src/share/vm/opto/coalesce.cpp

changeset 435
a61af66fc99e
child 730
ea18057223c4
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/coalesce.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,915 @@
     1.4 +/*
     1.5 + * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "incls/_precompiled.incl"
    1.29 +#include "incls/_coalesce.cpp.incl"
    1.30 +
    1.31 +//=============================================================================
    1.32 +//------------------------------reset_uf_map-----------------------------------
    1.33 +void PhaseChaitin::reset_uf_map( uint maxlrg ) {
    1.34 +  _maxlrg = maxlrg;
    1.35 +  // Force the Union-Find mapping to be at least this large
    1.36 +  _uf_map.extend(_maxlrg,0);
    1.37 +  // Initialize it to be the ID mapping.
    1.38 +  for( uint i=0; i<_maxlrg; i++ )
    1.39 +    _uf_map.map(i,i);
    1.40 +}
    1.41 +
    1.42 +//------------------------------compress_uf_map--------------------------------
    1.43 +// Make all Nodes map directly to their final live range; no need for
    1.44 +// the Union-Find mapping after this call.
    1.45 +void PhaseChaitin::compress_uf_map_for_nodes( ) {
    1.46 +  // For all Nodes, compress mapping
    1.47 +  uint unique = _names.Size();
    1.48 +  for( uint i=0; i<unique; i++ ) {
    1.49 +    uint lrg = _names[i];
    1.50 +    uint compressed_lrg = Find(lrg);
    1.51 +    if( lrg != compressed_lrg )
    1.52 +      _names.map(i,compressed_lrg);
    1.53 +  }
    1.54 +}
    1.55 +
    1.56 +//------------------------------Find-------------------------------------------
    1.57 +// Straight out of Tarjan's union-find algorithm
    1.58 +uint PhaseChaitin::Find_compress( uint lrg ) {
    1.59 +  uint cur = lrg;
    1.60 +  uint next = _uf_map[cur];
    1.61 +  while( next != cur ) {        // Scan chain of equivalences
    1.62 +    assert( next < cur, "always union smaller" );
    1.63 +    cur = next;                 // until find a fixed-point
    1.64 +    next = _uf_map[cur];
    1.65 +  }
    1.66 +  // Core of union-find algorithm: update chain of
    1.67 +  // equivalences to be equal to the root.
    1.68 +  while( lrg != next ) {
    1.69 +    uint tmp = _uf_map[lrg];
    1.70 +    _uf_map.map(lrg, next);
    1.71 +    lrg = tmp;
    1.72 +  }
    1.73 +  return lrg;
    1.74 +}
    1.75 +
    1.76 +//------------------------------Find-------------------------------------------
    1.77 +// Straight out of Tarjan's union-find algorithm
    1.78 +uint PhaseChaitin::Find_compress( const Node *n ) {
    1.79 +  uint lrg = Find_compress(_names[n->_idx]);
    1.80 +  _names.map(n->_idx,lrg);
    1.81 +  return lrg;
    1.82 +}
    1.83 +
    1.84 +//------------------------------Find_const-------------------------------------
    1.85 +// Like Find above, but no path compress, so bad asymptotic behavior
    1.86 +uint PhaseChaitin::Find_const( uint lrg ) const {
    1.87 +  if( !lrg ) return lrg;        // Ignore the zero LRG
    1.88 +  // Off the end?  This happens during debugging dumps when you got
    1.89 +  // brand new live ranges but have not told the allocator yet.
    1.90 +  if( lrg >= _maxlrg ) return lrg;
    1.91 +  uint next = _uf_map[lrg];
    1.92 +  while( next != lrg ) {        // Scan chain of equivalences
    1.93 +    assert( next < lrg, "always union smaller" );
    1.94 +    lrg = next;                 // until find a fixed-point
    1.95 +    next = _uf_map[lrg];
    1.96 +  }
    1.97 +  return next;
    1.98 +}
    1.99 +
   1.100 +//------------------------------Find-------------------------------------------
   1.101 +// Like Find above, but no path compress, so bad asymptotic behavior
   1.102 +uint PhaseChaitin::Find_const( const Node *n ) const {
   1.103 +  if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump
   1.104 +  return Find_const( _names[n->_idx] );
   1.105 +}
   1.106 +
   1.107 +//------------------------------Union------------------------------------------
   1.108 +// union 2 sets together.
   1.109 +void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
   1.110 +  uint src = Find(src_n);
   1.111 +  uint dst = Find(dst_n);
   1.112 +  assert( src, "" );
   1.113 +  assert( dst, "" );
   1.114 +  assert( src < _maxlrg, "oob" );
   1.115 +  assert( dst < _maxlrg, "oob" );
   1.116 +  assert( src < dst, "always union smaller" );
   1.117 +  _uf_map.map(dst,src);
   1.118 +}
   1.119 +
   1.120 +//------------------------------new_lrg----------------------------------------
   1.121 +void PhaseChaitin::new_lrg( const Node *x, uint lrg ) {
   1.122 +  // Make the Node->LRG mapping
   1.123 +  _names.extend(x->_idx,lrg);
   1.124 +  // Make the Union-Find mapping an identity function
   1.125 +  _uf_map.extend(lrg,lrg);
   1.126 +}
   1.127 +
   1.128 +//------------------------------clone_projs------------------------------------
   1.129 +// After cloning some rematierialized instruction, clone any MachProj's that
   1.130 +// follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
   1.131 +// use G3 as an address temp.
