src/share/vm/opto/buildOopMap.cpp

changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/buildOopMap.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,623 @@
     1.4 +/*
     1.5 + * Copyright 2002-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "incls/_precompiled.incl"
    1.29 +#include "incls/_buildOopMap.cpp.incl"
    1.30 +
    1.31 +// The functions in this file builds OopMaps after all scheduling is done.
    1.32 +//
    1.33 +// OopMaps contain a list of all registers and stack-slots containing oops (so
    1.34 +// they can be updated by GC).  OopMaps also contain a list of derived-pointer
    1.35 +// base-pointer pairs.  When the base is moved, the derived pointer moves to
    1.36 +// follow it.  Finally, any registers holding callee-save values are also
    1.37 +// recorded.  These might contain oops, but only the caller knows.
    1.38 +//
    1.39 +// BuildOopMaps implements a simple forward reaching-defs solution.  At each
    1.40 +// GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
    1.41 +// typed as pointers (no offset), then they are oops.  Pointers+offsets are
    1.42 +// derived pointers, and bases can be found from them.  Finally, we'll also
    1.43 +// track reaching callee-save values.  Note that a copy of a callee-save value
    1.44 +// "kills" it's source, so that only 1 copy of a callee-save value is alive at
    1.45 +// a time.
    1.46 +//
    1.47 +// We run a simple bitvector liveness pass to help trim out dead oops.  Due to
    1.48 +// irreducible loops, we can have a reaching def of an oop that only reaches
    1.49 +// along one path and no way to know if it's valid or not on the other path.
    1.50 +// The bitvectors are quite dense and the liveness pass is fast.
    1.51 +//
    1.52 +// At GC points, we consult this information to build OopMaps.  All reaching
    1.53 +// defs typed as oops are added to the OopMap.  Only 1 instance of a
    1.54 +// callee-save register can be recorded.  For derived pointers, we'll have to
    1.55 +// find and record the register holding the base.
    1.56 +//
    1.57 +// The reaching def's is a simple 1-pass worklist approach.  I tried a clever
    1.58 +// breadth-first approach but it was worse (showed O(n^2) in the
    1.59 +// pick-next-block code).
    1.60 +//
    1.61 +// The relevent data is kept in a struct of arrays (it could just as well be
    1.62 +// an array of structs, but the struct-of-arrays is generally a little more
    1.63 +// efficient).  The arrays are indexed by register number (including
    1.64 +// stack-slots as registers) and so is bounded by 200 to 300 elements in
    1.65 +// practice.  One array will map to a reaching def Node (or NULL for
    1.66 +// conflict/dead).  The other array will map to a callee-saved register or
    1.67 +// OptoReg::Bad for not-callee-saved.
    1.68 +
    1.69 +
    1.70 +//------------------------------OopFlow----------------------------------------
    1.71 +// Structure to pass around
    1.72 +struct OopFlow : public ResourceObj {
    1.73 +  short *_callees;              // Array mapping register to callee-saved
    1.74 +  Node **_defs;                 // array mapping register to reaching def
    1.75 +                                // or NULL if dead/conflict
    1.76 +  // OopFlow structs, when not being actively modified, describe the _end_ of
    1.77 +  // this block.
    1.78 +  Block *_b;                    // Block for this struct
    1.79 +  OopFlow *_next;               // Next free OopFlow
    1.80 +
    1.81 +  OopFlow( short *callees, Node **defs ) : _callees(callees), _defs(defs),
    1.82 +    _b(NULL), _next(NULL) { }
    1.83 +
    1.84 +  // Given reaching-defs for this block start, compute it for this block end
    1.85 +  void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
    1.86 +
    1.87 +  // Merge these two OopFlows into the 'this' pointer.
    1.88 +  void merge( OopFlow *flow, int max_reg );
    1.89 +
    1.90 +  // Copy a 'flow' over an existing flow
    1.91 +  void clone( OopFlow *flow, int max_size);
    1.92 +
    1.93 +  // Make a new OopFlow from scratch
    1.94 +  static OopFlow *make( Arena *A, int max_size );
    1.95 +
    1.96 +  // Build an oopmap from the current flow info
    1.97 +  OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
    1.98 +};
    1.99 +
   1.100 +//------------------------------compute_reach----------------------------------
   1.101 +// Given reaching-defs for this block start, compute it for this block end
   1.102 +void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
   1.103 +
   1.104 +  for( uint i=0; i<_b->_nodes.size(); i++ ) {
   1.105 +    Node *n = _b->_nodes[i];
   1.106 +
   1.107 +    if( n->jvms() ) {           // Build an OopMap here?
