src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

changeset 435
a61af66fc99e
child 442
2faf283ce688
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,8787 @@
     1.4 +/*
     1.5 + * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +# include "incls/_precompiled.incl"
    1.29 +# include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    1.30 +
    1.31 +// statics
    1.32 +CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    1.33 +bool          CMSCollector::_full_gc_requested          = false;
    1.34 +
    1.35 +//////////////////////////////////////////////////////////////////
    1.36 +// In support of CMS/VM thread synchronization
    1.37 +//////////////////////////////////////////////////////////////////
    1.38 +// We split use of the CGC_lock into 2 "levels".
    1.39 +// The low-level locking is of the usual CGC_lock monitor. We introduce
    1.40 +// a higher level "token" (hereafter "CMS token") built on top of the
    1.41 +// low level monitor (hereafter "CGC lock").
    1.42 +// The token-passing protocol gives priority to the VM thread. The
    1.43 +// CMS-lock doesn't provide any fairness guarantees, but clients
    1.44 +// should ensure that it is only held for very short, bounded
    1.45 +// durations.
    1.46 +//
    1.47 +// When either of the CMS thread or the VM thread is involved in
    1.48 +// collection operations during which it does not want the other
    1.49 +// thread to interfere, it obtains the CMS token.
    1.50 +//
    1.51 +// If either thread tries to get the token while the other has
    1.52 +// it, that thread waits. However, if the VM thread and CMS thread
    1.53 +// both want the token, then the VM thread gets priority while the
    1.54 +// CMS thread waits. This ensures, for instance, that the "concurrent"
    1.55 +// phases of the CMS thread's work do not block out the VM thread
    1.56 +// for long periods of time as the CMS thread continues to hog
    1.57 +// the token. (See bug 4616232).
    1.58 +//
    1.59 +// The baton-passing functions are, however, controlled by the
    1.60 +// flags _foregroundGCShouldWait and _foregroundGCIsActive,
    1.61 +// and here the low-level CMS lock, not the high level token,
    1.62 +// ensures mutual exclusion.
    1.63 +//
    1.64 +// Two important conditions that we have to satisfy:
    1.65 +// 1. if a thread does a low-level wait on the CMS lock, then it
    1.66 +//    relinquishes the CMS token if it were holding that token
    1.67 +//    when it acquired the low-level CMS lock.
    1.68 +// 2. any low-level notifications on the low-level lock
    1.69 +//    should only be sent when a thread has relinquished the token.
    1.70 +//
    1.71 +// In the absence of either property, we'd have potential deadlock.
    1.72 +//
    1.73 +// We protect each of the CMS (concurrent and sequential) phases
    1.74 +// with the CMS _token_, not the CMS _lock_.
    1.75 +//
    1.76 +// The only code protected by CMS lock is the token acquisition code
    1.77 +// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    1.78 +// baton-passing code.
    1.79 +//
    1.80 +// Unfortunately, i couldn't come up with a good abstraction to factor and
    1.81 +// hide the naked CGC_lock manipulation in the baton-passing code
    1.82 +// further below. That's something we should try to do. Also, the proof
    1.83 +// of correctness of this 2-level locking scheme is far from obvious,
    1.84 +// and potentially quite slippery. We have an uneasy supsicion, for instance,
    1.85 +// that there may be a theoretical possibility of delay/starvation in the
    1.86 +// low-level lock/wait/notify scheme used for the baton-passing because of
    1.87 +// potential intereference with the priority scheme embodied in the
    1.88 +// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    1.89 +// invocation further below and marked with "XXX 20011219YSR".
    1.90 +// Indeed, as we note elsewhere, this may become yet more slippery
    1.91 +// in the presence of multiple CMS and/or multiple VM threads. XXX
    1.92 +
    1.93 +class CMSTokenSync: public StackObj {
    1.94 + private:
    1.95 +  bool _is_cms_thread;
    1.96 + public:
    1.97 +  CMSTokenSync(bool is_cms_thread):
    1.98 +    _is_cms_thread(is_cms_thread) {
    1.99 +    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
   1.100 +           "Incorrect argument to constructor");
   1.101 +    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
   1.102 +  }
   1.103 +
   1.104 +  ~CMSTokenSync() {
   1.105 +    assert(_is_cms_thread ?
   1.106 +             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   1.107 +             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   1.108 +          "Incorrect state");
   1.109 +    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   1.110 +  }
   1.111 +};
   1.112 +
   1.113 +// Convenience class that does a CMSTokenSync, and then acquires
   1.114 +// upto three locks.
   1.115 +class CMSTokenSyncWithLocks: public CMSTokenSync {
   1.116 + private:
   1.117 +  // Note: locks are acquired in textual declaration order
   1.118 +  // and released in the opposite order
   1.119 +  MutexLockerEx _locker1, _locker2, _locker3;
   1.120 + public:
   1.121 +  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   1.122 +                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   1.123 +    CMSTokenSync(is_cms_thread),
   1.124 +    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   1.125 +    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   1.126 +    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   1.127 +  { }
   1.128 +};
   1.129 +
   1.130 +
   1.131 +// Wrapper class to temporarily disable icms during a foreground cms collection.
   1.132 +class ICMSDisabler: public StackObj {
   1.133 + public:
   1.134 +  // The ctor disables icms and wakes up the thread so it notices the change;
   1.135 +  // the dtor re-enables icms.  Note that the CMSCollector methods will check
   1.136 +  // CMSIncrementalMode.
   1.137 +  ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   1.138 +  ~ICMSDisabler() { CMSCollector::enable_icms(); }
   1.139 +};
   1.140 +
   1.141 +//////////////////////////////////////////////////////////////////
   1.142 +//  Concurrent Mark-Sweep Generation /////////////////////////////
   1.143 +//////////////////////////////////////////////////////////////////
   1.144 +
   1.145 +NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   1.146 +
   1.147 +// This struct contains per-thread things necessary to support parallel
   1.148 +// young-gen collection.
   1.149 +class CMSParGCThreadState: public CHeapObj {
   1.150 + public:
   1.151 +  CFLS_LAB lab;
   1.152 +  PromotionInfo promo;
   1.153 +
   1.154 +  // Constructor.
   1.155 +  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   1.156 +    promo.setSpace(cfls);
   1.157 +  }
   1.158 +};
   1.159 +
   1.160 +ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   1.161 +     ReservedSpace rs, size_t initial_byte_size, int level,
   1.162 +     CardTableRS* ct, bool use_adaptive_freelists,
   1.163 +     FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   1.164 +  CardGeneration(rs, initial_byte_size, level, ct),
   1.165 +  _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   1.166 +  _debug_collection_type(Concurrent_collection_type)
   1.167 +{
   1.168 +  HeapWord* bottom = (HeapWord*) _virtual_space.low();
   1.169 +  HeapWord* end    = (HeapWord*) _virtual_space.high();
   1.170 +
   1.171 +  _direct_allocated_words = 0;
   1.172 +  NOT_PRODUCT(
   1.173 +    _numObjectsPromoted = 0;
   1.174 +    _numWordsPromoted = 0;
   1.175 +    _numObjectsAllocated = 0;
   1.176 +    _numWordsAllocated = 0;
   1.177 +  )
   1.178 +
   1.179 +  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   1.180 +                                           use_adaptive_freelists,
   1.181 +                                           dictionaryChoice);
   1.182 +  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   1.183 +  if (_cmsSpace == NULL) {
   1.184 +    vm_exit_during_initialization(
   1.185 +      "CompactibleFreeListSpace allocation failure");
   1.186 +  }
   1.187 +  _cmsSpace->_gen = this;
   1.188 +
   1.189 +  _gc_stats = new CMSGCStats();
   1.190 +
   1.191 +  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   1.192 +  // offsets match. The ability to tell free chunks from objects
   1.193 +  // depends on this property.
   1.194 +  debug_only(
   1.195 +    FreeChunk* junk = NULL;
   1.196 +    assert(junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   1.197 +           "Offset of FreeChunk::_prev within FreeChunk must match"
   1.198 +           "  that of OopDesc::_klass within OopDesc");
   1.199 +  )
   1.200 +  if (ParallelGCThreads > 0) {
   1.201 +    typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   1.202 +    _par_gc_thread_states =
   1.203 +      NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   1.204 +    if (_par_gc_thread_states == NULL) {
   1.205 +      vm_exit_during_initialization("Could not allocate par gc structs");
   1.206 +    }
   1.207 +    for (uint i = 0; i < ParallelGCThreads; i++) {
   1.208 +      _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   1.209 +      if (_par_gc_thread_states[i] == NULL) {
   1.210 +        vm_exit_during_initialization("Could not allocate par gc structs");
   1.211 +      }
   1.212 +    }
   1.213 +  } else {
   1.214 +    _par_gc_thread_states = NULL;
   1.215 +  }
   1.216 +  _incremental_collection_failed = false;
   1.217 +  // The "dilatation_factor" is the expansion that can occur on
   1.218 +  // account of the fact that the minimum object size in the CMS
   1.219 +  // generation may be larger than that in, say, a contiguous young
   1.220 +  //  generation.
   1.221 +  // Ideally, in the calculation below, we'd compute the dilatation
   1.222 +  // factor as: MinChunkSize/(promoting_gen's min object size)
   1.223 +  // Since we do not have such a general query interface for the
   1.224 +  // promoting generation, we'll instead just use the mimimum
   1.225 +  // object size (which today is a header's worth of space);
   1.226 +  // note that all arithmetic is in units of HeapWords.
   1.227 +  assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   1.228 +  assert(_dilatation_factor >= 1.0, "from previous assert");
   1.229 +}
   1.230 +
   1.231 +void ConcurrentMarkSweepGeneration::ref_processor_init() {
   1.232 +  assert(collector() != NULL, "no collector");
   1.233 +  collector()->ref_processor_init();
   1.234 +}
   1.235 +
   1.236 +void CMSCollector::ref_processor_init() {
   1.237 +  if (_ref_processor == NULL) {
   1.238 +    // Allocate and initialize a reference processor
   1.239 +    _ref_processor = ReferenceProcessor::create_ref_processor(
   1.240 +        _span,                               // span
   1.241 +        _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   1.242 +        _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   1.243 +        &_is_alive_closure,
   1.244 +        ParallelGCThreads,
   1.245 +        ParallelRefProcEnabled);
   1.246 +    // Initialize the _ref_processor field of CMSGen
   1.247 +    _cmsGen->set_ref_processor(_ref_processor);
   1.248 +
   1.249 +    // Allocate a dummy ref processor for perm gen.
   1.250 +    ReferenceProcessor* rp2 = new ReferenceProcessor();
   1.251 +    if (rp2 == NULL) {
   1.252 +      vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   1.253 +    }
   1.254 +    _permGen->set_ref_processor(rp2);
   1.255 +  }
   1.256 +}
   1.257 +
   1.258 +CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   1.259 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.260 +  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   1.261 +    "Wrong type of heap");
   1.262 +  CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   1.263 +    gch->gen_policy()->size_policy();
   1.264 +  assert(sp->is_gc_cms_adaptive_size_policy(),
   1.265 +    "Wrong type of size policy");
   1.266 +  return sp;
   1.267 +}
   1.268 +
   1.269 +CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   1.270 +  CMSGCAdaptivePolicyCounters* results =
   1.271 +    (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   1.272 +  assert(
   1.273 +    results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   1.274 +    "Wrong gc policy counter kind");
   1.275 +  return results;
   1.276 +}
   1.277 +
   1.278 +
   1.279 +void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   1.280 +
   1.281 +  const char* gen_name = "old";
   1.282 +
   1.283 +  // Generation Counters - generation 1, 1 subspace
   1.284 +  _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   1.285 +
   1.286 +  _space_counters = new GSpaceCounters(gen_name, 0,
   1.287 +                                       _virtual_space.reserved_size(),
   1.288 +                                       this, _gen_counters);
   1.289 +}
   1.290 +
   1.291 +CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   1.292 +  _cms_gen(cms_gen)
   1.293 +{
   1.294 +  assert(alpha <= 100, "bad value");
   1.295 +  _saved_alpha = alpha;
   1.296 +
   1.297 +  // Initialize the alphas to the bootstrap value of 100.
   1.298 +  _gc0_alpha = _cms_alpha = 100;
   1.299 +
   1.300 +  _cms_begin_time.update();
   1.301 +  _cms_end_time.update();
   1.302 +
   1.303 +  _gc0_duration = 0.0;
   1.304 +  _gc0_period = 0.0;
   1.305 +  _gc0_promoted = 0;
   1.306 +
   1.307 +  _cms_duration = 0.0;
   1.308 +  _cms_period = 0.0;
   1.309 +  _cms_allocated = 0;
   1.310 +
   1.311 +  _cms_used_at_gc0_begin = 0;
   1.312 +  _cms_used_at_gc0_end = 0;
   1.313 +  _allow_duty_cycle_reduction = false;
   1.314 +  _valid_bits = 0;
   1.315 +  _icms_duty_cycle = CMSIncrementalDutyCycle;
   1.316 +}
   1.317 +
   1.318 +// If promotion failure handling is on use
   1.319 +// the padded average size of the promotion for each
   1.320 +// young generation collection.
   1.321 +double CMSStats::time_until_cms_gen_full() const {
   1.322 +  size_t cms_free = _cms_gen->cmsSpace()->free();
   1.323 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.324 +  size_t expected_promotion = gch->get_gen(0)->capacity();
   1.325 +  if (HandlePromotionFailure) {
   1.326 +    expected_promotion = MIN2(
   1.327 +        (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   1.328 +        expected_promotion);
   1.329 +  }
   1.330 +  if (cms_free > expected_promotion) {
   1.331 +    // Start a cms collection if there isn't enough space to promote
   1.332 +    // for the next minor collection.  Use the padded average as
   1.333 +    // a safety factor.
   1.334 +    cms_free -= expected_promotion;
   1.335 +
   1.336 +    // Adjust by the safety factor.
   1.337 +    double cms_free_dbl = (double)cms_free;
   1.338 +    cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   1.339 +
   1.340 +    if (PrintGCDetails && Verbose) {
   1.341 +      gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   1.342 +        SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   1.343 +        cms_free, expected_promotion);
   1.344 +      gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   1.345 +        cms_free_dbl, cms_consumption_rate() + 1.0);
   1.346 +    }
   1.347 +    // Add 1 in case the consumption rate goes to zero.
   1.348 +    return cms_free_dbl / (cms_consumption_rate() + 1.0);
   1.349 +  }
   1.350 +  return 0.0;
   1.351 +}
   1.352 +
   1.353 +// Compare the duration of the cms collection to the
   1.354 +// time remaining before the cms generation is empty.
   1.355 +// Note that the time from the start of the cms collection
   1.356 +// to the start of the cms sweep (less than the total
   1.357 +// duration of the cms collection) can be used.  This
   1.358 +// has been tried and some applications experienced
   1.359 +// promotion failures early in execution.  This was
   1.360 +// possibly because the averages were not accurate
   1.361 +// enough at the beginning.
   1.362 +double CMSStats::time_until_cms_start() const {
   1.363 +  // We add "gc0_period" to the "work" calculation
   1.364 +  // below because this query is done (mostly) at the
   1.365 +  // end of a scavenge, so we need to conservatively
   1.366 +  // account for that much possible delay
   1.367 +  // in the query so as to avoid concurrent mode failures
   1.368 +  // due to starting the collection just a wee bit too
   1.369 +  // late.
   1.370 +  double work = cms_duration() + gc0_period();
   1.371 +  double deadline = time_until_cms_gen_full();
   1.372 +  if (work > deadline) {
   1.373 +    if (Verbose && PrintGCDetails) {
   1.374 +      gclog_or_tty->print(
   1.375 +        " CMSCollector: collect because of anticipated promotion "
   1.376 +        "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   1.377 +        gc0_period(), time_until_cms_gen_full());
   1.378 +    }
   1.379 +    return 0.0;
   1.380 +  }
   1.381 +  return work - deadline;
   1.382 +}
   1.383 +
   1.384 +// Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   1.385 +// amount of change to prevent wild oscillation.
