src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp

changeset 435
a61af66fc99e
child 1822
0bfd3fb24150
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,492 @@
     1.4 +/*
     1.5 + * Copyright 2004-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +// This class keeps statistical information and computes the
    1.29 +// size of the heap.
    1.30 +
    1.31 +// Forward decls
    1.32 +class elapsedTimer;
    1.33 +
    1.34 +class AdaptiveSizePolicy : public CHeapObj {
    1.35 + friend class GCAdaptivePolicyCounters;
    1.36 + friend class PSGCAdaptivePolicyCounters;
    1.37 + friend class CMSGCAdaptivePolicyCounters;
    1.38 + protected:
    1.39 +
    1.40 +  enum GCPolicyKind {
    1.41 +    _gc_adaptive_size_policy,
    1.42 +    _gc_ps_adaptive_size_policy,
    1.43 +    _gc_cms_adaptive_size_policy
    1.44 +  };
    1.45 +  virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
    1.46 +
    1.47 +  enum SizePolicyTrueValues {
    1.48 +    decrease_old_gen_for_throughput_true = -7,
    1.49 +    decrease_young_gen_for_througput_true = -6,
    1.50 +
    1.51 +    increase_old_gen_for_min_pauses_true = -5,
    1.52 +    decrease_old_gen_for_min_pauses_true = -4,
    1.53 +    decrease_young_gen_for_maj_pauses_true = -3,
    1.54 +    increase_young_gen_for_min_pauses_true = -2,
    1.55 +    increase_old_gen_for_maj_pauses_true = -1,
    1.56 +
    1.57 +    decrease_young_gen_for_min_pauses_true = 1,
    1.58 +    decrease_old_gen_for_maj_pauses_true = 2,
    1.59 +    increase_young_gen_for_maj_pauses_true = 3,
    1.60 +
    1.61 +    increase_old_gen_for_throughput_true = 4,
    1.62 +    increase_young_gen_for_througput_true = 5,
    1.63 +
    1.64 +    decrease_young_gen_for_footprint_true = 6,
    1.65 +    decrease_old_gen_for_footprint_true = 7,
    1.66 +    decide_at_full_gc_true = 8
    1.67 +  };
    1.68 +
    1.69 +  // Goal for the fraction of the total time during which application
    1.70 +  // threads run.
    1.71 +  const double _throughput_goal;
    1.72 +
    1.73 +  // Last calculated sizes, in bytes, and aligned
    1.74 +  size_t _eden_size;        // calculated eden free space in bytes
    1.75 +  size_t _promo_size;       // calculated cms gen free space in bytes
    1.76 +
    1.77 +  size_t _survivor_size;    // calculated survivor size in bytes
    1.78 +
    1.79 +  // This is a hint for the heap:  we've detected that gc times
    1.80 +  // are taking longer than GCTimeLimit allows.
    1.81 +  bool _gc_time_limit_exceeded;
    1.82 +  // Use for diagnostics only.  If UseGCTimeLimit is false,
    1.83 +  // this variable is still set.
    1.84 +  bool _print_gc_time_limit_would_be_exceeded;
    1.85 +  // Count of consecutive GC that have exceeded the
    1.86 +  // GC time limit criterion.
    1.87 +  uint _gc_time_limit_count;
    1.88 +
    1.89 +  // Minor collection timers used to determine both
    1.90 +  // pause and interval times for collections.