   1.108 +      JVMState *jvms = n->jvms();
   1.109 +      // no map needed for leaf calls
   1.110 +      if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
   1.111 +        int *live = (int*) (*safehash)[n];
   1.112 +        assert( live, "must find live" );
   1.113 +        n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
   1.114 +      }
   1.115 +    }
   1.116 +
   1.117 +    // Assign new reaching def's.
   1.118 +    // Note that I padded the _defs and _callees arrays so it's legal
   1.119 +    // to index at _defs[OptoReg::Bad].
   1.120 +    OptoReg::Name first = regalloc->get_reg_first(n);
   1.121 +    OptoReg::Name second = regalloc->get_reg_second(n);
   1.122 +    _defs[first] = n;
   1.123 +    _defs[second] = n;
   1.124 +
   1.125 +    // Pass callee-save info around copies
   1.126 +    int idx = n->is_Copy();
   1.127 +    if( idx ) {                 // Copies move callee-save info
   1.128 +      OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
   1.129 +      OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
   1.130 +      int tmp_first = _callees[old_first];
   1.131 +      int tmp_second = _callees[old_second];
   1.132 +      _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
   1.133 +      _callees[old_second] = OptoReg::Bad;
   1.134 +      _callees[first] = tmp_first;
   1.135 +      _callees[second] = tmp_second;
   1.136 +    } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
   1.137 +      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
   1.138 +      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
   1.139 +      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
   1.140 +      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
   1.141 +    } else {
   1.142 +      _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
   1.143 +      _callees[second] = OptoReg::Bad;
   1.144 +
   1.145 +      // Find base case for callee saves
   1.146 +      if( n->is_Proj() && n->in(0)->is_Start() ) {
   1.147 +        if( OptoReg::is_reg(first) &&
   1.148 +            regalloc->_matcher.is_save_on_entry(first) )
   1.149 +          _callees[first] = first;
   1.150 +        if( OptoReg::is_reg(second) &&
   1.151 +            regalloc->_matcher.is_save_on_entry(second) )
   1.152 +          _callees[second] = second;
   1.153 +      }
   1.154 +    }
   1.155 +  }
   1.156 +}
   1.157 +
   1.158 +//------------------------------merge------------------------------------------
   1.159 +// Merge the given flow into the 'this' flow
   1.160 +void OopFlow::merge( OopFlow *flow, int max_reg ) {
   1.161 +  assert( _b == NULL, "merging into a happy flow" );
   1.162 +  assert( flow->_b, "this flow is still alive" );
   1.163 +  assert( flow != this, "no self flow" );
   1.164 +
   1.165 +  // Do the merge.  If there are any differences, drop to 'bottom' which
   1.166 +  // is OptoReg::Bad or NULL depending.
   1.167 +  for( int i=0; i<max_reg; i++ ) {
   1.168 +    // Merge the callee-save's
   1.169 +    if( _callees[i] != flow->_callees[i] )
   1.170 +      _callees[i] = OptoReg::Bad;
   1.171 +    // Merge the reaching defs
   1.172 +    if( _defs[i] != flow->_defs[i] )
   1.173 +      _defs[i] = NULL;
   1.174 +  }
   1.175 +
   1.176 +}
   1.177 +
   1.178 +//------------------------------clone------------------------------------------
   1.179 +void OopFlow::clone( OopFlow *flow, int max_size ) {
   1.180 +  _b = flow->_b;
   1.181 +  memcpy( _callees, flow->_callees, sizeof(short)*max_size);
   1.182 +  memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
   1.183 +}
   1.184 +
   1.185 +//------------------------------make-------------------------------------------
   1.186 +OopFlow *OopFlow::make( Arena *A, int max_size ) {
   1.187 +  short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
   1.188 +  Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
   1.189 +  debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
   1.190 +  OopFlow *flow = new (A) OopFlow(callees+1, defs+1);
   1.191 +  assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
   1.192 +  assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
   1.193 +  return flow;
   1.194 +}
   1.195 +
   1.196 +//------------------------------bit twiddlers----------------------------------
   1.197 +static int get_live_bit( int *live, int reg ) {
   1.198 +  return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
   1.199 +static void set_live_bit( int *live, int reg ) {
   1.200 +         live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
   1.201 +static void clr_live_bit( int *live, int reg ) {
   1.202 +         live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
   1.203 +
   1.204 +//------------------------------build_oop_map----------------------------------
   1.205 +// Build an oopmap from the current flow info
   1.206 +OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
   1.207 +  int framesize = regalloc->_framesize;
   1.208 +  int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
   1.209 +  debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
   1.210 +              memset(dup_check,0,OptoReg::stack0()) );
   1.211 +
   1.212 +  OopMap *omap = new OopMap( framesize,  max_inarg_slot );
   1.213 +  MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
   1.214 +  JVMState* jvms = n->jvms();
   1.215 +
   1.216 +  // For all registers do...
