src/share/vm/opto/parse2.cpp

changeset 435
a61af66fc99e
child 452
ff5961f4c095
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/parse2.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,2171 @@
     1.4 +/*
     1.5 + * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "incls/_precompiled.incl"
    1.29 +#include "incls/_parse2.cpp.incl"
    1.30 +
    1.31 +extern int explicit_null_checks_inserted,
    1.32 +           explicit_null_checks_elided;
    1.33 +
    1.34 +//---------------------------------array_load----------------------------------
    1.35 +void Parse::array_load(BasicType elem_type) {
    1.36 +  const Type* elem = Type::TOP;
    1.37 +  Node* adr = array_addressing(elem_type, 0, &elem);
    1.38 +  if (stopped())  return;     // guarenteed null or range check
    1.39 +  _sp -= 2;                   // Pop array and index
    1.40 +  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    1.41 +  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    1.42 +  push(ld);
    1.43 +}
    1.44 +
    1.45 +
    1.46 +//--------------------------------array_store----------------------------------
    1.47 +void Parse::array_store(BasicType elem_type) {
    1.48 +  Node* adr = array_addressing(elem_type, 1);
    1.49 +  if (stopped())  return;     // guarenteed null or range check
    1.50 +  Node* val = pop();
    1.51 +  _sp -= 2;                   // Pop array and index
    1.52 +  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    1.53 +  store_to_memory(control(), adr, val, elem_type, adr_type);
    1.54 +}
    1.55 +
    1.56 +
    1.57 +//------------------------------array_addressing-------------------------------
    1.58 +// Pull array and index from the stack.  Compute pointer-to-element.
    1.59 +Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    1.60 +  Node *idx   = peek(0+vals);   // Get from stack without popping
    1.61 +  Node *ary   = peek(1+vals);   // in case of exception
    1.62 +
    1.63 +  // Null check the array base, with correct stack contents
    1.64 +  ary = do_null_check(ary, T_ARRAY);
    1.65 +  // Compile-time detect of null-exception?
    1.66 +  if (stopped())  return top();
    1.67 +
    1.68 +  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    1.69 +  const TypeInt*    sizetype = arytype->size();
    1.70 +  const Type*       elemtype = arytype->elem();
    1.71 +
    1.72 +  if (UseUniqueSubclasses && result2 != NULL) {
    1.73 +    const TypeInstPtr* toop = elemtype->isa_instptr();
    1.74 +    if (toop) {
    1.75 +      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    1.76 +        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    1.77 +        const Type* subklass = Type::get_const_type(toop->klass());
    1.78 +        elemtype = subklass->join(elemtype);
    1.79 +      }
    1.80 +    }
    1.81 +  }
    1.82 +
    1.83 +  // Check for big class initializers with all constant offsets
    1.84 +  // feeding into a known-size array.
    1.85 +  const TypeInt* idxtype = _gvn.type(idx)->is_int();
    1.86 +  // See if the highest idx value is less than the lowest array bound,
    1.87 +  // and if the idx value cannot be negative:
    1.88 +  bool need_range_check = true;
    1.89 +  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    1.90 +    need_range_check = false;
    1.91 +    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    1.92 +  }
    1.93 +
    1.94 +  if (!arytype->klass()->is_loaded()) {
    1.95 +    // Only fails for some -Xcomp runs
    1.96 +    // The class is unloaded.  We have to run this bytecode in the interpreter.
    1.97 +    uncommon_trap(Deoptimization::Reason_unloaded,
    1.98 +                  Deoptimization::Action_reinterpret,
    1.99 +                  arytype->klass(), "!loaded array");
   1.100 +    return top();
   1.101 +  }
   1.102 +
   1.103 +  // Do the range check
   1.104 +  if (GenerateRangeChecks && need_range_check) {
   1.105 +    // Range is constant in array-oop, so we can use the original state of mem
   1.106 +    Node* len = load_array_length(ary);
   1.107 +    // Test length vs index (standard trick using unsigned compare)
   1.108 +    Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   1.109 +    BoolTest::mask btest = BoolTest::lt;
   1.110 +    Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   1.111 +    // Branch to failure if out of bounds
   1.112 +    { BuildCutout unless(this, tst, PROB_MAX);
   1.113 +      if (C->allow_range_check_smearing()) {
   1.114 +        // Do not use builtin_throw, since range checks are sometimes
   1.115 +        // made more stringent by an optimistic transformation.
   1.116 +        // This creates "tentative" range checks at this point,
   1.117 +        // which are not guaranteed to throw exceptions.
   1.118 +        // See IfNode::Ideal, is_range_check, adjust_check.
   1.119 +        uncommon_trap(Deoptimization::Reason_range_check,
   1.120 +                      Deoptimization::Action_make_not_entrant,
   1.121 +                      NULL, "range_check");
   1.122 +      } else {
   1.123 +        // If we have already recompiled with the range-check-widening
   1.124 +        // heroic optimization turned off, then we must really be throwing
   1.125 +        // range check exceptions.
   1.126 +        builtin_throw(Deoptimization::Reason_range_check, idx);
   1.127 +      }
   1.128 +    }
   1.129 +  }
   1.130 +  // Check for always knowing you are throwing a range-check exception
   1.131 +  if (stopped())  return top();
   1.132 +
   1.133 +  Node* ptr = array_element_address( ary, idx, type, sizetype);
   1.134 +
   1.135 +  if (result2 != NULL)  *result2 = elemtype;
   1.136 +  return ptr;
   1.137 +}
   1.138 +
   1.139 +
   1.140 +// returns IfNode
   1.141 +IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   1.142 +  Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   1.143 +  Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   1.144 +  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   1.145 +  return iff;
   1.146 +}
   1.147 +
   1.148 +// return Region node
   1.149 +Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   1.150 +  Node *region  = new (C, 3) RegionNode(3); // 2 results
   1.151 +  record_for_igvn(region);
   1.152 +  region->init_req(1, iffalse);
   1.153 +  region->init_req(2, iftrue );
   1.154 +  _gvn.set_type(region, Type::CONTROL);
   1.155 +  region = _gvn.transform(region);
   1.156 +  set_control (region);
   1.157 +  return region;
   1.158 +}
   1.159 +
   1.160 +
   1.161 +//------------------------------helper for tableswitch-------------------------
   1.162 +void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   1.163 +  // True branch, use existing map info
   1.164 +  { PreserveJVMState pjvms(this);
   1.165 +    Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   1.166 +    set_control( iftrue );
   1.167 +    profile_switch_case(prof_table_index);
   1.168 +    merge_new_path(dest_bci_if_true);
   1.169 +  }
   1.170 +
   1.171 +  // False branch
   1.172 +  Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   1.173 +  set_control( iffalse );
   1.174 +}
   1.175 +
   1.176 +void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   1.177 +  // True branch, use existing map info
   1.178 +  { PreserveJVMState pjvms(this);
   1.179 +    Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   1.180 +    set_control( iffalse );
   1.181 +    profile_switch_case(prof_table_index);
   1.182 +    merge_new_path(dest_bci_if_true);
   1.183 +  }
   1.184 +
   1.185 +  // False branch
   1.186 +  Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   1.187 +  set_control( iftrue );
   1.188 +}
   1.189 +
   1.190 +void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   1.191 +  // False branch, use existing map and control()
   1.192 +  profile_switch_case(prof_table_index);
   1.193 +  merge_new_path(dest_bci);
   1.194 +}
   1.195 +
   1.196 +
   1.197 +extern "C" {
   1.198 +  static int jint_cmp(const void *i, const void *j) {
   1.199 +    int a = *(jint *)i;
   1.200 +    int b = *(jint *)j;
   1.201 +    return a > b ? 1 : a < b ? -1 : 0;
   1.202 +  }
   1.203 +}
   1.204 +
   1.205 +
   1.206 +// Default value for methodData switch indexing. Must be a negative value to avoid
   1.207 +// conflict with any legal switch index.
   1.208 +#define NullTableIndex -1
   1.209 +
   1.210 +class SwitchRange : public StackObj {
   1.211 +  // a range of integers coupled with a bci destination
   1.212 +  jint _lo;                     // inclusive lower limit
   1.213 +  jint _hi;                     // inclusive upper limit
   1.214 +  int _dest;
   1.215 +  int _table_index;             // index into method data table
   1.216 +
   1.217 +public:
   1.218 +  jint lo() const              { return _lo;   }
   1.219 +  jint hi() const              { return _hi;   }
   1.220 +  int  dest() const            { return _dest; }
   1.221 +  int  table_index() const     { return _table_index; }
   1.222 +  bool is_singleton() const    { return _lo == _hi; }
   1.223 +
   1.224 +  void setRange(jint lo, jint hi, int dest, int table_index) {
   1.225 +    assert(lo <= hi, "must be a non-empty range");
   1.226 +    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   1.227 +  }
   1.228 +  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   1.229 +    assert(lo <= hi, "must be a non-empty range");
   1.230 +    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   1.231 +      _hi = hi;
   1.232 +      return true;
   1.233 +    }
   1.234 +    return false;
   1.235 +  }
   1.236 +
   1.237 +  void set (jint value, int dest, int table_index) {
   1.238 +    setRange(value, value, dest, table_index);
   1.239 +  }
   1.240 +  bool adjoin(jint value, int dest, int table_index) {
   1.241 +    return adjoinRange(value, value, dest, table_index);
   1.242 +  }
   1.243 +
   1.244 +  void print(ciEnv* env) {
   1.245 +    if (is_singleton())
   1.246 +      tty->print(" {%d}=>%d", lo(), dest());
   1.247 +    else if (lo() == min_jint)
   1.248 +      tty->print(" {..%d}=>%d", hi(), dest());
   1.249 +    else if (hi() == max_jint)
   1.250 +      tty->print(" {%d..}=>%d", lo(), dest());
   1.251 +    else
   1.252 +      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   1.253 +  }
   1.254 +};
   1.255 +
   1.256 +
   1.257 +//-------------------------------do_tableswitch--------------------------------
   1.258 +void Parse::do_tableswitch() {
   1.259 +  Node* lookup = pop();
   1.260 +
   1.261 +  // Get information about tableswitch
   1.262 +  int default_dest = iter().get_dest_table(0);
   1.263 +  int lo_index     = iter().get_int_table(1);
   1.264 +  int hi_index     = iter().get_int_table(2);
   1.265 +  int len          = hi_index - lo_index + 1;
   1.266 +
   1.267 +  if (len < 1) {
   1.268 +    // If this is a backward branch, add safepoint
   1.269 +    maybe_add_safepoint(default_dest);
   1.270 +    merge(default_dest);
   1.271 +    return;
   1.272 +  }
   1.273 +
   1.274 +  // generate decision tree, using trichotomy when possible
   1.275 +  int rnum = len+2;
   1.276 +  bool makes_backward_branch = false;
   1.277 +  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   1.278 +  int rp = -1;
   1.279 +  if (lo_index != min_jint) {
   1.280 +    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   1.281 +  }
   1.282 +  for (int j = 0; j < len; j++) {
   1.283 +    jint match_int = lo_index+j;
   1.284 +    int  dest      = iter().get_dest_table(j+3);
   1.285 +    makes_backward_branch |= (dest <= bci());
   1.286 +    int  table_index = method_data_update() ? j : NullTableIndex;
   1.287 +    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   1.288 +      ranges[++rp].set(match_int, dest, table_index);
   1.289 +    }
   1.290 +  }
   1.291 +  jint highest = lo_index+(len-1);
   1.292 +  assert(ranges[rp].hi() == highest, "");
   1.293 +  if (highest != max_jint
   1.294 +      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   1.295 +    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   1.296 +  }
   1.297 +  assert(rp < len+2, "not too many ranges");
   1.298 +
   1.299 +  // Safepoint in case if backward branch observed
   1.300 +  if( makes_backward_branch && UseLoopSafepoints )
   1.301 +    add_safepoint();
   1.302 +