   1.132 +int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) {
   1.133 +  Block *bcon = _cfg._bbs[con->_idx];
   1.134 +  uint cindex = bcon->find_node(con);
   1.135 +  Node *con_next = bcon->_nodes[cindex+1];
   1.136 +  if( con_next->in(0) != con || con_next->Opcode() != Op_MachProj )
   1.137 +    return false;               // No MachProj's follow
   1.138 +
   1.139 +  // Copy kills after the cloned constant
   1.140 +  Node *kills = con_next->clone();
   1.141 +  kills->set_req( 0, copy );
   1.142 +  b->_nodes.insert( idx, kills );
   1.143 +  _cfg._bbs.map( kills->_idx, b );
   1.144 +  new_lrg( kills, maxlrg++ );
   1.145 +  return true;
   1.146 +}
   1.147 +
   1.148 +//------------------------------compact----------------------------------------
   1.149 +// Renumber the live ranges to compact them.  Makes the IFG smaller.
   1.150 +void PhaseChaitin::compact() {
   1.151 +  // Current the _uf_map contains a series of short chains which are headed
   1.152 +  // by a self-cycle.  All the chains run from big numbers to little numbers.
   1.153 +  // The Find() call chases the chains & shortens them for the next Find call.
   1.154 +  // We are going to change this structure slightly.  Numbers above a moving
   1.155 +  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
   1.156 +  // compacted live range with no further chaining.  There are no chains or
   1.157 +  // cycles below 'i', so the Find call no longer works.
   1.158 +  uint j=1;
   1.159 +  uint i;
   1.160 +  for( i=1; i < _maxlrg; i++ ) {
   1.161 +    uint lr = _uf_map[i];
   1.162 +    // Ignore unallocated live ranges
   1.163 +    if( !lr ) continue;
   1.164 +    assert( lr <= i, "" );
   1.165 +    _uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]);
   1.166 +  }
   1.167 +  if( false )                  // PrintOptoCompactLiveRanges
   1.168 +    printf("Compacted %d LRs from %d\n",i-j,i);
   1.169 +  // Now change the Node->LR mapping to reflect the compacted names
   1.170 +  uint unique = _names.Size();
   1.171 +  for( i=0; i<unique; i++ )
   1.172 +    _names.map(i,_uf_map[_names[i]]);
   1.173 +
   1.174 +  // Reset the Union-Find mapping
   1.175 +  reset_uf_map(j);
   1.176 +
   1.177 +}
   1.178 +
   1.179 +//=============================================================================
   1.180 +//------------------------------Dump-------------------------------------------
   1.181 +#ifndef PRODUCT
   1.182 +void PhaseCoalesce::dump( Node *n ) const {
   1.183 +  // Being a const function means I cannot use 'Find'
   1.184 +  uint r = _phc.Find(n);
   1.185 +  tty->print("L%d/N%d ",r,n->_idx);
   1.186 +}
   1.187 +
   1.188 +//------------------------------dump-------------------------------------------
   1.189 +void PhaseCoalesce::dump() const {
   1.190 +  // I know I have a block layout now, so I can print blocks in a loop
   1.191 +  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
   1.192 +    uint j;
   1.193 +    Block *b = _phc._cfg._blocks[i];
   1.194 +    // Print a nice block header
   1.195 +    tty->print("B%d: ",b->_pre_order);
   1.196 +    for( j=1; j<b->num_preds(); j++ )
   1.197 +      tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
   1.198 +    tty->print("-> ");
   1.199 +    for( j=0; j<b->_num_succs; j++ )
   1.200 +      tty->print("B%d ",b->_succs[j]->_pre_order);
   1.201 +    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
   1.202 +    uint cnt = b->_nodes.size();
   1.203 +    for( j=0; j<cnt; j++ ) {
   1.204 +      Node *n = b->_nodes[j];
   1.205 +      dump( n );
   1.206 +      tty->print("\t%s\t",n->Name());
   1.207 +
   1.208 +      // Dump the inputs
   1.209 +      uint k;                   // Exit value of loop
   1.210 +      for( k=0; k<n->req(); k++ ) // For all required inputs
   1.211 +        if( n->in(k) ) dump( n->in(k) );
   1.212 +        else tty->print("_ ");
   1.213 +      int any_prec = 0;
   1.214 +      for( ; k<n->len(); k++ )          // For all precedence inputs
   1.215 +        if( n->in(k) ) {
   1.216 +          if( !any_prec++ ) tty->print(" |");
   1.217 +          dump( n->in(k) );
   1.218 +        }
   1.219 +
   1.220 +      // Dump node-specific info
   1.221 +      n->dump_spec(tty);
   1.222 +      tty->print("\n");
   1.223 +
   1.224 +    }
   1.225 +    tty->print("\n");
   1.226 +  }
   1.227 +}
   1.228 +#endif
   1.229 +
   1.230 +//------------------------------combine_these_two------------------------------
   1.231 +// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
   1.232 +void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) {
   1.233 +  uint lr1 = _phc.Find(n1);
   1.234 +  uint lr2 = _phc.Find(n2);
   1.235 +  if( lr1 != lr2 &&             // Different live ranges already AND
   1.236 +      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
   1.237 +    LRG *lrg1 = &_phc.lrgs(lr1);
   1.238 +    LRG *lrg2 = &_phc.lrgs(lr2);
   1.239 +    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
   1.240 +
   1.241 +    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
   1.242 +    // and in general that's a bad thing.  However, int->oop conversions only
   1.243 +    // happen at GC points, so the lifetime of the misclassified raw-pointer
   1.244 +    // is from the CheckCastPP (that converts it to an oop) backwards up
   1.245 +    // through a merge point and into the slow-path call, and around the
   1.246 +    // diamond up to the heap-top check and back down into the slow-path call.