   1.217 +  for( int reg=0; reg<max_reg; reg++ ) {
   1.218 +    if( get_live_bit(live,reg) == 0 )
   1.219 +      continue;                 // Ignore if not live
   1.220 +
   1.221 +    // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
   1.222 +    // register in that case we'll get an non-concrete register for the second
   1.223 +    // half. We only need to tell the map the register once!
   1.224 +    //
   1.225 +    // However for the moment we disable this change and leave things as they
   1.226 +    // were.
   1.227 +
   1.228 +    VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
   1.229 +
   1.230 +    if (false && r->is_reg() && !r->is_concrete()) {
   1.231 +      continue;
   1.232 +    }
   1.233 +
   1.234 +    // See if dead (no reaching def).
   1.235 +    Node *def = _defs[reg];     // Get reaching def
   1.236 +    assert( def, "since live better have reaching def" );
   1.237 +
   1.238 +    // Classify the reaching def as oop, derived, callee-save, dead, or other
   1.239 +    const Type *t = def->bottom_type();
   1.240 +    if( t->isa_oop_ptr() ) {    // Oop or derived?
   1.241 +      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   1.242 +#ifdef _LP64
   1.243 +      // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
   1.244 +      // Make sure both are record from the same reaching def, but do not
   1.245 +      // put both into the oopmap.
   1.246 +      if( (reg&1) == 1 ) {      // High half of oop-pair?
   1.247 +        assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
   1.248 +        continue;               // Do not record high parts in oopmap
   1.249 +      }
   1.250 +#endif
   1.251 +
   1.252 +      // Check for a legal reg name in the oopMap and bailout if it is not.
   1.253 +      if (!omap->legal_vm_reg_name(r)) {
   1.254 +        regalloc->C->record_method_not_compilable("illegal oopMap register name");
   1.255 +        continue;
   1.256 +      }
   1.257 +      if( t->is_ptr()->_offset == 0 ) { // Not derived?
   1.258 +        if( mcall ) {
   1.259 +          // Outgoing argument GC mask responsibility belongs to the callee,
   1.260 +          // not the caller.  Inspect the inputs to the call, to see if
   1.261 +          // this live-range is one of them.
   1.262 +          uint cnt = mcall->tf()->domain()->cnt();
   1.263 +          uint j;
   1.264 +          for( j = TypeFunc::Parms; j < cnt; j++)
   1.265 +            if( mcall->in(j) == def )
   1.266 +              break;            // reaching def is an argument oop
   1.267 +          if( j < cnt )         // arg oops dont go in GC map
   1.268 +            continue;           // Continue on to the next register
   1.269 +        }
   1.270 +        omap->set_oop(r);
   1.271 +      } else {                  // Else it's derived.
   1.272 +        // Find the base of the derived value.