    1.91 +  static elapsedTimer _minor_timer;
    1.92 +
    1.93 +  // Major collection timers, used to determine both
    1.94 +  // pause and interval times for collections
    1.95 +  static elapsedTimer _major_timer;
    1.96 +
    1.97 +  // Time statistics
    1.98 +  AdaptivePaddedAverage*   _avg_minor_pause;
    1.99 +  AdaptiveWeightedAverage* _avg_minor_interval;
   1.100 +  AdaptiveWeightedAverage* _avg_minor_gc_cost;
   1.101 +
   1.102 +  AdaptiveWeightedAverage* _avg_major_interval;
   1.103 +  AdaptiveWeightedAverage* _avg_major_gc_cost;
   1.104 +
   1.105 +  // Footprint statistics
   1.106 +  AdaptiveWeightedAverage* _avg_young_live;
   1.107 +  AdaptiveWeightedAverage* _avg_eden_live;
   1.108 +  AdaptiveWeightedAverage* _avg_old_live;
   1.109 +
   1.110 +  // Statistics for survivor space calculation for young generation
   1.111 +  AdaptivePaddedAverage*   _avg_survived;
   1.112 +
   1.113 +  // Objects that have been directly allocated in the old generation.
   1.114 +  AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
   1.115 +
   1.116 +  // Variable for estimating the major and minor pause times.
   1.117 +  // These variables represent linear least-squares fits of
   1.118 +  // the data.
   1.119 +  //   minor pause time vs. old gen size
   1.120 +  LinearLeastSquareFit* _minor_pause_old_estimator;
   1.121 +  //   minor pause time vs. young gen size
   1.122 +  LinearLeastSquareFit* _minor_pause_young_estimator;
   1.123 +
   1.124 +  // Variables for estimating the major and minor collection costs
   1.125 +  //   minor collection time vs. young gen size
   1.126 +  LinearLeastSquareFit* _minor_collection_estimator;
   1.127 +  //   major collection time vs. cms gen size
   1.128 +  LinearLeastSquareFit* _major_collection_estimator;
   1.129 +
   1.130 +  // These record the most recent collection times.  They
   1.131 +  // are available as an alternative to using the averages
   1.132 +  // for making ergonomic decisions.
   1.133 +  double _latest_minor_mutator_interval_seconds;
   1.134 +
   1.135 +  // Allowed difference between major and minor gc times, used
   1.136 +  // for computing tenuring_threshold.
   1.137 +  const double _threshold_tolerance_percent;
   1.138 +
   1.139 +  const double _gc_pause_goal_sec; // goal for maximum gc pause
   1.140 +
   1.141 +  // Flag indicating that the adaptive policy is ready to use
   1.142 +  bool _young_gen_policy_is_ready;
   1.143 +
   1.144 +  // decrease/increase the young generation for minor pause time
   1.145 +  int _change_young_gen_for_min_pauses;
   1.146 +
   1.147 +  // decrease/increase the old generation for major pause time
   1.148 +  int _change_old_gen_for_maj_pauses;
   1.149 +
   1.150 +  //   change old geneneration for throughput
   1.151 +  int _change_old_gen_for_throughput;
   1.152 +
   1.153 +  //   change young generation for throughput
   1.154 +  int _change_young_gen_for_throughput;
   1.155 +
   1.156 +  // Flag indicating that the policy would
   1.157 +  //   increase the tenuring threshold because of the total major gc cost
   1.158 +  //   is greater than the total minor gc cost
   1.159 +  bool _increment_tenuring_threshold_for_gc_cost;
   1.160 +  //   decrease the tenuring threshold because of the the total minor gc
   1.161 +  //   cost is greater than the total major gc cost
   1.162 +  bool _decrement_tenuring_threshold_for_gc_cost;
   1.163 +  //   decrease due to survivor size limit
   1.164 +  bool _decrement_tenuring_threshold_for_survivor_limit;
   1.165 +
   1.166 +  //   decrease generation sizes for footprint
   1.167 +  int _decrease_for_footprint;
   1.168 +
   1.169 +  // Set if the ergonomic decisions were made at a full GC.
   1.170 +  int _decide_at_full_gc;
   1.171 +
   1.172 +  // Changing the generation sizing depends on the data that is
   1.173 +  // gathered about the effects of changes on the pause times and
   1.174 +  // throughput.  These variable count the number of data points
   1.175 +  // gathered.  The policy may use these counters as a threshhold
   1.176 +  // for reliable data.