   1.303 +  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   1.304 +}
   1.305 +
   1.306 +
   1.307 +//------------------------------do_lookupswitch--------------------------------
   1.308 +void Parse::do_lookupswitch() {
   1.309 +  Node *lookup = pop();         // lookup value
   1.310 +  // Get information about lookupswitch
   1.311 +  int default_dest = iter().get_dest_table(0);
   1.312 +  int len          = iter().get_int_table(1);
   1.313 +
   1.314 +  if (len < 1) {    // If this is a backward branch, add safepoint
   1.315 +    maybe_add_safepoint(default_dest);
   1.316 +    merge(default_dest);
   1.317 +    return;
   1.318 +  }
   1.319 +
   1.320 +  // generate decision tree, using trichotomy when possible
   1.321 +  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   1.322 +  {
   1.323 +    for( int j = 0; j < len; j++ ) {
   1.324 +      table[j+j+0] = iter().get_int_table(2+j+j);
   1.325 +      table[j+j+1] = iter().get_dest_table(2+j+j+1);
   1.326 +    }
   1.327 +    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   1.328 +  }
   1.329 +
   1.330 +  int rnum = len*2+1;
   1.331 +  bool makes_backward_branch = false;
   1.332 +  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   1.333 +  int rp = -1;
   1.334 +  for( int j = 0; j < len; j++ ) {
   1.335 +    jint match_int   = table[j+j+0];
   1.336 +    int  dest        = table[j+j+1];
   1.337 +    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   1.338 +    int  table_index = method_data_update() ? j : NullTableIndex;
   1.339 +    makes_backward_branch |= (dest <= bci());
   1.340 +    if( match_int != next_lo ) {
   1.341 +      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   1.342 +    }
   1.343 +    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   1.344 +      ranges[++rp].set(match_int, dest, table_index);
   1.345 +    }
   1.346 +  }
   1.347 +  jint highest = table[2*(len-1)];
   1.348 +  assert(ranges[rp].hi() == highest, "");
   1.349 +  if( highest != max_jint
   1.350 +      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   1.351 +    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   1.352 +  }
   1.353 +  assert(rp < rnum, "not too many ranges");
   1.354 +
   1.355 +  // Safepoint in case backward branch observed
   1.356 +  if( makes_backward_branch && UseLoopSafepoints )
   1.357 +    add_safepoint();
   1.358 +
   1.359 +  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   1.360 +}
   1.361 +
   1.362 +//----------------------------create_jump_tables-------------------------------
   1.363 +bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   1.364 +  // Are jumptables enabled
   1.365 +  if (!UseJumpTables)  return false;
   1.366 +
   1.367 +  // Are jumptables supported
   1.368 +  if (!Matcher::has_match_rule(Op_Jump))  return false;
   1.369 +
   1.370 +  // Don't make jump table if profiling
   1.371 +  if (method_data_update())  return false;
   1.372 +
   1.373 +  // Decide if a guard is needed to lop off big ranges at either (or
   1.374 +  // both) end(s) of the input set. We'll call this the default target
   1.375 +  // even though we can't be sure that it is the true "default".
   1.376 +
   1.377 +  bool needs_guard = false;
   1.378 +  int default_dest;
   1.379 +  int64 total_outlier_size = 0;
   1.380 +  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   1.381 +  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   1.382 +
   1.383 +  if (lo->dest() == hi->dest()) {
   1.384 +    total_outlier_size = hi_size + lo_size;
   1.385 +    default_dest = lo->dest();
   1.386 +  } else if (lo_size > hi_size) {
   1.387 +    total_outlier_size = lo_size;
   1.388 +    default_dest = lo->dest();
   1.389 +  } else {
   1.390 +    total_outlier_size = hi_size;
   1.391 +    default_dest = hi->dest();
   1.392 +  }
   1.393 +
   1.394 +  // If a guard test will eliminate very sparse end ranges, then
   1.395 +  // it is worth the cost of an extra jump.
   1.396 +  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   1.397 +    needs_guard = true;
   1.398 +    if (default_dest == lo->dest()) lo++;
   1.399 +    if (default_dest == hi->dest()) hi--;
   1.400 +  }
   1.401 +
   1.402 +  // Find the total number of cases and ranges
   1.403 +  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   1.404 +  int num_range = hi - lo + 1;
   1.405 +
   1.406 +  // Don't create table if: too large, too small, or too sparse.
   1.407 +  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   1.408 +    return false;
   1.409 +  if (num_cases > (MaxJumpTableSparseness * num_range))
   1.410 +    return false;
   1.411 +
   1.412 +  // Normalize table lookups to zero
   1.413 +  int lowval = lo->lo();
   1.414 +  key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   1.415 +
   1.416 +  // Generate a guard to protect against input keyvals that aren't
   1.417 +  // in the switch domain.
   1.418 +  if (needs_guard) {
   1.419 +    Node*   size = _gvn.intcon(num_cases);
   1.420 +    Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   1.421 +    Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   1.422 +    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   1.423 +    jump_if_true_fork(iff, default_dest, NullTableIndex);
   1.424 +  }
   1.425 +
   1.426 +  // Create an ideal node JumpTable that has projections
   1.427 +  // of all possible ranges for a switch statement
   1.428 +  // The key_val input must be converted to a pointer offset and scaled.
   1.429 +  // Compare Parse::array_addressing above.
   1.430 +#ifdef _LP64
   1.431 +  // Clean the 32-bit int into a real 64-bit offset.
   1.432 +  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   1.433 +  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   1.434 +  key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   1.435 +#endif
   1.436 +  // Shift the value by wordsize so we have an index into the table, rather
   1.437 +  // than a switch value
   1.438 +  Node *shiftWord = _gvn.MakeConX(wordSize);
   1.439 +  key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   1.440 +
   1.441 +  // Create the JumpNode
   1.442 +  Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   1.443 +
   1.444 +  // These are the switch destinations hanging off the jumpnode
   1.445 +  int i = 0;
   1.446 +  for (SwitchRange* r = lo; r <= hi; r++) {
   1.447 +    for (int j = r->lo(); j <= r->hi(); j++, i++) {
   1.448 +      Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   1.449 +      {
   1.450 +        PreserveJVMState pjvms(this);
   1.451 +        set_control(input);
   1.452 +        jump_if_always_fork(r->dest(), r->table_index());
   1.453 +      }
   1.454 +    }
   1.455 +  }
   1.456 +  assert(i == num_cases, "miscount of cases");
   1.457 +  stop_and_kill_map();  // no more uses for this JVMS
   1.458 +  return true;
   1.459 +}
   1.460 +
   1.461 +//----------------------------jump_switch_ranges-------------------------------
   1.462 +void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   1.463 +  Block* switch_block = block();
   1.464 +
   1.465 +  if (switch_depth == 0) {
   1.466 +    // Do special processing for the top-level call.
   1.467 +    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   1.468 +    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   1.469 +
   1.470 +    // Decrement pred-numbers for the unique set of nodes.
   1.471 +#ifdef ASSERT
   1.472 +    // Ensure that the block's successors are a (duplicate-free) set.
   1.473 +    int successors_counted = 0;  // block occurrences in [hi..lo]
   1.474 +    int unique_successors = switch_block->num_successors();
   1.475 +    for (int i = 0; i < unique_successors; i++) {
   1.476 +      Block* target = switch_block->successor_at(i);
   1.477 +
   1.478 +      // Check that the set of successors is the same in both places.
   1.479 +      int successors_found = 0;
   1.480 +      for (SwitchRange* p = lo; p <= hi; p++) {
   1.481 +        if (p->dest() == target->start())  successors_found++;
   1.482 +      }
   1.483 +      assert(successors_found > 0, "successor must be known");
   1.484 +      successors_counted += successors_found;
   1.485 +    }
   1.486 +    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   1.487 +#endif
   1.488 +
   1.489 +    // Maybe prune the inputs, based on the type of key_val.
   1.490 +    jint min_val = min_jint;
   1.491 +    jint max_val = max_jint;
   1.492 +    const TypeInt* ti = key_val->bottom_type()->isa_int();
   1.493 +    if (ti != NULL) {
   1.494 +      min_val = ti->_lo;
   1.495 +      max_val = ti->_hi;
   1.496 +      assert(min_val <= max_val, "invalid int type");
   1.497 +    }
   1.498 +    while (lo->hi() < min_val)  lo++;
   1.499 +    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   1.500 +    while (hi->lo() > max_val)  hi--;
   1.501 +    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   1.502 +  }
   1.503 +
   1.504 +#ifndef PRODUCT
   1.505 +  if (switch_depth == 0) {
   1.506 +    _max_switch_depth = 0;
   1.507 +    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   1.508 +  }
   1.509 +#endif
   1.510 +
   1.511 +  assert(lo <= hi, "must be a non-empty set of ranges");
   1.512 +  if (lo == hi) {
   1.513 +    jump_if_always_fork(lo->dest(), lo->table_index());
   1.514 +  } else {
   1.515 +    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   1.516 +    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   1.517 +
   1.518 +    if (create_jump_tables(key_val, lo, hi)) return;
   1.519 +
   1.520 +    int nr = hi - lo + 1;
   1.521 +
   1.522 +    SwitchRange* mid = lo + nr/2;
   1.523 +    // if there is an easy choice, pivot at a singleton:
   1.524 +    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   1.525 +
   1.526 +    assert(lo < mid && mid <= hi, "good pivot choice");
   1.527 +    assert(nr != 2 || mid == hi,   "should pick higher of 2");
   1.528 +    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   1.529 +
   1.530 +    Node *test_val = _gvn.intcon(mid->lo());
   1.531 +
   1.532 +    if (mid->is_singleton()) {
   1.533 +      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   1.534 +      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   1.535 +
   1.536 +      // Special Case:  If there are exactly three ranges, and the high
   1.537 +      // and low range each go to the same place, omit the "gt" test,
   1.538 +      // since it will not discriminate anything.
   1.539 +      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   1.540 +      if (eq_test_only) {
   1.541 +        assert(mid == hi-1, "");
   1.542 +      }
   1.543 +
   1.544 +      // if there is a higher range, test for it and process it:
   1.545 +      if (mid < hi && !eq_test_only) {
   1.546 +        // two comparisons of same values--should enable 1 test for 2 branches
   1.547 +        // Use BoolTest::le instead of BoolTest::gt
   1.548 +        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   1.549 +        Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   1.550 +        Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   1.551 +        { PreserveJVMState pjvms(this);
   1.552 +          set_control(iffalse);
   1.553 +          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   1.554 +        }
   1.555 +        set_control(iftrue);
   1.556 +      }
   1.557 +
   1.558 +    } else {
   1.559 +      // mid is a range, not a singleton, so treat mid..hi as a unit
   1.560 +      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   1.561 +
   1.562 +      // if there is a higher range, test for it and process it:
   1.563 +      if (mid == hi) {
   1.564 +        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   1.565 +      } else {
   1.566 +        Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   1.567 +        Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   1.568 +        { PreserveJVMState pjvms(this);
   1.569 +          set_control(iftrue);
   1.570 +          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   1.571 +        }
   1.572 +        set_control(iffalse);
   1.573 +      }
   1.574 +    }
   1.575 +
   1.576 +    // in any case, process the lower range
   1.577 +    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   1.578 +  }
   1.579 +
   1.580 +  // Decrease pred_count for each successor after all is done.