   1.247 +    // The misclassified raw pointer is NOT live across the slow-path call,
   1.248 +    // and so does not appear in any GC info, so the fact that it is
   1.249 +    // misclassified is OK.
   1.250 +
   1.251 +    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
   1.252 +        // Compatible final mask
   1.253 +        lrg1->mask().overlap( lrg2->mask() ) ) {
   1.254 +      // Merge larger into smaller.
   1.255 +      if( lr1 > lr2 ) {
   1.256 +        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
   1.257 +        Node   *n =   n1;   n1 =   n2;   n2 =    n;
   1.258 +        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
   1.259 +      }
   1.260 +      // Union lr2 into lr1
   1.261 +      _phc.Union( n1, n2 );
   1.262 +      if (lrg1->_maxfreq < lrg2->_maxfreq)
   1.263 +        lrg1->_maxfreq = lrg2->_maxfreq;
   1.264 +      // Merge in the IFG
   1.265 +      _phc._ifg->Union( lr1, lr2 );
   1.266 +      // Combine register restrictions
   1.267 +      lrg1->AND(lrg2->mask());
   1.268 +    }
   1.269 +  }
   1.270 +}
   1.271 +
   1.272 +//------------------------------coalesce_driver--------------------------------
   1.273 +// Copy coalescing
   1.274 +void PhaseCoalesce::coalesce_driver( ) {
   1.275 +
   1.276 +  verify();
   1.277 +  // Coalesce from high frequency to low
   1.278 +  for( uint i=0; i<_phc._cfg._num_blocks; i++ )
   1.279 +    coalesce( _phc._blks[i] );
   1.280 +
   1.281 +}
   1.282 +
   1.283 +//------------------------------insert_copy_with_overlap-----------------------
   1.284 +// I am inserting copies to come out of SSA form.  In the general case, I am
   1.285 +// doing a parallel renaming.  I'm in the Named world now, so I can't do a
   1.286 +// general parallel renaming.  All the copies now use  "names" (live-ranges)
   1.287 +// to carry values instead of the explicit use-def chains.  Suppose I need to
   1.288 +// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
   1.289 +// If I insert them in the wrong order then L128 will get clobbered before it
   1.290 +// can get used by the second copy.  This cannot happen in the SSA model;
   1.291 +// direct use-def chains get me the right value.  It DOES happen in the named
   1.292 +// model so I have to handle the reordering of copies.
   1.293 +//
   1.294 +// In general, I need to topo-sort the placed copies to avoid conflicts.
   1.295 +// Its possible to have a closed cycle of copies (e.g., recirculating the same
   1.296 +// values around a loop).  In this case I need a temp to break the cycle.
   1.297 +void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
   1.298 +
   1.299 +  // Scan backwards for the locations of the last use of the dst_name.
   1.300 +  // I am about to clobber the dst_name, so the copy must be inserted
   1.301 +  // after the last use.  Last use is really first-use on a backwards scan.
   1.302 +  uint i = b->end_idx()-1;
   1.303 +  while( 1 ) {
   1.304 +    Node *n = b->_nodes[i];
   1.305 +    // Check for end of virtual copies; this is also the end of the
   1.306 +    // parallel renaming effort.
   1.307 +    if( n->_idx < _unique ) break;
   1.308 +    uint idx = n->is_Copy();
   1.309 +    assert( idx || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
   1.310 +    if( idx && _phc.Find(n->in(idx)) == dst_name ) break;
   1.311 +    i--;
   1.312 +  }
   1.313 +  uint last_use_idx = i;
   1.314 +
   1.315 +  // Also search for any kill of src_name that exits the block.
   1.316 +  // Since the copy uses src_name, I have to come before any kill.
   1.317 +  uint kill_src_idx = b->end_idx();
   1.318 +  // There can be only 1 kill that exits any block and that is
   1.319 +  // the last kill.  Thus it is the first kill on a backwards scan.
   1.320 +  i = b->end_idx()-1;
   1.321 +  while( 1 ) {
   1.322 +    Node *n = b->_nodes[i];
   1.323 +    // Check for end of virtual copies; this is also the end of the
   1.324 +    // parallel renaming effort.
   1.325 +    if( n->_idx < _unique ) break;
   1.326 +    assert( n->is_Copy() || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
   1.327 +    if( _phc.Find(n) == src_name ) {
   1.328 +      kill_src_idx = i;
   1.329 +      break;
   1.330 +    }
   1.331 +    i--;
   1.332 +  }
   1.333 +  // Need a temp?  Last use of dst comes after the kill of src?
   1.334 +  if( last_use_idx >= kill_src_idx ) {
   1.335 +    // Need to break a cycle with a temp
   1.336 +    uint idx = copy->is_Copy();
   1.337 +    Node *tmp = copy->clone();
   1.338 +    _phc.new_lrg(tmp,_phc._maxlrg++);
   1.339 +    // Insert new temp between copy and source
   1.340 +    tmp ->set_req(idx,copy->in(idx));
   1.341 +    copy->set_req(idx,tmp);
   1.342 +    // Save source in temp early, before source is killed
   1.343 +    b->_nodes.insert(kill_src_idx,tmp);
   1.344 +    _phc._cfg._bbs.map( tmp->_idx, b );
   1.345 +    last_use_idx++;
   1.346 +  }
   1.347 +
   1.348 +  // Insert just after last use
   1.349 +  b->_nodes.insert(last_use_idx+1,copy);
   1.350 +}
   1.351 +
   1.352 +//------------------------------insert_copies----------------------------------
   1.353 +void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
   1.354 +  // We do LRGs compressing and fix a liveout data only here since the other
   1.355 +  // place in Split() is guarded by the assert which we never hit.