   1.177 +  julong _young_gen_change_for_minor_throughput;
   1.178 +  julong _old_gen_change_for_major_throughput;
   1.179 +
   1.180 +  // Accessors
   1.181 +
   1.182 +  double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
   1.183 +  // The value returned is unitless:  it's the proportion of time
   1.184 +  // spent in a particular collection type.
   1.185 +  // An interval time will be 0.0 if a collection type hasn't occurred yet.
   1.186 +  // The 1.4.2 implementation put a floor on the values of major_gc_cost
   1.187 +  // and minor_gc_cost.  This was useful because of the way major_gc_cost
   1.188 +  // and minor_gc_cost was used in calculating the sizes of the generations.
   1.189 +  // Do not use a floor in this implementation because any finite value
   1.190 +  // will put a limit on the throughput that can be achieved and any
   1.191 +  // throughput goal above that limit will drive the generations sizes
   1.192 +  // to extremes.
   1.193 +  double major_gc_cost() const {
   1.194 +    return MAX2(0.0F, _avg_major_gc_cost->average());
   1.195 +  }
   1.196 +
   1.197 +  // The value returned is unitless:  it's the proportion of time
   1.198 +  // spent in a particular collection type.
   1.199 +  // An interval time will be 0.0 if a collection type hasn't occurred yet.
   1.200 +  // The 1.4.2 implementation put a floor on the values of major_gc_cost
   1.201 +  // and minor_gc_cost.  This was useful because of the way major_gc_cost
   1.202 +  // and minor_gc_cost was used in calculating the sizes of the generations.
   1.203 +  // Do not use a floor in this implementation because any finite value
   1.204 +  // will put a limit on the throughput that can be achieved and any
   1.205 +  // throughput goal above that limit will drive the generations sizes
   1.206 +  // to extremes.
   1.207 +
   1.208 +  double minor_gc_cost() const {
   1.209 +    return MAX2(0.0F, _avg_minor_gc_cost->average());
   1.210 +  }
   1.211 +
   1.212 +  // Because we're dealing with averages, gc_cost() can be
   1.213 +  // larger than 1.0 if just the sum of the minor cost the
   1.214 +  // the major cost is used.  Worse than that is the
   1.215 +  // fact that the minor cost and the major cost each
   1.216 +  // tend toward 1.0 in the extreme of high gc costs.
   1.217 +  // Limit the value of gc_cost to 1.0 so that the mutator
   1.218 +  // cost stays non-negative.
   1.219 +  virtual double gc_cost() const {
   1.220 +    double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
   1.221 +    assert(result >= 0.0, "Both minor and major costs are non-negative");
   1.222 +    return result;
   1.223 +  }
   1.224 +
   1.225 +  // Elapsed time since the last major collection.
   1.226 +  virtual double time_since_major_gc() const;
   1.227 +
   1.228 +  // Average interval between major collections to be used
   1.229 +  // in calculating the decaying major gc cost.  An overestimate
   1.230 +  // of this time would be a conservative estimate because
   1.231 +  // this time is used to decide if the major GC cost
   1.232 +  // should be decayed (i.e., if the time since the last
   1.233 +  // major gc is long compared to the time returned here,
   1.234 +  // then the major GC cost will be decayed).  See the
   1.235 +  // implementations for the specifics.
   1.236 +  virtual double major_gc_interval_average_for_decay() const {
   1.237 +    return _avg_major_interval->average();
   1.238 +  }
   1.239 +
   1.240 +  // Return the cost of the GC where the major gc cost
   1.241 +  // has been decayed based on the time since the last
   1.242 +  // major collection.
   1.243 +  double decaying_gc_cost() const;
   1.244 +
   1.245 +  // Decay the major gc cost.  Use this only for decisions on
   1.246 +  // whether to adjust, not to determine by how much to adjust.