   1.581 +  if (switch_depth == 0) {
   1.582 +    int unique_successors = switch_block->num_successors();
   1.583 +    for (int i = 0; i < unique_successors; i++) {
   1.584 +      Block* target = switch_block->successor_at(i);
   1.585 +      // Throw away the pre-allocated path for each unique successor.
   1.586 +      target->next_path_num();
   1.587 +    }
   1.588 +  }
   1.589 +
   1.590 +#ifndef PRODUCT
   1.591 +  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   1.592 +  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   1.593 +    SwitchRange* r;
   1.594 +    int nsing = 0;
   1.595 +    for( r = lo; r <= hi; r++ ) {
   1.596 +      if( r->is_singleton() )  nsing++;
   1.597 +    }
   1.598 +    tty->print(">>> ");
   1.599 +    _method->print_short_name();
   1.600 +    tty->print_cr(" switch decision tree");
   1.601 +    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   1.602 +                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   1.603 +    if (_max_switch_depth > _est_switch_depth) {
   1.604 +      tty->print_cr("******** BAD SWITCH DEPTH ********");
   1.605 +    }
   1.606 +    tty->print("   ");
   1.607 +    for( r = lo; r <= hi; r++ ) {
   1.608 +      r->print(env());
   1.609 +    }
   1.610 +    tty->print_cr("");
   1.611 +  }
   1.612 +#endif
   1.613 +}
   1.614 +
   1.615 +void Parse::modf() {
   1.616 +  Node *f2 = pop();
   1.617 +  Node *f1 = pop();
   1.618 +  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   1.619 +                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   1.620 +                              "frem", NULL, //no memory effects
   1.621 +                              f1, f2);
   1.622 +  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   1.623 +
   1.624 +  push(res);
   1.625 +}
   1.626 +
   1.627 +void Parse::modd() {
   1.628 +  Node *d2 = pop_pair();
   1.629 +  Node *d1 = pop_pair();
   1.630 +  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   1.631 +                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   1.632 +                              "drem", NULL, //no memory effects
   1.633 +                              d1, top(), d2, top());
   1.634 +  Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   1.635 +
   1.636 +#ifdef ASSERT
   1.637 +  Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   1.638 +  assert(res_top == top(), "second value must be top");
   1.639 +#endif
   1.640 +
   1.641 +  push_pair(res_d);
   1.642 +}
   1.643 +
   1.644 +void Parse::l2f() {
   1.645 +  Node* f2 = pop();
   1.646 +  Node* f1 = pop();
   1.647 +  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   1.648 +                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   1.649 +                              "l2f", NULL, //no memory effects
   1.650 +                              f1, f2);
   1.651 +  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   1.652 +
   1.653 +  push(res);
   1.654 +}
   1.655 +
   1.656 +void Parse::do_irem() {
   1.657 +  // Must keep both values on the expression-stack during null-check
   1.658 +  do_null_check(peek(), T_INT);
   1.659 +  // Compile-time detect of null-exception?
   1.660 +  if (stopped())  return;
   1.661 +
   1.662 +  Node* b = pop();
   1.663 +  Node* a = pop();
   1.664 +
   1.665 +  const Type *t = _gvn.type(b);
   1.666 +  if (t != Type::TOP) {
   1.667 +    const TypeInt *ti = t->is_int();
   1.668 +    if (ti->is_con()) {
   1.669 +      int divisor = ti->get_con();
   1.670 +      // check for positive power of 2
   1.671 +      if (divisor > 0 &&
   1.672 +          (divisor & ~(divisor-1)) == divisor) {
   1.673 +        // yes !
   1.674 +        Node *mask = _gvn.intcon((divisor - 1));
   1.675 +        // Sigh, must handle negative dividends
   1.676 +        Node *zero = _gvn.intcon(0);
   1.677 +        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   1.678 +        Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   1.679 +        Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   1.680 +        Node *reg = jump_if_join(ift, iff);
   1.681 +        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   1.682 +        // Negative path; negate/and/negate
   1.683 +        Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   1.684 +        Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   1.685 +        Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   1.686 +        phi->init_req(1, negn);
   1.687 +        // Fast positive case
   1.688 +        Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   1.689 +        phi->init_req(2, andx);
   1.690 +        // Push the merge
   1.691 +        push( _gvn.transform(phi) );
   1.692 +        return;
   1.693 +      }
   1.694 +    }
   1.695 +  }
   1.696 +  // Default case
   1.697 +  push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   1.698 +}
   1.699 +
   1.700 +// Handle jsr and jsr_w bytecode
   1.701 +void Parse::do_jsr() {
   1.702 +  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   1.703 +
   1.704 +  // Store information about current state, tagged with new _jsr_bci
   1.705 +  int return_bci = iter().next_bci();
   1.706 +  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   1.707 +
   1.708 +  // Update method data
   1.709 +  profile_taken_branch(jsr_bci);
   1.710 +
   1.711 +  // The way we do things now, there is only one successor block
   1.712 +  // for the jsr, because the target code is cloned by ciTypeFlow.
   1.713 +  Block* target = successor_for_bci(jsr_bci);
   1.714 +
   1.715 +  // What got pushed?
   1.716 +  const Type* ret_addr = target->peek();
   1.717 +  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   1.718 +
   1.719 +  // Effect on jsr on stack
   1.720 +  push(_gvn.makecon(ret_addr));
   1.721 +
   1.722 +  // Flow to the jsr.
   1.723 +  merge(jsr_bci);
   1.724 +}
   1.725 +
   1.726 +// Handle ret bytecode
   1.727 +void Parse::do_ret() {
   1.728 +  // Find to whom we return.
   1.729 +#if 0 // %%%% MAKE THIS WORK
   1.730 +  Node* con = local();
   1.731 +  const TypePtr* tp = con->bottom_type()->isa_ptr();
   1.732 +  assert(tp && tp->singleton(), "");
   1.733 +  int return_bci = (int) tp->get_con();
   1.734 +  merge(return_bci);
   1.735 +#else
   1.736 +  assert(block()->num_successors() == 1, "a ret can only go one place now");
   1.737 +  Block* target = block()->successor_at(0);
   1.738 +  assert(!target->is_ready(), "our arrival must be expected");
   1.739 +  profile_ret(target->flow()->start());
   1.740 +  int pnum = target->next_path_num();
   1.741 +  merge_common(target, pnum);
   1.742 +#endif
   1.743 +}
   1.744 +
   1.745 +//--------------------------dynamic_branch_prediction--------------------------
   1.746 +// Try to gather dynamic branch prediction behavior.  Return a probability
   1.747 +// of the branch being taken and set the "cnt" field.  Returns a -1.0
   1.748 +// if we need to use static prediction for some reason.
   1.749 +float Parse::dynamic_branch_prediction(float &cnt) {
   1.750 +  ResourceMark rm;
   1.751 +
   1.752 +  cnt  = COUNT_UNKNOWN;
   1.753 +
   1.754 +  // Use MethodData information if it is available
   1.755 +  // FIXME: free the ProfileData structure
   1.756 +  ciMethodData* methodData = method()->method_data();
   1.757 +  if (!methodData->is_mature())  return PROB_UNKNOWN;
   1.758 +  ciProfileData* data = methodData->bci_to_data(bci());
   1.759 +  if (!data->is_JumpData())  return PROB_UNKNOWN;
   1.760 +
   1.761 +  // get taken and not taken values
   1.762 +  int     taken = data->as_JumpData()->taken();
   1.763 +  int not_taken = 0;
   1.764 +  if (data->is_BranchData()) {
   1.765 +    not_taken = data->as_BranchData()->not_taken();
   1.766 +  }
   1.767 +
   1.768 +  // scale the counts to be commensurate with invocation counts:
   1.769 +  taken = method()->scale_count(taken);
   1.770 +  not_taken = method()->scale_count(not_taken);
   1.771 +
   1.772 +  // Give up if too few counts to be meaningful
   1.773 +  if (taken + not_taken < 40) {
   1.774 +    if (C->log() != NULL) {
   1.775 +      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   1.776 +    }
   1.777 +    return PROB_UNKNOWN;
   1.778 +  }
   1.779 +
   1.780 +  // Compute frequency that we arrive here
   1.781 +  int sum = taken + not_taken;
   1.782 +  // Adjust, if this block is a cloned private block but the
   1.783 +  // Jump counts are shared.  Taken the private counts for
   1.784 +  // just this path instead of the shared counts.
   1.785 +  if( block()->count() > 0 )
   1.786 +    sum = block()->count();
   1.787 +  cnt = (float)sum / (float)FreqCountInvocations;
   1.788 +
   1.789 +  // Pin probability to sane limits
   1.790 +  float prob;
   1.791 +  if( !taken )
   1.792 +    prob = (0+PROB_MIN) / 2;
   1.793 +  else if( !not_taken )
   1.794 +    prob = (1+PROB_MAX) / 2;
   1.795 +  else {                         // Compute probability of true path
   1.796 +    prob = (float)taken / (float)(taken + not_taken);
   1.797 +    if (prob > PROB_MAX)  prob = PROB_MAX;
   1.798 +    if (prob < PROB_MIN)   prob = PROB_MIN;
   1.799 +  }
   1.800 +
   1.801 +  assert((cnt > 0.0f) && (prob > 0.0f),
   1.802 +         "Bad frequency assignment in if");
   1.803 +
   1.804 +  if (C->log() != NULL) {
   1.805 +    const char* prob_str = NULL;
   1.806 +    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   1.807 +    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   1.808 +    char prob_str_buf[30];
   1.809 +    if (prob_str == NULL) {
   1.810 +      sprintf(prob_str_buf, "%g", prob);
   1.811 +      prob_str = prob_str_buf;
   1.812 +    }
   1.813 +    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   1.814 +                   iter().get_dest(), taken, not_taken, cnt, prob_str);
   1.815 +  }
   1.816 +  return prob;
   1.817 +}
   1.818 +
   1.819 +//-----------------------------branch_prediction-------------------------------
   1.820 +float Parse::branch_prediction(float& cnt,
   1.821 +                               BoolTest::mask btest,
   1.822 +                               int target_bci) {
   1.823 +  float prob = dynamic_branch_prediction(cnt);
   1.824 +  // If prob is unknown, switch to static prediction
   1.825 +  if (prob != PROB_UNKNOWN)  return prob;
   1.826 +
   1.827 +  prob = PROB_FAIR;                   // Set default value
   1.828 +  if (btest == BoolTest::eq)          // Exactly equal test?
   1.829 +    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   1.830 +  else if (btest == BoolTest::ne)
   1.831 +    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   1.832 +
   1.833 +  // If this is a conditional test guarding a backwards branch,
   1.834 +  // assume its a loop-back edge.  Make it a likely taken branch.
   1.835 +  if (target_bci < bci()) {
   1.836 +    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   1.837 +      // Since it's an OSR, we probably have profile data, but since
   1.838 +      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   1.839 +      // Let's make a special check here for completely zero counts.
