src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

changeset 775
ebeb6490b814
parent 718
9199f248b0ee
child 795
5d254928c888
     1.1 --- a/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp	Wed Aug 20 23:05:04 2008 -0700
     1.2 +++ b/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp	Tue Aug 26 14:54:48 2008 -0700
     1.3 @@ -3650,6 +3650,7 @@
     1.4    CompactibleFreeListSpace*  _cms_space;
     1.5    CompactibleFreeListSpace* _perm_space;
     1.6    HeapWord*     _global_finger;
     1.7 +  HeapWord*     _restart_addr;
     1.8  
     1.9    //  Exposed here for yielding support
    1.10    Mutex* const _bit_map_lock;
    1.11 @@ -3680,7 +3681,7 @@
    1.12      _term.set_task(this);
    1.13      assert(_cms_space->bottom() < _perm_space->bottom(),
    1.14             "Finger incorrectly initialized below");
    1.15 -    _global_finger = _cms_space->bottom();
    1.16 +    _restart_addr = _global_finger = _cms_space->bottom();
    1.17    }
    1.18  
    1.19  
    1.20 @@ -3698,6 +3699,10 @@
    1.21    bool result() { return _result; }
    1.22  
    1.23    void reset(HeapWord* ra) {
    1.24 +    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
    1.25 +    assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
    1.26 +    assert(ra             <  _perm_space->end(), "ra too large");
    1.27 +    _restart_addr = _global_finger = ra;
    1.28      _term.reset_for_reuse();
    1.29    }
    1.30  
    1.31 @@ -3842,16 +3847,24 @@
    1.32    int n_tasks = pst->n_tasks();
    1.33    // We allow that there may be no tasks to do here because
    1.34    // we are restarting after a stack overflow.
    1.35 -  assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
    1.36 +  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
    1.37    int nth_task = 0;
    1.38  
    1.39 -  HeapWord* start = sp->bottom();
    1.40 +  HeapWord* aligned_start = sp->bottom();
    1.41 +  if (sp->used_region().contains(_restart_addr)) {
    1.42 +    // Align down to a card boundary for the start of 0th task
    1.43 +    // for this space.
    1.44 +    aligned_start =
    1.45 +      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
    1.46 +                                 CardTableModRefBS::card_size);
    1.47 +  }
    1.48 +
    1.49    size_t chunk_size = sp->marking_task_size();
    1.50    while (!pst->is_task_claimed(/* reference */ nth_task)) {
    1.51      // Having claimed the nth task in this space,
    1.52      // compute the chunk that it corresponds to:
    1.53 -    MemRegion span = MemRegion(start + nth_task*chunk_size,
    1.54 -                               start + (nth_task+1)*chunk_size);
    1.55 +    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
    1.56 +                               aligned_start + (nth_task+1)*chunk_size);
    1.57      // Try and bump the global finger via a CAS;
    1.58      // note that we need to do the global finger bump
    1.59      // _before_ taking the intersection below, because
    1.60 @@ -3866,26 +3879,40 @@
    1.61      // beyond the "top" address of the space.
    1.62      span = span.intersection(sp->used_region());
    1.63      if (!span.is_empty()) {  // Non-null task
    1.64 -      // We want to skip the first object because
    1.65 -      // the protocol is to scan any object in its entirety
    1.66 -      // that _starts_ in this span; a fortiori, any
    1.67 -      // object starting in an earlier span is scanned
    1.68 -      // as part of an earlier claimed task.
    1.69 -      // Below we use the "careful" version of block_start
    1.70 -      // so we do not try to navigate uninitialized objects.
    1.71 -      HeapWord* prev_obj = sp->block_start_careful(span.start());
    1.72 -      // Below we use a variant of block_size that uses the
    1.73 -      // Printezis bits to avoid waiting for allocated
    1.74 -      // objects to become initialized/parsable.
    1.75 -      while (prev_obj < span.start()) {
    1.76 -        size_t sz = sp->block_size_no_stall(prev_obj, _collector);
    1.77 -        if (sz > 0) {
    1.78 -          prev_obj += sz;
    1.79 +      HeapWord* prev_obj;
    1.80 +      assert(!span.contains(_restart_addr) || nth_task == 0,
    1.81 +             "Inconsistency");
    1.82 +      if (nth_task == 0) {
    1.83 +        // For the 0th task, we'll not need to compute a block_start.
    1.84 +        if (span.contains(_restart_addr)) {
    1.85 +          // In the case of a restart because of stack overflow,
    1.86 +          // we might additionally skip a chunk prefix.