   1.386 +unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   1.387 +                                              unsigned int new_duty_cycle) {
   1.388 +  assert(old_duty_cycle <= 100, "bad input value");
   1.389 +  assert(new_duty_cycle <= 100, "bad input value");
   1.390 +
   1.391 +  // Note:  use subtraction with caution since it may underflow (values are
   1.392 +  // unsigned).  Addition is safe since we're in the range 0-100.
   1.393 +  unsigned int damped_duty_cycle = new_duty_cycle;
   1.394 +  if (new_duty_cycle < old_duty_cycle) {
   1.395 +    const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   1.396 +    if (new_duty_cycle + largest_delta < old_duty_cycle) {
   1.397 +      damped_duty_cycle = old_duty_cycle - largest_delta;
   1.398 +    }
   1.399 +  } else if (new_duty_cycle > old_duty_cycle) {
   1.400 +    const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   1.401 +    if (new_duty_cycle > old_duty_cycle + largest_delta) {
   1.402 +      damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   1.403 +    }
   1.404 +  }
   1.405 +  assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   1.406 +
   1.407 +  if (CMSTraceIncrementalPacing) {
   1.408 +    gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   1.409 +                           old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   1.410 +  }
   1.411 +  return damped_duty_cycle;
   1.412 +}
   1.413 +
   1.414 +unsigned int CMSStats::icms_update_duty_cycle_impl() {
   1.415 +  assert(CMSIncrementalPacing && valid(),
   1.416 +         "should be handled in icms_update_duty_cycle()");
   1.417 +
   1.418 +  double cms_time_so_far = cms_timer().seconds();
   1.419 +  double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   1.420 +  double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   1.421 +
   1.422 +  // Avoid division by 0.
   1.423 +  double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   1.424 +  double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   1.425 +
   1.426 +  unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   1.427 +  if (new_duty_cycle > _icms_duty_cycle) {
   1.428 +    // Avoid very small duty cycles (1 or 2); 0 is allowed.
   1.429 +    if (new_duty_cycle > 2) {
   1.430 +      _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   1.431 +                                                new_duty_cycle);
   1.432 +    }
   1.433 +  } else if (_allow_duty_cycle_reduction) {
   1.434 +    // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   1.435 +    new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   1.436 +    // Respect the minimum duty cycle.
   1.437 +    unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   1.438 +    _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   1.439 +  }
   1.440 +
   1.441 +  if (PrintGCDetails || CMSTraceIncrementalPacing) {
   1.442 +    gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   1.443 +  }
   1.444 +
   1.445 +  _allow_duty_cycle_reduction = false;
   1.446 +  return _icms_duty_cycle;
   1.447 +}
   1.448 +
   1.449 +#ifndef PRODUCT
   1.450 +void CMSStats::print_on(outputStream *st) const {
   1.451 +  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   1.452 +  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   1.453 +               gc0_duration(), gc0_period(), gc0_promoted());
   1.454 +  st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   1.455 +            cms_duration(), cms_duration_per_mb(),
   1.456 +            cms_period(), cms_allocated());
   1.457 +  st->print(",cms_since_beg=%g,cms_since_end=%g",
   1.458 +            cms_time_since_begin(), cms_time_since_end());
   1.459 +  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   1.460 +            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   1.461 +  if (CMSIncrementalMode) {
   1.462 +    st->print(",dc=%d", icms_duty_cycle());
   1.463 +  }
   1.464 +
   1.465 +  if (valid()) {
   1.466 +    st->print(",promo_rate=%g,cms_alloc_rate=%g",
   1.467 +              promotion_rate(), cms_allocation_rate());
   1.468 +    st->print(",cms_consumption_rate=%g,time_until_full=%g",
   1.469 +              cms_consumption_rate(), time_until_cms_gen_full());
   1.470 +  }
   1.471 +  st->print(" ");
   1.472 +}
   1.473 +#endif // #ifndef PRODUCT
   1.474 +
   1.475 +CMSCollector::CollectorState CMSCollector::_collectorState =
   1.476 +                             CMSCollector::Idling;
   1.477 +bool CMSCollector::_foregroundGCIsActive = false;
   1.478 +bool CMSCollector::_foregroundGCShouldWait = false;
   1.479 +
   1.480 +CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   1.481 +                           ConcurrentMarkSweepGeneration* permGen,
   1.482 +                           CardTableRS*                   ct,
   1.483 +                           ConcurrentMarkSweepPolicy*     cp):
   1.484 +  _cmsGen(cmsGen),
   1.485 +  _permGen(permGen),
   1.486 +  _ct(ct),
   1.487 +  _ref_processor(NULL),    // will be set later
   1.488 +  _conc_workers(NULL),     // may be set later
   1.489 +  _abort_preclean(false),
   1.490 +  _start_sampling(false),
   1.491 +  _between_prologue_and_epilogue(false),
   1.492 +  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   1.493 +  _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   1.494 +  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   1.495 +                 -1 /* lock-free */, "No_lock" /* dummy */),
   1.496 +  _modUnionClosure(&_modUnionTable),
   1.497 +  _modUnionClosurePar(&_modUnionTable),
   1.498 +  _is_alive_closure(&_markBitMap),
   1.499 +  _restart_addr(NULL),
   1.500 +  _overflow_list(NULL),
   1.501 +  _preserved_oop_stack(NULL),
   1.502 +  _preserved_mark_stack(NULL),
   1.503 +  _stats(cmsGen),
   1.504 +  _eden_chunk_array(NULL),     // may be set in ctor body
   1.505 +  _eden_chunk_capacity(0),     // -- ditto --
   1.506 +  _eden_chunk_index(0),        // -- ditto --
   1.507 +  _survivor_plab_array(NULL),  // -- ditto --
   1.508 +  _survivor_chunk_array(NULL), // -- ditto --
   1.509 +  _survivor_chunk_capacity(0), // -- ditto --
   1.510 +  _survivor_chunk_index(0),    // -- ditto --
   1.511 +  _ser_pmc_preclean_ovflw(0),
   1.512 +  _ser_pmc_remark_ovflw(0),
   1.513 +  _par_pmc_remark_ovflw(0),
   1.514 +  _ser_kac_ovflw(0),
   1.515 +  _par_kac_ovflw(0),
   1.516 +#ifndef PRODUCT
   1.517 +  _num_par_pushes(0),
   1.518 +#endif
   1.519 +  _collection_count_start(0),
   1.520 +  _verifying(false),
   1.521 +  _icms_start_limit(NULL),
   1.522 +  _icms_stop_limit(NULL),
   1.523 +  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   1.524 +  _completed_initialization(false),
   1.525 +  _collector_policy(cp),
   1.526 +  _unload_classes(false),
   1.527 +  _unloaded_classes_last_cycle(false),
   1.528 +  _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   1.529 +{
   1.530 +  if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   1.531 +    ExplicitGCInvokesConcurrent = true;
   1.532 +  }
   1.533 +  // Now expand the span and allocate the collection support structures
   1.534 +  // (MUT, marking bit map etc.) to cover both generations subject to
   1.535 +  // collection.
   1.536 +
   1.537 +  // First check that _permGen is adjacent to _cmsGen and above it.
   1.538 +  assert(   _cmsGen->reserved().word_size()  > 0
   1.539 +         && _permGen->reserved().word_size() > 0,
   1.540 +         "generations should not be of zero size");
   1.541 +  assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   1.542 +         "_cmsGen and _permGen should not overlap");
   1.543 +  assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   1.544 +         "_cmsGen->end() different from _permGen->start()");
   1.545 +
   1.546 +  // For use by dirty card to oop closures.
   1.547 +  _cmsGen->cmsSpace()->set_collector(this);
   1.548 +  _permGen->cmsSpace()->set_collector(this);
   1.549 +
   1.550 +  // Adjust my span to cover old (cms) gen and perm gen
   1.551 +  _span = _cmsGen->reserved()._union(_permGen->reserved());
   1.552 +  // Initialize the span of is_alive_closure
   1.553 +  _is_alive_closure.set_span(_span);
   1.554 +
   1.555 +  // Allocate MUT and marking bit map
   1.556 +  {
   1.557 +    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   1.558 +    if (!_markBitMap.allocate(_span)) {
   1.559 +      warning("Failed to allocate CMS Bit Map");
   1.560 +      return;
   1.561 +    }
   1.562 +    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   1.563 +  }
   1.564 +  {
   1.565 +    _modUnionTable.allocate(_span);
   1.566 +    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   1.567 +  }
   1.568 +
   1.569 +  if (!_markStack.allocate(CMSMarkStackSize)) {
   1.570 +    warning("Failed to allocate CMS Marking Stack");
   1.571 +    return;
   1.572 +  }
   1.573 +  if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   1.574 +    warning("Failed to allocate CMS Revisit Stack");
   1.575 +    return;
   1.576 +  }
   1.577 +
   1.578 +  // Support for multi-threaded concurrent phases
   1.579 +  if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   1.580 +    if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   1.581 +      // just for now
   1.582 +      FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   1.583 +    }
   1.584 +    if (ParallelCMSThreads > 1) {
   1.585 +      _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   1.586 +                                 ParallelCMSThreads, true);
   1.587 +      if (_conc_workers == NULL) {
   1.588 +        warning("GC/CMS: _conc_workers allocation failure: "
   1.589 +              "forcing -CMSConcurrentMTEnabled");
   1.590 +        CMSConcurrentMTEnabled = false;
   1.591 +      }
   1.592 +    } else {
   1.593 +      CMSConcurrentMTEnabled = false;
   1.594 +    }
   1.595 +  }
   1.596 +  if (!CMSConcurrentMTEnabled) {
   1.597 +    ParallelCMSThreads = 0;
   1.598 +  } else {
   1.599 +    // Turn off CMSCleanOnEnter optimization temporarily for
   1.600 +    // the MT case where it's not fixed yet; see 6178663.
   1.601 +    CMSCleanOnEnter = false;
   1.602 +  }
   1.603 +  assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   1.604 +         "Inconsistency");
   1.605 +
   1.606 +  // Parallel task queues; these are shared for the
   1.607 +  // concurrent and stop-world phases of CMS, but
   1.608 +  // are not shared with parallel scavenge (ParNew).
   1.609 +  {
   1.610 +    uint i;
   1.611 +    uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   1.612 +
   1.613 +    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   1.614 +         || ParallelRefProcEnabled)
   1.615 +        && num_queues > 0) {
   1.616 +      _task_queues = new OopTaskQueueSet(num_queues);
   1.617 +      if (_task_queues == NULL) {
   1.618 +        warning("task_queues allocation failure.");
   1.619 +        return;
   1.620 +      }
   1.621 +      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   1.622 +      if (_hash_seed == NULL) {
   1.623 +        warning("_hash_seed array allocation failure");
   1.624 +        return;
   1.625 +      }
   1.626 +
   1.627 +      // XXX use a global constant instead of 64!
   1.628 +      typedef struct OopTaskQueuePadded {
   1.629 +        OopTaskQueue work_queue;
   1.630 +        char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   1.631 +      } OopTaskQueuePadded;
   1.632 +
   1.633 +      for (i = 0; i < num_queues; i++) {
   1.634 +        OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   1.635 +        if (q_padded == NULL) {
   1.636 +          warning("work_queue allocation failure.");
   1.637 +          return;
   1.638 +        }
   1.639 +        _task_queues->register_queue(i, &q_padded->work_queue);
   1.640 +      }
   1.641 +      for (i = 0; i < num_queues; i++) {
   1.642 +        _task_queues->queue(i)->initialize();
   1.643 +        _hash_seed[i] = 17;  // copied from ParNew
   1.644 +      }
   1.645 +    }
   1.646 +  }
   1.647 +
   1.648 +  // "initiatingOccupancy" is the occupancy ratio at which we trigger
   1.649 +  // a new collection cycle.  Unless explicitly specified via
   1.650 +  // CMSTriggerRatio, it is calculated by:
   1.651 +  //   Let "f" be MinHeapFreeRatio in
   1.652 +  //
   1.653 +  //    intiatingOccupancy = 100-f +
   1.654 +  //                         f * (CMSTriggerRatio/100)
   1.655 +  // That is, if we assume the heap is at its desired maximum occupancy at the
   1.656 +  // end of a collection, we let CMSTriggerRatio of the (purported) free
   1.657 +  // space be allocated before initiating a new collection cycle.
   1.658 +  if (CMSInitiatingOccupancyFraction > 0) {
   1.659 +    _initiatingOccupancy = (double)CMSInitiatingOccupancyFraction / 100.0;
   1.660 +  } else {
   1.661 +    _initiatingOccupancy = ((100 - MinHeapFreeRatio) +
   1.662 +                           (double)(CMSTriggerRatio *
   1.663 +                                    MinHeapFreeRatio) / 100.0)
   1.664 +                           / 100.0;
   1.665 +  }
   1.666 +  // Clip CMSBootstrapOccupancy between 0 and 100.
   1.667 +  _bootstrap_occupancy = ((double)MIN2((intx)100, MAX2((intx)0, CMSBootstrapOccupancy)))
   1.668 +                         /(double)100;
   1.669 +
   1.670 +  _full_gcs_since_conc_gc = 0;
   1.671 +
   1.672 +  // Now tell CMS generations the identity of their collector
   1.673 +  ConcurrentMarkSweepGeneration::set_collector(this);
   1.674 +
   1.675 +  // Create & start a CMS thread for this CMS collector
   1.676 +  _cmsThread = ConcurrentMarkSweepThread::start(this);
   1.677 +  assert(cmsThread() != NULL, "CMS Thread should have been created");
   1.678 +  assert(cmsThread()->collector() == this,
   1.679 +         "CMS Thread should refer to this gen");
   1.680 +  assert(CGC_lock != NULL, "Where's the CGC_lock?");
   1.681 +
   1.682 +  // Support for parallelizing young gen rescan
   1.683 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.684 +  _young_gen = gch->prev_gen(_cmsGen);
   1.685 +  if (gch->supports_inline_contig_alloc()) {
   1.686 +    _top_addr = gch->top_addr();
   1.687 +    _end_addr = gch->end_addr();
   1.688 +    assert(_young_gen != NULL, "no _young_gen");
   1.689 +    _eden_chunk_index = 0;
   1.690 +    _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   1.691 +    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   1.692 +    if (_eden_chunk_array == NULL) {
   1.693 +      _eden_chunk_capacity = 0;
   1.694 +      warning("GC/CMS: _eden_chunk_array allocation failure");
   1.695 +    }
   1.696 +  }
   1.697 +  assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   1.698 +
   1.699 +  // Support for parallelizing survivor space rescan
   1.700 +  if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   1.701 +    size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   1.702 +    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   1.703 +    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   1.704 +    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   1.705 +    if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   1.706 +        || _cursor == NULL) {
   1.707 +      warning("Failed to allocate survivor plab/chunk array");
   1.708 +      if (_survivor_plab_array  != NULL) {
   1.709 +        FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   1.710 +        _survivor_plab_array = NULL;
   1.711 +      }
   1.712 +      if (_survivor_chunk_array != NULL) {
   1.713 +        FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   1.714 +        _survivor_chunk_array = NULL;
   1.715 +      }
   1.716 +      if (_cursor != NULL) {
   1.717 +        FREE_C_HEAP_ARRAY(size_t, _cursor);
   1.718 +        _cursor = NULL;
   1.719 +      }
   1.720 +    } else {
   1.721 +      _survivor_chunk_capacity = 2*max_plab_samples;
   1.722 +      for (uint i = 0; i < ParallelGCThreads; i++) {
   1.723 +        HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   1.724 +        if (vec == NULL) {
   1.725 +          warning("Failed to allocate survivor plab array");
   1.726 +          for (int j = i; j > 0; j--) {
   1.727 +            FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   1.728 +          }
   1.729 +          FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   1.730 +          FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   1.731 +          _survivor_plab_array = NULL;
   1.732 +          _survivor_chunk_array = NULL;
   1.733 +          _survivor_chunk_capacity = 0;
   1.734 +          break;
   1.735 +        } else {
   1.736 +          ChunkArray* cur =
   1.737 +            ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   1.738 +                                                        max_plab_samples);
   1.739 +          assert(cur->end() == 0, "Should be 0");
   1.740 +          assert(cur->array() == vec, "Should be vec");
   1.741 +          assert(cur->capacity() == max_plab_samples, "Error");
   1.742 +        }
   1.743 +      }
   1.744 +    }
   1.745 +  }
   1.746 +  assert(   (   _survivor_plab_array  != NULL
   1.747 +             && _survivor_chunk_array != NULL)
   1.748 +         || (   _survivor_chunk_capacity == 0
   1.749 +             && _survivor_chunk_index == 0),
   1.750 +         "Error");
   1.751 +
   1.752 +  // Choose what strong roots should be scanned depending on verification options
   1.753 +  // and perm gen collection mode.