   1.840 +      ciMethodData* methodData = method()->method_data();
   1.841 +      if (!methodData->is_empty()) {
   1.842 +        ciProfileData* data = methodData->bci_to_data(bci());
   1.843 +        // Only stop for truly zero counts, which mean an unknown part
   1.844 +        // of the OSR-ed method, and we want to deopt to gather more stats.
   1.845 +        // If you have ANY counts, then this loop is simply 'cold' relative
   1.846 +        // to the OSR loop.
   1.847 +        if (data->as_BranchData()->taken() +
   1.848 +            data->as_BranchData()->not_taken() == 0 ) {
   1.849 +          // This is the only way to return PROB_UNKNOWN:
   1.850 +          return PROB_UNKNOWN;
   1.851 +        }
   1.852 +      }
   1.853 +    }
   1.854 +    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   1.855 +  }
   1.856 +
   1.857 +  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   1.858 +  return prob;
   1.859 +}
   1.860 +
   1.861 +// The magic constants are chosen so as to match the output of
   1.862 +// branch_prediction() when the profile reports a zero taken count.
   1.863 +// It is important to distinguish zero counts unambiguously, because
   1.864 +// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   1.865 +// very small but nonzero probabilities, which if confused with zero
   1.866 +// counts would keep the program recompiling indefinitely.
   1.867 +bool Parse::seems_never_taken(float prob) {
   1.868 +  return prob < PROB_MIN;
   1.869 +}
   1.870 +
   1.871 +inline void Parse::repush_if_args() {
   1.872 +#ifndef PRODUCT
   1.873 +  if (PrintOpto && WizardMode) {
   1.874 +    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   1.875 +               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   1.876 +    method()->print_name(); tty->cr();
   1.877 +  }
   1.878 +#endif
   1.879 +  int bc_depth = - Bytecodes::depth(iter().cur_bc());
   1.880 +  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   1.881 +  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   1.882 +  assert(argument(0) != NULL, "must exist");
   1.883 +  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   1.884 +  _sp += bc_depth;
   1.885 +}
   1.886 +
   1.887 +//----------------------------------do_ifnull----------------------------------
   1.888 +void Parse::do_ifnull(BoolTest::mask btest) {
   1.889 +  int target_bci = iter().get_dest();
   1.890 +
   1.891 +  float cnt;
   1.892 +  float prob = branch_prediction(cnt, btest, target_bci);
   1.893 +  if (prob == PROB_UNKNOWN) {
   1.894 +    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   1.895 +#ifndef PRODUCT
   1.896 +    if (PrintOpto && Verbose)
   1.897 +      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   1.898 +#endif
   1.899 +    repush_if_args(); // to gather stats on loop
   1.900 +    // We need to mark this branch as taken so that if we recompile we will
   1.901 +    // see that it is possible. In the tiered system the interpreter doesn't
   1.902 +    // do profiling and by the time we get to the lower tier from the interpreter
   1.903 +    // the path may be cold again. Make sure it doesn't look untaken
   1.904 +    profile_taken_branch(target_bci, !ProfileInterpreter);
   1.905 +    uncommon_trap(Deoptimization::Reason_unreached,
   1.906 +                  Deoptimization::Action_reinterpret,
   1.907 +                  NULL, "cold");
   1.908 +    return;
   1.909 +  }
   1.910 +
   1.911 +  // If this is a backwards branch in the bytecodes, add Safepoint
   1.912 +  maybe_add_safepoint(target_bci);
   1.913 +  Block* branch_block = successor_for_bci(target_bci);
   1.914 +  Block* next_block   = successor_for_bci(iter().next_bci());
   1.915 +
   1.916 +  explicit_null_checks_inserted++;
   1.917 +  Node* a = null();
   1.918 +  Node* b = pop();
   1.919 +  Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
   1.920 +
   1.921 +  // Make a cast-away-nullness that is control dependent on the test
   1.922 +  const Type *t = _gvn.type(b);
   1.923 +  const Type *t_not_null = t->join(TypePtr::NOTNULL);
   1.924 +  Node *cast = new (C, 2) CastPPNode(b,t_not_null);
   1.925 +
   1.926 +  // Generate real control flow
   1.927 +  Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   1.928 +
   1.929 +  // Sanity check the probability value
   1.930 +  assert(prob > 0.0f,"Bad probability in Parser");
   1.931 + // Need xform to put node in hash table
   1.932 +  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   1.933 +  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   1.934 +  // True branch
   1.935 +  { PreserveJVMState pjvms(this);
   1.936 +    Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   1.937 +    set_control(iftrue);
   1.938 +
   1.939 +    if (stopped()) {            // Path is dead?
   1.940 +      explicit_null_checks_elided++;
   1.941 +    } else {                    // Path is live.
   1.942 +      // Update method data
   1.943 +      profile_taken_branch(target_bci);
   1.944 +      adjust_map_after_if(btest, c, prob, branch_block, next_block);
   1.945 +      if (!stopped())
   1.946 +        merge(target_bci);
   1.947 +    }
   1.948 +  }
   1.949 +
   1.950 +  // False branch
   1.951 +  Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   1.952 +  set_control(iffalse);
   1.953 +
   1.954 +  if (stopped()) {              // Path is dead?
   1.955 +    explicit_null_checks_elided++;
   1.956 +  } else  {                     // Path is live.
   1.957 +    // Update method data
   1.958 +    profile_not_taken_branch();
   1.959 +    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   1.960 +                        next_block, branch_block);
   1.961 +  }
   1.962 +}
   1.963 +
   1.964 +//------------------------------------do_if------------------------------------
   1.965 +void Parse::do_if(BoolTest::mask btest, Node* c) {
   1.966 +  int target_bci = iter().get_dest();
   1.967 +
   1.968 +  float cnt;
   1.969 +  float prob = branch_prediction(cnt, btest, target_bci);
   1.970 +  float untaken_prob = 1.0 - prob;
   1.971 +
   1.972 +  if (prob == PROB_UNKNOWN) {
   1.973 +#ifndef PRODUCT
   1.974 +    if (PrintOpto && Verbose)
   1.975 +      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   1.976 +#endif
   1.977 +    repush_if_args(); // to gather stats on loop
   1.978 +    // We need to mark this branch as taken so that if we recompile we will
   1.979 +    // see that it is possible. In the tiered system the interpreter doesn't
   1.980 +    // do profiling and by the time we get to the lower tier from the interpreter
   1.981 +    // the path may be cold again. Make sure it doesn't look untaken
   1.982 +    profile_taken_branch(target_bci, !ProfileInterpreter);
   1.983 +    uncommon_trap(Deoptimization::Reason_unreached,
   1.984 +                  Deoptimization::Action_reinterpret,
   1.985 +                  NULL, "cold");
   1.986 +    return;
   1.987 +  }
   1.988 +
   1.989 +  // Sanity check the probability value
   1.990 +  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
   1.991 +
   1.992 +  bool taken_if_true = true;
   1.993 +  // Convert BoolTest to canonical form:
   1.994 +  if (!BoolTest(btest).is_canonical()) {
   1.995 +    btest         = BoolTest(btest).negate();
   1.996 +    taken_if_true = false;
   1.997 +    // prob is NOT updated here; it remains the probability of the taken
   1.998 +    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
   1.999 +  }
  1.1000 +  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1.1001 +
  1.1002 +  Node* tst0 = new (C, 2) BoolNode(c, btest);
  1.1003 +  Node* tst = _gvn.transform(tst0);
  1.1004 +  BoolTest::mask taken_btest   = BoolTest::illegal;
  1.1005 +  BoolTest::mask untaken_btest = BoolTest::illegal;
  1.1006 +  if (btest == BoolTest::ne) {
  1.1007 +    // For now, these are the only cases of btest that matter.  (More later.)
  1.1008 +    taken_btest   = taken_if_true ?        btest : BoolTest::eq;
  1.1009 +    untaken_btest = taken_if_true ? BoolTest::eq :        btest;
  1.1010 +  }
  1.1011 +
  1.1012 +  // Generate real control flow
  1.1013 +  float true_prob = (taken_if_true ? prob : untaken_prob);
  1.1014 +  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1.1015 +  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1.1016 +  Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1.1017 +  Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1.1018 +  if (!taken_if_true) {  // Finish conversion to canonical form
  1.1019 +    Node* tmp      = taken_branch;
  1.1020 +    taken_branch   = untaken_branch;
  1.1021 +    untaken_branch = tmp;
  1.1022 +  }
  1.1023 +
  1.1024 +  Block* branch_block = successor_for_bci(target_bci);
  1.1025 +  Block* next_block   = successor_for_bci(iter().next_bci());
  1.1026 +
  1.1027 +  // Branch is taken:
  1.1028 +  { PreserveJVMState pjvms(this);
  1.1029 +    taken_branch = _gvn.transform(taken_branch);
  1.1030 +    set_control(taken_branch);
  1.1031 +
  1.1032 +    if (!stopped()) {
  1.1033 +      // Update method data
  1.1034 +      profile_taken_branch(target_bci);
  1.1035 +      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1.1036 +      if (!stopped())
  1.1037 +        merge(target_bci);
  1.1038 +    }
  1.1039 +  }
  1.1040 +
  1.1041 +  untaken_branch = _gvn.transform(untaken_branch);
  1.1042 +  set_control(untaken_branch);
  1.1043 +
  1.1044 +  // Branch not taken.
  1.1045 +  if (!stopped()) {
  1.1046 +    // Update method data
  1.1047 +    profile_not_taken_branch();
  1.1048 +    adjust_map_after_if(untaken_btest, c, untaken_prob,
  1.1049 +                        next_block, branch_block);
  1.1050 +  }
  1.1051 +}
  1.1052 +
  1.1053 +//----------------------------adjust_map_after_if------------------------------
  1.1054 +// Adjust the JVM state to reflect the result of taking this path.
  1.1055 +// Basically, it means inspecting the CmpNode controlling this
  1.1056 +// branch, seeing how it constrains a tested value, and then
  1.1057 +// deciding if it's worth our while to encode this constraint
  1.1058 +// as graph nodes in the current abstract interpretation map.
  1.1059 +void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1.1060 +                                Block* path, Block* other_path) {
  1.1061 +  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1.1062 +    return;                             // nothing to do
  1.1063 +
  1.1064 +  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1.1065 +
  1.1066 +  int cop = c->Opcode();
  1.1067 +  if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1.1068 +    // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1.1069 +    //
  1.1070 +    // If this might possibly turn into an implicit null check,
  1.1071 +    // and the null has never yet been seen, we need to generate
  1.1072 +    // an uncommon trap, so as to recompile instead of suffering
  1.1073 +    // with very slow branches.  (We'll get the slow branches if
  1.1074 +    // the program ever changes phase and starts seeing nulls here.)
  1.1075 +    //
  1.1076 +    // The tests we worry about are of the form (p == null).
  1.1077 +    // We do not simply inspect for a null constant, since a node may
  1.1078 +    // optimize to 'null' later on.