   1.356 +  _phc.compress_uf_map_for_nodes();
   1.357 +  // Fix block's liveout data for compressed live ranges.
   1.358 +  for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) {
   1.359 +    uint compressed_lrg = _phc.Find(lrg);
   1.360 +    if( lrg != compressed_lrg ) {
   1.361 +      for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) {
   1.362 +        IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
   1.363 +        if( liveout->member(lrg) ) {
   1.364 +          liveout->remove(lrg);
   1.365 +          liveout->insert(compressed_lrg);
   1.366 +        }
   1.367 +      }
   1.368 +    }
   1.369 +  }
   1.370 +
   1.371 +  // All new nodes added are actual copies to replace virtual copies.
   1.372 +  // Nodes with index less than '_unique' are original, non-virtual Nodes.
   1.373 +  _unique = C->unique();
   1.374 +
   1.375 +  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
   1.376 +    Block *b = _phc._cfg._blocks[i];
   1.377 +    uint cnt = b->num_preds();  // Number of inputs to the Phi
   1.378 +
   1.379 +    for( uint l = 1; l<b->_nodes.size(); l++ ) {
   1.380 +      Node *n = b->_nodes[l];
   1.381 +
   1.382 +      // Do not use removed-copies, use copied value instead
   1.383 +      uint ncnt = n->req();
   1.384 +      for( uint k = 1; k<ncnt; k++ ) {
   1.385 +        Node *copy = n->in(k);
   1.386 +        uint cidx = copy->is_Copy();
   1.387 +        if( cidx ) {
   1.388 +          Node *def = copy->in(cidx);
   1.389 +          if( _phc.Find(copy) == _phc.Find(def) )
   1.390 +            n->set_req(k,def);
   1.391 +        }
   1.392 +      }
   1.393 +
   1.394 +      // Remove any explicit copies that get coalesced.
   1.395 +      uint cidx = n->is_Copy();
   1.396 +      if( cidx ) {
   1.397 +        Node *def = n->in(cidx);
   1.398 +        if( _phc.Find(n) == _phc.Find(def) ) {
   1.399 +          n->replace_by(def);
   1.400 +          n->set_req(cidx,NULL);
   1.401 +          b->_nodes.remove(l);
   1.402 +          l--;
   1.403 +          continue;
   1.404 +        }
   1.405 +      }
   1.406 +
   1.407 +      if( n->is_Phi() ) {
   1.408 +        // Get the chosen name for the Phi
   1.409 +        uint phi_name = _phc.Find( n );
   1.410 +        // Ignore the pre-allocated specials
   1.411 +        if( !phi_name ) continue;
   1.412 +        // Check for mismatch inputs to Phi
   1.413 +        for( uint j = 1; j<cnt; j++ ) {
   1.414 +          Node *m = n->in(j);
   1.415 +          uint src_name = _phc.Find(m);
   1.416 +          if( src_name != phi_name ) {
   1.417 +            Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
   1.418 +            Node *copy;
   1.419 +            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   1.420 +            // Rematerialize constants instead of copying them
   1.421 +            if( m->is_Mach() && m->as_Mach()->is_Con() &&
   1.422 +                m->as_Mach()->rematerialize() ) {
   1.423 +              copy = m->clone();
   1.424 +              // Insert the copy in the predecessor basic block
   1.425 +              pred->add_inst(copy);
   1.426 +              // Copy any flags as well
   1.427 +              _phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg );
   1.428 +            } else {
   1.429 +              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
   1.430 +              copy = new (C) MachSpillCopyNode(m,*rm,*rm);
   1.431 +              // Find a good place to insert.  Kinda tricky, use a subroutine
   1.432 +              insert_copy_with_overlap(pred,copy,phi_name,src_name);
   1.433 +            }
   1.434 +            // Insert the copy in the use-def chain
   1.435 +            n->set_req( j, copy );
   1.436 +            _phc._cfg._bbs.map( copy->_idx, pred );
   1.437 +            // Extend ("register allocate") the names array for the copy.
   1.438 +            _phc._names.extend( copy->_idx, phi_name );
   1.439 +          } // End of if Phi names do not match
   1.440 +        } // End of for all inputs to Phi
   1.441 +      } else { // End of if Phi
   1.442 +
   1.443 +        // Now check for 2-address instructions
   1.444 +        uint idx;
   1.445 +        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
   1.446 +          // Get the chosen name for the Node
   1.447 +          uint name = _phc.Find( n );
   1.448 +          assert( name, "no 2-address specials" );
   1.449 +          // Check for name mis-match on the 2-address input
   1.450 +          Node *m = n->in(idx);
   1.451 +          if( _phc.Find(m) != name ) {
   1.452 +            Node *copy;
   1.453 +            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   1.454 +            // At this point it is unsafe to extend live ranges (6550579).
   1.455 +            // Rematerialize only constants as we do for Phi above.
   1.456 +            if( m->is_Mach() && m->as_Mach()->is_Con() &&
   1.457 +                m->as_Mach()->rematerialize() ) {
   1.458 +              copy = m->clone();
   1.459 +              // Insert the copy in the basic block, just before us
   1.460 +              b->_nodes.insert( l++, copy );
   1.461 +              if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) )
   1.462 +                l++;
   1.463 +            } else {
   1.464 +              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
   1.465 +              copy = new (C) MachSpillCopyNode( m, *rm, *rm );
   1.466 +              // Insert the copy in the basic block, just before us
   1.467 +              b->_nodes.insert( l++, copy );
   1.468 +            }
   1.469 +            // Insert the copy in the use-def chain
   1.470 +            n->set_req(idx, copy );
   1.471 +            // Extend ("register allocate") the names array for the copy.