   1.754 +  if (!CMSClassUnloadingEnabled) {
   1.755 +    // If class unloading is disabled we want to include all classes into the root set.
   1.756 +    add_root_scanning_option(SharedHeap::SO_AllClasses);
   1.757 +  } else {
   1.758 +    add_root_scanning_option(SharedHeap::SO_SystemClasses);
   1.759 +  }
   1.760 +
   1.761 +  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   1.762 +  _gc_counters = new CollectorCounters("CMS", 1);
   1.763 +  _completed_initialization = true;
   1.764 +  _sweep_timer.start();  // start of time
   1.765 +}
   1.766 +
   1.767 +const char* ConcurrentMarkSweepGeneration::name() const {
   1.768 +  return "concurrent mark-sweep generation";
   1.769 +}
   1.770 +void ConcurrentMarkSweepGeneration::update_counters() {
   1.771 +  if (UsePerfData) {
   1.772 +    _space_counters->update_all();
   1.773 +    _gen_counters->update_all();
   1.774 +  }
   1.775 +}
   1.776 +
   1.777 +// this is an optimized version of update_counters(). it takes the
   1.778 +// used value as a parameter rather than computing it.
   1.779 +//
   1.780 +void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   1.781 +  if (UsePerfData) {
   1.782 +    _space_counters->update_used(used);
   1.783 +    _space_counters->update_capacity();
   1.784 +    _gen_counters->update_all();
   1.785 +  }
   1.786 +}
   1.787 +
   1.788 +void ConcurrentMarkSweepGeneration::print() const {
   1.789 +  Generation::print();
   1.790 +  cmsSpace()->print();
   1.791 +}
   1.792 +
   1.793 +#ifndef PRODUCT
   1.794 +void ConcurrentMarkSweepGeneration::print_statistics() {
   1.795 +  cmsSpace()->printFLCensus(0);
   1.796 +}
   1.797 +#endif
   1.798 +
   1.799 +void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   1.800 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.801 +  if (PrintGCDetails) {
   1.802 +    if (Verbose) {
   1.803 +      gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   1.804 +        level(), short_name(), s, used(), capacity());
   1.805 +    } else {
   1.806 +      gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   1.807 +        level(), short_name(), s, used() / K, capacity() / K);
   1.808 +    }
   1.809 +  }
   1.810 +  if (Verbose) {
   1.811 +    gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   1.812 +              gch->used(), gch->capacity());
   1.813 +  } else {
   1.814 +    gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   1.815 +              gch->used() / K, gch->capacity() / K);
   1.816 +  }
   1.817 +}
   1.818 +
   1.819 +size_t
   1.820 +ConcurrentMarkSweepGeneration::contiguous_available() const {
   1.821 +  // dld proposes an improvement in precision here. If the committed
   1.822 +  // part of the space ends in a free block we should add that to
   1.823 +  // uncommitted size in the calculation below. Will make this
   1.824 +  // change later, staying with the approximation below for the
   1.825 +  // time being. -- ysr.
   1.826 +  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   1.827 +}
   1.828 +
   1.829 +size_t
   1.830 +ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   1.831 +  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   1.832 +}
   1.833 +
   1.834 +size_t ConcurrentMarkSweepGeneration::max_available() const {
   1.835 +  return free() + _virtual_space.uncommitted_size();
   1.836 +}
   1.837 +
   1.838 +bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   1.839 +    size_t max_promotion_in_bytes,
   1.840 +    bool younger_handles_promotion_failure) const {
   1.841 +
   1.842 +  // This is the most conservative test.  Full promotion is
   1.843 +  // guaranteed if this is used. The multiplicative factor is to
   1.844 +  // account for the worst case "dilatation".
   1.845 +  double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   1.846 +  if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   1.847 +    adjusted_max_promo_bytes = (double)max_uintx;
   1.848 +  }
   1.849 +  bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   1.850 +
   1.851 +  if (younger_handles_promotion_failure && !result) {
   1.852 +    // Full promotion is not guaranteed because fragmentation
   1.853 +    // of the cms generation can prevent the full promotion.
   1.854 +    result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   1.855 +
   1.856 +    if (!result) {
   1.857 +      // With promotion failure handling the test for the ability
   1.858 +      // to support the promotion does not have to be guaranteed.
   1.859 +      // Use an average of the amount promoted.
   1.860 +      result = max_available() >= (size_t)
   1.861 +        gc_stats()->avg_promoted()->padded_average();
   1.862 +      if (PrintGC && Verbose && result) {
   1.863 +        gclog_or_tty->print_cr(
   1.864 +          "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   1.865 +          " max_available: " SIZE_FORMAT
   1.866 +          " avg_promoted: " SIZE_FORMAT,
   1.867 +          max_available(), (size_t)
   1.868 +          gc_stats()->avg_promoted()->padded_average());
   1.869 +      }
   1.870 +    } else {
   1.871 +      if (PrintGC && Verbose) {
   1.872 +        gclog_or_tty->print_cr(
   1.873 +          "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   1.874 +          " max_available: " SIZE_FORMAT
   1.875 +          " adj_max_promo_bytes: " SIZE_FORMAT,
   1.876 +          max_available(), (size_t)adjusted_max_promo_bytes);
   1.877 +      }
   1.878 +    }
   1.879 +  } else {
   1.880 +    if (PrintGC && Verbose) {
   1.881 +      gclog_or_tty->print_cr(
   1.882 +        "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   1.883 +        " contiguous_available: " SIZE_FORMAT
   1.884 +        " adj_max_promo_bytes: " SIZE_FORMAT,
   1.885 +        max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   1.886 +    }
   1.887 +  }
   1.888 +  return result;
   1.889 +}
   1.890 +
   1.891 +CompactibleSpace*
   1.892 +ConcurrentMarkSweepGeneration::first_compaction_space() const {
   1.893 +  return _cmsSpace;
   1.894 +}
   1.895 +
   1.896 +void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   1.897 +  // Clear the promotion information.  These pointers can be adjusted
   1.898 +  // along with all the other pointers into the heap but
   1.899 +  // compaction is expected to be a rare event with
   1.900 +  // a heap using cms so don't do it without seeing the need.
   1.901 +  if (ParallelGCThreads > 0) {
   1.902 +    for (uint i = 0; i < ParallelGCThreads; i++) {
   1.903 +      _par_gc_thread_states[i]->promo.reset();
   1.904 +    }
   1.905 +  }
   1.906 +}
   1.907 +
   1.908 +void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   1.909 +  blk->do_space(_cmsSpace);
   1.910 +}
   1.911 +
   1.912 +void ConcurrentMarkSweepGeneration::compute_new_size() {
   1.913 +  assert_locked_or_safepoint(Heap_lock);
   1.914 +
   1.915 +  // If incremental collection failed, we just want to expand
   1.916 +  // to the limit.
   1.917 +  if (incremental_collection_failed()) {
   1.918 +    clear_incremental_collection_failed();
   1.919 +    grow_to_reserved();
   1.920 +    return;
   1.921 +  }
   1.922 +
   1.923 +  size_t expand_bytes = 0;
   1.924 +  double free_percentage = ((double) free()) / capacity();
   1.925 +  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   1.926 +  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   1.927 +
   1.928 +  // compute expansion delta needed for reaching desired free percentage
   1.929 +  if (free_percentage < desired_free_percentage) {
   1.930 +    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   1.931 +    assert(desired_capacity >= capacity(), "invalid expansion size");
   1.932 +    expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   1.933 +  }
   1.934 +  if (expand_bytes > 0) {
   1.935 +    if (PrintGCDetails && Verbose) {
   1.936 +      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   1.937 +      gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   1.938 +      gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   1.939 +      gclog_or_tty->print_cr("  Desired free fraction %f",
   1.940 +        desired_free_percentage);
   1.941 +      gclog_or_tty->print_cr("  Maximum free fraction %f",
   1.942 +        maximum_free_percentage);
   1.943 +      gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   1.944 +      gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   1.945 +        desired_capacity/1000);
   1.946 +      int prev_level = level() - 1;
   1.947 +      if (prev_level >= 0) {
   1.948 +        size_t prev_size = 0;
   1.949 +        GenCollectedHeap* gch = GenCollectedHeap::heap();
   1.950 +        Generation* prev_gen = gch->_gens[prev_level];
   1.951 +        prev_size = prev_gen->capacity();
   1.952 +          gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   1.953 +                                 prev_size/1000);
   1.954 +      }
   1.955 +      gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   1.956 +        unsafe_max_alloc_nogc()/1000);
   1.957 +      gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   1.958 +        contiguous_available()/1000);
   1.959 +      gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   1.960 +        expand_bytes);
   1.961 +    }
   1.962 +    // safe if expansion fails
   1.963 +    expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   1.964 +    if (PrintGCDetails && Verbose) {
   1.965 +      gclog_or_tty->print_cr("  Expanded free fraction %f",
   1.966 +        ((double) free()) / capacity());
   1.967 +    }
   1.968 +  }
   1.969 +}
   1.970 +
   1.971 +Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   1.972 +  return cmsSpace()->freelistLock();
   1.973 +}
   1.974 +
   1.975 +HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   1.976 +                                                  bool   tlab) {
   1.977 +  CMSSynchronousYieldRequest yr;
   1.978 +  MutexLockerEx x(freelistLock(),
   1.979 +                  Mutex::_no_safepoint_check_flag);
   1.980 +  return have_lock_and_allocate(size, tlab);
   1.981 +}
   1.982 +
   1.983 +HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   1.984 +                                                  bool   tlab) {
   1.985 +  assert_lock_strong(freelistLock());
   1.986 +  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   1.987 +  HeapWord* res = cmsSpace()->allocate(adjustedSize);
   1.988 +  // Allocate the object live (grey) if the background collector has
   1.989 +  // started marking. This is necessary because the marker may
   1.990 +  // have passed this address and consequently this object will
   1.991 +  // not otherwise be greyed and would be incorrectly swept up.
   1.992 +  // Note that if this object contains references, the writing
   1.993 +  // of those references will dirty the card containing this object
   1.994 +  // allowing the object to be blackened (and its references scanned)
   1.995 +  // either during a preclean phase or at the final checkpoint.
   1.996 +  if (res != NULL) {
   1.997 +    collector()->direct_allocated(res, adjustedSize);
   1.998 +    _direct_allocated_words += adjustedSize;
   1.999 +    // allocation counters
  1.1000 +    NOT_PRODUCT(
  1.1001 +      _numObjectsAllocated++;
  1.1002 +      _numWordsAllocated += (int)adjustedSize;
  1.1003 +    )
  1.1004 +  }
  1.1005 +  return res;
  1.1006 +}
  1.1007 +
  1.1008 +// In the case of direct allocation by mutators in a generation that
  1.1009 +// is being concurrently collected, the object must be allocated
  1.1010 +// live (grey) if the background collector has started marking.
  1.1011 +// This is necessary because the marker may
  1.1012 +// have passed this address and consequently this object will
  1.1013 +// not otherwise be greyed and would be incorrectly swept up.
  1.1014 +// Note that if this object contains references, the writing
  1.1015 +// of those references will dirty the card containing this object
  1.1016 +// allowing the object to be blackened (and its references scanned)
  1.1017 +// either during a preclean phase or at the final checkpoint.
  1.1018 +void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1.1019 +  assert(_markBitMap.covers(start, size), "Out of bounds");
  1.1020 +  if (_collectorState >= Marking) {
  1.1021 +    MutexLockerEx y(_markBitMap.lock(),
  1.1022 +                    Mutex::_no_safepoint_check_flag);
  1.1023 +    // [see comments preceding SweepClosure::do_blk() below for details]
  1.1024 +    // 1. need to mark the object as live so it isn't collected
  1.1025 +    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1.1026 +    // 3. need to mark the end of the object so sweeper can skip over it
  1.1027 +    //    if it's uninitialized when the sweeper reaches it.
  1.1028 +    _markBitMap.mark(start);          // object is live
  1.1029 +    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1.1030 +    _markBitMap.mark(start + size - 1);
  1.1031 +                                      // mark end of object
  1.1032 +  }
  1.1033 +  // check that oop looks uninitialized
  1.1034 +  assert(oop(start)->klass() == NULL, "_klass should be NULL");
  1.1035 +}
  1.1036 +
  1.1037 +void CMSCollector::promoted(bool par, HeapWord* start,
  1.1038 +                            bool is_obj_array, size_t obj_size) {
  1.1039 +  assert(_markBitMap.covers(start), "Out of bounds");
  1.1040 +  // See comment in direct_allocated() about when objects should
  1.1041 +  // be allocated live.
  1.1042 +  if (_collectorState >= Marking) {
  1.1043 +    // we already hold the marking bit map lock, taken in
  1.1044 +    // the prologue
  1.1045 +    if (par) {
  1.1046 +      _markBitMap.par_mark(start);
  1.1047 +    } else {
  1.1048 +      _markBitMap.mark(start);
  1.1049 +    }
  1.1050 +    // We don't need to mark the object as uninitialized (as
  1.1051 +    // in direct_allocated above) because this is being done with the
  1.1052 +    // world stopped and the object will be initialized by the
  1.1053 +    // time the sweeper gets to look at it.
  1.1054 +    assert(SafepointSynchronize::is_at_safepoint(),
  1.1055 +           "expect promotion only at safepoints");
  1.1056 +
  1.1057 +    if (_collectorState < Sweeping) {
  1.1058 +      // Mark the appropriate cards in the modUnionTable, so that
  1.1059 +      // this object gets scanned before the sweep. If this is
  1.1060 +      // not done, CMS generation references in the object might
  1.1061 +      // not get marked.
  1.1062 +      // For the case of arrays, which are otherwise precisely
  1.1063 +      // marked, we need to dirty the entire array, not just its head.
  1.1064 +      if (is_obj_array) {
  1.1065 +        // The [par_]mark_range() method expects mr.end() below to
  1.1066 +        // be aligned to the granularity of a bit's representation
  1.1067 +        // in the heap. In the case of the MUT below, that's a
  1.1068 +        // card size.
  1.1069 +        MemRegion mr(start,
  1.1070 +                     (HeapWord*)round_to((intptr_t)(start + obj_size),
  1.1071 +                        CardTableModRefBS::card_size /* bytes */));
  1.1072 +        if (par) {
  1.1073 +          _modUnionTable.par_mark_range(mr);
  1.1074 +        } else {
  1.1075 +          _modUnionTable.mark_range(mr);
  1.1076 +        }
  1.1077 +      } else {  // not an obj array; we can just mark the head
  1.1078 +        if (par) {
  1.1079 +          _modUnionTable.par_mark(start);
  1.1080 +        } else {
  1.1081 +          _modUnionTable.mark(start);
  1.1082 +        }
  1.1083 +      }
  1.1084 +    }
  1.1085 +  }
  1.1086 +}
  1.1087 +
  1.1088 +static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1.1089 +{
  1.1090 +  size_t delta = pointer_delta(addr, space->bottom());
  1.1091 +  return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1.1092 +}
  1.1093 +
  1.1094 +void CMSCollector::icms_update_allocation_limits()
  1.1095 +{
  1.1096 +  Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1.1097 +  EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1.1098 +
  1.1099 +  const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1.1100 +  if (CMSTraceIncrementalPacing) {
  1.1101 +    stats().print();
  1.1102 +  }
  1.1103 +
  1.1104 +  assert(duty_cycle <= 100, "invalid duty cycle");
  1.1105 +  if (duty_cycle != 0) {
  1.1106 +    // The duty_cycle is a percentage between 0 and 100; convert to words and
  1.1107 +    // then compute the offset from the endpoints of the space.