  1.1079 +    repush_if_args();
  1.1080 +    // We need to mark this branch as taken so that if we recompile we will
  1.1081 +    // see that it is possible. In the tiered system the interpreter doesn't
  1.1082 +    // do profiling and by the time we get to the lower tier from the interpreter
  1.1083 +    // the path may be cold again. Make sure it doesn't look untaken
  1.1084 +    if (is_fallthrough) {
  1.1085 +      profile_not_taken_branch(!ProfileInterpreter);
  1.1086 +    } else {
  1.1087 +      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1.1088 +    }
  1.1089 +    uncommon_trap(Deoptimization::Reason_unreached,
  1.1090 +                  Deoptimization::Action_reinterpret,
  1.1091 +                  NULL,
  1.1092 +                  (is_fallthrough ? "taken always" : "taken never"));
  1.1093 +    return;
  1.1094 +  }
  1.1095 +
  1.1096 +  Node* val = c->in(1);
  1.1097 +  Node* con = c->in(2);
  1.1098 +  const Type* tcon = _gvn.type(con);
  1.1099 +  const Type* tval = _gvn.type(val);
  1.1100 +  bool have_con = tcon->singleton();
  1.1101 +  if (tval->singleton()) {
  1.1102 +    if (!have_con) {
  1.1103 +      // Swap, so constant is in con.
  1.1104 +      con  = val;
  1.1105 +      tcon = tval;
  1.1106 +      val  = c->in(2);
  1.1107 +      tval = _gvn.type(val);
  1.1108 +      btest = BoolTest(btest).commute();
  1.1109 +      have_con = true;
  1.1110 +    } else {
  1.1111 +      // Do we have two constants?  Then leave well enough alone.
  1.1112 +      have_con = false;
  1.1113 +    }
  1.1114 +  }
  1.1115 +  if (!have_con)                        // remaining adjustments need a con
  1.1116 +    return;
  1.1117 +
  1.1118 +
  1.1119 +  int val_in_map = map()->find_edge(val);
  1.1120 +  if (val_in_map < 0)  return;          // replace_in_map would be useless
  1.1121 +  {
  1.1122 +    JVMState* jvms = this->jvms();
  1.1123 +    if (!(jvms->is_loc(val_in_map) ||
  1.1124 +          jvms->is_stk(val_in_map)))
  1.1125 +      return;                           // again, it would be useless
  1.1126 +  }
  1.1127 +
  1.1128 +  // Check for a comparison to a constant, and "know" that the compared
  1.1129 +  // value is constrained on this path.
  1.1130 +  assert(tcon->singleton(), "");
  1.1131 +  ConstraintCastNode* ccast = NULL;
  1.1132 +  Node* cast = NULL;
  1.1133 +
  1.1134 +  switch (btest) {
  1.1135 +  case BoolTest::eq:                    // Constant test?
  1.1136 +    {
  1.1137 +      const Type* tboth = tcon->join(tval);
  1.1138 +      if (tboth == tval)  break;        // Nothing to gain.
  1.1139 +      if (tcon->isa_int()) {
  1.1140 +        ccast = new (C, 2) CastIINode(val, tboth);
  1.1141 +      } else if (tcon == TypePtr::NULL_PTR) {
  1.1142 +        // Cast to null, but keep the pointer identity temporarily live.
  1.1143 +        ccast = new (C, 2) CastPPNode(val, tboth);
  1.1144 +      } else {
  1.1145 +        const TypeF* tf = tcon->isa_float_constant();
  1.1146 +        const TypeD* td = tcon->isa_double_constant();
  1.1147 +        // Exclude tests vs float/double 0 as these could be
  1.1148 +        // either +0 or -0.  Just because you are equal to +0
  1.1149 +        // doesn't mean you ARE +0!
  1.1150 +        if ((!tf || tf->_f != 0.0) &&
  1.1151 +            (!td || td->_d != 0.0))
  1.1152 +          cast = con;                   // Replace non-constant val by con.
  1.1153 +      }
  1.1154 +    }
  1.1155 +    break;
  1.1156 +
  1.1157 +  case BoolTest::ne:
  1.1158 +    if (tcon == TypePtr::NULL_PTR) {
  1.1159 +      cast = cast_not_null(val, false);
  1.1160 +    }
  1.1161 +    break;
  1.1162 +
  1.1163 +  default:
  1.1164 +    // (At this point we could record int range types with CastII.)
  1.1165 +    break;
  1.1166 +  }
  1.1167 +
  1.1168 +  if (ccast != NULL) {
  1.1169 +    const Type* tcc = ccast->as_Type()->type();
  1.1170 +    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1.1171 +    // Delay transform() call to allow recovery of pre-cast value
  1.1172 +    // at the control merge.
  1.1173 +    ccast->set_req(0, control());
  1.1174 +    _gvn.set_type_bottom(ccast);
  1.1175 +    record_for_igvn(ccast);
  1.1176 +    cast = ccast;
  1.1177 +  }
  1.1178 +
  1.1179 +  if (cast != NULL) {                   // Here's the payoff.
  1.1180 +    replace_in_map(val, cast);
  1.1181 +  }
  1.1182 +}
  1.1183 +
  1.1184 +
  1.1185 +//------------------------------do_one_bytecode--------------------------------
  1.1186 +// Parse this bytecode, and alter the Parsers JVM->Node mapping
  1.1187 +void Parse::do_one_bytecode() {
  1.1188 +  Node *a, *b, *c, *d;          // Handy temps
  1.1189 +  BoolTest::mask btest;
  1.1190 +  int i;
  1.1191 +
  1.1192 +  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1.1193 +
  1.1194 +  if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1.1195 +                          "out of nodes parsing method")) {
  1.1196 +    return;
  1.1197 +  }
  1.1198 +
  1.1199 +#ifdef ASSERT
  1.1200 +  // for setting breakpoints
  1.1201 +  if (TraceOptoParse) {
  1.1202 +    tty->print(" @");
  1.1203 +    dump_bci(bci());
  1.1204 +  }
  1.1205 +#endif
  1.1206 +
  1.1207 +  switch (bc()) {
  1.1208 +  case Bytecodes::_nop:
  1.1209 +    // do nothing
  1.1210 +    break;
  1.1211 +  case Bytecodes::_lconst_0:
  1.1212 +    push_pair(longcon(0));
  1.1213 +    break;
  1.1214 +
  1.1215 +  case Bytecodes::_lconst_1:
  1.1216 +    push_pair(longcon(1));
  1.1217 +    break;
  1.1218 +
  1.1219 +  case Bytecodes::_fconst_0:
  1.1220 +    push(zerocon(T_FLOAT));
  1.1221 +    break;
  1.1222 +
  1.1223 +  case Bytecodes::_fconst_1:
  1.1224 +    push(makecon(TypeF::ONE));
  1.1225 +    break;
  1.1226 +
  1.1227 +  case Bytecodes::_fconst_2:
  1.1228 +    push(makecon(TypeF::make(2.0f)));
  1.1229 +    break;
  1.1230 +
  1.1231 +  case Bytecodes::_dconst_0:
  1.1232 +    push_pair(zerocon(T_DOUBLE));
  1.1233 +    break;
  1.1234 +
  1.1235 +  case Bytecodes::_dconst_1:
  1.1236 +    push_pair(makecon(TypeD::ONE));
  1.1237 +    break;
  1.1238 +
  1.1239 +  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1.1240 +  case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1.1241 +  case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1.1242 +  case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1.1243 +  case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1.1244 +  case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1.1245 +  case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1.1246 +  case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  1.1247 +  case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  1.1248 +  case Bytecodes::_aconst_null: push(null());  break;
  1.1249 +  case Bytecodes::_ldc:
  1.1250 +  case Bytecodes::_ldc_w:
  1.1251 +  case Bytecodes::_ldc2_w:
  1.1252 +    // If the constant is unresolved, run this BC once in the interpreter.
  1.1253 +    if (iter().is_unresolved_string()) {
  1.1254 +      uncommon_trap(Deoptimization::make_trap_request
  1.1255 +                    (Deoptimization::Reason_unloaded,
  1.1256 +                     Deoptimization::Action_reinterpret,
  1.1257 +                     iter().get_constant_index()),
  1.1258 +                    NULL, "unresolved_string");
  1.1259 +      break;
  1.1260 +    } else {
  1.1261 +      ciConstant constant = iter().get_constant();
  1.1262 +      if (constant.basic_type() == T_OBJECT) {
  1.1263 +        ciObject* c = constant.as_object();
  1.1264 +        if (c->is_klass()) {
  1.1265 +          // The constant returned for a klass is the ciKlass for the
  1.1266 +          // entry.  We want the java_mirror so get it.