   1.472 +            _phc._names.extend( copy->_idx, name );
   1.473 +            _phc._cfg._bbs.map( copy->_idx, b );
   1.474 +          }
   1.475 +
   1.476 +        } // End of is two-adr
   1.477 +
   1.478 +        // Insert a copy at a debug use for a lrg which has high frequency
   1.479 +        if( (b->_freq < OPTO_DEBUG_SPLIT_FREQ) && n->is_MachSafePoint() ) {
   1.480 +          // Walk the debug inputs to the node and check for lrg freq
   1.481 +          JVMState* jvms = n->jvms();
   1.482 +          uint debug_start = jvms ? jvms->debug_start() : 999999;
   1.483 +          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
   1.484 +          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
   1.485 +            // Do not split monitors; they are only needed for debug table
   1.486 +            // entries and need no code.
   1.487 +            if( jvms->is_monitor_use(inpidx) ) continue;
   1.488 +            Node *inp = n->in(inpidx);
   1.489 +            uint nidx = _phc.n2lidx(inp);
   1.490 +            LRG &lrg = lrgs(nidx);
   1.491 +
   1.492 +            // If this lrg has a high frequency use/def
   1.493 +            if( lrg._maxfreq >= OPTO_LRG_HIGH_FREQ ) {
   1.494 +              // If the live range is also live out of this block (like it
   1.495 +              // would be for a fast/slow idiom), the normal spill mechanism
   1.496 +              // does an excellent job.  If it is not live out of this block
   1.497 +              // (like it would be for debug info to uncommon trap) splitting
   1.498 +              // the live range now allows a better allocation in the high
   1.499 +              // frequency blocks.
   1.500 +              //   Build_IFG_virtual has converted the live sets to
   1.501 +              // live-IN info, not live-OUT info.
   1.502 +              uint k;
   1.503 +              for( k=0; k < b->_num_succs; k++ )
   1.504 +                if( _phc._live->live(b->_succs[k])->member( nidx ) )
   1.505 +                  break;      // Live in to some successor block?
   1.506 +              if( k < b->_num_succs )
   1.507 +                continue;     // Live out; do not pre-split
   1.508 +              // Split the lrg at this use
   1.509 +              const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
   1.510 +              Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
   1.511 +              // Insert the copy in the use-def chain
   1.512 +              n->set_req(inpidx, copy );
   1.513 +              // Insert the copy in the basic block, just before us
   1.514 +              b->_nodes.insert( l++, copy );
   1.515 +              // Extend ("register allocate") the names array for the copy.
   1.516 +              _phc.new_lrg( copy, _phc._maxlrg++ );
   1.517 +              _phc._cfg._bbs.map( copy->_idx, b );
   1.518 +              //tty->print_cr("Split a debug use in Aggressive Coalesce");
   1.519 +            }  // End of if high frequency use/def
   1.520 +          }  // End of for all debug inputs
   1.521 +        }  // End of if low frequency safepoint
   1.522 +
   1.523 +      } // End of if Phi
   1.524 +
   1.525 +    } // End of for all instructions
   1.526 +  } // End of for all blocks
   1.527 +}
   1.528 +
   1.529 +//=============================================================================
   1.530 +//------------------------------coalesce---------------------------------------
   1.531 +// Aggressive (but pessimistic) copy coalescing of a single block
   1.532 +
   1.533 +// The following coalesce pass represents a single round of aggressive
   1.534 +// pessimistic coalesce.  "Aggressive" means no attempt to preserve
   1.535 +// colorability when coalescing.  This occasionally means more spills, but
   1.536 +// it also means fewer rounds of coalescing for better code - and that means
   1.537 +// faster compiles.
   1.538 +
   1.539 +// "Pessimistic" means we do not hit the fixed point in one pass (and we are
   1.540 +// reaching for the least fixed point to boot).  This is typically solved
   1.541 +// with a few more rounds of coalescing, but the compiler must run fast.  We
   1.542 +// could optimistically coalescing everything touching PhiNodes together
   1.543 +// into one big live range, then check for self-interference.  Everywhere
   1.544 +// the live range interferes with self it would have to be split.  Finding
   1.545 +// the right split points can be done with some heuristics (based on
   1.546 +// expected frequency of edges in the live range).  In short, it's a real
   1.547 +// research problem and the timeline is too short to allow such research.
   1.548 +// Further thoughts: (1) build the LR in a pass, (2) find self-interference
   1.549 +// in another pass, (3) per each self-conflict, split, (4) split by finding
   1.550 +// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
   1.551 +// according to the GCM algorithm (or just exec freq on CFG edges).
   1.552 +
   1.553 +void PhaseAggressiveCoalesce::coalesce( Block *b ) {
   1.554 +  // Copies are still "virtual" - meaning we have not made them explicitly
   1.555 +  // copies.  Instead, Phi functions of successor blocks have mis-matched
   1.556 +  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
   1.557 +  // up the live-ranges.  Check for Phis in successor blocks.
   1.558 +  uint i;
   1.559 +  for( i=0; i<b->_num_succs; i++ ) {
   1.560 +    Block *bs = b->_succs[i];
   1.561 +    // Find index of 'b' in 'bs' predecessors
   1.562 +    uint j=1;
   1.563 +    while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
   1.564 +    // Visit all the Phis in successor block
   1.565 +    for( uint k = 1; k<bs->_nodes.size(); k++ ) {
   1.566 +      Node *n = bs->_nodes[k];
   1.567 +      if( !n->is_Phi() ) break;
   1.568 +      combine_these_two( n, n->in(j) );
   1.569 +    }
   1.570 +  } // End of for all successor blocks
   1.571 +
   1.572 +
   1.573 +  // Check _this_ block for 2-address instructions and copies.