  1.1108 +    size_t free_words = eden->free() / HeapWordSize;
  1.1109 +    double free_words_dbl = (double)free_words;
  1.1110 +    size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1.1111 +    size_t offset_words = (free_words - duty_cycle_words) / 2;
  1.1112 +
  1.1113 +    _icms_start_limit = eden->top() + offset_words;
  1.1114 +    _icms_stop_limit = eden->end() - offset_words;
  1.1115 +
  1.1116 +    // The limits may be adjusted (shifted to the right) by
  1.1117 +    // CMSIncrementalOffset, to allow the application more mutator time after a
  1.1118 +    // young gen gc (when all mutators were stopped) and before CMS starts and
  1.1119 +    // takes away one or more cpus.
  1.1120 +    if (CMSIncrementalOffset != 0) {
  1.1121 +      double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1.1122 +      size_t adjustment = (size_t)adjustment_dbl;
  1.1123 +      HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1.1124 +      if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1.1125 +        _icms_start_limit += adjustment;
  1.1126 +        _icms_stop_limit = tmp_stop;
  1.1127 +      }
  1.1128 +    }
  1.1129 +  }
  1.1130 +  if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1.1131 +    _icms_start_limit = _icms_stop_limit = eden->end();
  1.1132 +  }
  1.1133 +
  1.1134 +  // Install the new start limit.
  1.1135 +  eden->set_soft_end(_icms_start_limit);
  1.1136 +
  1.1137 +  if (CMSTraceIncrementalMode) {
  1.1138 +    gclog_or_tty->print(" icms alloc limits:  "
  1.1139 +                           PTR_FORMAT "," PTR_FORMAT
  1.1140 +                           " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1.1141 +                           _icms_start_limit, _icms_stop_limit,
  1.1142 +                           percent_of_space(eden, _icms_start_limit),
  1.1143 +                           percent_of_space(eden, _icms_stop_limit));
  1.1144 +    if (Verbose) {
  1.1145 +      gclog_or_tty->print("eden:  ");
  1.1146 +      eden->print_on(gclog_or_tty);
  1.1147 +    }
  1.1148 +  }
  1.1149 +}
  1.1150 +
  1.1151 +// Any changes here should try to maintain the invariant
  1.1152 +// that if this method is called with _icms_start_limit
  1.1153 +// and _icms_stop_limit both NULL, then it should return NULL
  1.1154 +// and not notify the icms thread.
  1.1155 +HeapWord*
  1.1156 +CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1.1157 +                                       size_t word_size)
  1.1158 +{
  1.1159 +  // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1.1160 +  // nop.
  1.1161 +  if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1.1162 +    if (top <= _icms_start_limit) {
  1.1163 +      if (CMSTraceIncrementalMode) {
  1.1164 +        space->print_on(gclog_or_tty);
  1.1165 +        gclog_or_tty->stamp();
  1.1166 +        gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1.1167 +                               ", new limit=" PTR_FORMAT
  1.1168 +                               " (" SIZE_FORMAT "%%)",
  1.1169 +                               top, _icms_stop_limit,
  1.1170 +                               percent_of_space(space, _icms_stop_limit));
  1.1171 +      }
  1.1172 +      ConcurrentMarkSweepThread::start_icms();
  1.1173 +      assert(top < _icms_stop_limit, "Tautology");
  1.1174 +      if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1.1175 +        return _icms_stop_limit;
  1.1176 +      }
  1.1177 +
  1.1178 +      // The allocation will cross both the _start and _stop limits, so do the
  1.1179 +      // stop notification also and return end().
  1.1180 +      if (CMSTraceIncrementalMode) {
  1.1181 +        space->print_on(gclog_or_tty);
  1.1182 +        gclog_or_tty->stamp();
  1.1183 +        gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1.1184 +                               ", new limit=" PTR_FORMAT
  1.1185 +                               " (" SIZE_FORMAT "%%)",
  1.1186 +                               top, space->end(),
  1.1187 +                               percent_of_space(space, space->end()));
  1.1188 +      }
  1.1189 +      ConcurrentMarkSweepThread::stop_icms();
  1.1190 +      return space->end();
  1.1191 +    }
  1.1192 +
  1.1193 +    if (top <= _icms_stop_limit) {
  1.1194 +      if (CMSTraceIncrementalMode) {
  1.1195 +        space->print_on(gclog_or_tty);
  1.1196 +        gclog_or_tty->stamp();
  1.1197 +        gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1.1198 +                               ", new limit=" PTR_FORMAT
  1.1199 +                               " (" SIZE_FORMAT "%%)",
  1.1200 +                               top, space->end(),
  1.1201 +                               percent_of_space(space, space->end()));
  1.1202 +      }
  1.1203 +      ConcurrentMarkSweepThread::stop_icms();
  1.1204 +      return space->end();
  1.1205 +    }
  1.1206 +
  1.1207 +    if (CMSTraceIncrementalMode) {
  1.1208 +      space->print_on(gclog_or_tty);
  1.1209 +      gclog_or_tty->stamp();
  1.1210 +      gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1.1211 +                             ", new limit=" PTR_FORMAT,
  1.1212 +                             top, NULL);
  1.1213 +    }
  1.1214 +  }
  1.1215 +
  1.1216 +  return NULL;
  1.1217 +}
  1.1218 +
  1.1219 +oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size, oop* ref) {
  1.1220 +  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1.1221 +  // allocate, copy and if necessary update promoinfo --
  1.1222 +  // delegate to underlying space.
  1.1223 +  assert_lock_strong(freelistLock());
  1.1224 +
  1.1225 +#ifndef PRODUCT
  1.1226 +  if (Universe::heap()->promotion_should_fail()) {
  1.1227 +    return NULL;
  1.1228 +  }
  1.1229 +#endif  // #ifndef PRODUCT
  1.1230 +
  1.1231 +  oop res = _cmsSpace->promote(obj, obj_size, ref);
  1.1232 +  if (res == NULL) {
  1.1233 +    // expand and retry
  1.1234 +    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1.1235 +    expand(s*HeapWordSize, MinHeapDeltaBytes,
  1.1236 +      CMSExpansionCause::_satisfy_promotion);
  1.1237 +    // Since there's currently no next generation, we don't try to promote
  1.1238 +    // into a more senior generation.
  1.1239 +    assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1.1240 +                               "is made to pass on a possibly failing "
  1.1241 +                               "promotion to next generation");
  1.1242 +    res = _cmsSpace->promote(obj, obj_size, ref);
  1.1243 +  }
  1.1244 +  if (res != NULL) {
  1.1245 +    // See comment in allocate() about when objects should
  1.1246 +    // be allocated live.
  1.1247 +    assert(obj->is_oop(), "Will dereference klass pointer below");
  1.1248 +    collector()->promoted(false,           // Not parallel
  1.1249 +                          (HeapWord*)res, obj->is_objArray(), obj_size);
  1.1250 +    // promotion counters
  1.1251 +    NOT_PRODUCT(
  1.1252 +      _numObjectsPromoted++;
  1.1253 +      _numWordsPromoted +=
  1.1254 +        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1.1255 +    )
  1.1256 +  }
  1.1257 +  return res;
  1.1258 +}
  1.1259 +
  1.1260 +
  1.1261 +HeapWord*
  1.1262 +ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1.1263 +                                             HeapWord* top,
  1.1264 +                                             size_t word_sz)
  1.1265 +{
  1.1266 +  return collector()->allocation_limit_reached(space, top, word_sz);
  1.1267 +}
  1.1268 +
  1.1269 +// Things to support parallel young-gen collection.
  1.1270 +oop
  1.1271 +ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1.1272 +                                           oop old, markOop m,
  1.1273 +                                           size_t word_sz) {
  1.1274 +#ifndef PRODUCT
  1.1275 +  if (Universe::heap()->promotion_should_fail()) {
  1.1276 +    return NULL;
  1.1277 +  }
  1.1278 +#endif  // #ifndef PRODUCT
  1.1279 +
  1.1280 +  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1.1281 +  PromotionInfo* promoInfo = &ps->promo;
  1.1282 +  // if we are tracking promotions, then first ensure space for
  1.1283 +  // promotion (including spooling space for saving header if necessary).
  1.1284 +  // then allocate and copy, then track promoted info if needed.
  1.1285 +  // When tracking (see PromotionInfo::track()), the mark word may
  1.1286 +  // be displaced and in this case restoration of the mark word
  1.1287 +  // occurs in the (oop_since_save_marks_)iterate phase.
  1.1288 +  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1.1289 +    // Out of space for allocating spooling buffers;
  1.1290 +    // try expanding and allocating spooling buffers.
  1.1291 +    if (!expand_and_ensure_spooling_space(promoInfo)) {
  1.1292 +      return NULL;
  1.1293 +    }
  1.1294 +  }
  1.1295 +  assert(promoInfo->has_spooling_space(), "Control point invariant");
  1.1296 +  HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1.1297 +  if (obj_ptr == NULL) {
  1.1298 +     obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1.1299 +     if (obj_ptr == NULL) {
  1.1300 +       return NULL;
  1.1301 +     }
  1.1302 +  }
  1.1303 +  oop obj = oop(obj_ptr);
  1.1304 +  assert(obj->klass() == NULL, "Object should be uninitialized here.");
  1.1305 +  // Otherwise, copy the object.  Here we must be careful to insert the
  1.1306 +  // klass pointer last, since this marks the block as an allocated object.
  1.1307 +  HeapWord* old_ptr = (HeapWord*)old;
  1.1308 +  if (word_sz > (size_t)oopDesc::header_size()) {
  1.1309 +    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1.1310 +                                 obj_ptr + oopDesc::header_size(),
  1.1311 +                                 word_sz - oopDesc::header_size());
  1.1312 +  }
  1.1313 +  // Restore the mark word copied above.
  1.1314 +  obj->set_mark(m);
  1.1315 +  // Now we can track the promoted object, if necessary.  We take care
  1.1316 +  // To delay the transition from uninitialized to full object
  1.1317 +  // (i.e., insertion of klass pointer) until after, so that it
  1.1318 +  // atomically becomes a promoted object.
  1.1319 +  if (promoInfo->tracking()) {
  1.1320 +    promoInfo->track((PromotedObject*)obj, old->klass());
  1.1321 +  }
  1.1322 +  // Finally, install the klass pointer.
  1.1323 +  obj->set_klass(old->klass());
  1.1324 +
  1.1325 +  assert(old->is_oop(), "Will dereference klass ptr below");
  1.1326 +  collector()->promoted(true,          // parallel
  1.1327 +                        obj_ptr, old->is_objArray(), word_sz);
  1.1328 +
  1.1329 +  NOT_PRODUCT(
  1.1330 +    Atomic::inc(&_numObjectsPromoted);
  1.1331 +    Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1.1332 +                &_numWordsPromoted);
  1.1333 +  )
  1.1334 +
  1.1335 +  return obj;
  1.1336 +}
  1.1337 +
  1.1338 +void
  1.1339 +ConcurrentMarkSweepGeneration::
  1.1340 +par_promote_alloc_undo(int thread_num,
  1.1341 +                       HeapWord* obj, size_t word_sz) {
  1.1342 +  // CMS does not support promotion undo.
  1.1343 +  ShouldNotReachHere();
  1.1344 +}
  1.1345 +
  1.1346 +void
  1.1347 +ConcurrentMarkSweepGeneration::
  1.1348 +par_promote_alloc_done(int thread_num) {
  1.1349 +  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1.1350 +  ps->lab.retire();
  1.1351 +#if CFLS_LAB_REFILL_STATS
  1.1352 +  if (thread_num == 0) {
  1.1353 +    _cmsSpace->print_par_alloc_stats();
  1.1354 +  }
  1.1355 +#endif
  1.1356 +}
  1.1357 +
  1.1358 +void
  1.1359 +ConcurrentMarkSweepGeneration::
  1.1360 +par_oop_since_save_marks_iterate_done(int thread_num) {
  1.1361 +  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1.1362 +  ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1.1363 +  ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1.1364 +}
  1.1365 +
  1.1366 +// XXXPERM
  1.1367 +bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1.1368 +                                                   size_t size,
  1.1369 +                                                   bool   tlab)
  1.1370 +{
  1.1371 +  // We allow a STW collection only if a full
  1.1372 +  // collection was requested.
  1.1373 +  return full || should_allocate(size, tlab); // FIX ME !!!
  1.1374 +  // This and promotion failure handling are connected at the
  1.1375 +  // hip and should be fixed by untying them.
  1.1376 +}
  1.1377 +
  1.1378 +bool CMSCollector::shouldConcurrentCollect() {
  1.1379 +  if (_full_gc_requested) {
  1.1380 +    assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1.1381 +    if (Verbose && PrintGCDetails) {
  1.1382 +      gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1.1383 +                             " gc request");
  1.1384 +    }
  1.1385 +    return true;
  1.1386 +  }
  1.1387 +
  1.1388 +  // For debugging purposes, change the type of collection.
  1.1389 +  // If the rotation is not on the concurrent collection
  1.1390 +  // type, don't start a concurrent collection.
  1.1391 +  NOT_PRODUCT(
  1.1392 +    if (RotateCMSCollectionTypes &&
  1.1393 +        (_cmsGen->debug_collection_type() !=
  1.1394 +          ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1.1395 +      assert(_cmsGen->debug_collection_type() !=
  1.1396 +        ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1.1397 +        "Bad cms collection type");
  1.1398 +      return false;
  1.1399 +    }
  1.1400 +  )
  1.1401 +
  1.1402 +  FreelistLocker x(this);
  1.1403 +  // ------------------------------------------------------------------
  1.1404 +  // Print out lots of information which affects the initiation of
  1.1405 +  // a collection.
  1.1406 +  if (PrintCMSInitiationStatistics && stats().valid()) {
  1.1407 +    gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1.1408 +    gclog_or_tty->stamp();
  1.1409 +    gclog_or_tty->print_cr("");
  1.1410 +    stats().print_on(gclog_or_tty);
  1.1411 +    gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1.1412 +      stats().time_until_cms_gen_full());
  1.1413 +    gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1.1414 +    gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1.1415 +                           _cmsGen->contiguous_available());
  1.1416 +    gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1.1417 +    gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1.1418 +    gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1.1419 +    gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", initiatingOccupancy());
  1.1420 +  }
  1.1421 +  // ------------------------------------------------------------------
  1.1422 +
  1.1423 +  // If the estimated time to complete a cms collection (cms_duration())
  1.1424 +  // is less than the estimated time remaining until the cms generation
  1.1425 +  // is full, start a collection.
  1.1426 +  if (!UseCMSInitiatingOccupancyOnly) {
  1.1427 +    if (stats().valid()) {
  1.1428 +      if (stats().time_until_cms_start() == 0.0) {
  1.1429 +        return true;
  1.1430 +      }
  1.1431 +    } else {
  1.1432 +      // We want to conservatively collect somewhat early in order
  1.1433 +      // to try and "bootstrap" our CMS/promotion statistics;
  1.1434 +      // this branch will not fire after the first successful CMS
  1.1435 +      // collection because the stats should then be valid.
  1.1436 +      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1.1437 +        if (Verbose && PrintGCDetails) {
  1.1438 +          gclog_or_tty->print_cr(
  1.1439 +            " CMSCollector: collect for bootstrapping statistics:"
  1.1440 +            " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1.1441 +            _bootstrap_occupancy);
  1.1442 +        }
  1.1443 +        return true;
  1.1444 +      }
  1.1445 +    }
  1.1446 +  }
  1.1447 +
  1.1448 +  // Otherwise, we start a collection cycle if either the perm gen or
  1.1449 +  // old gen want a collection cycle started. Each may use
  1.1450 +  // an appropriate criterion for making this decision.
  1.1451 +  // XXX We need to make sure that the gen expansion
  1.1452 +  // criterion dovetails well with this.
  1.1453 +  if (_cmsGen->shouldConcurrentCollect(initiatingOccupancy())) {
  1.1454 +    if (Verbose && PrintGCDetails) {
  1.1455 +      gclog_or_tty->print_cr("CMS old gen initiated");
  1.1456 +    }
  1.1457 +    return true;
  1.1458 +  }
  1.1459 +
  1.1460 +  if (cms_should_unload_classes() &&
  1.1461 +      _permGen->shouldConcurrentCollect(initiatingOccupancy())) {
  1.1462 +    if (Verbose && PrintGCDetails) {
  1.1463 +     gclog_or_tty->print_cr("CMS perm gen initiated");
  1.1464 +    }
  1.1465 +    return true;
  1.1466 +  }
  1.1467 +
  1.1468 +  return false;
  1.1469 +}
  1.1470 +
  1.1471 +// Clear _expansion_cause fields of constituent generations
  1.1472 +void CMSCollector::clear_expansion_cause() {
  1.1473 +  _cmsGen->clear_expansion_cause();
  1.1474 +  _permGen->clear_expansion_cause();
  1.1475 +}
  1.1476 +
  1.1477 +bool ConcurrentMarkSweepGeneration::shouldConcurrentCollect(
  1.1478 +  double initiatingOccupancy) {
  1.1479 +  // We should be conservative in starting a collection cycle.  To
  1.1480 +  // start too eagerly runs the risk of collecting too often in the
  1.1481 +  // extreme.  To collect too rarely falls back on full collections,
  1.1482 +  // which works, even if not optimum in terms of concurrent work.
  1.1483 +  // As a work around for too eagerly collecting, use the flag
  1.1484 +  // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1.1485 +  // giving the user an easily understandable way of controlling the
  1.1486 +  // collections.
  1.1487 +  // We want to start a new collection cycle if any of the following
  1.1488 +  // conditions hold:
  1.1489 +  // . our current occupancy exceeds the initiating occupancy, or
  1.1490 +  // . we recently needed to expand and have not since that expansion,
  1.1491 +  //   collected, or
  1.1492 +  // . we are not using adaptive free lists and linear allocation is
  1.1493 +  //   going to fail, or
  1.1494 +  // . (for old gen) incremental collection has already failed or
  1.1495 +  //   may soon fail in the near future as we may not be able to absorb
  1.1496 +  //   promotions.
  1.1497 +  assert_lock_strong(freelistLock());
  1.1498 +
  1.1499 +  if (occupancy() > initiatingOccupancy) {
  1.1500 +    if (PrintGCDetails && Verbose) {
  1.1501 +      gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1.1502 +        short_name(), occupancy(), initiatingOccupancy);
  1.1503 +    }
  1.1504 +    return true;
  1.1505 +  }
  1.1506 +  if (UseCMSInitiatingOccupancyOnly) {
  1.1507 +    return false;
  1.1508 +  }
  1.1509 +  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1.1510 +    if (PrintGCDetails && Verbose) {
  1.1511 +      gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1.1512 +        short_name());
  1.1513 +    }
  1.1514 +    return true;
  1.1515 +  }
  1.1516 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.1517 +  assert(gch->collector_policy()->is_two_generation_policy(),
  1.1518 +         "You may want to check the correctness of the following");
  1.1519 +  if (gch->incremental_collection_will_fail()) {
  1.1520 +    if (PrintGCDetails && Verbose) {
  1.1521 +      gclog_or_tty->print(" %s: collect because incremental collection will fail ",
  1.1522 +        short_name());
  1.1523 +    }
  1.1524 +    return true;
  1.1525 +  }
  1.1526 +  if (!_cmsSpace->adaptive_freelists() &&
  1.1527 +      _cmsSpace->linearAllocationWouldFail()) {
  1.1528 +    if (PrintGCDetails && Verbose) {
  1.1529 +      gclog_or_tty->print(" %s: collect because of linAB ",
  1.1530 +        short_name());
  1.1531 +    }
  1.1532 +    return true;
  1.1533 +  }
  1.1534 +  return false;
  1.1535 +}
  1.1536 +
  1.1537 +void ConcurrentMarkSweepGeneration::collect(bool   full,
  1.1538 +                                            bool   clear_all_soft_refs,
  1.1539 +                                            size_t size,
  1.1540 +                                            bool   tlab)
  1.1541 +{
  1.1542 +  collector()->collect(full, clear_all_soft_refs, size, tlab);
  1.1543 +}
  1.1544 +
  1.1545 +void CMSCollector::collect(bool   full,
  1.1546 +                           bool   clear_all_soft_refs,
  1.1547 +                           size_t size,
  1.1548 +                           bool   tlab)
  1.1549 +{
  1.1550 +  if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1.1551 +    // For debugging purposes skip the collection if the state
  1.1552 +    // is not currently idle
  1.1553 +    if (TraceCMSState) {
  1.1554 +      gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1.1555 +        Thread::current(), full, _collectorState);
  1.1556 +    }
  1.1557 +    return;
  1.1558 +  }
  1.1559 +
  1.1560 +  // The following "if" branch is present for defensive reasons.
  1.1561 +  // In the current uses of this interface, it can be replaced with:
  1.1562 +  // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1.1563 +  // But I am not placing that assert here to allow future
  1.1564 +  // generality in invoking this interface.
  1.1565 +  if (GC_locker::is_active()) {
  1.1566 +    // A consistency test for GC_locker
  1.1567 +    assert(GC_locker::needs_gc(), "Should have been set already");
  1.1568 +    // Skip this foreground collection, instead
  1.1569 +    // expanding the heap if necessary.
  1.1570 +    // Need the free list locks for the call to free() in compute_new_size()
  1.1571 +    compute_new_size();
  1.1572 +    return;
  1.1573 +  }
  1.1574 +  acquire_control_and_collect(full, clear_all_soft_refs);
  1.1575 +  _full_gcs_since_conc_gc++;
  1.1576 +
  1.1577 +}
  1.1578 +
  1.1579 +void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1.1580 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.1581 +  unsigned int gc_count = gch->total_full_collections();
  1.1582 +  if (gc_count == full_gc_count) {
  1.1583 +    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.1584 +    _full_gc_requested = true;
  1.1585 +    CGC_lock->notify();   // nudge CMS thread
  1.1586 +  }
  1.1587 +}
  1.1588 +
  1.1589 +
  1.1590 +// The foreground and background collectors need to coordinate in order
  1.1591 +// to make sure that they do not mutually interfere with CMS collections.
  1.1592 +// When a background collection is active,
  1.1593 +// the foreground collector may need to take over (preempt) and
  1.1594 +// synchronously complete an ongoing collection. Depending on the
  1.1595 +// frequency of the background collections and the heap usage
  1.1596 +// of the application, this preemption can be seldom or frequent.
  1.1597 +// There are only certain
  1.1598 +// points in the background collection that the "collection-baton"
  1.1599 +// can be passed to the foreground collector.
  1.1600 +//
  1.1601 +// The foreground collector will wait for the baton before
  1.1602 +// starting any part of the collection.  The foreground collector
  1.1603 +// will only wait at one location.
  1.1604 +//
  1.1605 +// The background collector will yield the baton before starting a new
  1.1606 +// phase of the collection (e.g., before initial marking, marking from roots,
  1.1607 +// precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1.1608 +// of the loop which switches the phases. The background collector does some
  1.1609 +// of the phases (initial mark, final re-mark) with the world stopped.
  1.1610 +// Because of locking involved in stopping the world,
  1.1611 +// the foreground collector should not block waiting for the background
  1.1612 +// collector when it is doing a stop-the-world phase.  The background
  1.1613 +// collector will yield the baton at an additional point just before
  1.1614 +// it enters a stop-the-world phase.  Once the world is stopped, the
  1.1615 +// background collector checks the phase of the collection.  If the
  1.1616 +// phase has not changed, it proceeds with the collection.  If the
  1.1617 +// phase has changed, it skips that phase of the collection.  See
  1.1618 +// the comments on the use of the Heap_lock in collect_in_background().
  1.1619 +//
  1.1620 +// Variable used in baton passing.
  1.1621 +//   _foregroundGCIsActive - Set to true by the foreground collector when
  1.1622 +//      it wants the baton.  The foreground clears it when it has finished
  1.1623 +//      the collection.
  1.1624 +//   _foregroundGCShouldWait - Set to true by the background collector
  1.1625 +//        when it is running.  The foreground collector waits while
  1.1626 +//      _foregroundGCShouldWait is true.
  1.1627 +//  CGC_lock - monitor used to protect access to the above variables
  1.1628 +//      and to notify the foreground and background collectors.
  1.1629 +//  _collectorState - current state of the CMS collection.
  1.1630 +//
  1.1631 +// The foreground collector
  1.1632 +//   acquires the CGC_lock
  1.1633 +//   sets _foregroundGCIsActive
  1.1634 +//   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1.1635 +//     various locks acquired in preparation for the collection
  1.1636 +//     are released so as not to block the background collector
  1.1637 +//     that is in the midst of a collection
  1.1638 +//   proceeds with the collection
  1.1639 +//   clears _foregroundGCIsActive
  1.1640 +//   returns
  1.1641 +//
  1.1642 +// The background collector in a loop iterating on the phases of the
  1.1643 +//      collection
  1.1644 +//   acquires the CGC_lock
  1.1645 +//   sets _foregroundGCShouldWait
  1.1646 +//   if _foregroundGCIsActive is set
  1.1647 +//     clears _foregroundGCShouldWait, notifies _CGC_lock
  1.1648 +//     waits on _CGC_lock for _foregroundGCIsActive to become false
  1.1649 +//     and exits the loop.
  1.1650 +//   otherwise
  1.1651 +//     proceed with that phase of the collection
  1.1652 +//     if the phase is a stop-the-world phase,
  1.1653 +//       yield the baton once more just before enqueueing
  1.1654 +//       the stop-world CMS operation (executed by the VM thread).
  1.1655 +//   returns after all phases of the collection are done
  1.1656 +//
  1.1657 +
  1.1658 +void CMSCollector::acquire_control_and_collect(bool full,
  1.1659 +        bool clear_all_soft_refs) {
  1.1660 +  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1.1661 +  assert(!Thread::current()->is_ConcurrentGC_thread(),
  1.1662 +         "shouldn't try to acquire control from self!");
  1.1663 +
  1.1664 +  // Start the protocol for acquiring control of the
  1.1665 +  // collection from the background collector (aka CMS thread).
  1.1666 +  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1.1667 +         "VM thread should have CMS token");
  1.1668 +  // Remember the possibly interrupted state of an ongoing
  1.1669 +  // concurrent collection
  1.1670 +  CollectorState first_state = _collectorState;
  1.1671 +
  1.1672 +  // Signal to a possibly ongoing concurrent collection that
  1.1673 +  // we want to do a foreground collection.
  1.1674 +  _foregroundGCIsActive = true;
  1.1675 +
  1.1676 +  // Disable incremental mode during a foreground collection.
  1.1677 +  ICMSDisabler icms_disabler;
  1.1678 +
  1.1679 +  // release locks and wait for a notify from the background collector
  1.1680 +  // releasing the locks in only necessary for phases which
  1.1681 +  // do yields to improve the granularity of the collection.
  1.1682 +  assert_lock_strong(bitMapLock());
  1.1683 +  // We need to lock the Free list lock for the space that we are
  1.1684 +  // currently collecting.
  1.1685 +  assert(haveFreelistLocks(), "Must be holding free list locks");
  1.1686 +  bitMapLock()->unlock();
  1.1687 +  releaseFreelistLocks();
  1.1688 +  {
  1.1689 +    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.1690 +    if (_foregroundGCShouldWait) {
  1.1691 +      // We are going to be waiting for action for the CMS thread;
  1.1692 +      // it had better not be gone (for instance at shutdown)!
  1.1693 +      assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1.1694 +             "CMS thread must be running");
  1.1695 +      // Wait here until the background collector gives us the go-ahead
  1.1696 +      ConcurrentMarkSweepThread::clear_CMS_flag(
  1.1697 +        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1.1698 +      // Get a possibly blocked CMS thread going:
  1.1699 +      //   Note that we set _foregroundGCIsActive true above,
  1.1700 +      //   without protection of the CGC_lock.
  1.1701 +      CGC_lock->notify();
  1.1702 +      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1.1703 +             "Possible deadlock");
  1.1704 +      while (_foregroundGCShouldWait) {
  1.1705 +        // wait for notification
  1.1706 +        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1.1707 +        // Possibility of delay/starvation here, since CMS token does
  1.1708 +        // not know to give priority to VM thread? Actually, i think
  1.1709 +        // there wouldn't be any delay/starvation, but the proof of
  1.1710 +        // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1.1711 +      }
  1.1712 +      ConcurrentMarkSweepThread::set_CMS_flag(
  1.1713 +        ConcurrentMarkSweepThread::CMS_vm_has_token);
  1.1714 +    }
  1.1715 +  }
  1.1716 +  // The CMS_token is already held.  Get back the other locks.
  1.1717 +  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1.1718 +         "VM thread should have CMS token");
  1.1719 +  getFreelistLocks();
  1.1720 +  bitMapLock()->lock_without_safepoint_check();
  1.1721 +  if (TraceCMSState) {
  1.1722 +    gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1.1723 +      INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1.1724 +    gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1.1725 +  }
  1.1726 +
  1.1727 +  // Check if we need to do a compaction, or if not, whether
  1.1728 +  // we need to start the mark-sweep from scratch.
  1.1729 +  bool should_compact    = false;
  1.1730 +  bool should_start_over = false;
  1.1731 +  decide_foreground_collection_type(clear_all_soft_refs,
  1.1732 +    &should_compact, &should_start_over);
  1.1733 +
  1.1734 +NOT_PRODUCT(
  1.1735 +  if (RotateCMSCollectionTypes) {
  1.1736 +    if (_cmsGen->debug_collection_type() ==
  1.1737 +        ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1.1738 +      should_compact = true;
  1.1739 +    } else if (_cmsGen->debug_collection_type() ==
  1.1740 +               ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1.1741 +      should_compact = false;
  1.1742 +    }
  1.1743 +  }
  1.1744 +)
  1.1745 +
  1.1746 +  if (PrintGCDetails && first_state > Idling) {
  1.1747 +    GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1.1748 +    if (GCCause::is_user_requested_gc(cause) ||
  1.1749 +        GCCause::is_serviceability_requested_gc(cause)) {
  1.1750 +      gclog_or_tty->print(" (concurrent mode interrupted)");
  1.1751 +    } else {
  1.1752 +      gclog_or_tty->print(" (concurrent mode failure)");
  1.1753 +    }
  1.1754 +  }
  1.1755 +
  1.1756 +  if (should_compact) {
  1.1757 +    // If the collection is being acquired from the background
  1.1758 +    // collector, there may be references on the discovered
  1.1759 +    // references lists that have NULL referents (being those
  1.1760 +    // that were concurrently cleared by a mutator) or
  1.1761 +    // that are no longer active (having been enqueued concurrently
  1.1762 +    // by the mutator).
  1.1763 +    // Scrub the list of those references because Mark-Sweep-Compact
  1.1764 +    // code assumes referents are not NULL and that all discovered
  1.1765 +    // Reference objects are active.
  1.1766 +    ref_processor()->clean_up_discovered_references();
  1.1767 +
  1.1768 +    do_compaction_work(clear_all_soft_refs);
  1.1769 +
  1.1770 +    // Has the GC time limit been exceeded?
  1.1771 +    check_gc_time_limit();
  1.1772 +
  1.1773 +  } else {
  1.1774 +    do_mark_sweep_work(clear_all_soft_refs, first_state,
  1.1775 +      should_start_over);
  1.1776 +  }
  1.1777 +  // Reset the expansion cause, now that we just completed
  1.1778 +  // a collection cycle.
  1.1779 +  clear_expansion_cause();
  1.1780 +  _foregroundGCIsActive = false;
  1.1781 +  return;
  1.1782 +}
  1.1783 +
  1.1784 +void CMSCollector::check_gc_time_limit() {
  1.1785 +
  1.1786 +  // Ignore explicit GC's.  Exiting here does not set the flag and
  1.1787 +  // does not reset the count.  Updating of the averages for system
  1.1788 +  // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1.1789 +  GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1.1790 +  if (GCCause::is_user_requested_gc(gc_cause) ||
  1.1791 +      GCCause::is_serviceability_requested_gc(gc_cause)) {
  1.1792 +    return;
  1.1793 +  }
  1.1794 +
  1.1795 +  // Calculate the fraction of the CMS generation was freed during
  1.1796 +  // the last collection.