  1.1267 +          ciKlass* klass = c->as_klass();
  1.1268 +          if (klass->is_loaded()) {
  1.1269 +            constant = ciConstant(T_OBJECT, klass->java_mirror());
  1.1270 +          } else {
  1.1271 +            uncommon_trap(Deoptimization::make_trap_request
  1.1272 +                          (Deoptimization::Reason_unloaded,
  1.1273 +                           Deoptimization::Action_reinterpret,
  1.1274 +                           iter().get_constant_index()),
  1.1275 +                          NULL, "unresolved_klass");
  1.1276 +            break;
  1.1277 +          }
  1.1278 +        }
  1.1279 +      }
  1.1280 +      push_constant(constant);
  1.1281 +    }
  1.1282 +
  1.1283 +    break;
  1.1284 +
  1.1285 +  case Bytecodes::_aload_0:
  1.1286 +    push( local(0) );
  1.1287 +    break;
  1.1288 +  case Bytecodes::_aload_1:
  1.1289 +    push( local(1) );
  1.1290 +    break;
  1.1291 +  case Bytecodes::_aload_2:
  1.1292 +    push( local(2) );
  1.1293 +    break;
  1.1294 +  case Bytecodes::_aload_3:
  1.1295 +    push( local(3) );
  1.1296 +    break;
  1.1297 +  case Bytecodes::_aload:
  1.1298 +    push( local(iter().get_index()) );
  1.1299 +    break;
  1.1300 +
  1.1301 +  case Bytecodes::_fload_0:
  1.1302 +  case Bytecodes::_iload_0:
  1.1303 +    push( local(0) );
  1.1304 +    break;
  1.1305 +  case Bytecodes::_fload_1:
  1.1306 +  case Bytecodes::_iload_1:
  1.1307 +    push( local(1) );
  1.1308 +    break;
  1.1309 +  case Bytecodes::_fload_2:
  1.1310 +  case Bytecodes::_iload_2:
  1.1311 +    push( local(2) );
  1.1312 +    break;
  1.1313 +  case Bytecodes::_fload_3:
  1.1314 +  case Bytecodes::_iload_3:
  1.1315 +    push( local(3) );
  1.1316 +    break;
  1.1317 +  case Bytecodes::_fload:
  1.1318 +  case Bytecodes::_iload:
  1.1319 +    push( local(iter().get_index()) );
  1.1320 +    break;
  1.1321 +  case Bytecodes::_lload_0:
  1.1322 +    push_pair_local( 0 );
  1.1323 +    break;
  1.1324 +  case Bytecodes::_lload_1:
  1.1325 +    push_pair_local( 1 );
  1.1326 +    break;
  1.1327 +  case Bytecodes::_lload_2:
  1.1328 +    push_pair_local( 2 );
  1.1329 +    break;
  1.1330 +  case Bytecodes::_lload_3:
  1.1331 +    push_pair_local( 3 );
  1.1332 +    break;
  1.1333 +  case Bytecodes::_lload:
  1.1334 +    push_pair_local( iter().get_index() );
  1.1335 +    break;
  1.1336 +
  1.1337 +  case Bytecodes::_dload_0:
  1.1338 +    push_pair_local(0);
  1.1339 +    break;
  1.1340 +  case Bytecodes::_dload_1:
  1.1341 +    push_pair_local(1);
  1.1342 +    break;
  1.1343 +  case Bytecodes::_dload_2:
  1.1344 +    push_pair_local(2);
  1.1345 +    break;
  1.1346 +  case Bytecodes::_dload_3:
  1.1347 +    push_pair_local(3);
  1.1348 +    break;
  1.1349 +  case Bytecodes::_dload:
  1.1350 +    push_pair_local(iter().get_index());
  1.1351 +    break;
  1.1352 +  case Bytecodes::_fstore_0:
  1.1353 +  case Bytecodes::_istore_0:
  1.1354 +  case Bytecodes::_astore_0:
  1.1355 +    set_local( 0, pop() );
  1.1356 +    break;
  1.1357 +  case Bytecodes::_fstore_1:
  1.1358 +  case Bytecodes::_istore_1:
  1.1359 +  case Bytecodes::_astore_1:
  1.1360 +    set_local( 1, pop() );
  1.1361 +    break;
  1.1362 +  case Bytecodes::_fstore_2:
  1.1363 +  case Bytecodes::_istore_2:
  1.1364 +  case Bytecodes::_astore_2:
  1.1365 +    set_local( 2, pop() );
  1.1366 +    break;
  1.1367 +  case Bytecodes::_fstore_3:
  1.1368 +  case Bytecodes::_istore_3:
  1.1369 +  case Bytecodes::_astore_3:
  1.1370 +    set_local( 3, pop() );
  1.1371 +    break;
  1.1372 +  case Bytecodes::_fstore:
  1.1373 +  case Bytecodes::_istore:
  1.1374 +  case Bytecodes::_astore:
  1.1375 +    set_local( iter().get_index(), pop() );
  1.1376 +    break;
  1.1377 +  // long stores
  1.1378 +  case Bytecodes::_lstore_0:
  1.1379 +    set_pair_local( 0, pop_pair() );
  1.1380 +    break;
  1.1381 +  case Bytecodes::_lstore_1:
  1.1382 +    set_pair_local( 1, pop_pair() );
  1.1383 +    break;
  1.1384 +  case Bytecodes::_lstore_2:
  1.1385 +    set_pair_local( 2, pop_pair() );
  1.1386 +    break;
  1.1387 +  case Bytecodes::_lstore_3:
  1.1388 +    set_pair_local( 3, pop_pair() );
  1.1389 +    break;
  1.1390 +  case Bytecodes::_lstore:
  1.1391 +    set_pair_local( iter().get_index(), pop_pair() );
  1.1392 +    break;
  1.1393 +
  1.1394 +  // double stores
  1.1395 +  case Bytecodes::_dstore_0:
  1.1396 +    set_pair_local( 0, dstore_rounding(pop_pair()) );
  1.1397 +    break;
  1.1398 +  case Bytecodes::_dstore_1:
  1.1399 +    set_pair_local( 1, dstore_rounding(pop_pair()) );
  1.1400 +    break;
  1.1401 +  case Bytecodes::_dstore_2:
  1.1402 +    set_pair_local( 2, dstore_rounding(pop_pair()) );
  1.1403 +    break;
  1.1404 +  case Bytecodes::_dstore_3:
  1.1405 +    set_pair_local( 3, dstore_rounding(pop_pair()) );
  1.1406 +    break;
  1.1407 +  case Bytecodes::_dstore:
  1.1408 +    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1.1409 +    break;
  1.1410 +
  1.1411 +  case Bytecodes::_pop:  _sp -= 1;   break;
  1.1412 +  case Bytecodes::_pop2: _sp -= 2;   break;
  1.1413 +  case Bytecodes::_swap:
  1.1414 +    a = pop();
  1.1415 +    b = pop();
  1.1416 +    push(a);
  1.1417 +    push(b);
  1.1418 +    break;
  1.1419 +  case Bytecodes::_dup:
  1.1420 +    a = pop();
  1.1421 +    push(a);
  1.1422 +    push(a);
  1.1423 +    break;
  1.1424 +  case Bytecodes::_dup_x1:
  1.1425 +    a = pop();
  1.1426 +    b = pop();
  1.1427 +    push( a );
  1.1428 +    push( b );
  1.1429 +    push( a );
  1.1430 +    break;
  1.1431 +  case Bytecodes::_dup_x2:
  1.1432 +    a = pop();
  1.1433 +    b = pop();
  1.1434 +    c = pop();
  1.1435 +    push( a );
  1.1436 +    push( c );
  1.1437 +    push( b );
  1.1438 +    push( a );
  1.1439 +    break;
  1.1440 +  case Bytecodes::_dup2:
  1.1441 +    a = pop();
  1.1442 +    b = pop();
  1.1443 +    push( b );
  1.1444 +    push( a );
  1.1445 +    push( b );
  1.1446 +    push( a );
  1.1447 +    break;
  1.1448 +
  1.1449 +  case Bytecodes::_dup2_x1:
  1.1450 +    // before: .. c, b, a
  1.1451 +    // after:  .. b, a, c, b, a
  1.1452 +    // not tested
  1.1453 +    a = pop();
  1.1454 +    b = pop();
  1.1455 +    c = pop();
  1.1456 +    push( b );
  1.1457 +    push( a );
  1.1458 +    push( c );
  1.1459 +    push( b );
  1.1460 +    push( a );
  1.1461 +    break;
  1.1462 +  case Bytecodes::_dup2_x2:
  1.1463 +    // before: .. d, c, b, a
  1.1464 +    // after:  .. b, a, d, c, b, a
  1.1465 +    // not tested
  1.1466 +    a = pop();
  1.1467 +    b = pop();
  1.1468 +    c = pop();
  1.1469 +    d = pop();
  1.1470 +    push( b );
  1.1471 +    push( a );
  1.1472 +    push( d );
  1.1473 +    push( c );
  1.1474 +    push( b );
  1.1475 +    push( a );
  1.1476 +    break;
  1.1477 +
  1.1478 +  case Bytecodes::_arraylength: {
  1.1479 +    // Must do null-check with value on expression stack
  1.1480 +    Node *ary = do_null_check(peek(), T_ARRAY);
  1.1481 +    // Compile-time detect of null-exception?
  1.1482 +    if (stopped())  return;
  1.1483 +    a = pop();
  1.1484 +    push(load_array_length(a));
  1.1485 +    break;
  1.1486 +  }
  1.1487 +
  1.1488 +  case Bytecodes::_baload: array_load(T_BYTE);   break;
  1.1489 +  case Bytecodes::_caload: array_load(T_CHAR);   break;
  1.1490 +  case Bytecodes::_iaload: array_load(T_INT);    break;
  1.1491 +  case Bytecodes::_saload: array_load(T_SHORT);  break;
  1.1492 +  case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1.1493 +  case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1.1494 +  case Bytecodes::_laload: {
  1.1495 +    a = array_addressing(T_LONG, 0);
  1.1496 +    if (stopped())  return;     // guarenteed null or range check
  1.1497 +    _sp -= 2;                   // Pop array and index
  1.1498 +    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1.1499 +    break;
  1.1500 +  }
  1.1501 +  case Bytecodes::_daload: {
  1.1502 +    a = array_addressing(T_DOUBLE, 0);
  1.1503 +    if (stopped())  return;     // guarenteed null or range check
  1.1504 +    _sp -= 2;                   // Pop array and index
  1.1505 +    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1.1506 +    break;
  1.1507 +  }
  1.1508 +  case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1.1509 +  case Bytecodes::_castore: array_store(T_CHAR);  break;
  1.1510 +  case Bytecodes::_iastore: array_store(T_INT);   break;
  1.1511 +  case Bytecodes::_sastore: array_store(T_SHORT); break;
  1.1512 +  case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1.1513 +  case Bytecodes::_aastore: {
  1.1514 +    d = array_addressing(T_OBJECT, 1);
  1.1515 +    if (stopped())  return;     // guarenteed null or range check
  1.1516 +    array_store_check();
  1.1517 +    c = pop();                  // Oop to store
  1.1518 +    b = pop();                  // index (already used)
  1.1519 +    a = pop();                  // the array itself
  1.1520 +    const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
  1.1521 +    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1.1522 +    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1.1523 +    break;
  1.1524 +  }
  1.1525 +  case Bytecodes::_lastore: {
  1.1526 +    a = array_addressing(T_LONG, 2);
  1.1527 +    if (stopped())  return;     // guarenteed null or range check
  1.1528 +    c = pop_pair();
  1.1529 +    _sp -= 2;                   // Pop array and index
  1.1530 +    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1.1531 +    break;
  1.1532 +  }
  1.1533 +  case Bytecodes::_dastore: {
  1.1534 +    a = array_addressing(T_DOUBLE, 2);
  1.1535 +    if (stopped())  return;     // guarenteed null or range check
  1.1536 +    c = pop_pair();
  1.1537 +    _sp -= 2;                   // Pop array and index
  1.1538 +    c = dstore_rounding(c);
  1.1539 +    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1.1540 +    break;
  1.1541 +  }
  1.1542 +  case Bytecodes::_getfield:
  1.1543 +    do_getfield();
  1.1544 +    break;
  1.1545 +
  1.1546 +  case Bytecodes::_getstatic:
  1.1547 +    do_getstatic();
  1.1548 +    break;
  1.1549 +
  1.1550 +  case Bytecodes::_putfield:
  1.1551 +    do_putfield();
  1.1552 +    break;
  1.1553 +
  1.1554 +  case Bytecodes::_putstatic:
  1.1555 +    do_putstatic();
  1.1556 +    break;
  1.1557 +
  1.1558 +  case Bytecodes::_irem:
  1.1559 +    do_irem();
  1.1560 +    break;
  1.1561 +  case Bytecodes::_idiv:
  1.1562 +    // Must keep both values on the expression-stack during null-check
  1.1563 +    do_null_check(peek(), T_INT);
  1.1564 +    // Compile-time detect of null-exception?
