src/share/vm/gc_implementation/shared/adaptiveSizePolicy.cpp

changeset 435
a61af66fc99e
child 1822
0bfd3fb24150
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/shared/adaptiveSizePolicy.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,392 @@
     1.4 +/*
     1.5 + * Copyright 2004-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +#include "incls/_precompiled.incl"
    1.28 +#include "incls/_adaptiveSizePolicy.cpp.incl"
    1.29 +
    1.30 +elapsedTimer AdaptiveSizePolicy::_minor_timer;
    1.31 +elapsedTimer AdaptiveSizePolicy::_major_timer;
    1.32 +
    1.33 +// The throughput goal is implemented as
    1.34 +//      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
    1.35 +// gc_cost_ratio is the ratio
    1.36 +//      application cost / gc cost
    1.37 +// For example a gc_cost_ratio of 4 translates into a
    1.38 +// throughput goal of .80
    1.39 +
    1.40 +AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
    1.41 +                                       size_t init_promo_size,
    1.42 +                                       size_t init_survivor_size,
    1.43 +                                       double gc_pause_goal_sec,
    1.44 +                                       uint gc_cost_ratio) :
    1.45 +    _eden_size(init_eden_size),
    1.46 +    _promo_size(init_promo_size),
    1.47 +    _survivor_size(init_survivor_size),
    1.48 +    _gc_pause_goal_sec(gc_pause_goal_sec),
    1.49 +    _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
    1.50 +    _gc_time_limit_exceeded(false),
    1.51 +    _print_gc_time_limit_would_be_exceeded(false),
    1.52 +    _gc_time_limit_count(0),
    1.53 +    _latest_minor_mutator_interval_seconds(0),
    1.54 +    _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
    1.55 +    _young_gen_change_for_minor_throughput(0),
    1.56 +    _old_gen_change_for_major_throughput(0) {
    1.57 +  _avg_minor_pause    =
    1.58 +    new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
    1.59 +  _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    1.60 +  _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    1.61 +  _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    1.62 +
    1.63 +  _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    1.64 +  _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    1.65 +  _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    1.66 +
    1.67 +  _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
    1.68 +                                                  SurvivorPadding);
    1.69 +  _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
    1.70 +                                                  AdaptiveSizePolicyWeight,
    1.71 +                                                  SurvivorPadding);
    1.72 +
    1.73 +  _minor_pause_old_estimator =
    1.74 +    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    1.75 +  _minor_pause_young_estimator =
    1.76 +    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    1.77 +  _minor_collection_estimator =
    1.78 +    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    1.79 +  _major_collection_estimator =
    1.80 +    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    1.81 +
    1.82 +  // Start the timers
    1.83 +  _minor_timer.start();
    1.84 +
    1.85 +  _young_gen_policy_is_ready = false;
    1.86 +}
    1.87 +
    1.88 +bool AdaptiveSizePolicy::tenuring_threshold_change() const {
    1.89 +  return decrement_tenuring_threshold_for_gc_cost() ||
    1.90 +         increment_tenuring_threshold_for_gc_cost() ||
    1.91 +         decrement_tenuring_threshold_for_survivor_limit();
    1.92 +}
    1.93 +
    1.94 +void AdaptiveSizePolicy::minor_collection_begin() {
    1.95 +  // Update the interval time
    1.96 +  _minor_timer.stop();
    1.97 +  // Save most recent collection time
    1.98 +  _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
    1.99 +  _minor_timer.reset();
   1.100 +  _minor_timer.start();
   1.101 +}
   1.102 +
   1.103 +void AdaptiveSizePolicy::update_minor_pause_young_estimator(
   1.104 +    double minor_pause_in_ms) {
   1.105 +  double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   1.106 +  _minor_pause_young_estimator->update(eden_size_in_mbytes,
   1.107 +    minor_pause_in_ms);
   1.108 +}
   1.109 +
   1.110 +void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
   1.111 +  // Update the pause time.
   1.112 +  _minor_timer.stop();
   1.113 +
   1.114 +  if (gc_cause != GCCause::_java_lang_system_gc ||
   1.115 +      UseAdaptiveSizePolicyWithSystemGC) {
   1.116 +    double minor_pause_in_seconds = _minor_timer.seconds();
   1.117 +    double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
   1.118 +
   1.119 +    // Sample for performance counter
   1.120 +    _avg_minor_pause->sample(minor_pause_in_seconds);
   1.121 +
   1.122 +    // Cost of collection (unit-less)
   1.123 +    double collection_cost = 0.0;
   1.124 +    if ((_latest_minor_mutator_interval_seconds > 0.0) &&
   1.125 +        (minor_pause_in_seconds > 0.0)) {
   1.126 +      double interval_in_seconds =
   1.127 +        _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
   1.128 +      collection_cost =
   1.129 +        minor_pause_in_seconds / interval_in_seconds;
   1.130 +      _avg_minor_gc_cost->sample(collection_cost);
   1.131 +      // Sample for performance counter
   1.132 +      _avg_minor_interval->sample(interval_in_seconds);
   1.133 +    }
   1.134 +
   1.135 +    // The policy does not have enough data until at least some
   1.136 +    // minor collections have been done.
   1.137 +    _young_gen_policy_is_ready =
   1.138 +      (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
   1.139 +
   1.140 +    // Calculate variables used to estimate pause time vs. gen sizes
   1.141 +    double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   1.142 +    update_minor_pause_young_estimator(minor_pause_in_ms);
   1.143 +    update_minor_pause_old_estimator(minor_pause_in_ms);
   1.144 +
   1.145 +    if (PrintAdaptiveSizePolicy && Verbose) {
   1.146 +      gclog_or_tty->print("AdaptiveSizePolicy::minor_collection_end: "
   1.147 +        "minor gc cost: %f  average: %f", collection_cost,
   1.148 +        _avg_minor_gc_cost->average());
   1.149 +      gclog_or_tty->print_cr("  minor pause: %f minor period %f",
   1.150 +        minor_pause_in_ms,
   1.151 +        _latest_minor_mutator_interval_seconds * MILLIUNITS);
   1.152 +    }
   1.153 +
   1.154 +    // Calculate variable used to estimate collection cost vs. gen sizes
   1.155 +    assert(collection_cost >= 0.0, "Expected to be non-negative");
   1.156 +    _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
   1.157 +  }
   1.158 +
   1.159 +  // Interval times use this timer to measure the mutator time.
   1.160 +  // Reset the timer after the GC pause.
   1.161 +  _minor_timer.reset();
   1.162 +  _minor_timer.start();
   1.163 +}
   1.164 +
   1.165 +size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden,
   1.166 +                                            uint percent_change) {
   1.167 +  size_t eden_heap_delta;
   1.168 +  eden_heap_delta = cur_eden / 100 * percent_change;
   1.169 +  return eden_heap_delta;
   1.170 +}
   1.171 +
   1.172 +size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
   1.173 +  return eden_increment(cur_eden, YoungGenerationSizeIncrement);
   1.174 +}
   1.175 +
   1.176 +size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
   1.177 +  size_t eden_heap_delta = eden_increment(cur_eden) /
   1.178 +    AdaptiveSizeDecrementScaleFactor;
   1.179 +  return eden_heap_delta;
   1.180 +}
   1.181 +
   1.182 +size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo,
   1.183 +                                             uint percent_change) {
   1.184 +  size_t promo_heap_delta;
   1.185 +  promo_heap_delta = cur_promo / 100 * percent_change;
   1.186 +  return promo_heap_delta;
   1.187 +}
   1.188 +
   1.189 +size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
   1.190 +  return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   1.191 +}
   1.192 +
   1.193 +size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
   1.194 +  size_t promo_heap_delta = promo_increment(cur_promo);
   1.195 +  promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
   1.196 +  return promo_heap_delta;
   1.197 +}
   1.198 +
   1.199 +double AdaptiveSizePolicy::time_since_major_gc() const {
   1.200 +  _major_timer.stop();
   1.201 +  double result = _major_timer.seconds();
   1.202 +  _major_timer.start();
   1.203 +  return result;
   1.204 +}
   1.205 +
   1.206 +// Linear decay of major gc cost
   1.207 +double AdaptiveSizePolicy::decaying_major_gc_cost() const {
   1.208 +  double major_interval = major_gc_interval_average_for_decay();
   1.209 +  double major_gc_cost_average = major_gc_cost();
   1.210 +  double decayed_major_gc_cost = major_gc_cost_average;
   1.211 +  if(time_since_major_gc() > 0.0) {
   1.212 +    decayed_major_gc_cost = major_gc_cost() *
   1.213 +      (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
   1.214 +      / time_since_major_gc();
   1.215 +  }
   1.216 +
   1.217 +  // The decayed cost should always be smaller than the
   1.218 +  // average cost but the vagaries of finite arithmetic could
   1.219 +  // produce a larger value in decayed_major_gc_cost so protect
   1.220 +  // against that.