   1.273 +        uint i;
   1.274 +        // Fast, common case, scan
   1.275 +        for( i = jvms->oopoff(); i < n->req(); i+=2 )
   1.276 +          if( n->in(i) == def ) break; // Common case
   1.277 +        if( i == n->req() ) {   // Missed, try a more generous scan
   1.278 +          // Scan again, but this time peek through copies
   1.279 +          for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
   1.280 +            Node *m = n->in(i); // Get initial derived value
   1.281 +            while( 1 ) {
   1.282 +              Node *d = def;    // Get initial reaching def
   1.283 +              while( 1 ) {      // Follow copies of reaching def to end
   1.284 +                if( m == d ) goto found; // breaks 3 loops
   1.285 +                int idx = d->is_Copy();
   1.286 +                if( !idx ) break;
   1.287 +                d = d->in(idx);     // Link through copy
   1.288 +              }
   1.289 +              int idx = m->is_Copy();
   1.290 +              if( !idx ) break;
   1.291 +              m = m->in(idx);
   1.292 +            }
   1.293 +          }
   1.294 +         guarantee( 0, "must find derived/base pair" );
   1.295 +        }
   1.296 +      found: ;
   1.297 +        Node *base = n->in(i+1); // Base is other half of pair
   1.298 +        int breg = regalloc->get_reg_first(base);
   1.299 +        VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
   1.300 +
   1.301 +        // I record liveness at safepoints BEFORE I make the inputs
   1.302 +        // live.  This is because argument oops are NOT live at a
   1.303 +        // safepoint (or at least they cannot appear in the oopmap).
   1.304 +        // Thus bases of base/derived pairs might not be in the
   1.305 +        // liveness data but they need to appear in the oopmap.
   1.306 +        if( get_live_bit(live,breg) == 0 ) {// Not live?
   1.307 +          // Flag it, so next derived pointer won't re-insert into oopmap
   1.308 +          set_live_bit(live,breg);
   1.309 +          // Already missed our turn?
   1.310 +          if( breg < reg ) {
   1.311 +            if (b->is_stack() || b->is_concrete() || true ) {
   1.312 +              omap->set_oop( b);
   1.313 +            }
   1.314 +          }
   1.315 +        }
   1.316 +        if (b->is_stack() || b->is_concrete() || true ) {
   1.317 +          omap->set_derived_oop( r, b);
   1.318 +        }
   1.319 +      }
   1.320 +
   1.321 +    } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
   1.322 +      // It's a callee-save value
   1.323 +      assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
   1.324 +      debug_only( dup_check[_callees[reg]]=1; )
   1.325 +      VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
   1.326 +      if ( callee->is_concrete() || true ) {
   1.327 +        omap->set_callee_saved( r, callee);
   1.328 +      }
   1.329 +
   1.330 +    } else {
   1.331 +      // Other - some reaching non-oop value
   1.332 +      omap->set_value( r);
   1.333 +    }
   1.334 +
   1.335 +  }
   1.336 +
   1.337 +#ifdef ASSERT
   1.338 +  /* Nice, Intel-only assert
   1.339 +  int cnt_callee_saves=0;
   1.340 +  int reg2 = 0;
   1.341 +  while (OptoReg::is_reg(reg2)) {
   1.342 +    if( dup_check[reg2] != 0) cnt_callee_saves++;
   1.343 +    assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
   1.344 +    reg2++;
   1.345 +  }
   1.346 +  */
   1.347 +#endif
   1.348 +
   1.349 +  return omap;
   1.350 +}
   1.351 +
   1.352 +//------------------------------do_liveness------------------------------------
   1.353 +// Compute backwards liveness on registers
   1.354 +static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
   1.355 +  int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
   1.356 +  int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
   1.357 +  Node *root = cfg->C->root();
   1.358 +  // On CISC platforms, get the node representing the stack pointer  that regalloc
   1.359 +  // used for spills
   1.360 +  Node *fp = NodeSentinel;
   1.361 +  if (UseCISCSpill && root->req() > 1) {
   1.362 +    fp = root->in(1)->in(TypeFunc::FramePtr);
   1.363 +  }
   1.364 +  memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
   1.365 +  // Push preds onto worklist
   1.366 +  for( uint i=1; i<root->req(); i++ )
   1.367 +    worklist->push(cfg->_bbs[root->in(i)->_idx]);
   1.368 +
   1.369 +  // ZKM.jar includes tiny infinite loops which are unreached from below.
   1.370 +  // If we missed any blocks, we'll retry here after pushing all missed
   1.371 +  // blocks on the worklist.  Normally this outer loop never trips more
   1.372 +  // than once.
