src/share/vm/opto/callnode.hpp

changeset 435
a61af66fc99e
child 468
3288958bf319
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/callnode.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,814 @@
     1.4 +/*
     1.5 + * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +// Portions of code courtesy of Clifford Click
    1.29 +
    1.30 +// Optimization - Graph Style
    1.31 +
    1.32 +class Chaitin;
    1.33 +class NamedCounter;
    1.34 +class MultiNode;
    1.35 +class  SafePointNode;
    1.36 +class   CallNode;
    1.37 +class     CallJavaNode;
    1.38 +class       CallStaticJavaNode;
    1.39 +class       CallDynamicJavaNode;
    1.40 +class     CallRuntimeNode;
    1.41 +class       CallLeafNode;
    1.42 +class         CallLeafNoFPNode;
    1.43 +class     AllocateNode;
    1.44 +class     AllocateArrayNode;
    1.45 +class     LockNode;
    1.46 +class     UnlockNode;
    1.47 +class JVMState;
    1.48 +class OopMap;
    1.49 +class State;
    1.50 +class StartNode;
    1.51 +class MachCallNode;
    1.52 +class FastLockNode;
    1.53 +
    1.54 +//------------------------------StartNode--------------------------------------
    1.55 +// The method start node
    1.56 +class StartNode : public MultiNode {
    1.57 +  virtual uint cmp( const Node &n ) const;
    1.58 +  virtual uint size_of() const; // Size is bigger
    1.59 +public:
    1.60 +  const TypeTuple *_domain;
    1.61 +  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    1.62 +    init_class_id(Class_Start);
    1.63 +    init_flags(Flag_is_block_start);
    1.64 +    init_req(0,this);
    1.65 +    init_req(1,root);
    1.66 +  }
    1.67 +  virtual int Opcode() const;
    1.68 +  virtual bool pinned() const { return true; };
    1.69 +  virtual const Type *bottom_type() const;
    1.70 +  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    1.71 +  virtual const Type *Value( PhaseTransform *phase ) const;
    1.72 +  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    1.73 +  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    1.74 +  virtual const RegMask &in_RegMask(uint) const;
    1.75 +  virtual Node *match( const ProjNode *proj, const Matcher *m );
    1.76 +  virtual uint ideal_reg() const { return 0; }
    1.77 +#ifndef PRODUCT
    1.78 +  virtual void  dump_spec(outputStream *st) const;
    1.79 +#endif
    1.80 +};
    1.81 +
    1.82 +//------------------------------StartOSRNode-----------------------------------
    1.83 +// The method start node for on stack replacement code
    1.84 +class StartOSRNode : public StartNode {
    1.85 +public:
    1.86 +  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    1.87 +  virtual int   Opcode() const;
    1.88 +  static  const TypeTuple *osr_domain();
    1.89 +};
    1.90 +
    1.91 +
    1.92 +//------------------------------ParmNode---------------------------------------
    1.93 +// Incoming parameters
    1.94 +class ParmNode : public ProjNode {
    1.95 +  static const char * const names[TypeFunc::Parms+1];
    1.96 +public:
    1.97 +  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {}
    1.98 +  virtual int Opcode() const;
    1.99 +  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   1.100 +  virtual uint ideal_reg() const;
   1.101 +#ifndef PRODUCT
   1.102 +  virtual void dump_spec(outputStream *st) const;
   1.103 +#endif
   1.104 +};
   1.105 +
   1.106 +
   1.107 +//------------------------------ReturnNode-------------------------------------
   1.108 +// Return from subroutine node
   1.109 +class ReturnNode : public Node {
   1.110 +public:
   1.111 +  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   1.112 +  virtual int Opcode() const;
   1.113 +  virtual bool  is_CFG() const { return true; }
   1.114 +  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   1.115 +  virtual bool depends_only_on_test() const { return false; }
   1.116 +  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   1.117 +  virtual const Type *Value( PhaseTransform *phase ) const;
   1.118 +  virtual uint ideal_reg() const { return NotAMachineReg; }
   1.119 +  virtual uint match_edge(uint idx) const;
   1.120 +#ifndef PRODUCT
   1.121 +  virtual void dump_req() const;
   1.122 +#endif
   1.123 +};
   1.124 +
   1.125 +
   1.126 +//------------------------------RethrowNode------------------------------------
   1.127 +// Rethrow of exception at call site.  Ends a procedure before rethrowing;
   1.128 +// ends the current basic block like a ReturnNode.  Restores registers and
   1.129 +// unwinds stack.  Rethrow happens in the caller's method.