   1.221 +  return MIN2(major_gc_cost_average, decayed_major_gc_cost);
   1.222 +}
   1.223 +
   1.224 +// Use a value of the major gc cost that has been decayed
   1.225 +// by the factor
   1.226 +//
   1.227 +//      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
   1.228 +//        time-since-last-major-gc
   1.229 +//
   1.230 +// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
   1.231 +// is less than time-since-last-major-gc.
   1.232 +//
   1.233 +// In cases where there are initial major gc's that
   1.234 +// are of a relatively high cost but no later major
   1.235 +// gc's, the total gc cost can remain high because
   1.236 +// the major gc cost remains unchanged (since there are no major
   1.237 +// gc's).  In such a situation the value of the unchanging
   1.238 +// major gc cost can keep the mutator throughput below
   1.239 +// the goal when in fact the major gc cost is becoming diminishingly
   1.240 +// small.  Use the decaying gc cost only to decide whether to
   1.241 +// adjust for throughput.  Using it also to determine the adjustment
   1.242 +// to be made for throughput also seems reasonable but there is
   1.243 +// no test case to use to decide if it is the right thing to do
   1.244 +// don't do it yet.
   1.245 +
   1.246 +double AdaptiveSizePolicy::decaying_gc_cost() const {
   1.247 +  double decayed_major_gc_cost = major_gc_cost();
   1.248 +  double avg_major_interval = major_gc_interval_average_for_decay();
   1.249 +  if (UseAdaptiveSizeDecayMajorGCCost &&
   1.250 +      (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
   1.251 +      (avg_major_interval > 0.00)) {
   1.252 +    double time_since_last_major_gc = time_since_major_gc();
   1.253 +
   1.254 +    // Decay the major gc cost?
   1.255 +    if (time_since_last_major_gc >
   1.256 +        ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
   1.257 +
   1.258 +      // Decay using the time-since-last-major-gc
   1.259 +      decayed_major_gc_cost = decaying_major_gc_cost();
   1.260 +      if (PrintGCDetails && Verbose) {
   1.261 +        gclog_or_tty->print_cr("\ndecaying_gc_cost: major interval average:"
   1.262 +          " %f  time since last major gc: %f",
   1.263 +          avg_major_interval, time_since_last_major_gc);
   1.264 +        gclog_or_tty->print_cr("  major gc cost: %f  decayed major gc cost: %f",
   1.265 +          major_gc_cost(), decayed_major_gc_cost);
   1.266 +      }
   1.267 +    }
   1.268 +  }
   1.269 +  double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
   1.270 +  return result;
   1.271 +}
   1.272 +
   1.273 +
   1.274 +void AdaptiveSizePolicy::clear_generation_free_space_flags() {
   1.275 +  set_change_young_gen_for_min_pauses(0);
   1.276 +  set_change_old_gen_for_maj_pauses(0);
   1.277 +
   1.278 +  set_change_old_gen_for_throughput(0);
   1.279 +  set_change_young_gen_for_throughput(0);
   1.280 +  set_decrease_for_footprint(0);
   1.281 +  set_decide_at_full_gc(0);
   1.282 +}
   1.283 +
   1.284 +// Printing
   1.285 +
   1.286 +bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {
   1.287 +
   1.288 +  //  Should only be used with adaptive size policy turned on.
   1.289 +  // Otherwise, there may be variables that are undefined.
   1.290 +  if (!UseAdaptiveSizePolicy) return false;
   1.291 +
   1.292 +  // Print goal for which action is needed.
   1.293 +  char* action = NULL;
   1.294 +  bool change_for_pause = false;
   1.295 +  if ((change_old_gen_for_maj_pauses() ==
   1.296 +         decrease_old_gen_for_maj_pauses_true) ||
   1.297 +      (change_young_gen_for_min_pauses() ==
   1.298 +         decrease_young_gen_for_min_pauses_true)) {
   1.299 +    action = (char*) " *** pause time goal ***";
   1.300 +    change_for_pause = true;
   1.301 +  } else if ((change_old_gen_for_throughput() ==
   1.302 +               increase_old_gen_for_throughput_true) ||
   1.303 +            (change_young_gen_for_throughput() ==
   1.304 +               increase_young_gen_for_througput_true)) {
   1.305 +    action = (char*) " *** throughput goal ***";
   1.306 +  } else if (decrease_for_footprint()) {
   1.307 +    action = (char*) " *** reduced footprint ***";
   1.308 +  } else {
   1.309 +    // No actions were taken.  This can legitimately be the
   1.310 +    // situation if not enough data has been gathered to make
   1.311 +    // decisions.