  1.1565 +    if (stopped())  return;
  1.1566 +    b = pop();
  1.1567 +    a = pop();
  1.1568 +    push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1.1569 +    break;
  1.1570 +  case Bytecodes::_imul:
  1.1571 +    b = pop(); a = pop();
  1.1572 +    push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1.1573 +    break;
  1.1574 +  case Bytecodes::_iadd:
  1.1575 +    b = pop(); a = pop();
  1.1576 +    push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1.1577 +    break;
  1.1578 +  case Bytecodes::_ineg:
  1.1579 +    a = pop();
  1.1580 +    push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1.1581 +    break;
  1.1582 +  case Bytecodes::_isub:
  1.1583 +    b = pop(); a = pop();
  1.1584 +    push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1.1585 +    break;
  1.1586 +  case Bytecodes::_iand:
  1.1587 +    b = pop(); a = pop();
  1.1588 +    push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1.1589 +    break;
  1.1590 +  case Bytecodes::_ior:
  1.1591 +    b = pop(); a = pop();
  1.1592 +    push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1.1593 +    break;
  1.1594 +  case Bytecodes::_ixor:
  1.1595 +    b = pop(); a = pop();
  1.1596 +    push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1.1597 +    break;
  1.1598 +  case Bytecodes::_ishl:
  1.1599 +    b = pop(); a = pop();
  1.1600 +    push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1.1601 +    break;
  1.1602 +  case Bytecodes::_ishr:
  1.1603 +    b = pop(); a = pop();
  1.1604 +    push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1.1605 +    break;
  1.1606 +  case Bytecodes::_iushr:
  1.1607 +    b = pop(); a = pop();
  1.1608 +    push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1.1609 +    break;
  1.1610 +
  1.1611 +  case Bytecodes::_fneg:
  1.1612 +    a = pop();
  1.1613 +    b = _gvn.transform(new (C, 2) NegFNode (a));
  1.1614 +    push(b);
  1.1615 +    break;
  1.1616 +
  1.1617 +  case Bytecodes::_fsub:
  1.1618 +    b = pop();
  1.1619 +    a = pop();
  1.1620 +    c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1.1621 +    d = precision_rounding(c);
  1.1622 +    push( d );
  1.1623 +    break;
  1.1624 +
  1.1625 +  case Bytecodes::_fadd:
  1.1626 +    b = pop();
  1.1627 +    a = pop();
  1.1628 +    c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1.1629 +    d = precision_rounding(c);
  1.1630 +    push( d );
  1.1631 +    break;
  1.1632 +
  1.1633 +  case Bytecodes::_fmul:
  1.1634 +    b = pop();
  1.1635 +    a = pop();
  1.1636 +    c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1.1637 +    d = precision_rounding(c);
  1.1638 +    push( d );
  1.1639 +    break;
  1.1640 +
  1.1641 +  case Bytecodes::_fdiv:
  1.1642 +    b = pop();
  1.1643 +    a = pop();
  1.1644 +    c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1.1645 +    d = precision_rounding(c);
  1.1646 +    push( d );
  1.1647 +    break;
  1.1648 +
  1.1649 +  case Bytecodes::_frem:
  1.1650 +    if (Matcher::has_match_rule(Op_ModF)) {
  1.1651 +      // Generate a ModF node.
  1.1652 +      b = pop();
  1.1653 +      a = pop();
  1.1654 +      c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1.1655 +      d = precision_rounding(c);
  1.1656 +      push( d );
  1.1657 +    }
  1.1658 +    else {
  1.1659 +      // Generate a call.
  1.1660 +      modf();
  1.1661 +    }
  1.1662 +    break;
  1.1663 +
  1.1664 +  case Bytecodes::_fcmpl:
  1.1665 +    b = pop();
  1.1666 +    a = pop();
  1.1667 +    c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1.1668 +    push(c);
  1.1669 +    break;
  1.1670 +  case Bytecodes::_fcmpg:
  1.1671 +    b = pop();
  1.1672 +    a = pop();
  1.1673 +
  1.1674 +    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1.1675 +    // which negates the result sign except for unordered.  Flip the unordered
  1.1676 +    // as well by using CmpF3 which implements unordered-lesser instead of
  1.1677 +    // unordered-greater semantics.  Finally, commute the result bits.  Result
  1.1678 +    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1.1679 +    c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1.1680 +    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1.1681 +    push(c);
  1.1682 +    break;
  1.1683 +
  1.1684 +  case Bytecodes::_f2i:
  1.1685 +    a = pop();
  1.1686 +    push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1.1687 +    break;
  1.1688 +
  1.1689 +  case Bytecodes::_d2i:
  1.1690 +    a = pop_pair();
  1.1691 +    b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1.1692 +    push( b );
  1.1693 +    break;
  1.1694 +
  1.1695 +  case Bytecodes::_f2d:
  1.1696 +    a = pop();
  1.1697 +    b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1.1698 +    push_pair( b );
  1.1699 +    break;
  1.1700 +
  1.1701 +  case Bytecodes::_d2f:
  1.1702 +    a = pop_pair();
  1.1703 +    b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1.1704 +    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1.1705 +    //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1.1706 +    push( b );
  1.1707 +    break;
  1.1708 +
  1.1709 +  case Bytecodes::_l2f:
  1.1710 +    if (Matcher::convL2FSupported()) {
  1.1711 +      a = pop_pair();
  1.1712 +      b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1.1713 +      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1.1714 +      // Rather than storing the result into an FP register then pushing
  1.1715 +      // out to memory to round, the machine instruction that implements
  1.1716 +      // ConvL2D is responsible for rounding.
  1.1717 +      // c = precision_rounding(b);
  1.1718 +      c = _gvn.transform(b);
  1.1719 +      push(c);
  1.1720 +    } else {
  1.1721 +      l2f();
  1.1722 +    }
  1.1723 +    break;
  1.1724 +
  1.1725 +  case Bytecodes::_l2d:
  1.1726 +    a = pop_pair();
  1.1727 +    b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1.1728 +    // For i486.ad, rounding is always necessary (see _l2f above).
  1.1729 +    // c = dprecision_rounding(b);
  1.1730 +    c = _gvn.transform(b);
  1.1731 +    push_pair(c);
  1.1732 +    break;
  1.1733 +
  1.1734 +  case Bytecodes::_f2l:
  1.1735 +    a = pop();
  1.1736 +    b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1.1737 +    push_pair(b);
  1.1738 +    break;
  1.1739 +
  1.1740 +  case Bytecodes::_d2l:
  1.1741 +    a = pop_pair();
  1.1742 +    b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1.1743 +    push_pair(b);
  1.1744 +    break;
  1.1745 +
  1.1746 +  case Bytecodes::_dsub:
  1.1747 +    b = pop_pair();
  1.1748 +    a = pop_pair();
  1.1749 +    c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1.1750 +    d = dprecision_rounding(c);
  1.1751 +    push_pair( d );
  1.1752 +    break;
  1.1753 +
  1.1754 +  case Bytecodes::_dadd:
  1.1755 +    b = pop_pair();
  1.1756 +    a = pop_pair();
  1.1757 +    c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1.1758 +    d = dprecision_rounding(c);
  1.1759 +    push_pair( d );
  1.1760 +    break;
  1.1761 +
  1.1762 +  case Bytecodes::_dmul:
  1.1763 +    b = pop_pair();
  1.1764 +    a = pop_pair();
  1.1765 +    c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1.1766 +    d = dprecision_rounding(c);
  1.1767 +    push_pair( d );
  1.1768 +    break;
  1.1769 +
  1.1770 +  case Bytecodes::_ddiv:
  1.1771 +    b = pop_pair();
  1.1772 +    a = pop_pair();
  1.1773 +    c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1.1774 +    d = dprecision_rounding(c);
  1.1775 +    push_pair( d );
  1.1776 +    break;
  1.1777 +
  1.1778 +  case Bytecodes::_dneg:
  1.1779 +    a = pop_pair();
  1.1780 +    b = _gvn.transform(new (C, 2) NegDNode (a));
  1.1781 +    push_pair(b);
  1.1782 +    break;
  1.1783 +
  1.1784 +  case Bytecodes::_drem:
  1.1785 +    if (Matcher::has_match_rule(Op_ModD)) {
  1.1786 +      // Generate a ModD node.
  1.1787 +      b = pop_pair();
  1.1788 +      a = pop_pair();
  1.1789 +      // a % b
  1.1790 +
  1.1791 +      c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1.1792 +      d = dprecision_rounding(c);
  1.1793 +      push_pair( d );
  1.1794 +    }
  1.1795 +    else {
  1.1796 +      // Generate a call.
  1.1797 +      modd();
  1.1798 +    }
  1.1799 +    break;
  1.1800 +
  1.1801 +  case Bytecodes::_dcmpl:
  1.1802 +    b = pop_pair();
  1.1803 +    a = pop_pair();
  1.1804 +    c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1.1805 +    push(c);
  1.1806 +    break;
  1.1807 +
  1.1808 +  case Bytecodes::_dcmpg:
  1.1809 +    b = pop_pair();
  1.1810 +    a = pop_pair();
  1.1811 +    // Same as dcmpl but need to flip the unordered case.
  1.1812 +    // Commute the inputs, which negates the result sign except for unordered.
  1.1813 +    // Flip the unordered as well by using CmpD3 which implements
  1.1814 +    // unordered-lesser instead of unordered-greater semantics.
  1.1815 +    // Finally, negate the result bits.  Result is same as using a
  1.1816 +    // CmpD3Greater except we did it with CmpD3 alone.
  1.1817 +    c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1.1818 +    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1.1819 +    push(c);
  1.1820 +    break;
  1.1821 +
  1.1822 +
  1.1823 +    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1.1824 +  case Bytecodes::_land:
  1.1825 +    b = pop_pair();
  1.1826 +    a = pop_pair();
  1.1827 +    c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1.1828 +    push_pair(c);
  1.1829 +    break;
  1.1830 +  case Bytecodes::_lor:
  1.1831 +    b = pop_pair();
  1.1832 +    a = pop_pair();
  1.1833 +    c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1.1834 +    push_pair(c);
  1.1835 +    break;
  1.1836 +  case Bytecodes::_lxor:
  1.1837 +    b = pop_pair();
  1.1838 +    a = pop_pair();
  1.1839 +    c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1.1840 +    push_pair(c);
  1.1841 +    break;
  1.1842 +
  1.1843 +  case Bytecodes::_lshl:
  1.1844 +    b = pop();                  // the shift count
  1.1845 +    a = pop_pair();             // value to be shifted
  1.1846 +    c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1.1847 +    push_pair(c);
  1.1848 +    break;
  1.1849 +  case Bytecodes::_lshr:
  1.1850 +    b = pop();                  // the shift count
  1.1851 +    a = pop_pair();             // value to be shifted
  1.1852 +    c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1.1853 +    push_pair(c);
  1.1854 +    break;
  1.1855 +  case Bytecodes::_lushr:
  1.1856 +    b = pop();                  // the shift count
  1.1857 +    a = pop_pair();             // value to be shifted
  1.1858 +    c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1.1859 +    push_pair(c);
  1.1860 +    break;
  1.1861 +  case Bytecodes::_lmul:
  1.1862 +    b = pop_pair();
  1.1863 +    a = pop_pair();
  1.1864 +    c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1.1865 +    push_pair(c);
  1.1866 +    break;
  1.1867 +
  1.1868 +  case Bytecodes::_lrem:
  1.1869 +    // Must keep both values on the expression-stack during null-check
  1.1870 +    assert(peek(0) == top(), "long word order");
  1.1871 +    do_null_check(peek(1), T_LONG);
  1.1872 +    // Compile-time detect of null-exception?
  1.1873 +    if (stopped())  return;
  1.1874 +    b = pop_pair();
  1.1875 +    a = pop_pair();
  1.1876 +    c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1.1877 +    push_pair(c);
  1.1878 +    break;
  1.1879 +
  1.1880 +  case Bytecodes::_ldiv:
  1.1881 +    // Must keep both values on the expression-stack during null-check
  1.1882 +    assert(peek(0) == top(), "long word order");
  1.1883 +    do_null_check(peek(1), T_LONG);
  1.1884 +    // Compile-time detect of null-exception?
