1556 -  void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
  1.1557 -
  1.1558 -#undef VIRTUAL
  1.1559 -
  1.1560 -};
  1.1561 -
  1.1562 -/**
  1.1563 - * class SkipIfEqual:
  1.1564 - *
  1.1565 - * Instantiating this class will result in assembly code being output that will
  1.1566 - * jump around any code emitted between the creation of the instance and it's
  1.1567 - * automatic destruction at the end of a scope block, depending on the value of
  1.1568 - * the flag passed to the constructor, which will be checked at run-time.
  1.1569 - */
  1.1570 -class SkipIfEqual : public StackObj {
  1.1571 - private:
  1.1572 -  MacroAssembler* _masm;
  1.1573 -  Label _label;
  1.1574 -
  1.1575 - public:
  1.1576 -   // 'temp' is a temp register that this object can use (and trash)
  1.1577 -   SkipIfEqual(MacroAssembler*, Register temp,
  1.1578 -               const bool* flag_addr, Assembler::Condition condition);
  1.1579 -   ~SkipIfEqual();
  1.1580 -};
  1.1581 -
  1.1582 -#ifdef ASSERT
  1.1583 -// On RISC, there's no benefit to verifying instruction boundaries.
  1.1584 -inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  1.1585 -#endif
  1.1586 -
  1.1587  #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial