src/share/vm/gc_implementation/g1/g1ParScanThreadState.hpp

changeset 6937
b0c374311c4e
child 6938
a2328cbebb23
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/g1/g1ParScanThreadState.hpp	Mon Jul 21 09:41:04 2014 +0200
     1.3 @@ -0,0 +1,292 @@
     1.4 +/*
     1.5 + * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
    1.29 +#define SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
    1.30 +
    1.31 +#include "gc_implementation/g1/dirtyCardQueue.hpp"
    1.32 +#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    1.33 +#include "gc_implementation/g1/g1CollectedHeap.hpp"
    1.34 +#include "gc_implementation/g1/g1CollectorPolicy.hpp"
    1.35 +#include "gc_implementation/g1/g1OopClosures.hpp"
    1.36 +#include "gc_implementation/g1/g1RemSet.hpp"
    1.37 +#include "gc_implementation/shared/ageTable.hpp"
    1.38 +#include "memory/allocation.hpp"
    1.39 +#include "oops/oop.hpp"
    1.40 +
    1.41 +class HeapRegion;
    1.42 +class outputStream;
    1.43 +
    1.44 +class G1ParScanThreadState : public StackObj {
    1.45 +protected:
    1.46 +  G1CollectedHeap* _g1h;
    1.47 +  RefToScanQueue*  _refs;
    1.48 +  DirtyCardQueue   _dcq;
    1.49 +  G1SATBCardTableModRefBS* _ct_bs;
    1.50 +  G1RemSet* _g1_rem;
    1.51 +
    1.52 +  G1ParGCAllocBuffer  _surviving_alloc_buffer;
    1.53 +  G1ParGCAllocBuffer  _tenured_alloc_buffer;
    1.54 +  G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
    1.55 +  ageTable            _age_table;
    1.56 +
    1.57 +  G1ParScanClosure    _scanner;
    1.58 +
    1.59 +  size_t           _alloc_buffer_waste;
    1.60 +  size_t           _undo_waste;
    1.61 +
    1.62 +  OopsInHeapRegionClosure*      _evac_failure_cl;
    1.63 +
    1.64 +  int  _hash_seed;
    1.65 +  uint _queue_num;
    1.66 +
    1.67 +  size_t _term_attempts;
    1.68 +
    1.69 +  double _start;
    1.70 +  double _start_strong_roots;
    1.71 +  double _strong_roots_time;
    1.72 +  double _start_term;
    1.73 +  double _term_time;
    1.74 +
    1.75 +  // Map from young-age-index (0 == not young, 1 is youngest) to
    1.76 +  // surviving words. base is what we get back from the malloc call
    1.77 +  size_t* _surviving_young_words_base;
    1.78 +  // this points into the array, as we use the first few entries for padding
    1.79 +  size_t* _surviving_young_words;
    1.80 +
    1.81 +#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
    1.82 +
    1.83 +  void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
    1.84 +
    1.85 +  void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
    1.86 +
    1.87 +  DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
    1.88 +  G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
    1.89 +
    1.90 +  template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
    1.91 +
    1.92 +  template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
    1.93 +    // If the new value of the field points to the same region or
    1.94 +    // is the to-space, we don't need to include it in the Rset updates.
    1.95 +    if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
    1.96 +      size_t card_index = ctbs()->index_for(p);
    1.97 +      // If the card hasn't been added to the buffer, do it.