   1.247 +  // This approximation is crude and may not be good enough for the
   1.248 +  // latter.
   1.249 +  double decaying_major_gc_cost() const;
   1.250 +
   1.251 +  // Return the mutator cost using the decayed
   1.252 +  // GC cost.
   1.253 +  double adjusted_mutator_cost() const {
   1.254 +    double result = 1.0 - decaying_gc_cost();
   1.255 +    assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
   1.256 +    return result;
   1.257 +  }
   1.258 +
   1.259 +  virtual double mutator_cost() const {
   1.260 +    double result = 1.0 - gc_cost();
   1.261 +    assert(result >= 0.0, "mutator cost calculation is incorrect");
   1.262 +    return result;
   1.263 +  }
   1.264 +
   1.265 +
   1.266 +  bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
   1.267 +
   1.268 +  void update_minor_pause_young_estimator(double minor_pause_in_ms);
   1.269 +  virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
   1.270 +    // This is not meaningful for all policies but needs to be present
   1.271 +    // to use minor_collection_end() in its current form.
   1.272 +  }
   1.273 +
   1.274 +  virtual size_t eden_increment(size_t cur_eden);
   1.275 +  virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   1.276 +  virtual size_t eden_decrement(size_t cur_eden);
   1.277 +  virtual size_t promo_increment(size_t cur_eden);
   1.278 +  virtual size_t promo_increment(size_t cur_eden, uint percent_change);
   1.279 +  virtual size_t promo_decrement(size_t cur_eden);
   1.280 +
   1.281 +  virtual void clear_generation_free_space_flags();
   1.282 +
   1.283 +  int change_old_gen_for_throughput() const {
   1.284 +    return _change_old_gen_for_throughput;
   1.285 +  }
   1.286 +  void set_change_old_gen_for_throughput(int v) {
   1.287 +    _change_old_gen_for_throughput = v;
   1.288 +  }
   1.289 +  int change_young_gen_for_throughput() const {
   1.290 +    return _change_young_gen_for_throughput;
   1.291 +  }
   1.292 +  void set_change_young_gen_for_throughput(int v) {
   1.293 +    _change_young_gen_for_throughput = v;
   1.294 +  }
   1.295 +
   1.296 +  int change_old_gen_for_maj_pauses() const {
   1.297 +    return _change_old_gen_for_maj_pauses;
   1.298 +  }
   1.299 +  void set_change_old_gen_for_maj_pauses(int v) {
   1.300 +    _change_old_gen_for_maj_pauses = v;
   1.301 +  }
   1.302 +
   1.303 +  bool decrement_tenuring_threshold_for_gc_cost() const {
   1.304 +    return _decrement_tenuring_threshold_for_gc_cost;
   1.305 +  }
   1.306 +  void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
   1.307 +    _decrement_tenuring_threshold_for_gc_cost = v;
   1.308 +  }
   1.309 +  bool increment_tenuring_threshold_for_gc_cost() const {
   1.310 +    return _increment_tenuring_threshold_for_gc_cost;
   1.311 +  }
   1.312 +  void set_increment_tenuring_threshold_for_gc_cost(bool v) {
   1.313 +    _increment_tenuring_threshold_for_gc_cost = v;
   1.314 +  }
   1.315 +  bool decrement_tenuring_threshold_for_survivor_limit() const {
   1.316 +    return _decrement_tenuring_threshold_for_survivor_limit;
   1.317 +  }
   1.318 +  void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
   1.319 +    _decrement_tenuring_threshold_for_survivor_limit = v;
   1.320 +  }
   1.321 +  // Return true if the policy suggested a change.