  1.1885 +    if (stopped())  return;
  1.1886 +    b = pop_pair();
  1.1887 +    a = pop_pair();
  1.1888 +    c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1.1889 +    push_pair(c);
  1.1890 +    break;
  1.1891 +
  1.1892 +  case Bytecodes::_ladd:
  1.1893 +    b = pop_pair();
  1.1894 +    a = pop_pair();
  1.1895 +    c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1.1896 +    push_pair(c);
  1.1897 +    break;
  1.1898 +  case Bytecodes::_lsub:
  1.1899 +    b = pop_pair();
  1.1900 +    a = pop_pair();
  1.1901 +    c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1.1902 +    push_pair(c);
  1.1903 +    break;
  1.1904 +  case Bytecodes::_lcmp:
  1.1905 +    // Safepoints are now inserted _before_ branches.  The long-compare
  1.1906 +    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1.1907 +    // slew of control flow.  These are usually followed by a CmpI vs zero and
  1.1908 +    // a branch; this pattern then optimizes to the obvious long-compare and
  1.1909 +    // branch.  However, if the branch is backwards there's a Safepoint
  1.1910 +    // inserted.  The inserted Safepoint captures the JVM state at the
  1.1911 +    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1.1912 +    // long-compare is used to control a loop the debug info will force
  1.1913 +    // computation of the 3-way value, even though the generated code uses a
  1.1914 +    // long-compare and branch.  We try to rectify the situation by inserting
  1.1915 +    // a SafePoint here and have it dominate and kill the safepoint added at a
  1.1916 +    // following backwards branch.  At this point the JVM state merely holds 2
  1.1917 +    // longs but not the 3-way value.
  1.1918 +    if( UseLoopSafepoints ) {
  1.1919 +      switch( iter().next_bc() ) {
  1.1920 +      case Bytecodes::_ifgt:
  1.1921 +      case Bytecodes::_iflt:
  1.1922 +      case Bytecodes::_ifge:
  1.1923 +      case Bytecodes::_ifle:
  1.1924 +      case Bytecodes::_ifne:
  1.1925 +      case Bytecodes::_ifeq:
  1.1926 +        // If this is a backwards branch in the bytecodes, add Safepoint
  1.1927 +        maybe_add_safepoint(iter().next_get_dest());
  1.1928 +      }
  1.1929 +    }
  1.1930 +    b = pop_pair();
  1.1931 +    a = pop_pair();
  1.1932 +    c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1.1933 +    push(c);
  1.1934 +    break;
  1.1935 +
  1.1936 +  case Bytecodes::_lneg:
  1.1937 +    a = pop_pair();
  1.1938 +    b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  1.1939 +    push_pair(b);
  1.1940 +    break;
  1.1941 +  case Bytecodes::_l2i:
  1.1942 +    a = pop_pair();
  1.1943 +    push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  1.1944 +    break;
  1.1945 +  case Bytecodes::_i2l:
  1.1946 +    a = pop();
  1.1947 +    b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  1.1948 +    push_pair(b);
  1.1949 +    break;
  1.1950 +  case Bytecodes::_i2b:
  1.1951 +    // Sign extend
  1.1952 +    a = pop();
  1.1953 +    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  1.1954 +    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  1.1955 +    push( a );
  1.1956 +    break;
  1.1957 +  case Bytecodes::_i2s:
  1.1958 +    a = pop();
  1.1959 +    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  1.1960 +    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  1.1961 +    push( a );
  1.1962 +    break;
  1.1963 +  case Bytecodes::_i2c:
  1.1964 +    a = pop();
  1.1965 +    push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  1.1966 +    break;
  1.1967 +
  1.1968 +  case Bytecodes::_i2f:
  1.1969 +    a = pop();
  1.1970 +    b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  1.1971 +    c = precision_rounding(b);
  1.1972 +    push (b);
  1.1973 +    break;
  1.1974 +
  1.1975 +  case Bytecodes::_i2d:
  1.1976 +    a = pop();
  1.1977 +    b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  1.1978 +    push_pair(b);
  1.1979 +    break;
  1.1980 +
  1.1981 +  case Bytecodes::_iinc:        // Increment local
  1.1982 +    i = iter().get_index();     // Get local index
  1.1983 +    set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  1.1984 +    break;
  1.1985 +
  1.1986 +  // Exit points of synchronized methods must have an unlock node
  1.1987 +  case Bytecodes::_return:
  1.1988 +    return_current(NULL);
  1.1989 +    break;
  1.1990 +
  1.1991 +  case Bytecodes::_ireturn:
  1.1992 +  case Bytecodes::_areturn:
  1.1993 +  case Bytecodes::_freturn:
  1.1994 +    return_current(pop());
  1.1995 +    break;
  1.1996 +  case Bytecodes::_lreturn:
  1.1997 +    return_current(pop_pair());
  1.1998 +    break;
  1.1999 +  case Bytecodes::_dreturn:
  1.2000 +    return_current(pop_pair());
  1.2001 +    break;
  1.2002 +
  1.2003 +  case Bytecodes::_athrow:
  1.2004 +    // null exception oop throws NULL pointer exception
  1.2005 +    do_null_check(peek(), T_OBJECT);
  1.2006 +    if (stopped())  return;
  1.2007 +    if (JvmtiExport::can_post_exceptions()) {
  1.2008 +      // "Full-speed throwing" is not necessary here,
  1.2009 +      // since we're notifying the VM on every throw.
  1.2010 +      uncommon_trap(Deoptimization::Reason_unhandled,
  1.2011 +                    Deoptimization::Action_none);
  1.2012 +      return;
  1.2013 +    }
  1.2014 +    // Hook the thrown exception directly to subsequent handlers.
  1.2015 +    if (BailoutToInterpreterForThrows) {
  1.2016 +      // Keep method interpreted from now on.
  1.2017 +      uncommon_trap(Deoptimization::Reason_unhandled,
  1.2018 +                    Deoptimization::Action_make_not_compilable);
  1.2019 +      return;
  1.2020 +    }
  1.2021 +    add_exception_state(make_exception_state(peek()));
  1.2022 +    break;
  1.2023 +
  1.2024 +  case Bytecodes::_goto:   // fall through
  1.2025 +  case Bytecodes::_goto_w: {
  1.2026 +    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  1.2027 +
  1.2028 +    // If this is a backwards branch in the bytecodes, add Safepoint
  1.2029 +    maybe_add_safepoint(target_bci);
  1.2030 +
  1.2031 +    // Update method data
  1.2032 +    profile_taken_branch(target_bci);
  1.2033 +
  1.2034 +    // Merge the current control into the target basic block
  1.2035 +    merge(target_bci);
  1.2036 +
  1.2037 +    // See if we can get some profile data and hand it off to the next block
  1.2038 +    Block *target_block = block()->successor_for_bci(target_bci);
  1.2039 +    if (target_block->pred_count() != 1)  break;
  1.2040 +    ciMethodData* methodData = method()->method_data();
  1.2041 +    if (!methodData->is_mature())  break;
  1.2042 +    ciProfileData* data = methodData->bci_to_data(bci());
  1.2043 +    assert( data->is_JumpData(), "" );
  1.2044 +    int taken = ((ciJumpData*)data)->taken();
  1.2045 +    taken = method()->scale_count(taken);
  1.2046 +    target_block->set_count(taken);
  1.2047 +    break;
  1.2048 +  }
  1.2049 +
  1.2050 +  case Bytecodes::_ifnull:
  1.2051 +    do_ifnull(BoolTest::eq);
  1.2052 +    break;
  1.2053 +  case Bytecodes::_ifnonnull:
  1.2054 +    do_ifnull(BoolTest::ne);
  1.2055 +    break;
  1.2056 +
  1.2057 +  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  1.2058 +  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  1.2059 +  handle_if_acmp:
  1.2060 +    // If this is a backwards branch in the bytecodes, add Safepoint
  1.2061 +    maybe_add_safepoint(iter().get_dest());
  1.2062 +    a = pop();
  1.2063 +    b = pop();
  1.2064 +    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  1.2065 +    do_if(btest, c);
  1.2066 +    break;
  1.2067 +
  1.2068 +  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  1.2069 +  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  1.2070 +  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  1.2071 +  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  1.2072 +  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  1.2073 +  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  1.2074 +  handle_ifxx:
  1.2075 +    // If this is a backwards branch in the bytecodes, add Safepoint
  1.2076 +    maybe_add_safepoint(iter().get_dest());
  1.2077 +    a = _gvn.intcon(0);
  1.2078 +    b = pop();
  1.2079 +    c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  1.2080 +    do_if(btest, c);
  1.2081 +    break;
  1.2082 +
  1.2083 +  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  1.2084 +  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  1.2085 +  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  1.2086 +  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  1.2087 +  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  1.2088 +  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  1.2089 +  handle_if_icmp:
  1.2090 +    // If this is a backwards branch in the bytecodes, add Safepoint
  1.2091 +    maybe_add_safepoint(iter().get_dest());
  1.2092 +    a = pop();
  1.2093 +    b = pop();
  1.2094 +    c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  1.2095 +    do_if(btest, c);
  1.2096 +    break;
  1.2097 +
  1.2098 +  case Bytecodes::_tableswitch:
  1.2099 +    do_tableswitch();
  1.2100 +    break;
  1.2101 +
  1.2102 +  case Bytecodes::_lookupswitch:
  1.2103 +    do_lookupswitch();
  1.2104 +    break;
  1.2105 +
  1.2106 +  case Bytecodes::_invokestatic:
  1.2107 +  case Bytecodes::_invokespecial:
  1.2108 +  case Bytecodes::_invokevirtual:
  1.2109 +  case Bytecodes::_invokeinterface:
  1.2110 +    do_call();
  1.2111 +    break;
  1.2112 +  case Bytecodes::_checkcast:
  1.2113 +    do_checkcast();
  1.2114 +    break;
  1.2115 +  case Bytecodes::_instanceof:
  1.2116 +    do_instanceof();
  1.2117 +    break;
  1.2118 +  case Bytecodes::_anewarray:
  1.2119 +    do_anewarray();
  1.2120 +    break;
  1.2121 +  case Bytecodes::_newarray:
  1.2122 +    do_newarray((BasicType)iter().get_index());
  1.2123 +    break;
  1.2124 +  case Bytecodes::_multianewarray:
  1.2125 +    do_multianewarray();
  1.2126 +    break;
  1.2127 +  case Bytecodes::_new:
  1.2128 +    do_new();
  1.2129 +    break;
  1.2130 +
  1.2131 +  case Bytecodes::_jsr:
  1.2132 +  case Bytecodes::_jsr_w:
  1.2133 +    do_jsr();
  1.2134 +    break;
  1.2135 +
  1.2136 +  case Bytecodes::_ret:
  1.2137 +    do_ret();
  1.2138 +    break;
  1.2139 +
  1.2140 +
  1.2141 +  case Bytecodes::_monitorenter:
  1.2142 +    do_monitor_enter();
  1.2143 +    break;
  1.2144 +
  1.2145 +  case Bytecodes::_monitorexit:
  1.2146 +    do_monitor_exit();
  1.2147 +    break;
  1.2148 +
  1.2149 +  case Bytecodes::_breakpoint:
  1.2150 +    // Breakpoint set concurrently to compile
  1.2151 +    // %%% use an uncommon trap?
  1.2152 +    C->record_failure("breakpoint in method");
  1.2153 +    return;
  1.2154 +
  1.2155 +  default:
  1.2156 +#ifndef PRODUCT
  1.2157 +    map()->dump(99);
  1.2158 +#endif
  1.2159 +    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  1.2160 +    ShouldNotReachHere();
  1.2161 +  }
  1.2162 +
  1.2163 +#ifndef PRODUCT
  1.2164 +  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  1.2165 +  if(printer) {
  1.2166 +    char buffer[256];
  1.2167 +    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  1.2168 +    bool old = printer->traverse_outs();
  1.2169 +    printer->set_traverse_outs(true);
  1.2170 +    printer->print_method(C, buffer, 3);
  1.2171 +    printer->set_traverse_outs(old);
  1.2172 +  }
  1.2173 +#endif
  1.2174 +}

mercurial