   1.130 +class RethrowNode : public Node {
   1.131 + public:
   1.132 +  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   1.133 +  virtual int Opcode() const;
   1.134 +  virtual bool  is_CFG() const { return true; }
   1.135 +  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   1.136 +  virtual bool depends_only_on_test() const { return false; }
   1.137 +  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   1.138 +  virtual const Type *Value( PhaseTransform *phase ) const;
   1.139 +  virtual uint match_edge(uint idx) const;
   1.140 +  virtual uint ideal_reg() const { return NotAMachineReg; }
   1.141 +#ifndef PRODUCT
   1.142 +  virtual void dump_req() const;
   1.143 +#endif
   1.144 +};
   1.145 +
   1.146 +
   1.147 +//------------------------------TailCallNode-----------------------------------
   1.148 +// Pop stack frame and jump indirect
   1.149 +class TailCallNode : public ReturnNode {
   1.150 +public:
   1.151 +  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   1.152 +    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   1.153 +    init_req(TypeFunc::Parms, target);
   1.154 +    init_req(TypeFunc::Parms+1, moop);
   1.155 +  }
   1.156 +
   1.157 +  virtual int Opcode() const;
   1.158 +  virtual uint match_edge(uint idx) const;
   1.159 +};
   1.160 +
   1.161 +//------------------------------TailJumpNode-----------------------------------
   1.162 +// Pop stack frame and jump indirect
   1.163 +class TailJumpNode : public ReturnNode {
   1.164 +public:
   1.165 +  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   1.166 +    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   1.167 +    init_req(TypeFunc::Parms, target);
   1.168 +    init_req(TypeFunc::Parms+1, ex_oop);
   1.169 +  }
   1.170 +
   1.171 +  virtual int Opcode() const;
   1.172 +  virtual uint match_edge(uint idx) const;
   1.173 +};
   1.174 +
   1.175 +//-------------------------------JVMState-------------------------------------
   1.176 +// A linked list of JVMState nodes captures the whole interpreter state,
   1.177 +// plus GC roots, for all active calls at some call site in this compilation
   1.178 +// unit.  (If there is no inlining, then the list has exactly one link.)
   1.179 +// This provides a way to map the optimized program back into the interpreter,
   1.180 +// or to let the GC mark the stack.
   1.181 +class JVMState : public ResourceObj {
   1.182 +private:
   1.183 +  JVMState*         _caller;    // List pointer for forming scope chains
   1.184 +  uint              _depth;     // One mroe than caller depth, or one.
   1.185 +  uint              _locoff;    // Offset to locals in input edge mapping
   1.186 +  uint              _stkoff;    // Offset to stack in input edge mapping
   1.187 +  uint              _monoff;    // Offset to monitors in input edge mapping
   1.188 +  uint              _endoff;    // Offset to end of input edge mapping
   1.189 +  uint              _sp;        // Jave Expression Stack Pointer for this state
   1.190 +  int               _bci;       // Byte Code Index of this JVM point
   1.191 +  ciMethod*         _method;    // Method Pointer
   1.192 +  SafePointNode*    _map;       // Map node associated with this scope
   1.193 +public:
   1.194 +  friend class Compile;
   1.195 +
   1.196 +  // Because JVMState objects live over the entire lifetime of the
   1.197 +  // Compile object, they are allocated into the comp_arena, which
   1.198 +  // does not get resource marked or reset during the compile process
   1.199 +  void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   1.200 +  void operator delete( void * ) { } // fast deallocation
   1.201 +
   1.202 +  // Create a new JVMState, ready for abstract interpretation.
   1.203 +  JVMState(ciMethod* method, JVMState* caller);
   1.204 +  JVMState(int stack_size);  // root state; has a null method
   1.205 +
   1.206 +  // Access functions for the JVM
   1.207 +  uint              locoff() const { return _locoff; }
   1.208 +  uint              stkoff() const { return _stkoff; }
   1.209 +  uint              argoff() const { return _stkoff + _sp; }
   1.210 +  uint              monoff() const { return _monoff; }
   1.211 +  uint              endoff() const { return _endoff; }
   1.212 +  uint              oopoff() const { return debug_end(); }
   1.213 +
   1.214 +  int            loc_size() const { return _stkoff - _locoff; }
   1.215 +  int            stk_size() const { return _monoff - _stkoff; }
   1.216 +  int            mon_size() const { return _endoff - _monoff; }
   1.217 +
   1.218 +  bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   1.219 +  bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   1.220 +  bool        is_mon(uint i) const { return i >= _monoff && i < _endoff; }
   1.221 +
   1.222 +  uint              sp()     const { return _sp; }
   1.223 +  int               bci()    const { return _bci; }
   1.224 +  bool          has_method() const { return _method != NULL; }
   1.225 +  ciMethod*         method() const { assert(has_method(), ""); return _method; }
   1.226 +  JVMState*         caller() const { return _caller; }
   1.227 +  SafePointNode*    map()    const { return _map; }
   1.228 +  uint              depth()  const { return _depth; }
   1.229 +  uint        debug_start()  const; // returns locoff of root caller
   1.230 +  uint        debug_end()    const; // returns endoff of self
   1.231 +  uint        debug_size()   const { return loc_size() + sp() + mon_size(); }
   1.232 +  uint        debug_depth()  const; // returns sum of debug_size values at all depths
   1.233 +
   1.234 +  // Returns the JVM state at the desired depth (1 == root).