    1.98 +      if (ctbs()->mark_card_deferred(card_index)) {
    1.99 +        dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
   1.100 +      }
   1.101 +    }
   1.102 +  }
   1.103 +
   1.104 +public:
   1.105 +  G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
   1.106 +  ~G1ParScanThreadState() {
   1.107 +    retire_alloc_buffers();
   1.108 +    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
   1.109 +  }
   1.110 +
   1.111 +  RefToScanQueue*   refs()            { return _refs;             }
   1.112 +  ageTable*         age_table()       { return &_age_table;       }
   1.113 +
   1.114 +  G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
   1.115 +    return _alloc_buffers[purpose];
   1.116 +  }
   1.117 +
   1.118 +  size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
   1.119 +  size_t undo_waste() const                      { return _undo_waste; }
   1.120 +
   1.121 +#ifdef ASSERT
   1.122 +  bool verify_ref(narrowOop* ref) const;
   1.123 +  bool verify_ref(oop* ref) const;
   1.124 +  bool verify_task(StarTask ref) const;
   1.125 +#endif // ASSERT
   1.126 +
   1.127 +  template <class T> void push_on_queue(T* ref) {
   1.128 +    assert(verify_ref(ref), "sanity");
   1.129 +    refs()->push(ref);
   1.130 +  }
   1.131 +
   1.132 +  template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
   1.133 +
   1.134 +  HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
   1.135 +    HeapWord* obj = NULL;
   1.136 +    size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
   1.137 +    if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
   1.138 +      G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
   1.139 +      add_to_alloc_buffer_waste(alloc_buf->words_remaining());
   1.140 +      alloc_buf->retire(false /* end_of_gc */, false /* retain */);
   1.141 +
   1.142 +      HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
   1.143 +      if (buf == NULL) return NULL; // Let caller handle allocation failure.
   1.144 +      // Otherwise.
   1.145 +      alloc_buf->set_word_size(gclab_word_size);
   1.146 +      alloc_buf->set_buf(buf);
   1.147 +
   1.148 +      obj = alloc_buf->allocate(word_sz);
   1.149 +      assert(obj != NULL, "buffer was definitely big enough...");
   1.150 +    } else {
   1.151 +      obj = _g1h->par_allocate_during_gc(purpose, word_sz);
   1.152 +    }
   1.153 +    return obj;
   1.154 +  }
   1.155 +
   1.156 +  HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
   1.157 +    HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
   1.158 +    if (obj != NULL) return obj;
   1.159 +    return allocate_slow(purpose, word_sz);
   1.160 +  }
   1.161 +
   1.162 +  void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
   1.163 +    if (alloc_buffer(purpose)->contains(obj)) {
   1.164 +      assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
   1.165 +             "should contain whole object");
   1.166 +      alloc_buffer(purpose)->undo_allocation(obj, word_sz);
   1.167 +    } else {
   1.168 +      CollectedHeap::fill_with_object(obj, word_sz);
   1.169 +      add_to_undo_waste(word_sz);
   1.170 +    }
   1.171 +  }
   1.172 +
   1.173 +  void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
   1.174 +    _evac_failure_cl = evac_failure_cl;
   1.175 +  }
   1.176 +  OopsInHeapRegionClosure* evac_failure_closure() {
   1.177 +    return _evac_failure_cl;
   1.178 +  }
   1.179 +
   1.180 +  int* hash_seed() { return &_hash_seed; }
   1.181 +  uint queue_num() { return _queue_num; }
   1.182 +
   1.183 +  size_t term_attempts() const  { return _term_attempts; }
   1.184 +  void note_term_attempt() { _term_attempts++; }
   1.185 +
   1.186 +  void start_strong_roots() {
   1.187 +    _start_strong_roots = os::elapsedTime();
   1.188 +  }
   1.189 +  void end_strong_roots() {
   1.190 +    _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
   1.191 +  }
   1.192 +  double strong_roots_time() const { return _strong_roots_time; }
   1.193 +
   1.194 +  void start_term_time() {
   1.195 +    note_term_attempt();
   1.196 +    _start_term = os::elapsedTime();
   1.197 +  }
   1.198 +  void end_term_time() {
   1.199 +    _term_time += (os::elapsedTime() - _start_term);
   1.200 +  }