   1.574 +  uint cnt = b->end_idx();
   1.575 +  for( i = 1; i<cnt; i++ ) {
   1.576 +    Node *n = b->_nodes[i];
   1.577 +    uint idx;
   1.578 +    // 2-address instructions have a virtual Copy matching their input
   1.579 +    // to their output
   1.580 +    if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
   1.581 +      MachNode *mach = n->as_Mach();
   1.582 +      combine_these_two( mach, mach->in(idx) );
   1.583 +    }
   1.584 +  } // End of for all instructions in block
   1.585 +}
   1.586 +
   1.587 +//=============================================================================
   1.588 +//------------------------------PhaseConservativeCoalesce----------------------
   1.589 +PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) {
   1.590 +  _ulr.initialize(_phc._maxlrg);
   1.591 +}
   1.592 +
   1.593 +//------------------------------verify-----------------------------------------
   1.594 +void PhaseConservativeCoalesce::verify() {
   1.595 +#ifdef ASSERT
   1.596 +  _phc.set_was_low();
   1.597 +#endif
   1.598 +}
   1.599 +
   1.600 +//------------------------------union_helper-----------------------------------
   1.601 +void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
   1.602 +  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   1.603 +  // union-find tree
   1.604 +  _phc.Union( lr1_node, lr2_node );
   1.605 +
   1.606 +  // Single-def live range ONLY if both live ranges are single-def.
   1.607 +  // If both are single def, then src_def powers one live range
   1.608 +  // and def_copy powers the other.  After merging, src_def powers
   1.609 +  // the combined live range.
   1.610 +  lrgs(lr1)._def = (lrgs(lr1)._def == NodeSentinel ||
   1.611 +                        lrgs(lr2)._def == NodeSentinel )
   1.612 +    ? NodeSentinel : src_def;
   1.613 +  lrgs(lr2)._def = NULL;    // No def for lrg 2
   1.614 +  lrgs(lr2).Clear();        // Force empty mask for LRG 2
   1.615 +  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
   1.616 +  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
   1.617 +  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
   1.618 +
   1.619 +  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
   1.620 +    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
   1.621 +
   1.622 +  // Copy original value instead.  Intermediate copies go dead, and
   1.623 +  // the dst_copy becomes useless.
   1.624 +  int didx = dst_copy->is_Copy();
   1.625 +  dst_copy->set_req( didx, src_def );
   1.626 +  // Add copy to free list
   1.627 +  // _phc.free_spillcopy(b->_nodes[bindex]);
   1.628 +  assert( b->_nodes[bindex] == dst_copy, "" );
   1.629 +  dst_copy->replace_by( dst_copy->in(didx) );
   1.630 +  dst_copy->set_req( didx, NULL);
   1.631 +  b->_nodes.remove(bindex);
   1.632 +  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
   1.633 +  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
   1.634 +
   1.635 +  // Stretched lr1; add it to liveness of intermediate blocks
   1.636 +  Block *b2 = _phc._cfg._bbs[src_copy->_idx];
   1.637 +  while( b != b2 ) {
   1.638 +    b = _phc._cfg._bbs[b->pred(1)->_idx];
   1.639 +    _phc._live->live(b)->insert(lr1);
   1.640 +  }
   1.641 +}
   1.642 +
   1.643 +//------------------------------compute_separating_interferences---------------
   1.644 +// Factored code from copy_copy that computes extra interferences from
   1.645 +// lengthening a live range by double-coalescing.
   1.646 +uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
   1.647 +
   1.648 +  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
   1.649 +  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
   1.650 +  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
   1.651 +  Block *b2 = b;
   1.652 +  uint bindex2 = bindex;
   1.653 +  while( 1 ) {
   1.654 +    // Find previous instruction
   1.655 +    bindex2--;                  // Chain backwards 1 instruction
   1.656 +    while( bindex2 == 0 ) {     // At block start, find prior block
   1.657 +      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
   1.658 +      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
   1.659 +      bindex2 = b2->end_idx()-1;
   1.660 +    }
   1.661 +    // Get prior instruction
   1.662 +    assert(bindex2 < b2->_nodes.size(), "index out of bounds");
   1.663 +    Node *x = b2->_nodes[bindex2];
   1.664 +    if( x == prev_copy ) {      // Previous copy in copy chain?
   1.665 +      if( prev_copy == src_copy)// Found end of chain and all interferences
   1.666 +        break;                  // So break out of loop
   1.667 +      // Else work back one in copy chain
   1.668 +      prev_copy = prev_copy->in(prev_copy->is_Copy());
   1.669 +    } else {                    // Else collect interferences
   1.670 +      uint lidx = _phc.Find(x);
   1.671 +      // Found another def of live-range being stretched?
   1.672 +      if( lidx == lr1 ) return max_juint;
   1.673 +      if( lidx == lr2 ) return max_juint;
   1.674 +
   1.675 +      // If we attempt to coalesce across a bound def
   1.676 +      if( lrgs(lidx).is_bound() ) {
   1.677 +        // Do not let the coalesced LRG expect to get the bound color
   1.678 +        rm.SUBTRACT( lrgs(lidx).mask() );
   1.679 +        // Recompute rm_size
   1.680 +        rm_size = rm.Size();
   1.681 +        //if( rm._flags ) rm_size += 1000000;
   1.682 +        if( reg_degree >= rm_size ) return max_juint;
   1.683 +      }
   1.684 +      if( rm.overlap(lrgs(lidx).mask()) ) {
   1.685 +        // Insert lidx into union LRG; returns TRUE if actually inserted
   1.686 +        if( _ulr.insert(lidx) ) {
   1.687 +          // Infinite-stack neighbors do not alter colorability, as they
   1.688 +          // can always color to some other color.