  1.1797 +  // Only consider the STW compacting cost for now.
  1.1798 +  //
  1.1799 +  // Note that the gc time limit test only works for the collections
  1.1800 +  // of the young gen + tenured gen and not for collections of the
  1.1801 +  // permanent gen.  That is because the calculation of the space
  1.1802 +  // freed by the collection is the free space in the young gen +
  1.1803 +  // tenured gen.
  1.1804 +
  1.1805 +  double fraction_free =
  1.1806 +    ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1.1807 +  if ((100.0 * size_policy()->compacting_gc_cost()) >
  1.1808 +         ((double) GCTimeLimit) &&
  1.1809 +        ((fraction_free * 100) < GCHeapFreeLimit)) {
  1.1810 +    size_policy()->inc_gc_time_limit_count();
  1.1811 +    if (UseGCOverheadLimit &&
  1.1812 +        (size_policy()->gc_time_limit_count() >
  1.1813 +         AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1.1814 +      size_policy()->set_gc_time_limit_exceeded(true);
  1.1815 +      // Avoid consecutive OOM due to the gc time limit by resetting
  1.1816 +      // the counter.
  1.1817 +      size_policy()->reset_gc_time_limit_count();
  1.1818 +      if (PrintGCDetails) {
  1.1819 +        gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1.1820 +          "of %d%%", GCTimeLimit);
  1.1821 +      }
  1.1822 +    } else {
  1.1823 +      if (PrintGCDetails) {
  1.1824 +        gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1.1825 +          "of %d%%", GCTimeLimit);
  1.1826 +      }
  1.1827 +    }
  1.1828 +  } else {
  1.1829 +    size_policy()->reset_gc_time_limit_count();
  1.1830 +  }
  1.1831 +}
  1.1832 +
  1.1833 +// Resize the perm generation and the tenured generation
  1.1834 +// after obtaining the free list locks for the
  1.1835 +// two generations.
  1.1836 +void CMSCollector::compute_new_size() {
  1.1837 +  assert_locked_or_safepoint(Heap_lock);
  1.1838 +  FreelistLocker z(this);
  1.1839 +  _permGen->compute_new_size();
  1.1840 +  _cmsGen->compute_new_size();
  1.1841 +}
  1.1842 +
  1.1843 +// A work method used by foreground collection to determine
  1.1844 +// what type of collection (compacting or not, continuing or fresh)
  1.1845 +// it should do.
  1.1846 +// NOTE: the intent is to make UseCMSCompactAtFullCollection
  1.1847 +// and CMSCompactWhenClearAllSoftRefs the default in the future
  1.1848 +// and do away with the flags after a suitable period.
  1.1849 +void CMSCollector::decide_foreground_collection_type(
  1.1850 +  bool clear_all_soft_refs, bool* should_compact,
  1.1851 +  bool* should_start_over) {
  1.1852 +  // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1.1853 +  // flag is set, and we have either requested a System.gc() or
  1.1854 +  // the number of full gc's since the last concurrent cycle
  1.1855 +  // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1.1856 +  // or if an incremental collection has failed
  1.1857 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.1858 +  assert(gch->collector_policy()->is_two_generation_policy(),
  1.1859 +         "You may want to check the correctness of the following");
  1.1860 +  // Inform cms gen if this was due to partial collection failing.
  1.1861 +  // The CMS gen may use this fact to determine its expansion policy.
  1.1862 +  if (gch->incremental_collection_will_fail()) {
  1.1863 +    assert(!_cmsGen->incremental_collection_failed(),
  1.1864 +           "Should have been noticed, reacted to and cleared");
  1.1865 +    _cmsGen->set_incremental_collection_failed();
  1.1866 +  }
  1.1867 +  *should_compact =
  1.1868 +    UseCMSCompactAtFullCollection &&
  1.1869 +    ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1.1870 +     GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1.1871 +     gch->incremental_collection_will_fail());
  1.1872 +  *should_start_over = false;
  1.1873 +  if (clear_all_soft_refs && !*should_compact) {
  1.1874 +    // We are about to do a last ditch collection attempt
  1.1875 +    // so it would normally make sense to do a compaction
  1.1876 +    // to reclaim as much space as possible.
  1.1877 +    if (CMSCompactWhenClearAllSoftRefs) {
  1.1878 +      // Default: The rationale is that in this case either
  1.1879 +      // we are past the final marking phase, in which case
  1.1880 +      // we'd have to start over, or so little has been done
  1.1881 +      // that there's little point in saving that work. Compaction
  1.1882 +      // appears to be the sensible choice in either case.
  1.1883 +      *should_compact = true;
  1.1884 +    } else {
  1.1885 +      // We have been asked to clear all soft refs, but not to
  1.1886 +      // compact. Make sure that we aren't past the final checkpoint
  1.1887 +      // phase, for that is where we process soft refs. If we are already
  1.1888 +      // past that phase, we'll need to redo the refs discovery phase and
  1.1889 +      // if necessary clear soft refs that weren't previously
  1.1890 +      // cleared. We do so by remembering the phase in which
  1.1891 +      // we came in, and if we are past the refs processing
  1.1892 +      // phase, we'll choose to just redo the mark-sweep
  1.1893 +      // collection from scratch.
  1.1894 +      if (_collectorState > FinalMarking) {
  1.1895 +        // We are past the refs processing phase;
  1.1896 +        // start over and do a fresh synchronous CMS cycle
  1.1897 +        _collectorState = Resetting; // skip to reset to start new cycle
  1.1898 +        reset(false /* == !asynch */);
  1.1899 +        *should_start_over = true;
  1.1900 +      } // else we can continue a possibly ongoing current cycle
  1.1901 +    }
  1.1902 +  }
  1.1903 +}
  1.1904 +
  1.1905 +// A work method used by the foreground collector to do
  1.1906 +// a mark-sweep-compact.
  1.1907 +void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1.1908 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.1909 +  TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1.1910 +  if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1.1911 +    gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1.1912 +      "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1.1913 +  }
  1.1914 +
  1.1915 +  // Sample collection interval time and reset for collection pause.
  1.1916 +  if (UseAdaptiveSizePolicy) {
  1.1917 +    size_policy()->msc_collection_begin();
  1.1918 +  }
  1.1919 +
  1.1920 +  // Temporarily widen the span of the weak reference processing to
  1.1921 +  // the entire heap.
  1.1922 +  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1.1923 +  ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1.1924 +
  1.1925 +  // Temporarily, clear the "is_alive_non_header" field of the
  1.1926 +  // reference processor.
  1.1927 +  ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1.1928 +
  1.1929 +  // Temporarily make reference _processing_ single threaded (non-MT).
  1.1930 +  ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1.1931 +
  1.1932 +  // Temporarily make refs discovery atomic
  1.1933 +  ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1.1934 +
  1.1935 +  ref_processor()->set_enqueuing_is_done(false);
  1.1936 +  ref_processor()->enable_discovery();
  1.1937 +  // If an asynchronous collection finishes, the _modUnionTable is
  1.1938 +  // all clear.  If we are assuming the collection from an asynchronous
  1.1939 +  // collection, clear the _modUnionTable.
  1.1940 +  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1.1941 +    "_modUnionTable should be clear if the baton was not passed");
  1.1942 +  _modUnionTable.clear_all();
  1.1943 +
  1.1944 +  // We must adjust the allocation statistics being maintained
  1.1945 +  // in the free list space. We do so by reading and clearing
  1.1946 +  // the sweep timer and updating the block flux rate estimates below.
  1.1947 +  assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1.1948 +  _sweep_timer.stop();
  1.1949 +  // Note that we do not use this sample to update the _sweep_estimate.
  1.1950 +  _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1.1951 +                                          _sweep_estimate.padded_average());
  1.1952 +
  1.1953 +  GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1.1954 +    ref_processor(), clear_all_soft_refs);
  1.1955 +  #ifdef ASSERT
  1.1956 +    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1.1957 +    size_t free_size = cms_space->free();
  1.1958 +    assert(free_size ==
  1.1959 +           pointer_delta(cms_space->end(), cms_space->compaction_top())
  1.1960 +           * HeapWordSize,
  1.1961 +      "All the free space should be compacted into one chunk at top");
  1.1962 +    assert(cms_space->dictionary()->totalChunkSize(
  1.1963 +                                      debug_only(cms_space->freelistLock())) == 0 ||
  1.1964 +           cms_space->totalSizeInIndexedFreeLists() == 0,
  1.1965 +      "All the free space should be in a single chunk");
  1.1966 +    size_t num = cms_space->totalCount();
  1.1967 +    assert((free_size == 0 && num == 0) ||
  1.1968 +           (free_size > 0  && (num == 1 || num == 2)),
  1.1969 +         "There should be at most 2 free chunks after compaction");
  1.1970 +  #endif // ASSERT
  1.1971 +  _collectorState = Resetting;
  1.1972 +  assert(_restart_addr == NULL,
  1.1973 +         "Should have been NULL'd before baton was passed");
  1.1974 +  reset(false /* == !asynch */);
  1.1975 +  _cmsGen->reset_after_compaction();
  1.1976 +
  1.1977 +  if (verifying() && !cms_should_unload_classes()) {
  1.1978 +    perm_gen_verify_bit_map()->clear_all();
  1.1979 +  }
  1.1980 +
  1.1981 +  // Clear any data recorded in the PLAB chunk arrays.
  1.1982 +  if (_survivor_plab_array != NULL) {
  1.1983 +    reset_survivor_plab_arrays();
  1.1984 +  }
  1.1985 +
  1.1986 +  // Adjust the per-size allocation stats for the next epoch.
  1.1987 +  _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  1.1988 +  // Restart the "sweep timer" for next epoch.
  1.1989 +  _sweep_timer.reset();
  1.1990 +  _sweep_timer.start();
  1.1991 +
  1.1992 +  // Sample collection pause time and reset for collection interval.
  1.1993 +  if (UseAdaptiveSizePolicy) {
  1.1994 +    size_policy()->msc_collection_end(gch->gc_cause());
  1.1995 +  }
  1.1996 +
  1.1997 +  // For a mark-sweep-compact, compute_new_size() will be called
  1.1998 +  // in the heap's do_collection() method.
  1.1999 +}
  1.2000 +
  1.2001 +// A work method used by the foreground collector to do
  1.2002 +// a mark-sweep, after taking over from a possibly on-going
  1.2003 +// concurrent mark-sweep collection.
  1.2004 +void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  1.2005 +  CollectorState first_state, bool should_start_over) {
  1.2006 +  if (PrintGC && Verbose) {
  1.2007 +    gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  1.2008 +      "collector with count %d",
  1.2009 +      _full_gcs_since_conc_gc);
  1.2010 +  }
  1.2011 +  switch (_collectorState) {
  1.2012 +    case Idling:
  1.2013 +      if (first_state == Idling || should_start_over) {
  1.2014 +        // The background GC was not active, or should
  1.2015 +        // restarted from scratch;  start the cycle.
  1.2016 +        _collectorState = InitialMarking;
  1.2017 +      }
  1.2018 +      // If first_state was not Idling, then a background GC
  1.2019 +      // was in progress and has now finished.  No need to do it
  1.2020 +      // again.  Leave the state as Idling.
  1.2021 +      break;
  1.2022 +    case Precleaning:
  1.2023 +      // In the foreground case don't do the precleaning since
  1.2024 +      // it is not done concurrently and there is extra work
  1.2025 +      // required.
  1.2026 +      _collectorState = FinalMarking;
  1.2027 +  }
  1.2028 +  if (PrintGCDetails &&
  1.2029 +      (_collectorState > Idling ||
  1.2030 +       !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  1.2031 +    gclog_or_tty->print(" (concurrent mode failure)");
  1.2032 +  }
  1.2033 +  collect_in_foreground(clear_all_soft_refs);
  1.2034 +
  1.2035 +  // For a mark-sweep, compute_new_size() will be called
  1.2036 +  // in the heap's do_collection() method.
  1.2037 +}
  1.2038 +
  1.2039 +
  1.2040 +void CMSCollector::getFreelistLocks() const {
  1.2041 +  // Get locks for all free lists in all generations that this
  1.2042 +  // collector is responsible for
  1.2043 +  _cmsGen->freelistLock()->lock_without_safepoint_check();
  1.2044 +  _permGen->freelistLock()->lock_without_safepoint_check();
  1.2045 +}
  1.2046 +
  1.2047 +void CMSCollector::releaseFreelistLocks() const {
  1.2048 +  // Release locks for all free lists in all generations that this
  1.2049 +  // collector is responsible for
  1.2050 +  _cmsGen->freelistLock()->unlock();
  1.2051 +  _permGen->freelistLock()->unlock();
  1.2052 +}
  1.2053 +
  1.2054 +bool CMSCollector::haveFreelistLocks() const {
  1.2055 +  // Check locks for all free lists in all generations that this
  1.2056 +  // collector is responsible for
  1.2057 +  assert_lock_strong(_cmsGen->freelistLock());
  1.2058 +  assert_lock_strong(_permGen->freelistLock());
  1.2059 +  PRODUCT_ONLY(ShouldNotReachHere());
  1.2060 +  return true;
  1.2061 +}
  1.2062 +
  1.2063 +// A utility class that is used by the CMS collector to
  1.2064 +// temporarily "release" the foreground collector from its
  1.2065 +// usual obligation to wait for the background collector to
  1.2066 +// complete an ongoing phase before proceeding.
  1.2067 +class ReleaseForegroundGC: public StackObj {
  1.2068 + private:
  1.2069 +  CMSCollector* _c;
  1.2070 + public:
  1.2071 +  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  1.2072 +    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  1.2073 +    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.2074 +    // allow a potentially blocked foreground collector to proceed
  1.2075 +    _c->_foregroundGCShouldWait = false;
  1.2076 +    if (_c->_foregroundGCIsActive) {
  1.2077 +      CGC_lock->notify();
  1.2078 +    }
  1.2079 +    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.2080 +           "Possible deadlock");
  1.2081 +  }
  1.2082 +
  1.2083 +  ~ReleaseForegroundGC() {
  1.2084 +    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  1.2085 +    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.2086 +    _c->_foregroundGCShouldWait = true;
  1.2087 +  }
  1.2088 +};
  1.2089 +
  1.2090 +// There are separate collect_in_background and collect_in_foreground because of
  1.2091 +// the different locking requirements of the background collector and the
  1.2092 +// foreground collector.  There was originally an attempt to share
  1.2093 +// one "collect" method between the background collector and the foreground
  1.2094 +// collector but the if-then-else required made it cleaner to have
  1.2095 +// separate methods.
  1.2096 +void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  1.2097 +  assert(Thread::current()->is_ConcurrentGC_thread(),
  1.2098 +    "A CMS asynchronous collection is only allowed on a CMS thread.");
  1.2099 +
  1.2100 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.2101 +  {
  1.2102 +    bool safepoint_check = Mutex::_no_safepoint_check_flag;
  1.2103 +    MutexLockerEx hl(Heap_lock, safepoint_check);
  1.2104 +    MutexLockerEx x(CGC_lock, safepoint_check);
  1.2105 +    if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  1.2106 +      // The foreground collector is active or we're
  1.2107 +      // not using asynchronous collections.  Skip this
  1.2108 +      // background collection.
  1.2109 +      assert(!_foregroundGCShouldWait, "Should be clear");
  1.2110 +      return;
  1.2111 +    } else {
  1.2112 +      assert(_collectorState == Idling, "Should be idling before start.");
  1.2113 +      _collectorState = InitialMarking;
  1.2114 +      // Reset the expansion cause, now that we are about to begin
  1.2115 +      // a new cycle.
  1.2116 +      clear_expansion_cause();
  1.2117 +    }
  1.2118 +    _unloaded_classes_last_cycle = cms_should_unload_classes(); // ... from last cycle
  1.2119 +    // This controls class unloading in response to an explicit gc request.