   1.235 +  JVMState* of_depth(int d) const;
   1.236 +
   1.237 +  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   1.238 +  bool same_calls_as(const JVMState* that) const;
   1.239 +
   1.240 +  // Monitors (monitors are stored as (boxNode, objNode) pairs
   1.241 +  enum { logMonitorEdges = 1 };
   1.242 +  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   1.243 +  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   1.244 +  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   1.245 +  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   1.246 +  bool is_monitor_box(uint off)    const {
   1.247 +    assert(is_mon(off), "should be called only for monitor edge");
   1.248 +    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   1.249 +  }
   1.250 +  bool is_monitor_use(uint off)    const { return (is_mon(off)
   1.251 +                                                   && is_monitor_box(off))
   1.252 +                                             || (caller() && caller()->is_monitor_use(off)); }
   1.253 +
   1.254 +  // Initialization functions for the JVM
   1.255 +  void              set_locoff(uint off) { _locoff = off; }
   1.256 +  void              set_stkoff(uint off) { _stkoff = off; }
   1.257 +  void              set_monoff(uint off) { _monoff = off; }
   1.258 +  void              set_endoff(uint off) { _endoff = off; }
   1.259 +  void              set_offsets(uint off) { _locoff = _stkoff = _monoff = _endoff = off; }
   1.260 +  void              set_map(SafePointNode *map) { _map = map; }
   1.261 +  void              set_sp(uint sp) { _sp = sp; }
   1.262 +  void              set_bci(int bci) { _bci = bci; }
   1.263 +
   1.264 +  // Miscellaneous utility functions
   1.265 +  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   1.266 +  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   1.267 +
   1.268 +#ifndef PRODUCT
   1.269 +  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   1.270 +  void      dump_spec(outputStream *st) const;
   1.271 +  void      dump_on(outputStream* st) const;
   1.272 +  void      dump() const {
   1.273 +    dump_on(tty);
   1.274 +  }
   1.275 +#endif
   1.276 +};
   1.277 +
   1.278 +//------------------------------SafePointNode----------------------------------
   1.279 +// A SafePointNode is a subclass of a MultiNode for convenience (and
   1.280 +// potential code sharing) only - conceptually it is independent of
   1.281 +// the Node semantics.
   1.282 +class SafePointNode : public MultiNode {
   1.283 +  virtual uint           cmp( const Node &n ) const;
   1.284 +  virtual uint           size_of() const;       // Size is bigger
   1.285 +
   1.286 +public:
   1.287 +  SafePointNode(uint edges, JVMState* jvms,
   1.288 +                // A plain safepoint advertises no memory effects (NULL):
   1.289 +                const TypePtr* adr_type = NULL)
   1.290 +    : MultiNode( edges ),
   1.291 +      _jvms(jvms),
   1.292 +      _oop_map(NULL),
   1.293 +      _adr_type(adr_type)
   1.294 +  {
   1.295 +    init_class_id(Class_SafePoint);
   1.296 +  }
   1.297 +
   1.298 +  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   1.299 +  JVMState* const _jvms;      // Pointer to list of JVM State objects
   1.300 +  const TypePtr*  _adr_type;  // What type of memory does this node produce?
   1.301 +
   1.302 +  // Many calls take *all* of memory as input,
   1.303 +  // but some produce a limited subset of that memory as output.
   1.304 +  // The adr_type reports the call's behavior as a store, not a load.