   1.689 +          if( !lrgs(lidx).mask().is_AllStack() ) {
   1.690 +            // If this coalesce will make any new neighbor uncolorable,
   1.691 +            // do not coalesce.
   1.692 +            if( lrgs(lidx).just_lo_degree() )
   1.693 +              return max_juint;
   1.694 +            // Bump our degree
   1.695 +            if( ++reg_degree >= rm_size )
   1.696 +              return max_juint;
   1.697 +          } // End of if not infinite-stack neighbor
   1.698 +        } // End of if actually inserted
   1.699 +      } // End of if live range overlaps
   1.700 +    } // End of else collect intereferences for 1 node
   1.701 +  } // End of while forever, scan back for intereferences
   1.702 +  return reg_degree;
   1.703 +}
   1.704 +
   1.705 +//------------------------------update_ifg-------------------------------------
   1.706 +void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
   1.707 +  // Some original neighbors of lr1 might have gone away
   1.708 +  // because the constrained register mask prevented them.
   1.709 +  // Remove lr1 from such neighbors.
   1.710 +  IndexSetIterator one(n_lr1);
   1.711 +  uint neighbor;
   1.712 +  LRG &lrg1 = lrgs(lr1);
   1.713 +  while ((neighbor = one.next()) != 0)
   1.714 +    if( !_ulr.member(neighbor) )
   1.715 +      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
   1.716 +        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
   1.717 +
   1.718 +
   1.719 +  // lr2 is now called (coalesced into) lr1.
   1.720 +  // Remove lr2 from the IFG.
   1.721 +  IndexSetIterator two(n_lr2);
   1.722 +  LRG &lrg2 = lrgs(lr2);
   1.723 +  while ((neighbor = two.next()) != 0)
   1.724 +    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
   1.725 +      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
   1.726 +
   1.727 +  // Some neighbors of intermediate copies now interfere with the
   1.728 +  // combined live range.
   1.729 +  IndexSetIterator three(&_ulr);
   1.730 +  while ((neighbor = three.next()) != 0)
   1.731 +    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
   1.732 +      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
   1.733 +}
   1.734 +
   1.735 +//------------------------------record_bias------------------------------------
   1.736 +static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
   1.737 +  // Tag copy bias here
   1.738 +  if( !ifg->lrgs(lr1)._copy_bias )
   1.739 +    ifg->lrgs(lr1)._copy_bias = lr2;
   1.740 +  if( !ifg->lrgs(lr2)._copy_bias )
   1.741 +    ifg->lrgs(lr2)._copy_bias = lr1;
   1.742 +}
   1.743 +
   1.744 +//------------------------------copy_copy--------------------------------------
   1.745 +// See if I can coalesce a series of multiple copies together.  I need the
   1.746 +// final dest copy and the original src copy.  They can be the same Node.
   1.747 +// Compute the compatible register masks.
   1.748 +bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
   1.749 +
   1.750 +  if( !dst_copy->is_SpillCopy() ) return false;
   1.751 +  if( !src_copy->is_SpillCopy() ) return false;
   1.752 +  Node *src_def = src_copy->in(src_copy->is_Copy());
   1.753 +  uint lr1 = _phc.Find(dst_copy);
   1.754 +  uint lr2 = _phc.Find(src_def );
   1.755 +
   1.756 +  // Same live ranges already?
   1.757 +  if( lr1 == lr2 ) return false;
   1.758 +
   1.759 +  // Interfere?
   1.760 +  if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false;
   1.761 +
   1.762 +  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
   1.763 +  if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast
   1.764 +    return false;
   1.765 +
   1.766 +  // Coalescing between an aligned live range and a mis-aligned live range?
   1.767 +  // No, no!  Alignment changes how we count degree.
   1.768 +  if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj )
   1.769 +    return false;
   1.770 +
   1.771 +  // Sort; use smaller live-range number
   1.772 +  Node *lr1_node = dst_copy;
   1.773 +  Node *lr2_node = src_def;
   1.774 +  if( lr1 > lr2 ) {
   1.775 +    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
   1.776 +    lr1_node = src_def;  lr2_node = dst_copy;
   1.777 +  }
   1.778 +
   1.779 +  // Check for compatibility of the 2 live ranges by
   1.780 +  // intersecting their allowed register sets.
   1.781 +  RegMask rm = lrgs(lr1).mask();
   1.782 +  rm.AND(lrgs(lr2).mask());
   1.783 +  // Number of bits free
   1.784 +  uint rm_size = rm.Size();
   1.785 +
   1.786 +  // If we can use any stack slot, then effective size is infinite
   1.787 +  if( rm.is_AllStack() ) rm_size += 1000000;
   1.788 +  // Incompatible masks, no way to coalesce
   1.789 +  if( rm_size == 0 ) return false;
   1.790 +
   1.791 +  // Another early bail-out test is when we are double-coalescing and the
   1.792 +  // 2 copies are seperated by some control flow.
   1.793 +  if( dst_copy != src_copy ) {
   1.794 +    Block *src_b = _phc._cfg._bbs[src_copy->_idx];
   1.795 +    Block *b2 = b;
   1.796 +    while( b2 != src_b ) {
   1.797 +      if( b2->num_preds() > 2 ){// Found merge-point
   1.798 +        _phc._lost_opp_cflow_coalesce++;
   1.799 +        // extra record_bias commented out because Chris believes it is not
   1.800 +        // productive.  Since we can record only 1 bias, we want to choose one
   1.801 +        // that stands a chance of working and this one probably does not.