   1.373 +  while( 1 ) {
   1.374 +
   1.375 +    while( worklist->size() ) { // Standard worklist algorithm
   1.376 +      Block *b = worklist->rpop();
   1.377 +
   1.378 +      // Copy first successor into my tmp_live space
   1.379 +      int s0num = b->_succs[0]->_pre_order;
   1.380 +      int *t = &live[s0num*max_reg_ints];
   1.381 +      for( int i=0; i<max_reg_ints; i++ )
   1.382 +        tmp_live[i] = t[i];
   1.383 +
   1.384 +      // OR in the remaining live registers
   1.385 +      for( uint j=1; j<b->_num_succs; j++ ) {
   1.386 +        uint sjnum = b->_succs[j]->_pre_order;
   1.387 +        int *t = &live[sjnum*max_reg_ints];
   1.388 +        for( int i=0; i<max_reg_ints; i++ )
   1.389 +          tmp_live[i] |= t[i];
   1.390 +      }
   1.391 +
   1.392 +      // Now walk tmp_live up the block backwards, computing live
   1.393 +      for( int k=b->_nodes.size()-1; k>=0; k-- ) {
   1.394 +        Node *n = b->_nodes[k];
   1.395 +        // KILL def'd bits
   1.396 +        int first = regalloc->get_reg_first(n);
   1.397 +        int second = regalloc->get_reg_second(n);
   1.398 +        if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
   1.399 +        if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
   1.400 +
   1.401 +        MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
   1.402 +
   1.403 +        // Check if m is potentially a CISC alternate instruction (i.e, possibly
   1.404 +        // synthesized by RegAlloc from a conventional instruction and a
   1.405 +        // spilled input)
   1.406 +        bool is_cisc_alternate = false;
   1.407 +        if (UseCISCSpill && m) {
   1.408 +          is_cisc_alternate = m->is_cisc_alternate();
   1.409 +        }
   1.410 +
   1.411 +        // GEN use'd bits
   1.412 +        for( uint l=1; l<n->req(); l++ ) {
   1.413 +          Node *def = n->in(l);
   1.414 +          assert(def != 0, "input edge required");
   1.415 +          int first = regalloc->get_reg_first(def);
   1.416 +          int second = regalloc->get_reg_second(def);
   1.417 +          if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
   1.418 +          if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
   1.419 +          // If we use the stack pointer in a cisc-alternative instruction,
   1.420 +          // check for use as a memory operand.  Then reconstruct the RegName
   1.421 +          // for this stack location, and set the appropriate bit in the
   1.422 +          // live vector 4987749.
   1.423 +          if (is_cisc_alternate && def == fp) {
   1.424 +            const TypePtr *adr_type = NULL;
   1.425 +            intptr_t offset;
   1.426 +            const Node* base = m->get_base_and_disp(offset, adr_type);
   1.427 +            if (base == NodeSentinel) {
   1.428 +              // Machnode has multiple memory inputs. We are unable to reason
   1.429 +              // with these, but are presuming (with trepidation) that not any of
   1.430 +              // them are oops. This can be fixed by making get_base_and_disp()
   1.431 +              // look at a specific input instead of all inputs.
   1.432 +              assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
   1.433 +            } else if (base != fp || offset == Type::OffsetBot) {
   1.434 +              // Do nothing: the fp operand is either not from a memory use
   1.435 +              // (base == NULL) OR the fp is used in a non-memory context
   1.436 +              // (base is some other register) OR the offset is not constant,
   1.437 +              // so it is not a stack slot.
   1.438 +            } else {
   1.439 +              assert(offset >= 0, "unexpected negative offset");
   1.440 +              offset -= (offset % jintSize);  // count the whole word
   1.441 +              int stack_reg = regalloc->offset2reg(offset);
   1.442 +              if (OptoReg::is_stack(stack_reg)) {
   1.443 +                set_live_bit(tmp_live, stack_reg);
   1.444 +              } else {
   1.445 +                assert(false, "stack_reg not on stack?");
   1.446 +              }
   1.447 +            }
   1.448 +          }
   1.449 +        }
   1.450 +
   1.451 +        if( n->jvms() ) {       // Record liveness at safepoint
   1.452 +
   1.453 +          // This placement of this stanza means inputs to calls are
   1.454 +          // considered live at the callsite's OopMap.  Argument oops are
   1.455 +          // hence live, but NOT included in the oopmap.  See cutout in
   1.456 +          // build_oop_map.  Debug oops are live (and in OopMap).