   1.312 +    return false;
   1.313 +  }
   1.314 +
   1.315 +  // Pauses
   1.316 +  // Currently the size of the old gen is only adjusted to
   1.317 +  // change the major pause times.
   1.318 +  char* young_gen_action = NULL;
   1.319 +  char* tenured_gen_action = NULL;
   1.320 +
   1.321 +  char* shrink_msg = (char*) "(attempted to shrink)";
   1.322 +  char* grow_msg = (char*) "(attempted to grow)";
   1.323 +  char* no_change_msg = (char*) "(no change)";
   1.324 +  if (change_young_gen_for_min_pauses() ==
   1.325 +      decrease_young_gen_for_min_pauses_true) {
   1.326 +    young_gen_action = shrink_msg;
   1.327 +  } else if (change_for_pause) {
   1.328 +    young_gen_action = no_change_msg;
   1.329 +  }
   1.330 +
   1.331 +  if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
   1.332 +    tenured_gen_action = shrink_msg;
   1.333 +  } else if (change_for_pause) {
   1.334 +    tenured_gen_action = no_change_msg;
   1.335 +  }
   1.336 +
   1.337 +  // Throughput
   1.338 +  if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
   1.339 +    assert(change_young_gen_for_throughput() ==
   1.340 +           increase_young_gen_for_througput_true,
   1.341 +           "Both generations should be growing");
   1.342 +    young_gen_action = grow_msg;
   1.343 +    tenured_gen_action = grow_msg;
   1.344 +  } else if (change_young_gen_for_throughput() ==
   1.345 +             increase_young_gen_for_througput_true) {
   1.346 +    // Only the young generation may grow at start up (before
   1.347 +    // enough full collections have been done to grow the old generation).
   1.348 +    young_gen_action = grow_msg;
   1.349 +    tenured_gen_action = no_change_msg;
   1.350 +  }
   1.351 +
   1.352 +  // Minimum footprint
   1.353 +  if (decrease_for_footprint() != 0) {
   1.354 +    young_gen_action = shrink_msg;
   1.355 +    tenured_gen_action = shrink_msg;
   1.356 +  }
   1.357 +
   1.358 +  st->print_cr("    UseAdaptiveSizePolicy actions to meet %s", action);
   1.359 +  st->print_cr("                       GC overhead (%%)");
   1.360 +  st->print_cr("    Young generation:     %7.2f\t  %s",
   1.361 +    100.0 * avg_minor_gc_cost()->average(),
   1.362 +    young_gen_action);
   1.363 +  st->print_cr("    Tenured generation:   %7.2f\t  %s",
   1.364 +    100.0 * avg_major_gc_cost()->average(),
   1.365 +    tenured_gen_action);
   1.366 +  return true;
   1.367 +}
   1.368 +
   1.369 +bool AdaptiveSizePolicy::print_adaptive_size_policy_on(
   1.370 +                                            outputStream* st,
   1.371 +                                            int tenuring_threshold_arg) const {
   1.372 +  if (!AdaptiveSizePolicy::print_adaptive_size_policy_on(st)) {
   1.373 +    return false;
   1.374 +  }
   1.375 +
   1.376 +  // Tenuring threshold
   1.377 +  bool tenuring_threshold_changed = true;
   1.378 +  if (decrement_tenuring_threshold_for_survivor_limit()) {
   1.379 +    st->print("    Tenuring threshold:    (attempted to decrease to avoid"
   1.380 +              " survivor space overflow) = ");
   1.381 +  } else if (decrement_tenuring_threshold_for_gc_cost()) {
   1.382 +    st->print("    Tenuring threshold:    (attempted to decrease to balance"
   1.383 +              " GC costs) = ");
   1.384 +  } else if (increment_tenuring_threshold_for_gc_cost()) {
   1.385 +    st->print("    Tenuring threshold:    (attempted to increase to balance"
   1.386 +              " GC costs) = ");
   1.387 +  } else {
   1.388 +    tenuring_threshold_changed = false;
   1.389 +    assert(!tenuring_threshold_change(), "(no change was attempted)");
   1.390 +  }
   1.391 +  if (tenuring_threshold_changed) {
   1.392 +    st->print_cr("%d", tenuring_threshold_arg);
   1.393 +  }
   1.394 +  return true;
   1.395 +}

mercurial