   1.802 +        //record_bias( _phc._lrgs, lr1, lr2 );
   1.803 +        return false;           // To hard to find all interferences
   1.804 +      }
   1.805 +      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
   1.806 +    }
   1.807 +  }
   1.808 +
   1.809 +  // Union the two interference sets together into '_ulr'
   1.810 +  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
   1.811 +
   1.812 +  if( reg_degree >= rm_size ) {
   1.813 +    record_bias( _phc._ifg, lr1, lr2 );
   1.814 +    return false;
   1.815 +  }
   1.816 +
   1.817 +  // Now I need to compute all the interferences between dst_copy and
   1.818 +  // src_copy.  I'm not willing visit the entire interference graph, so
   1.819 +  // I limit my search to things in dst_copy's block or in a straight
   1.820 +  // line of previous blocks.  I give up at merge points or when I get
   1.821 +  // more interferences than my degree.  I can stop when I find src_copy.
   1.822 +  if( dst_copy != src_copy ) {
   1.823 +    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
   1.824 +    if( reg_degree == max_juint ) {
   1.825 +      record_bias( _phc._ifg, lr1, lr2 );
   1.826 +      return false;
   1.827 +    }
   1.828 +  } // End of if dst_copy & src_copy are different
   1.829 +
   1.830 +
   1.831 +  // ---- THE COMBINED LRG IS COLORABLE ----
   1.832 +
   1.833 +  // YEAH - Now coalesce this copy away
   1.834 +  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
   1.835 +
   1.836 +  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
   1.837 +  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
   1.838 +
   1.839 +  // Update the interference graph
   1.840 +  update_ifg(lr1, lr2, n_lr1, n_lr2);
   1.841 +
   1.842 +  _ulr.remove(lr1);
   1.843 +
   1.844 +  // Uncomment the following code to trace Coalescing in great detail.
   1.845 +  //
   1.846 +  //if (false) {
   1.847 +  //  tty->cr();
   1.848 +  //  tty->print_cr("#######################################");
   1.849 +  //  tty->print_cr("union %d and %d", lr1, lr2);
   1.850 +  //  n_lr1->dump();
   1.851 +  //  n_lr2->dump();
   1.852 +  //  tty->print_cr("resulting set is");
   1.853 +  //  _ulr.dump();
   1.854 +  //}
   1.855 +
   1.856 +  // Replace n_lr1 with the new combined live range.  _ulr will use
   1.857 +  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
   1.858 +  // send its internal memory to the free list.
   1.859 +  _ulr.swap(n_lr1);
   1.860 +  _ulr.clear();
   1.861 +  n_lr2->clear();
   1.862 +
   1.863 +  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
   1.864 +  lrgs(lr2).set_degree( 0 );
   1.865 +
   1.866 +  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   1.867 +  // union-find tree
   1.868 +  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
   1.869 +  // Combine register restrictions
   1.870 +  lrgs(lr1).set_mask(rm);
   1.871 +  lrgs(lr1).compute_set_mask_size();
   1.872 +  lrgs(lr1)._cost += lrgs(lr2)._cost;
   1.873 +  lrgs(lr1)._area += lrgs(lr2)._area;
   1.874 +
   1.875 +  // While its uncommon to successfully coalesce live ranges that started out
   1.876 +  // being not-lo-degree, it can happen.  In any case the combined coalesced
   1.877 +  // live range better Simplify nicely.
   1.878 +  lrgs(lr1)._was_lo = 1;
   1.879 +
   1.880 +  // kinda expensive to do all the time
   1.881 +  //tty->print_cr("warning: slow verify happening");
   1.882 +  //_phc._ifg->verify( &_phc );
   1.883 +  return true;
   1.884 +}
   1.885 +
   1.886 +//------------------------------coalesce---------------------------------------
   1.887 +// Conservative (but pessimistic) copy coalescing of a single block
   1.888 +void PhaseConservativeCoalesce::coalesce( Block *b ) {
   1.889 +  // Bail out on infrequent blocks
   1.890 +  if( b->is_uncommon(_phc._cfg._bbs) )
   1.891 +    return;
   1.892 +  // Check this block for copies.
   1.893 +  for( uint i = 1; i<b->end_idx(); i++ ) {
   1.894 +    // Check for actual copies on inputs.  Coalesce a copy into its
   1.895 +    // input if use and copy's input are compatible.
   1.896 +    Node *copy1 = b->_nodes[i];
   1.897 +    uint idx1 = copy1->is_Copy();
   1.898 +    if( !idx1 ) continue;       // Not a copy
   1.899 +
   1.900 +    if( copy_copy(copy1,copy1,b,i) ) {
   1.901 +      i--;                      // Retry, same location in block
   1.902 +      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
   1.903 +      continue;
   1.904 +    }
   1.905 +
   1.906 +    /* do not attempt pairs.  About 1/2 of all pairs can be removed by
   1.907 +       post-alloc.  The other set are too few to bother.
   1.908 +    Node *copy2 = copy1->in(idx1);
   1.909 +    uint idx2 = copy2->is_Copy();
   1.910 +    if( !idx2 ) continue;
   1.911 +    if( copy_copy(copy1,copy2,b,i) ) {
   1.912 +      i--;                      // Retry, same location in block
   1.913 +      PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success
   1.914 +      continue;
   1.915 +    }
   1.916 +    */
   1.917 +  }
   1.918 +}

mercurial