  1.2120 +    // If ExplicitGCInvokesConcurrentAndUnloadsClasses is set, then
  1.2121 +    // we will unload classes even if CMSClassUnloadingEnabled is not set.
  1.2122 +    // See CR 6541037 and related CRs.
  1.2123 +    _unload_classes = _full_gc_requested                      // ... for this cycle
  1.2124 +                      && ExplicitGCInvokesConcurrentAndUnloadsClasses;
  1.2125 +    _full_gc_requested = false;           // acks all outstanding full gc requests
  1.2126 +    // Signal that we are about to start a collection
  1.2127 +    gch->increment_total_full_collections();  // ... starting a collection cycle
  1.2128 +    _collection_count_start = gch->total_full_collections();
  1.2129 +  }
  1.2130 +
  1.2131 +  // Used for PrintGC
  1.2132 +  size_t prev_used;
  1.2133 +  if (PrintGC && Verbose) {
  1.2134 +    prev_used = _cmsGen->used(); // XXXPERM
  1.2135 +  }
  1.2136 +
  1.2137 +  // The change of the collection state is normally done at this level;
  1.2138 +  // the exceptions are phases that are executed while the world is
  1.2139 +  // stopped.  For those phases the change of state is done while the
  1.2140 +  // world is stopped.  For baton passing purposes this allows the
  1.2141 +  // background collector to finish the phase and change state atomically.
  1.2142 +  // The foreground collector cannot wait on a phase that is done
  1.2143 +  // while the world is stopped because the foreground collector already
  1.2144 +  // has the world stopped and would deadlock.
  1.2145 +  while (_collectorState != Idling) {
  1.2146 +    if (TraceCMSState) {
  1.2147 +      gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  1.2148 +        Thread::current(), _collectorState);
  1.2149 +    }
  1.2150 +    // The foreground collector
  1.2151 +    //   holds the Heap_lock throughout its collection.
  1.2152 +    //   holds the CMS token (but not the lock)
  1.2153 +    //     except while it is waiting for the background collector to yield.
  1.2154 +    //
  1.2155 +    // The foreground collector should be blocked (not for long)
  1.2156 +    //   if the background collector is about to start a phase
  1.2157 +    //   executed with world stopped.  If the background
  1.2158 +    //   collector has already started such a phase, the
  1.2159 +    //   foreground collector is blocked waiting for the
  1.2160 +    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  1.2161 +    //   are executed in the VM thread.
  1.2162 +    //
  1.2163 +    // The locking order is
  1.2164 +    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  1.2165 +    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  1.2166 +    //   CMS token  (claimed in
  1.2167 +    //                stop_world_and_do() -->
  1.2168 +    //                  safepoint_synchronize() -->
  1.2169 +    //                    CMSThread::synchronize())
  1.2170 +
  1.2171 +    {
  1.2172 +      // Check if the FG collector wants us to yield.
  1.2173 +      CMSTokenSync x(true); // is cms thread
  1.2174 +      if (waitForForegroundGC()) {
  1.2175 +        // We yielded to a foreground GC, nothing more to be
  1.2176 +        // done this round.
  1.2177 +        assert(_foregroundGCShouldWait == false, "We set it to false in "
  1.2178 +               "waitForForegroundGC()");
  1.2179 +        if (TraceCMSState) {
  1.2180 +          gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  1.2181 +            " exiting collection CMS state %d",
  1.2182 +            Thread::current(), _collectorState);
  1.2183 +        }
  1.2184 +        return;
  1.2185 +      } else {
  1.2186 +        // The background collector can run but check to see if the
  1.2187 +        // foreground collector has done a collection while the
  1.2188 +        // background collector was waiting to get the CGC_lock
  1.2189 +        // above.  If yes, break so that _foregroundGCShouldWait
  1.2190 +        // is cleared before returning.
  1.2191 +        if (_collectorState == Idling) {
  1.2192 +          break;
  1.2193 +        }
  1.2194 +      }
  1.2195 +    }
  1.2196 +
  1.2197 +    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  1.2198 +      "should be waiting");
  1.2199 +
  1.2200 +    switch (_collectorState) {
  1.2201 +      case InitialMarking:
  1.2202 +        {
  1.2203 +          ReleaseForegroundGC x(this);
  1.2204 +          stats().record_cms_begin();
  1.2205 +
  1.2206 +          VM_CMS_Initial_Mark initial_mark_op(this);
  1.2207 +          VMThread::execute(&initial_mark_op);
  1.2208 +        }
  1.2209 +        // The collector state may be any legal state at this point
  1.2210 +        // since the background collector may have yielded to the
  1.2211 +        // foreground collector.
  1.2212 +        break;
  1.2213 +      case Marking:
  1.2214 +        // initial marking in checkpointRootsInitialWork has been completed
  1.2215 +        if (markFromRoots(true)) { // we were successful
  1.2216 +          assert(_collectorState == Precleaning, "Collector state should "
  1.2217 +            "have changed");
  1.2218 +        } else {
  1.2219 +          assert(_foregroundGCIsActive, "Internal state inconsistency");
  1.2220 +        }
  1.2221 +        break;
  1.2222 +      case Precleaning:
  1.2223 +        if (UseAdaptiveSizePolicy) {
  1.2224 +          size_policy()->concurrent_precleaning_begin();
  1.2225 +        }
  1.2226 +        // marking from roots in markFromRoots has been completed
  1.2227 +        preclean();
  1.2228 +        if (UseAdaptiveSizePolicy) {
  1.2229 +          size_policy()->concurrent_precleaning_end();
  1.2230 +        }
  1.2231 +        assert(_collectorState == AbortablePreclean ||
  1.2232 +               _collectorState == FinalMarking,
  1.2233 +               "Collector state should have changed");
  1.2234 +        break;
  1.2235 +      case AbortablePreclean:
  1.2236 +        if (UseAdaptiveSizePolicy) {
  1.2237 +        size_policy()->concurrent_phases_resume();
  1.2238 +        }
  1.2239 +        abortable_preclean();
  1.2240 +        if (UseAdaptiveSizePolicy) {
  1.2241 +          size_policy()->concurrent_precleaning_end();
  1.2242 +        }
  1.2243 +        assert(_collectorState == FinalMarking, "Collector state should "
  1.2244 +          "have changed");
  1.2245 +        break;
  1.2246 +      case FinalMarking:
  1.2247 +        {
  1.2248 +          ReleaseForegroundGC x(this);
  1.2249 +
  1.2250 +          VM_CMS_Final_Remark final_remark_op(this);
  1.2251 +          VMThread::execute(&final_remark_op);
  1.2252 +          }
  1.2253 +        assert(_foregroundGCShouldWait, "block post-condition");
  1.2254 +        break;
  1.2255 +      case Sweeping:
  1.2256 +        if (UseAdaptiveSizePolicy) {
  1.2257 +          size_policy()->concurrent_sweeping_begin();
  1.2258 +        }
  1.2259 +        // final marking in checkpointRootsFinal has been completed
  1.2260 +        sweep(true);
  1.2261 +        assert(_collectorState == Resizing, "Collector state change "
  1.2262 +          "to Resizing must be done under the free_list_lock");
  1.2263 +        _full_gcs_since_conc_gc = 0;
  1.2264 +
  1.2265 +        // Stop the timers for adaptive size policy for the concurrent phases
  1.2266 +        if (UseAdaptiveSizePolicy) {
  1.2267 +          size_policy()->concurrent_sweeping_end();
  1.2268 +          size_policy()->concurrent_phases_end(gch->gc_cause(),
  1.2269 +                                             gch->prev_gen(_cmsGen)->capacity(),
  1.2270 +                                             _cmsGen->free());
  1.2271 +        }
  1.2272 +
  1.2273 +      case Resizing: {
  1.2274 +        // Sweeping has been completed...
  1.2275 +        // At this point the background collection has completed.
  1.2276 +        // Don't move the call to compute_new_size() down
  1.2277 +        // into code that might be executed if the background
  1.2278 +        // collection was preempted.
  1.2279 +        {
  1.2280 +          ReleaseForegroundGC x(this);   // unblock FG collection
  1.2281 +          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  1.2282 +          CMSTokenSync        z(true);   // not strictly needed.
  1.2283 +          if (_collectorState == Resizing) {
  1.2284 +            compute_new_size();
  1.2285 +            _collectorState = Resetting;
  1.2286 +          } else {
  1.2287 +            assert(_collectorState == Idling, "The state should only change"
  1.2288 +                   " because the foreground collector has finished the collection");
  1.2289 +          }
  1.2290 +        }
  1.2291 +        break;
  1.2292 +      }
  1.2293 +      case Resetting:
  1.2294 +        // CMS heap resizing has been completed
  1.2295 +        reset(true);
  1.2296 +        assert(_collectorState == Idling, "Collector state should "
  1.2297 +          "have changed");
  1.2298 +        stats().record_cms_end();
  1.2299 +        // Don't move the concurrent_phases_end() and compute_new_size()
  1.2300 +        // calls to here because a preempted background collection
  1.2301 +        // has it's state set to "Resetting".
  1.2302 +        break;
  1.2303 +      case Idling:
  1.2304 +      default:
  1.2305 +        ShouldNotReachHere();
  1.2306 +        break;
  1.2307 +    }
  1.2308 +    if (TraceCMSState) {
  1.2309 +      gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  1.2310 +        Thread::current(), _collectorState);
  1.2311 +    }
  1.2312 +    assert(_foregroundGCShouldWait, "block post-condition");
  1.2313 +  }
  1.2314 +
  1.2315 +  // Should this be in gc_epilogue?
  1.2316 +  collector_policy()->counters()->update_counters();
  1.2317 +
  1.2318 +  {
  1.2319 +    // Clear _foregroundGCShouldWait and, in the event that the
  1.2320 +    // foreground collector is waiting, notify it, before
  1.2321 +    // returning.
  1.2322 +    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.2323 +    _foregroundGCShouldWait = false;
  1.2324 +    if (_foregroundGCIsActive) {
  1.2325 +      CGC_lock->notify();
  1.2326 +    }
  1.2327 +    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.2328 +           "Possible deadlock");
  1.2329 +  }
  1.2330 +  if (TraceCMSState) {
  1.2331 +    gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  1.2332 +      " exiting collection CMS state %d",
  1.2333 +      Thread::current(), _collectorState);
  1.2334 +  }
  1.2335 +  if (PrintGC && Verbose) {
  1.2336 +    _cmsGen->print_heap_change(prev_used);
  1.2337 +  }
  1.2338 +}
  1.2339 +
  1.2340 +void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  1.2341 +  assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  1.2342 +         "Foreground collector should be waiting, not executing");
  1.2343 +  assert(Thread::current()->is_VM_thread(), "A foreground collection"
  1.2344 +    "may only be done by the VM Thread with the world stopped");
  1.2345 +  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1.2346 +         "VM thread should have CMS token");
  1.2347 +
  1.2348 +  NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  1.2349 +    true, gclog_or_tty);)
  1.2350 +  if (UseAdaptiveSizePolicy) {
  1.2351 +    size_policy()->ms_collection_begin();
  1.2352 +  }
  1.2353 +  COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  1.2354 +
  1.2355 +  HandleMark hm;  // Discard invalid handles created during verification
  1.2356 +
  1.2357 +  if (VerifyBeforeGC &&
  1.2358 +      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2359 +    Universe::verify(true);
  1.2360 +  }
  1.2361 +
  1.2362 +  bool init_mark_was_synchronous = false; // until proven otherwise
  1.2363 +  while (_collectorState != Idling) {
  1.2364 +    if (TraceCMSState) {
  1.2365 +      gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  1.2366 +        Thread::current(), _collectorState);
  1.2367 +    }
  1.2368 +    switch (_collectorState) {
  1.2369 +      case InitialMarking:
  1.2370 +        init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  1.2371 +        checkpointRootsInitial(false);
  1.2372 +        assert(_collectorState == Marking, "Collector state should have changed"
  1.2373 +          " within checkpointRootsInitial()");
  1.2374 +        break;
  1.2375 +      case Marking:
  1.2376 +        // initial marking in checkpointRootsInitialWork has been completed
  1.2377 +        if (VerifyDuringGC &&
  1.2378 +            GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2379 +          gclog_or_tty->print("Verify before initial mark: ");
  1.2380 +          Universe::verify(true);
  1.2381 +        }
  1.2382 +        {
  1.2383 +          bool res = markFromRoots(false);
  1.2384 +          assert(res && _collectorState == FinalMarking, "Collector state should "
  1.2385 +            "have changed");
  1.2386 +          break;
  1.2387 +        }
  1.2388 +      case FinalMarking:
  1.2389 +        if (VerifyDuringGC &&
  1.2390 +            GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2391 +          gclog_or_tty->print("Verify before re-mark: ");
  1.2392 +          Universe::verify(true);
  1.2393 +        }
  1.2394 +        checkpointRootsFinal(false, clear_all_soft_refs,
  1.2395 +                             init_mark_was_synchronous);
  1.2396 +        assert(_collectorState == Sweeping, "Collector state should not "
  1.2397 +          "have changed within checkpointRootsFinal()");
  1.2398 +        break;
  1.2399 +      case Sweeping:
  1.2400 +        // final marking in checkpointRootsFinal has been completed
  1.2401 +        if (VerifyDuringGC &&
  1.2402 +            GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2403 +          gclog_or_tty->print("Verify before sweep: ");
  1.2404 +          Universe::verify(true);
  1.2405 +        }
  1.2406 +        sweep(false);
  1.2407 +        assert(_collectorState == Resizing, "Incorrect state");
  1.2408 +        break;
  1.2409 +      case Resizing: {
  1.2410 +        // Sweeping has been completed; the actual resize in this case
  1.2411 +        // is done separately; nothing to be done in this state.
  1.2412 +        _collectorState = Resetting;
  1.2413 +        break;
  1.2414 +      }
  1.2415 +      case Resetting:
  1.2416 +        // The heap has been resized.
  1.2417 +        if (VerifyDuringGC &&
  1.2418 +            GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2419 +          gclog_or_tty->print("Verify before reset: ");
  1.2420 +          Universe::verify(true);
  1.2421 +        }
  1.2422 +        reset(false);
  1.2423 +        assert(_collectorState == Idling, "Collector state should "
  1.2424 +          "have changed");
  1.2425 +        break;
  1.2426 +      case Precleaning:
  1.2427 +      case AbortablePreclean:
  1.2428 +        // Elide the preclean phase
  1.2429 +        _collectorState = FinalMarking;
  1.2430 +        break;
  1.2431 +      default:
  1.2432 +        ShouldNotReachHere();
  1.2433 +    }
  1.2434 +    if (TraceCMSState) {
  1.2435 +      gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  1.2436 +        Thread::current(), _collectorState);
  1.2437 +    }
  1.2438 +  }
  1.2439 +
  1.2440 +  if (UseAdaptiveSizePolicy) {
  1.2441 +    GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.2442 +    size_policy()->ms_collection_end(gch->gc_cause());
  1.2443 +  }
  1.2444 +
  1.2445 +  if (VerifyAfterGC &&
  1.2446 +      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.2447 +    Universe::verify(true);
  1.2448 +  }
  1.2449 +  if (TraceCMSState) {
  1.2450 +    gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  1.2451 +      " exiting collection CMS state %d",
  1.2452 +      Thread::current(), _collectorState);
  1.2453 +  }
  1.2454 +}
  1.2455 +
  1.2456 +bool CMSCollector::waitForForegroundGC() {
  1.2457 +  bool res = false;
  1.2458 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.2459 +         "CMS thread should have CMS token");
  1.2460 +  // Block the foreground collector until the
  1.2461 +  // background collectors decides whether to
  1.2462 +  // yield.
  1.2463 +  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1.2464 +  _foregroundGCShouldWait = true;
  1.2465 +  if (_foregroundGCIsActive) {
  1.2466 +    // The background collector yields to the
  1.2467 +    // foreground collector and returns a value
  1.2468 +    // indicating that it has yielded.  The foreground
  1.2469 +    // collector can proceed.