   1.305 +
   1.306 +  virtual JVMState* jvms() const { return _jvms; }
   1.307 +  void set_jvms(JVMState* s) {
   1.308 +    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   1.309 +  }
   1.310 +  OopMap *oop_map() const { return _oop_map; }
   1.311 +  void set_oop_map(OopMap *om) { _oop_map = om; }
   1.312 +
   1.313 +  // Functionality from old debug nodes which has changed
   1.314 +  Node *local(JVMState* jvms, uint idx) const {
   1.315 +    assert(verify_jvms(jvms), "jvms must match");
   1.316 +    return in(jvms->locoff() + idx);
   1.317 +  }
   1.318 +  Node *stack(JVMState* jvms, uint idx) const {
   1.319 +    assert(verify_jvms(jvms), "jvms must match");
   1.320 +    return in(jvms->stkoff() + idx);
   1.321 +  }
   1.322 +  Node *argument(JVMState* jvms, uint idx) const {
   1.323 +    assert(verify_jvms(jvms), "jvms must match");
   1.324 +    return in(jvms->argoff() + idx);
   1.325 +  }
   1.326 +  Node *monitor_box(JVMState* jvms, uint idx) const {
   1.327 +    assert(verify_jvms(jvms), "jvms must match");
   1.328 +    return in(jvms->monitor_box_offset(idx));
   1.329 +  }
   1.330 +  Node *monitor_obj(JVMState* jvms, uint idx) const {
   1.331 +    assert(verify_jvms(jvms), "jvms must match");
   1.332 +    return in(jvms->monitor_obj_offset(idx));
   1.333 +  }
   1.334 +
   1.335 +  void  set_local(JVMState* jvms, uint idx, Node *c);
   1.336 +
   1.337 +  void  set_stack(JVMState* jvms, uint idx, Node *c) {
   1.338 +    assert(verify_jvms(jvms), "jvms must match");
   1.339 +    set_req(jvms->stkoff() + idx, c);
   1.340 +  }
   1.341 +  void  set_argument(JVMState* jvms, uint idx, Node *c) {
   1.342 +    assert(verify_jvms(jvms), "jvms must match");
   1.343 +    set_req(jvms->argoff() + idx, c);
   1.344 +  }
   1.345 +  void ensure_stack(JVMState* jvms, uint stk_size) {
   1.346 +    assert(verify_jvms(jvms), "jvms must match");
   1.347 +    int grow_by = (int)stk_size - (int)jvms->stk_size();
   1.348 +    if (grow_by > 0)  grow_stack(jvms, grow_by);
   1.349 +  }
   1.350 +  void grow_stack(JVMState* jvms, uint grow_by);
   1.351 +  // Handle monitor stack
   1.352 +  void push_monitor( const FastLockNode *lock );
   1.353 +  void pop_monitor ();
   1.354 +  Node *peek_monitor_box() const;
   1.355 +  Node *peek_monitor_obj() const;
   1.356 +
   1.357 +  // Access functions for the JVM
   1.358 +  Node *control  () const { return in(TypeFunc::Control  ); }
   1.359 +  Node *i_o      () const { return in(TypeFunc::I_O      ); }
   1.360 +  Node *memory   () const { return in(TypeFunc::Memory   ); }
   1.361 +  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   1.362 +  Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   1.363 +
   1.364 +  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   1.365 +  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   1.366 +  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   1.367 +
   1.368 +  MergeMemNode* merged_memory() const {
   1.369 +    return in(TypeFunc::Memory)->as_MergeMem();
   1.370 +  }
   1.371 +
   1.372 +  // The parser marks useless maps as dead when it's done with them:
   1.373 +  bool is_killed() { return in(TypeFunc::Control) == NULL; }
   1.374 +
   1.375 +  // Exception states bubbling out of subgraphs such as inlined calls
   1.376 +  // are recorded here.  (There might be more than one, hence the "next".)
   1.377 +  // This feature is used only for safepoints which serve as "maps"
   1.378 +  // for JVM states during parsing, intrinsic expansion, etc.
   1.379 +  SafePointNode*         next_exception() const;
   1.380 +  void               set_next_exception(SafePointNode* n);
   1.381 +  bool                   has_exceptions() const { return next_exception() != NULL; }
   1.382 +
   1.383 +  // Standard Node stuff
   1.384 +  virtual int            Opcode() const;
   1.385 +  virtual bool           pinned() const { return true; }
   1.386 +  virtual const Type    *Value( PhaseTransform *phase ) const;
   1.387 +  virtual const Type    *bottom_type() const { return Type::CONTROL; }
   1.388 +  virtual const TypePtr *adr_type() const { return _adr_type; }
   1.389 +  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   1.390 +  virtual Node          *Identity( PhaseTransform *phase );
   1.391 +  virtual uint           ideal_reg() const { return 0; }
   1.392 +  virtual const RegMask &in_RegMask(uint) const;
   1.393 +  virtual const RegMask &out_RegMask() const;
   1.394 +  virtual uint           match_edge(uint idx) const;
   1.395 +
   1.396 +  static  bool           needs_polling_address_input();
   1.397 +
   1.398 +#ifndef PRODUCT
   1.399 +  virtual void              dump_spec(outputStream *st) const;
   1.400 +#endif
   1.401 +};
   1.402 +
   1.403 +//------------------------------CallNode---------------------------------------
   1.404 +// Call nodes now subsume the function of debug nodes at callsites, so they
   1.405 +// contain the functionality of a full scope chain of debug nodes.