   1.457 +          int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
   1.458 +          for( int l=0; l<max_reg_ints; l++ )
   1.459 +            n_live[l] = tmp_live[l];
   1.460 +          safehash->Insert(n,n_live);
   1.461 +        }
   1.462 +
   1.463 +      }
   1.464 +
   1.465 +      // Now at block top, see if we have any changes.  If so, propagate
   1.466 +      // to prior blocks.
   1.467 +      int *old_live = &live[b->_pre_order*max_reg_ints];
   1.468 +      int l;
   1.469 +      for( l=0; l<max_reg_ints; l++ )
   1.470 +        if( tmp_live[l] != old_live[l] )
   1.471 +          break;
   1.472 +      if( l<max_reg_ints ) {     // Change!
   1.473 +        // Copy in new value
   1.474 +        for( l=0; l<max_reg_ints; l++ )
   1.475 +          old_live[l] = tmp_live[l];
   1.476 +        // Push preds onto worklist
   1.477 +        for( l=1; l<(int)b->num_preds(); l++ )
   1.478 +          worklist->push(cfg->_bbs[b->pred(l)->_idx]);
   1.479 +      }
   1.480 +    }
   1.481 +
   1.482 +    // Scan for any missing safepoints.  Happens to infinite loops
   1.483 +    // ala ZKM.jar
   1.484 +    uint i;
   1.485 +    for( i=1; i<cfg->_num_blocks; i++ ) {
   1.486 +      Block *b = cfg->_blocks[i];
   1.487 +      uint j;
   1.488 +      for( j=1; j<b->_nodes.size(); j++ )
   1.489 +        if( b->_nodes[j]->jvms() &&
   1.490 +            (*safehash)[b->_nodes[j]] == NULL )
   1.491 +           break;
   1.492 +      if( j<b->_nodes.size() ) break;
   1.493 +    }
   1.494 +    if( i == cfg->_num_blocks )
   1.495 +      break;                    // Got 'em all
   1.496 +#ifndef PRODUCT
   1.497 +    if( PrintOpto && Verbose )
   1.498 +      tty->print_cr("retripping live calc");
   1.499 +#endif
   1.500 +    // Force the issue (expensively): recheck everybody
   1.501 +    for( i=1; i<cfg->_num_blocks; i++ )
   1.502 +      worklist->push(cfg->_blocks[i]);
   1.503 +  }
   1.504 +
   1.505 +}
   1.506 +
   1.507 +//------------------------------BuildOopMaps-----------------------------------
   1.508 +// Collect GC mask info - where are all the OOPs?
   1.509 +void Compile::BuildOopMaps() {
   1.510 +  NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
   1.511 +  // Can't resource-mark because I need to leave all those OopMaps around,
   1.512 +  // or else I need to resource-mark some arena other than the default.
   1.513 +  // ResourceMark rm;              // Reclaim all OopFlows when done
   1.514 +  int max_reg = _regalloc->_max_reg; // Current array extent
   1.515 +
   1.516 +  Arena *A = Thread::current()->resource_area();
   1.517 +  Block_List worklist;          // Worklist of pending blocks
   1.518 +
   1.519 +  int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
   1.520 +  Dict *safehash = NULL;        // Used for assert only
   1.521 +  // Compute a backwards liveness per register.  Needs a bitarray of
   1.522 +  // #blocks x (#registers, rounded up to ints)
   1.523 +  safehash = new Dict(cmpkey,hashkey,A);
   1.524 +  do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
   1.525 +  OopFlow *free_list = NULL;    // Free, unused
   1.526 +
   1.527 +  // Array mapping blocks to completed oopflows
   1.528 +  OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
   1.529 +  memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
   1.530 +
   1.531 +
   1.532 +  // Do the first block 'by hand' to prime the worklist
   1.533 +  Block *entry = _cfg->_blocks[1];
   1.534 +  OopFlow *rootflow = OopFlow::make(A,max_reg);
   1.535 +  // Initialize to 'bottom' (not 'top')
   1.536 +  memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
   1.537 +  memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
   1.538 +  flows[entry->_pre_order] = rootflow;
   1.539 +
   1.540 +  // Do the first block 'by hand' to prime the worklist
   1.541 +  rootflow->_b = entry;
   1.542 +  rootflow->compute_reach( _regalloc, max_reg, safehash );
   1.543 +  for( uint i=0; i<entry->_num_succs; i++ )
   1.544 +    worklist.push(entry->_succs[i]);
   1.545 +
   1.546 +  // Now worklist contains blocks which have some, but perhaps not all,
   1.547 +  // predecessors visited.