   1.322 +  bool tenuring_threshold_change() const;
   1.323 +
   1.324 + public:
   1.325 +  AdaptiveSizePolicy(size_t init_eden_size,
   1.326 +                     size_t init_promo_size,
   1.327 +                     size_t init_survivor_size,
   1.328 +                     double gc_pause_goal_sec,
   1.329 +                     uint gc_cost_ratio);
   1.330 +
   1.331 +  bool is_gc_cms_adaptive_size_policy() {
   1.332 +    return kind() == _gc_cms_adaptive_size_policy;
   1.333 +  }
   1.334 +  bool is_gc_ps_adaptive_size_policy() {
   1.335 +    return kind() == _gc_ps_adaptive_size_policy;
   1.336 +  }
   1.337 +
   1.338 +  AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
   1.339 +  AdaptiveWeightedAverage* avg_minor_interval() const {
   1.340 +    return _avg_minor_interval;
   1.341 +  }
   1.342 +  AdaptiveWeightedAverage* avg_minor_gc_cost() const {
   1.343 +    return _avg_minor_gc_cost;
   1.344 +  }
   1.345 +
   1.346 +  AdaptiveWeightedAverage* avg_major_gc_cost() const {
   1.347 +    return _avg_major_gc_cost;
   1.348 +  }
   1.349 +
   1.350 +  AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
   1.351 +  AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
   1.352 +  AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
   1.353 +
   1.354 +  AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
   1.355 +  AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
   1.356 +
   1.357 +  // Methods indicating events of interest to the adaptive size policy,
   1.358 +  // called by GC algorithms. It is the responsibility of users of this
   1.359 +  // policy to call these methods at the correct times!
   1.360 +  virtual void minor_collection_begin();
   1.361 +  virtual void minor_collection_end(GCCause::Cause gc_cause);
   1.362 +  virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
   1.363 +    return _minor_pause_old_estimator;
   1.364 +  }
   1.365 +
   1.366 +  LinearLeastSquareFit* minor_pause_young_estimator() {
   1.367 +    return _minor_pause_young_estimator;
   1.368 +  }
   1.369 +  LinearLeastSquareFit* minor_collection_estimator() {
   1.370 +    return _minor_collection_estimator;
   1.371 +  }
   1.372 +
   1.373 +  LinearLeastSquareFit* major_collection_estimator() {
   1.374 +    return _major_collection_estimator;
   1.375 +  }
   1.376 +
   1.377 +  float minor_pause_young_slope() {
   1.378 +    return _minor_pause_young_estimator->slope();
   1.379 +  }
   1.380 +
   1.381 +  float minor_collection_slope() { return _minor_collection_estimator->slope();}
   1.382 +  float major_collection_slope() { return _major_collection_estimator->slope();}
   1.383 +
   1.384 +  float minor_pause_old_slope() {
   1.385 +    return _minor_pause_old_estimator->slope();
   1.386 +  }
   1.387 +
   1.388 +  void set_eden_size(size_t new_size) {
   1.389 +    _eden_size = new_size;
   1.390 +  }
   1.391 +  void set_survivor_size(size_t new_size) {
   1.392 +    _survivor_size = new_size;
   1.393 +  }
   1.394 +
   1.395 +  size_t calculated_eden_size_in_bytes() const {
   1.396 +    return _eden_size;
   1.397 +  }
   1.398 +
   1.399 +  size_t calculated_promo_size_in_bytes() const {
   1.400 +    return _promo_size;
   1.401 +  }
   1.402 +
   1.403 +  size_t calculated_survivor_size_in_bytes() const {
   1.404 +    return _survivor_size;
   1.405 +  }
   1.406 +
   1.407 +  // This is a hint for the heap:  we've detected that gc times
   1.408 +  // are taking longer than GCTimeLimit allows.