   1.406 +class CallNode : public SafePointNode {
   1.407 +public:
   1.408 +  const TypeFunc *_tf;        // Function type
   1.409 +  address      _entry_point;  // Address of method being called
   1.410 +  float        _cnt;          // Estimate of number of times called
   1.411 +  PointsToNode::EscapeState _escape_state;
   1.412 +
   1.413 +  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   1.414 +    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   1.415 +      _tf(tf),
   1.416 +      _entry_point(addr),
   1.417 +      _cnt(COUNT_UNKNOWN)
   1.418 +  {
   1.419 +    init_class_id(Class_Call);
   1.420 +    init_flags(Flag_is_Call);
   1.421 +    _escape_state = PointsToNode::UnknownEscape;
   1.422 +  }
   1.423 +
   1.424 +  const TypeFunc* tf()        const { return _tf; }
   1.425 +  const address entry_point() const { return _entry_point; }
   1.426 +  const float   cnt()         const { return _cnt; }
   1.427 +
   1.428 +  void set_tf(const TypeFunc* tf) { _tf = tf; }
   1.429 +  void set_entry_point(address p) { _entry_point = p; }
   1.430 +  void set_cnt(float c)           { _cnt = c; }
   1.431 +
   1.432 +  virtual const Type *bottom_type() const;
   1.433 +  virtual const Type *Value( PhaseTransform *phase ) const;
   1.434 +  virtual Node *Identity( PhaseTransform *phase ) { return this; }
   1.435 +  virtual uint        cmp( const Node &n ) const;
   1.436 +  virtual uint        size_of() const = 0;
   1.437 +  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   1.438 +  virtual Node       *match( const ProjNode *proj, const Matcher *m );
   1.439 +  virtual uint        ideal_reg() const { return NotAMachineReg; }
   1.440 +  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   1.441 +  // for some macro nodes whose expansion does not have a safepoint on the fast path.
   1.442 +  virtual bool        guaranteed_safepoint()  { return true; }
   1.443 +  // For macro nodes, the JVMState gets modified during expansion, so when cloning
   1.444 +  // the node the JVMState must be cloned.
   1.445 +  virtual void        clone_jvms() { }   // default is not to clone
   1.446 +
   1.447 +  virtual uint match_edge(uint idx) const;
   1.448 +
   1.449 +#ifndef PRODUCT
   1.450 +  virtual void        dump_req()  const;
   1.451 +  virtual void        dump_spec(outputStream *st) const;
   1.452 +#endif
   1.453 +};
   1.454 +
   1.455 +//------------------------------CallJavaNode-----------------------------------
   1.456 +// Make a static or dynamic subroutine call node using Java calling
   1.457 +// convention.  (The "Java" calling convention is the compiler's calling
   1.458 +// convention, as opposed to the interpreter's or that of native C.)
   1.459 +class CallJavaNode : public CallNode {
   1.460 +protected:
   1.461 +  virtual uint cmp( const Node &n ) const;
   1.462 +  virtual uint size_of() const; // Size is bigger
   1.463 +
   1.464 +  bool    _optimized_virtual;
   1.465 +  ciMethod* _method;            // Method being direct called
   1.466 +public:
   1.467 +  const int       _bci;         // Byte Code Index of call byte code
   1.468 +  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   1.469 +    : CallNode(tf, addr, TypePtr::BOTTOM),
   1.470 +      _method(method), _bci(bci), _optimized_virtual(false)
   1.471 +  {
   1.472 +    init_class_id(Class_CallJava);
   1.473 +  }
   1.474 +
   1.475 +  virtual int   Opcode() const;
   1.476 +  ciMethod* method() const                { return _method; }
   1.477 +  void  set_method(ciMethod *m)           { _method = m; }
   1.478 +  void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   1.479 +  bool  is_optimized_virtual() const      { return _optimized_virtual; }
   1.480 +
   1.481 +#ifndef PRODUCT
   1.482 +  virtual void  dump_spec(outputStream *st) const;
   1.483 +#endif
   1.484 +};
   1.485 +
   1.486 +//------------------------------CallStaticJavaNode-----------------------------
   1.487 +// Make a direct subroutine call using Java calling convention (for static
   1.488 +// calls and optimized virtual calls, plus calls to wrappers for run-time
   1.489 +// routines); generates static stub.