    1.87 +          prev_obj = _restart_addr;
    1.88          } else {
    1.89 -          // In this case we may end up doing a bit of redundant
    1.90 -          // scanning, but that appears unavoidable, short of
    1.91 -          // locking the free list locks; see bug 6324141.
    1.92 -          break;
    1.93 +          prev_obj = span.start();
    1.94 +        }
    1.95 +      } else {
    1.96 +        // We want to skip the first object because
    1.97 +        // the protocol is to scan any object in its entirety
    1.98 +        // that _starts_ in this span; a fortiori, any
    1.99 +        // object starting in an earlier span is scanned
   1.100 +        // as part of an earlier claimed task.
   1.101 +        // Below we use the "careful" version of block_start
   1.102 +        // so we do not try to navigate uninitialized objects.
   1.103 +        prev_obj = sp->block_start_careful(span.start());
   1.104 +        // Below we use a variant of block_size that uses the
   1.105 +        // Printezis bits to avoid waiting for allocated
   1.106 +        // objects to become initialized/parsable.
   1.107 +        while (prev_obj < span.start()) {
   1.108 +          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
   1.109 +          if (sz > 0) {
   1.110 +            prev_obj += sz;
   1.111 +          } else {
   1.112 +            // In this case we may end up doing a bit of redundant
   1.113 +            // scanning, but that appears unavoidable, short of
   1.114 +            // locking the free list locks; see bug 6324141.
   1.115 +            break;
   1.116 +          }
   1.117          }
   1.118        }
   1.119        if (prev_obj < span.end()) {
   1.120 @@ -3938,12 +3965,14 @@
   1.121    void handle_stack_overflow(HeapWord* lost);
   1.122  };
   1.123  
   1.124 -// Grey object rescan during work stealing phase --
   1.125 -// the salient assumption here is that stolen oops must
   1.126 -// always be initialized, so we do not need to check for
   1.127 -// uninitialized objects before scanning here.
   1.128 +// Grey object scanning during work stealing phase --
   1.129 +// the salient assumption here is that any references
   1.130 +// that are in these stolen objects being scanned must
   1.131 +// already have been initialized (else they would not have
   1.132 +// been published), so we do not need to check for
   1.133 +// uninitialized objects before pushing here.
   1.134  void Par_ConcMarkingClosure::do_oop(oop obj) {
   1.135 -  assert(obj->is_oop_or_null(), "expected an oop or NULL");
   1.136 +  assert(obj->is_oop_or_null(true), "expected an oop or NULL");
   1.137    HeapWord* addr = (HeapWord*)obj;
   1.138    // Check if oop points into the CMS generation
   1.139    // and is not marked
   1.140 @@ -4001,7 +4030,7 @@
   1.141  // in CMSCollector's _restart_address.
   1.142  void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
   1.143    // We need to do this under a mutex to prevent other
   1.144 -  // workers from interfering with the expansion below.
   1.145 +  // workers from interfering with the work done below.
   1.146    MutexLockerEx ml(_overflow_stack->par_lock(),
   1.147                     Mutex::_no_safepoint_check_flag);
   1.148    // Remember the least grey address discarded
   1.149 @@ -6554,7 +6583,7 @@
   1.150    if (obj != NULL) {
   1.151      // Ignore mark word because this could be an already marked oop
   1.152      // that may be chained at the end of the overflow list.
   1.153 -    assert(obj->is_oop(), "expected an oop");
   1.154 +    assert(obj->is_oop(true), "expected an oop");
   1.155      HeapWord* addr = (HeapWord*)obj;
   1.156      if (_span.contains(addr) &&
   1.157          !_bit_map->isMarked(addr)) {
   1.158 @@ -7289,6 +7318,8 @@
   1.159    _should_remember_klasses(collector->should_unload_classes())
   1.160  { }
   1.161  
   1.162 +// Assumes thread-safe access by callers, who are
   1.163 +// responsible for mutual exclusion.
   1.164  void CMSCollector::lower_restart_addr(HeapWord* low) {
   1.165    assert(_span.contains(low), "Out of bounds addr");
   1.166    if (_restart_addr == NULL) {
   1.167 @@ -7314,7 +7345,7 @@
   1.168  // in CMSCollector's _restart_address.
   1.169  void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
   1.170    // We need to do this under a mutex to prevent other
   1.171 -  // workers from interfering with the expansion below.
   1.172 +  // workers from interfering with the work done below.
   1.173    MutexLockerEx ml(_overflow_stack->par_lock(),
   1.174                     Mutex::_no_safepoint_check_flag);
   1.175    // Remember the least grey address discarded

mercurial