   1.201 +  double term_time() const { return _term_time; }
   1.202 +
   1.203 +  double elapsed_time() const {
   1.204 +    return os::elapsedTime() - _start;
   1.205 +  }
   1.206 +
   1.207 +  static void
   1.208 +    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
   1.209 +  void
   1.210 +    print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
   1.211 +
   1.212 +  size_t* surviving_young_words() {
   1.213 +    // We add on to hide entry 0 which accumulates surviving words for
   1.214 +    // age -1 regions (i.e. non-young ones)
   1.215 +    return _surviving_young_words;
   1.216 +  }
   1.217 +
   1.218 + private:
   1.219 +  void retire_alloc_buffers() {
   1.220 +    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
   1.221 +      size_t waste = _alloc_buffers[ap]->words_remaining();
   1.222 +      add_to_alloc_buffer_waste(waste);
   1.223 +      _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
   1.224 +                                                 true /* end_of_gc */,
   1.225 +                                                 false /* retain */);
   1.226 +    }
   1.227 +  }
   1.228 +
   1.229 +  #define G1_PARTIAL_ARRAY_MASK 0x2
   1.230 +
   1.231 +  inline bool has_partial_array_mask(oop* ref) const {
   1.232 +    return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
   1.233 +  }
   1.234 +
   1.235 +  // We never encode partial array oops as narrowOop*, so return false immediately.
   1.236 +  // This allows the compiler to create optimized code when popping references from
   1.237 +  // the work queue.
   1.238 +  inline bool has_partial_array_mask(narrowOop* ref) const {
   1.239 +    assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
   1.240 +    return false;
   1.241 +  }
   1.242 +
   1.243 +  // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
   1.244 +  // We always encode partial arrays as regular oop, to allow the
   1.245 +  // specialization for has_partial_array_mask() for narrowOops above.
   1.246 +  // This means that unintentional use of this method with narrowOops are caught
   1.247 +  // by the compiler.
   1.248 +  inline oop* set_partial_array_mask(oop obj) const {
   1.249 +    assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
   1.250 +    return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
   1.251 +  }
   1.252 +
   1.253 +  inline oop clear_partial_array_mask(oop* ref) const {
   1.254 +    return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
   1.255 +  }
   1.256 +
   1.257 +  inline void do_oop_partial_array(oop* p);
   1.258 +
   1.259 +  // This method is applied to the fields of the objects that have just been copied.
   1.260 +  template <class T> void do_oop_evac(T* p, HeapRegion* from) {
   1.261 +    assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
   1.262 +           "Reference should not be NULL here as such are never pushed to the task queue.");
   1.263 +    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   1.264 +
   1.265 +    // Although we never intentionally push references outside of the collection
   1.266 +    // set, due to (benign) races in the claim mechanism during RSet scanning more
   1.267 +    // than one thread might claim the same card. So the same card may be
   1.268 +    // processed multiple times. So redo this check.
   1.269 +    if (_g1h->in_cset_fast_test(obj)) {
   1.270 +      oop forwardee;
   1.271 +      if (obj->is_forwarded()) {
   1.272 +        forwardee = obj->forwardee();
   1.273 +      } else {
   1.274 +        forwardee = copy_to_survivor_space(obj);
   1.275 +      }
   1.276 +      assert(forwardee != NULL, "forwardee should not be NULL");
   1.277 +      oopDesc::encode_store_heap_oop(p, forwardee);
   1.278 +    }
   1.279 +
   1.280 +    assert(obj != NULL, "Must be");
   1.281 +    update_rs(from, p, queue_num());
   1.282 +  }
   1.283 +public:
   1.284 +
   1.285 +  oop copy_to_survivor_space(oop const obj);
   1.286 +
   1.287 +  template <class T> inline void deal_with_reference(T* ref_to_scan);
   1.288 +
   1.289 +  inline void deal_with_reference(StarTask ref);
   1.290 +
   1.291 +public:
   1.292 +  void trim_queue();
   1.293 +};
   1.294 +
   1.295 +#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP

mercurial