   1.548 +  while( worklist.size() ) {
   1.549 +    // Scan for a block with all predecessors visited, or any randoms slob
   1.550 +    // otherwise.  All-preds-visited order allows me to recycle OopFlow
   1.551 +    // structures rapidly and cut down on the memory footprint.
   1.552 +    // Note: not all predecessors might be visited yet (must happen for
   1.553 +    // irreducible loops).  This is OK, since every live value must have the
   1.554 +    // SAME reaching def for the block, so any reaching def is OK.
   1.555 +    uint i;
   1.556 +
   1.557 +    Block *b = worklist.pop();
   1.558 +    // Ignore root block
   1.559 +    if( b == _cfg->_broot ) continue;
   1.560 +    // Block is already done?  Happens if block has several predecessors,
   1.561 +    // he can get on the worklist more than once.
   1.562 +    if( flows[b->_pre_order] ) continue;
   1.563 +
   1.564 +    // If this block has a visited predecessor AND that predecessor has this
   1.565 +    // last block as his only undone child, we can move the OopFlow from the
   1.566 +    // pred to this block.  Otherwise we have to grab a new OopFlow.
   1.567 +    OopFlow *flow = NULL;       // Flag for finding optimized flow
   1.568 +    Block *pred = (Block*)0xdeadbeef;
   1.569 +    uint j;
   1.570 +    // Scan this block's preds to find a done predecessor
   1.571 +    for( j=1; j<b->num_preds(); j++ ) {
   1.572 +      Block *p = _cfg->_bbs[b->pred(j)->_idx];
   1.573 +      OopFlow *p_flow = flows[p->_pre_order];
   1.574 +      if( p_flow ) {            // Predecessor is done
   1.575 +        assert( p_flow->_b == p, "cross check" );
   1.576 +        pred = p;               // Record some predecessor
   1.577 +        // If all successors of p are done except for 'b', then we can carry
   1.578 +        // p_flow forward to 'b' without copying, otherwise we have to draw
   1.579 +        // from the free_list and clone data.
   1.580 +        uint k;
   1.581 +        for( k=0; k<p->_num_succs; k++ )
   1.582 +          if( !flows[p->_succs[k]->_pre_order] &&
   1.583 +              p->_succs[k] != b )
   1.584 +            break;
   1.585 +
   1.586 +        // Either carry-forward the now-unused OopFlow for b's use
   1.587 +        // or draw a new one from the free list
   1.588 +        if( k==p->_num_succs ) {
   1.589 +          flow = p_flow;
   1.590 +          break;                // Found an ideal pred, use him
   1.591 +        }
   1.592 +      }
   1.593 +    }
   1.594 +
   1.595 +    if( flow ) {
   1.596 +      // We have an OopFlow that's the last-use of a predecessor.
   1.597 +      // Carry it forward.
   1.598 +    } else {                    // Draw a new OopFlow from the freelist
   1.599 +      if( !free_list )
   1.600 +        free_list = OopFlow::make(A,max_reg);
   1.601 +      flow = free_list;
   1.602 +      assert( flow->_b == NULL, "oopFlow is not free" );
   1.603 +      free_list = flow->_next;
   1.604 +      flow->_next = NULL;
   1.605 +
   1.606 +      // Copy/clone over the data
   1.607 +      flow->clone(flows[pred->_pre_order], max_reg);
   1.608 +    }
   1.609 +
   1.610 +    // Mark flow for block.  Blocks can only be flowed over once,
   1.611 +    // because after the first time they are guarded from entering
   1.612 +    // this code again.
   1.613 +    assert( flow->_b == pred, "have some prior flow" );
   1.614 +    flow->_b = NULL;
   1.615 +
   1.616 +    // Now push flow forward
   1.617 +    flows[b->_pre_order] = flow;// Mark flow for this block
   1.618 +    flow->_b = b;
   1.619 +    flow->compute_reach( _regalloc, max_reg, safehash );
   1.620 +
   1.621 +    // Now push children onto worklist
   1.622 +    for( i=0; i<b->_num_succs; i++ )
   1.623 +      worklist.push(b->_succs[i]);
   1.624 +
   1.625 +  }
   1.626 +}

mercurial