   1.490 +class CallStaticJavaNode : public CallJavaNode {
   1.491 +  virtual uint cmp( const Node &n ) const;
   1.492 +  virtual uint size_of() const; // Size is bigger
   1.493 +public:
   1.494 +  CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   1.495 +    : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   1.496 +    init_class_id(Class_CallStaticJava);
   1.497 +  }
   1.498 +  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   1.499 +                     const TypePtr* adr_type)
   1.500 +    : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   1.501 +    init_class_id(Class_CallStaticJava);
   1.502 +    // This node calls a runtime stub, which often has narrow memory effects.
   1.503 +    _adr_type = adr_type;
   1.504 +  }
   1.505 +  const char *_name;            // Runtime wrapper name
   1.506 +
   1.507 +  // If this is an uncommon trap, return the request code, else zero.
   1.508 +  int uncommon_trap_request() const;
   1.509 +  static int extract_uncommon_trap_request(const Node* call);
   1.510 +
   1.511 +  virtual int         Opcode() const;
   1.512 +#ifndef PRODUCT
   1.513 +  virtual void        dump_spec(outputStream *st) const;
   1.514 +#endif
   1.515 +};
   1.516 +
   1.517 +//------------------------------CallDynamicJavaNode----------------------------
   1.518 +// Make a dispatched call using Java calling convention.
   1.519 +class CallDynamicJavaNode : public CallJavaNode {
   1.520 +  virtual uint cmp( const Node &n ) const;
   1.521 +  virtual uint size_of() const; // Size is bigger
   1.522 +public:
   1.523 +  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   1.524 +    init_class_id(Class_CallDynamicJava);
   1.525 +  }
   1.526 +
   1.527 +  int _vtable_index;
   1.528 +  virtual int   Opcode() const;
   1.529 +#ifndef PRODUCT
   1.530 +  virtual void  dump_spec(outputStream *st) const;
   1.531 +#endif
   1.532 +};
   1.533 +
   1.534 +//------------------------------CallRuntimeNode--------------------------------
   1.535 +// Make a direct subroutine call node into compiled C++ code.
   1.536 +class CallRuntimeNode : public CallNode {
   1.537 +  virtual uint cmp( const Node &n ) const;
   1.538 +  virtual uint size_of() const; // Size is bigger
   1.539 +public:
   1.540 +  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   1.541 +                  const TypePtr* adr_type)
   1.542 +    : CallNode(tf, addr, adr_type),
   1.543 +      _name(name)
   1.544 +  {
   1.545 +    init_class_id(Class_CallRuntime);
   1.546 +  }
   1.547 +
   1.548 +  const char *_name;            // Printable name, if _method is NULL
   1.549 +  virtual int   Opcode() const;
   1.550 +  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   1.551 +
   1.552 +#ifndef PRODUCT
   1.553 +  virtual void  dump_spec(outputStream *st) const;
   1.554 +#endif
   1.555 +};
   1.556 +
   1.557 +//------------------------------CallLeafNode-----------------------------------
   1.558 +// Make a direct subroutine call node into compiled C++ code, without
   1.559 +// safepoints
   1.560 +class CallLeafNode : public CallRuntimeNode {
   1.561 +public:
   1.562 +  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   1.563 +               const TypePtr* adr_type)
   1.564 +    : CallRuntimeNode(tf, addr, name, adr_type)
   1.565 +  {
   1.566 +    init_class_id(Class_CallLeaf);
   1.567 +  }
   1.568 +  virtual int   Opcode() const;
   1.569 +  virtual bool        guaranteed_safepoint()  { return false; }
   1.570 +#ifndef PRODUCT
   1.571 +  virtual void  dump_spec(outputStream *st) const;
   1.572 +#endif
   1.573 +};
   1.574 +
   1.575 +//------------------------------CallLeafNoFPNode-------------------------------
   1.576 +// CallLeafNode, not using floating point or using it in the same manner as
   1.577 +// the generated code
   1.578 +class CallLeafNoFPNode : public CallLeafNode {
   1.579 +public:
   1.580 +  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   1.581 +                   const TypePtr* adr_type)
   1.582 +    : CallLeafNode(tf, addr, name, adr_type)
   1.583 +  {
   1.584 +  }
   1.585 +  virtual int   Opcode() const;
   1.586 +};
   1.587 +
   1.588 +
   1.589 +//------------------------------Allocate---------------------------------------
   1.590 +// High-level memory allocation
   1.591 +//
   1.592 +//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   1.593 +//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   1.594 +//  they have 2 memory projections and 2 i_o projections (which are distinguished by
   1.595 +//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   1.596 +//  order to differentiate the uses of the projection on the normal control path from
   1.597 +//  those on the exception return path.