   1.409 +  // Most heaps will choose to throw an OutOfMemoryError when
   1.410 +  // this occurs but it is up to the heap to request this information
   1.411 +  // of the policy
   1.412 +  bool gc_time_limit_exceeded() {
   1.413 +    return _gc_time_limit_exceeded;
   1.414 +  }
   1.415 +  void set_gc_time_limit_exceeded(bool v) {
   1.416 +    _gc_time_limit_exceeded = v;
   1.417 +  }
   1.418 +  bool print_gc_time_limit_would_be_exceeded() {
   1.419 +    return _print_gc_time_limit_would_be_exceeded;
   1.420 +  }
   1.421 +  void set_print_gc_time_limit_would_be_exceeded(bool v) {
   1.422 +    _print_gc_time_limit_would_be_exceeded = v;
   1.423 +  }
   1.424 +
   1.425 +  uint gc_time_limit_count() { return _gc_time_limit_count; }
   1.426 +  void reset_gc_time_limit_count() { _gc_time_limit_count = 0; }
   1.427 +  void inc_gc_time_limit_count() { _gc_time_limit_count++; }
   1.428 +  // accessors for flags recording the decisions to resize the
   1.429 +  // generations to meet the pause goal.
   1.430 +
   1.431 +  int change_young_gen_for_min_pauses() const {
   1.432 +    return _change_young_gen_for_min_pauses;
   1.433 +  }
   1.434 +  void set_change_young_gen_for_min_pauses(int v) {
   1.435 +    _change_young_gen_for_min_pauses = v;
   1.436 +  }
   1.437 +  void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
   1.438 +  int decrease_for_footprint() const { return _decrease_for_footprint; }
   1.439 +  int decide_at_full_gc() { return _decide_at_full_gc; }
   1.440 +  void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
   1.441 +
   1.442 +  // Printing support
   1.443 +  virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   1.444 +  bool print_adaptive_size_policy_on(outputStream* st, int
   1.445 +                                  tenuring_threshold) const;
   1.446 +};
   1.447 +
   1.448 +// Class that can be used to print information about the
   1.449 +// adaptive size policy at intervals specified by
   1.450 +// AdaptiveSizePolicyOutputInterval.  Only print information
   1.451 +// if an adaptive size policy is in use.
   1.452 +class AdaptiveSizePolicyOutput : StackObj {
   1.453 +  AdaptiveSizePolicy* _size_policy;
   1.454 +  bool _do_print;
   1.455 +  bool print_test(uint count) {
   1.456 +    // A count of zero is a special value that indicates that the
   1.457 +    // interval test should be ignored.  An interval is of zero is
   1.458 +    // a special value that indicates that the interval test should
   1.459 +    // always fail (never do the print based on the interval test).
   1.460 +    return PrintGCDetails &&
   1.461 +           UseAdaptiveSizePolicy &&
   1.462 +           (UseParallelGC || UseConcMarkSweepGC) &&
   1.463 +           (AdaptiveSizePolicyOutputInterval > 0) &&
   1.464 +           ((count == 0) ||
   1.465 +             ((count % AdaptiveSizePolicyOutputInterval) == 0));
   1.466 +  }
   1.467 + public:
   1.468 +  // The special value of a zero count can be used to ignore
   1.469 +  // the count test.
   1.470 +  AdaptiveSizePolicyOutput(uint count) {
   1.471 +    if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   1.472 +      CollectedHeap* heap = Universe::heap();
   1.473 +      _size_policy = heap->size_policy();
   1.474 +      _do_print = print_test(count);
   1.475 +    } else {
   1.476 +      _size_policy = NULL;
   1.477 +      _do_print = false;
   1.478 +    }
   1.479 +  }
   1.480 +  AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
   1.481 +                           uint count) :
   1.482 +    _size_policy(size_policy) {
   1.483 +    if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   1.484 +      _do_print = print_test(count);
   1.485 +    } else {
   1.486 +      _do_print = false;
   1.487 +    }
   1.488 +  }
   1.489 +  ~AdaptiveSizePolicyOutput() {
   1.490 +    if (_do_print) {
   1.491 +      assert(UseAdaptiveSizePolicy, "Should not be in use");
   1.492 +      _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
   1.493 +    }
   1.494 +  }
   1.495 +};

mercurial