   1.598 +//
   1.599 +class AllocateNode : public CallNode {
   1.600 +public:
   1.601 +  enum {
   1.602 +    // Output:
   1.603 +    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   1.604 +    // Inputs:
   1.605 +    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   1.606 +    KlassNode,                        // type (maybe dynamic) of the obj.
   1.607 +    InitialTest,                      // slow-path test (may be constant)
   1.608 +    ALength,                          // array length (or TOP if none)
   1.609 +    ParmLimit
   1.610 +  };
   1.611 +
   1.612 +  static const TypeFunc* alloc_type() {
   1.613 +    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   1.614 +    fields[AllocSize]   = TypeInt::POS;
   1.615 +    fields[KlassNode]   = TypeInstPtr::NOTNULL;
   1.616 +    fields[InitialTest] = TypeInt::BOOL;
   1.617 +    fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   1.618 +
   1.619 +    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   1.620 +
   1.621 +    // create result type (range)
   1.622 +    fields = TypeTuple::fields(1);
   1.623 +    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   1.624 +
   1.625 +    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   1.626 +
   1.627 +    return TypeFunc::make(domain, range);
   1.628 +  }
   1.629 +
   1.630 +  virtual uint size_of() const; // Size is bigger
   1.631 +  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   1.632 +               Node *size, Node *klass_node, Node *initial_test);
   1.633 +  // Expansion modifies the JVMState, so we need to clone it
   1.634 +  virtual void  clone_jvms() {
   1.635 +    set_jvms(jvms()->clone_deep(Compile::current()));
   1.636 +  }
   1.637 +  virtual int Opcode() const;
   1.638 +  virtual uint ideal_reg() const { return Op_RegP; }
   1.639 +  virtual bool        guaranteed_safepoint()  { return false; }
   1.640 +
   1.641 +  // Pattern-match a possible usage of AllocateNode.
   1.642 +  // Return null if no allocation is recognized.
   1.643 +  // The operand is the pointer produced by the (possible) allocation.
   1.644 +  // It must be a projection of the Allocate or its subsequent CastPP.
   1.645 +  // (Note:  This function is defined in file graphKit.cpp, near
   1.646 +  // GraphKit::new_instance/new_array, whose output it recognizes.)
   1.647 +  // The 'ptr' may not have an offset unless the 'offset' argument is given.
   1.648 +  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   1.649 +
   1.650 +  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   1.651 +  // an offset, which is reported back to the caller.
   1.652 +  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   1.653 +  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   1.654 +                                        intptr_t& offset);
   1.655 +
   1.656 +  // Dig the klass operand out of a (possible) allocation site.
   1.657 +  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   1.658 +    AllocateNode* allo = Ideal_allocation(ptr, phase);
   1.659 +    return (allo == NULL) ? NULL : allo->in(KlassNode);
   1.660 +  }
   1.661 +
   1.662 +  // Conservatively small estimate of offset of first non-header byte.
   1.663 +  int minimum_header_size() {
   1.664 +    return is_AllocateArray() ? sizeof(arrayOopDesc) : sizeof(oopDesc);
   1.665 +  }
   1.666 +
   1.667 +  // Return the corresponding initialization barrier (or null if none).
   1.668 +  // Walks out edges to find it...
   1.669 +  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   1.670 +  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   1.671 +  InitializeNode* initialization();
   1.672 +
   1.673 +  // Convenience for initialization->maybe_set_complete(phase)
   1.674 +  bool maybe_set_complete(PhaseGVN* phase);
   1.675 +};
   1.676 +
   1.677 +//------------------------------AllocateArray---------------------------------
   1.678 +//
   1.679 +// High-level array allocation
   1.680 +//
   1.681 +class AllocateArrayNode : public AllocateNode {
   1.682 +public:
   1.683 +  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   1.684 +                    Node* size, Node* klass_node, Node* initial_test,
   1.685 +                    Node* count_val
   1.686 +                    )
   1.687 +    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   1.688 +                   initial_test)
   1.689 +  {
   1.690 +    init_class_id(Class_AllocateArray);
   1.691 +    set_req(AllocateNode::ALength,        count_val);
   1.692 +  }
   1.693 +  virtual int Opcode() const;
   1.694 +  virtual uint size_of() const; // Size is bigger
   1.695 +
   1.696 +  // Pattern-match a possible usage of AllocateArrayNode.
   1.697 +  // Return null if no allocation is recognized.
   1.698 +  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   1.699 +    AllocateNode* allo = Ideal_allocation(ptr, phase);
   1.700 +    return (allo == NULL || !allo->is_AllocateArray())
   1.701 +           ? NULL : allo->as_AllocateArray();
   1.702 +  }
   1.703 +
   1.704 +  // Dig the length operand out of a (possible) array allocation site.
   1.705 +  static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   1.706 +    AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   1.707 +    return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   1.708 +  }
   1.709 +};
   1.710 +
   1.711 +//------------------------------AbstractLockNode-----------------------------------
   1.712 +class AbstractLockNode: public CallNode {
   1.713 +private:
   1.714 + bool _eliminate;    // indicates this lock can be safely eliminated
   1.715 +#ifndef PRODUCT
   1.716 +  NamedCounter* _counter;
   1.717 +#endif
   1.718 +
   1.719 +protected:
   1.720 +  // helper functions for lock elimination
   1.721 +  //
   1.722 +
   1.723 +  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   1.724 +                            GrowableArray<AbstractLockNode*> &lock_ops);
   1.725 +  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   1.726 +                                       GrowableArray<AbstractLockNode*> &lock_ops);
   1.727 +  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   1.728 +                               GrowableArray<AbstractLockNode*> &lock_ops);
   1.729 +  LockNode *find_matching_lock(UnlockNode* unlock);
   1.730 +
   1.731 +
   1.732 +public:
   1.733 +  AbstractLockNode(const TypeFunc *tf)
   1.734 +    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   1.735 +      _eliminate(false)
   1.736 +  {
   1.737 +#ifndef PRODUCT
   1.738 +    _counter = NULL;
   1.739 +#endif
   1.740 +  }
   1.741 +  virtual int Opcode() const = 0;
   1.742 +  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   1.743 +  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   1.744 +  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   1.745 +  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   1.746 +
   1.747 +  virtual uint size_of() const { return sizeof(*this); }
   1.748 +
   1.749 +  bool is_eliminated()         {return _eliminate; }
   1.750 +  // mark node as eliminated and update the counter if there is one
   1.751 +  void set_eliminated();
   1.752 +
   1.753 +#ifndef PRODUCT
   1.754 +  void create_lock_counter(JVMState* s);
   1.755 +  NamedCounter* counter() const { return _counter; }
   1.756 +#endif
   1.757 +};
   1.758 +
   1.759 +//------------------------------Lock---------------------------------------
   1.760 +// High-level lock operation
   1.761 +//
   1.762 +// This is a subclass of CallNode because it is a macro node which gets expanded
   1.763 +// into a code sequence containing a call.  This node takes 3 "parameters":
   1.764 +//    0  -  object to lock
   1.765 +//    1 -   a BoxLockNode
   1.766 +//    2 -   a FastLockNode
   1.767 +//
   1.768 +class LockNode : public AbstractLockNode {
   1.769 +public:
   1.770 +
   1.771 +  static const TypeFunc *lock_type() {
   1.772 +    // create input type (domain)
   1.773 +    const Type **fields = TypeTuple::fields(3);
   1.774 +    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   1.775 +    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   1.776 +    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   1.777 +    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   1.778 +
   1.779 +    // create result type (range)
   1.780 +    fields = TypeTuple::fields(0);
   1.781 +
   1.782 +    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   1.783 +
   1.784 +    return TypeFunc::make(domain,range);
   1.785 +  }
   1.786 +
   1.787 +  virtual int Opcode() const;
   1.788 +  virtual uint size_of() const; // Size is bigger
   1.789 +  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   1.790 +    init_class_id(Class_Lock);
   1.791 +    init_flags(Flag_is_macro);
   1.792 +    C->add_macro_node(this);
   1.793 +  }
   1.794 +  virtual bool        guaranteed_safepoint()  { return false; }
   1.795 +
   1.796 +  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   1.797 +  // Expansion modifies the JVMState, so we need to clone it
   1.798 +  virtual void  clone_jvms() {
   1.799 +    set_jvms(jvms()->clone_deep(Compile::current()));
   1.800 +  }
   1.801 +};
   1.802 +
   1.803 +//------------------------------Unlock---------------------------------------
   1.804 +// High-level unlock operation
   1.805 +class UnlockNode : public AbstractLockNode {
   1.806 +public:
   1.807 +  virtual int Opcode() const;
   1.808 +  virtual uint size_of() const; // Size is bigger
   1.809 +  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   1.810 +    init_class_id(Class_Unlock);
   1.811 +    init_flags(Flag_is_macro);
   1.812 +    C->add_macro_node(this);
   1.813 +  }
   1.814 +  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   1.815 +  // unlock is never a safepoint
   1.816 +  virtual bool        guaranteed_safepoint()  { return false; }
   1.817 +};

mercurial