  1.2470 +    res = true;
  1.2471 +    _foregroundGCShouldWait = false;
  1.2472 +    ConcurrentMarkSweepThread::clear_CMS_flag(
  1.2473 +      ConcurrentMarkSweepThread::CMS_cms_has_token);
  1.2474 +    ConcurrentMarkSweepThread::set_CMS_flag(
  1.2475 +      ConcurrentMarkSweepThread::CMS_cms_wants_token);
  1.2476 +    // Get a possibly blocked foreground thread going
  1.2477 +    CGC_lock->notify();
  1.2478 +    if (TraceCMSState) {
  1.2479 +      gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  1.2480 +        Thread::current(), _collectorState);
  1.2481 +    }
  1.2482 +    while (_foregroundGCIsActive) {
  1.2483 +      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1.2484 +    }
  1.2485 +    ConcurrentMarkSweepThread::set_CMS_flag(
  1.2486 +      ConcurrentMarkSweepThread::CMS_cms_has_token);
  1.2487 +    ConcurrentMarkSweepThread::clear_CMS_flag(
  1.2488 +      ConcurrentMarkSweepThread::CMS_cms_wants_token);
  1.2489 +  }
  1.2490 +  if (TraceCMSState) {
  1.2491 +    gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  1.2492 +      Thread::current(), _collectorState);
  1.2493 +  }
  1.2494 +  return res;
  1.2495 +}
  1.2496 +
  1.2497 +// Because of the need to lock the free lists and other structures in
  1.2498 +// the collector, common to all the generations that the collector is
  1.2499 +// collecting, we need the gc_prologues of individual CMS generations
  1.2500 +// delegate to their collector. It may have been simpler had the
  1.2501 +// current infrastructure allowed one to call a prologue on a
  1.2502 +// collector. In the absence of that we have the generation's
  1.2503 +// prologue delegate to the collector, which delegates back
  1.2504 +// some "local" work to a worker method in the individual generations
  1.2505 +// that it's responsible for collecting, while itself doing any
  1.2506 +// work common to all generations it's responsible for. A similar
  1.2507 +// comment applies to the  gc_epilogue()'s.
  1.2508 +// The role of the varaible _between_prologue_and_epilogue is to
  1.2509 +// enforce the invocation protocol.
  1.2510 +void CMSCollector::gc_prologue(bool full) {
  1.2511 +  // Call gc_prologue_work() for each CMSGen and PermGen that
  1.2512 +  // we are responsible for.
  1.2513 +
  1.2514 +  // The following locking discipline assumes that we are only called
  1.2515 +  // when the world is stopped.
  1.2516 +  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  1.2517 +
  1.2518 +  // The CMSCollector prologue must call the gc_prologues for the
  1.2519 +  // "generations" (including PermGen if any) that it's responsible
  1.2520 +  // for.
  1.2521 +
  1.2522 +  assert(   Thread::current()->is_VM_thread()
  1.2523 +         || (   CMSScavengeBeforeRemark
  1.2524 +             && Thread::current()->is_ConcurrentGC_thread()),
  1.2525 +         "Incorrect thread type for prologue execution");
  1.2526 +
  1.2527 +  if (_between_prologue_and_epilogue) {
  1.2528 +    // We have already been invoked; this is a gc_prologue delegation
  1.2529 +    // from yet another CMS generation that we are responsible for, just
  1.2530 +    // ignore it since all relevant work has already been done.
  1.2531 +    return;
  1.2532 +  }
  1.2533 +
  1.2534 +  // set a bit saying prologue has been called; cleared in epilogue
  1.2535 +  _between_prologue_and_epilogue = true;
  1.2536 +  // Claim locks for common data structures, then call gc_prologue_work()
  1.2537 +  // for each CMSGen and PermGen that we are responsible for.
  1.2538 +
  1.2539 +  getFreelistLocks();   // gets free list locks on constituent spaces
  1.2540 +  bitMapLock()->lock_without_safepoint_check();
  1.2541 +
  1.2542 +  // Should call gc_prologue_work() for all cms gens we are responsible for
  1.2543 +  bool registerClosure =    _collectorState >= Marking
  1.2544 +                         && _collectorState < Sweeping;
  1.2545 +  ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  1.2546 +                                               : &_modUnionClosure;
  1.2547 +  _cmsGen->gc_prologue_work(full, registerClosure, muc);
  1.2548 +  _permGen->gc_prologue_work(full, registerClosure, muc);
  1.2549 +
  1.2550 +  if (!full) {
  1.2551 +    stats().record_gc0_begin();
  1.2552 +  }
  1.2553 +}
  1.2554 +
  1.2555 +void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  1.2556 +  // Delegate to CMScollector which knows how to coordinate between
  1.2557 +  // this and any other CMS generations that it is responsible for
  1.2558 +  // collecting.
  1.2559 +  collector()->gc_prologue(full);
  1.2560 +}
  1.2561 +
  1.2562 +// This is a "private" interface for use by this generation's CMSCollector.
  1.2563 +// Not to be called directly by any other entity (for instance,
  1.2564 +// GenCollectedHeap, which calls the "public" gc_prologue method above).
  1.2565 +void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  1.2566 +  bool registerClosure, ModUnionClosure* modUnionClosure) {
  1.2567 +  assert(!incremental_collection_failed(), "Shouldn't be set yet");
  1.2568 +  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  1.2569 +    "Should be NULL");
  1.2570 +  if (registerClosure) {
  1.2571 +    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  1.2572 +  }
  1.2573 +  cmsSpace()->gc_prologue();
  1.2574 +  // Clear stat counters
  1.2575 +  NOT_PRODUCT(
  1.2576 +    assert(_numObjectsPromoted == 0, "check");
  1.2577 +    assert(_numWordsPromoted   == 0, "check");
  1.2578 +    if (Verbose && PrintGC) {
  1.2579 +      gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  1.2580 +                          SIZE_FORMAT" bytes concurrently",
  1.2581 +      _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  1.2582 +    }
  1.2583 +    _numObjectsAllocated = 0;
  1.2584 +    _numWordsAllocated   = 0;
  1.2585 +  )
  1.2586 +}
  1.2587 +
  1.2588 +void CMSCollector::gc_epilogue(bool full) {
  1.2589 +  // The following locking discipline assumes that we are only called
  1.2590 +  // when the world is stopped.
  1.2591 +  assert(SafepointSynchronize::is_at_safepoint(),
  1.2592 +         "world is stopped assumption");
  1.2593 +
  1.2594 +  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  1.2595 +  // if linear allocation blocks need to be appropriately marked to allow the
  1.2596 +  // the blocks to be parsable. We also check here whether we need to nudge the
  1.2597 +  // CMS collector thread to start a new cycle (if it's not already active).
  1.2598 +  assert(   Thread::current()->is_VM_thread()
  1.2599 +         || (   CMSScavengeBeforeRemark
  1.2600 +             && Thread::current()->is_ConcurrentGC_thread()),
  1.2601 +         "Incorrect thread type for epilogue execution");
  1.2602 +
  1.2603 +  if (!_between_prologue_and_epilogue) {
  1.2604 +    // We have already been invoked; this is a gc_epilogue delegation
  1.2605 +    // from yet another CMS generation that we are responsible for, just
  1.2606 +    // ignore it since all relevant work has already been done.
  1.2607 +    return;
  1.2608 +  }
  1.2609 +  assert(haveFreelistLocks(), "must have freelist locks");
  1.2610 +  assert_lock_strong(bitMapLock());
  1.2611 +
  1.2612 +  _cmsGen->gc_epilogue_work(full);
  1.2613 +  _permGen->gc_epilogue_work(full);
  1.2614 +
  1.2615 +  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  1.2616 +    // in case sampling was not already enabled, enable it
  1.2617 +    _start_sampling = true;
  1.2618 +  }
  1.2619 +  // reset _eden_chunk_array so sampling starts afresh
  1.2620 +  _eden_chunk_index = 0;
  1.2621 +
  1.2622 +  size_t cms_used   = _cmsGen->cmsSpace()->used();
  1.2623 +  size_t perm_used  = _permGen->cmsSpace()->used();
  1.2624 +
  1.2625 +  // update performance counters - this uses a special version of
  1.2626 +  // update_counters() that allows the utilization to be passed as a
  1.2627 +  // parameter, avoiding multiple calls to used().
  1.2628 +  //
  1.2629 +  _cmsGen->update_counters(cms_used);
  1.2630 +  _permGen->update_counters(perm_used);
  1.2631 +
  1.2632 +  if (CMSIncrementalMode) {
  1.2633 +    icms_update_allocation_limits();
  1.2634 +  }
  1.2635 +
  1.2636 +  bitMapLock()->unlock();
  1.2637 +  releaseFreelistLocks();
  1.2638 +
  1.2639 +  _between_prologue_and_epilogue = false;  // ready for next cycle
  1.2640 +}
  1.2641 +
  1.2642 +void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  1.2643 +  collector()->gc_epilogue(full);
  1.2644 +
  1.2645 +  // Also reset promotion tracking in par gc thread states.
  1.2646 +  if (ParallelGCThreads > 0) {
  1.2647 +    for (uint i = 0; i < ParallelGCThreads; i++) {
  1.2648 +      _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  1.2649 +    }
  1.2650 +  }
  1.2651 +}
  1.2652 +
  1.2653 +void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  1.2654 +  assert(!incremental_collection_failed(), "Should have been cleared");
  1.2655 +  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  1.2656 +  cmsSpace()->gc_epilogue();
  1.2657 +    // Print stat counters
  1.2658 +  NOT_PRODUCT(
  1.2659 +    assert(_numObjectsAllocated == 0, "check");
  1.2660 +    assert(_numWordsAllocated == 0, "check");
  1.2661 +    if (Verbose && PrintGC) {
  1.2662 +      gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  1.2663 +                          SIZE_FORMAT" bytes",
  1.2664 +                 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  1.2665 +    }
  1.2666 +    _numObjectsPromoted = 0;
  1.2667 +    _numWordsPromoted   = 0;
  1.2668 +  )
  1.2669 +
  1.2670 +  if (PrintGC && Verbose) {
  1.2671 +    // Call down the chain in contiguous_available needs the freelistLock
  1.2672 +    // so print this out before releasing the freeListLock.
  1.2673 +    gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  1.2674 +                        contiguous_available());
  1.2675 +  }
  1.2676 +}
  1.2677 +
  1.2678 +#ifndef PRODUCT
  1.2679 +bool CMSCollector::have_cms_token() {
  1.2680 +  Thread* thr = Thread::current();
  1.2681 +  if (thr->is_VM_thread()) {
  1.2682 +    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  1.2683 +  } else if (thr->is_ConcurrentGC_thread()) {
  1.2684 +    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  1.2685 +  } else if (thr->is_GC_task_thread()) {
  1.2686 +    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  1.2687 +           ParGCRareEvent_lock->owned_by_self();
  1.2688 +  }
  1.2689 +  return false;
  1.2690 +}
  1.2691 +#endif
  1.2692 +
  1.2693 +// Check reachability of the given heap address in CMS generation,
  1.2694 +// treating all other generations as roots.
  1.2695 +bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  1.2696 +  // We could "guarantee" below, rather than assert, but i'll
  1.2697 +  // leave these as "asserts" so that an adventurous debugger
  1.2698 +  // could try this in the product build provided some subset of
  1.2699 +  // the conditions were met, provided they were intersted in the
  1.2700 +  // results and knew that the computation below wouldn't interfere
  1.2701 +  // with other concurrent computations mutating the structures
  1.2702 +  // being read or written.
  1.2703 +  assert(SafepointSynchronize::is_at_safepoint(),
  1.2704 +         "Else mutations in object graph will make answer suspect");
  1.2705 +  assert(have_cms_token(), "Should hold cms token");
  1.2706 +  assert(haveFreelistLocks(), "must hold free list locks");
  1.2707 +  assert_lock_strong(bitMapLock());
  1.2708 +
  1.2709 +  // Clear the marking bit map array before starting, but, just
  1.2710 +  // for kicks, first report if the given address is already marked
  1.2711 +  gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  1.2712 +                _markBitMap.isMarked(addr) ? "" : " not");
  1.2713 +
  1.2714 +  if (verify_after_remark()) {
  1.2715 +    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  1.2716 +    bool result = verification_mark_bm()->isMarked(addr);
  1.2717 +    gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  1.2718 +                           result ? "IS" : "is NOT");
  1.2719 +    return result;
  1.2720 +  } else {
  1.2721 +    gclog_or_tty->print_cr("Could not compute result");
  1.2722 +    return false;
  1.2723 +  }
  1.2724 +}
  1.2725 +
  1.2726 +////////////////////////////////////////////////////////
  1.2727 +// CMS Verification Support
  1.2728 +////////////////////////////////////////////////////////
  1.2729 +// Following the remark phase, the following invariant
  1.2730 +// should hold -- each object in the CMS heap which is
  1.2731 +// marked in markBitMap() should be marked in the verification_mark_bm().
  1.2732 +
  1.2733 +class VerifyMarkedClosure: public BitMapClosure {
  1.2734 +  CMSBitMap* _marks;
  1.2735 +  bool       _failed;
  1.2736 +
  1.2737 + public:
  1.2738 +  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  1.2739 +
  1.2740 +  void do_bit(size_t offset) {
  1.2741 +    HeapWord* addr = _marks->offsetToHeapWord(offset);
  1.2742 +    if (!_marks->isMarked(addr)) {
  1.2743 +      oop(addr)->print();
  1.2744 +      gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  1.2745 +      _failed = true;
  1.2746 +    }
  1.2747 +  }
  1.2748 +
  1.2749 +  bool failed() { return _failed; }
  1.2750 +};
  1.2751 +
  1.2752 +bool CMSCollector::verify_after_remark() {
  1.2753 +  gclog_or_tty->print(" [Verifying CMS Marking... ");
  1.2754 +  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  1.2755 +  static bool init = false;
  1.2756 +
  1.2757 +  assert(SafepointSynchronize::is_at_safepoint(),
  1.2758 +         "Else mutations in object graph will make answer suspect");
  1.2759 +  assert(have_cms_token(),
  1.2760 +         "Else there may be mutual interference in use of "
  1.2761 +         " verification data structures");
  1.2762 +  assert(_collectorState > Marking && _collectorState <= Sweeping,
  1.2763 +         "Else marking info checked here may be obsolete");
  1.2764 +  assert(haveFreelistLocks(), "must hold free list locks");
  1.2765 +  assert_lock_strong(bitMapLock());
  1.2766 +
  1.2767 +
  1.2768 +  // Allocate marking bit map if not already allocated
  1.2769 +  if (!init) { // first time
  1.2770 +    if (!verification_mark_bm()->allocate(_span)) {
  1.2771 +      return false;
  1.2772 +    }
  1.2773 +    init = true;
  1.2774 +  }
  1.2775 +
  1.2776 +  assert(verification_mark_stack()->isEmpty(), "Should be empty");
  1.2777 +
  1.2778 +  // Turn off refs discovery -- so we will be tracing through refs.
  1.2779 +  // This is as intended, because by this time
  1.2780 +  // GC must already have cleared any refs that need to be cleared,
  1.2781 +  // and traced those that need to be marked; moreover,
  1.2782 +  // the marking done here is not going to intefere in any
  1.2783 +  // way with the marking information used by GC.
  1.2784 +  NoRefDiscovery no_discovery(ref_processor());
  1.2785 +
  1.2786 +  COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  1.2787 +
  1.2788 +  // Clear any marks from a previous round
  1.2789 +  verification_mark_bm()->clear_all();
  1.2790 +  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  1.2791 +  assert(overflow_list_is_empty(), "overflow list should be empty");
  1.2792 +
  1.2793 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.2794 +  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  1.2795 +  // Update the saved marks which may affect the root scans.
  1.2796 +  gch->save_marks();
  1.2797 +
  1.2798 +  if (CMSRemarkVerifyVariant == 1) {
  1.2799 +    // In this first variant of verification, we complete
  1.2800 +    // all marking, then check if the new marks-verctor is
  1.2801 +    // a subset of the CMS marks-vector.
  1.2802 +    verify_after_remark_work_1();
  1.2803 +  } else if (CMSRemarkVerifyVariant == 2) {
  1.2804 +    // In this second variant of verification, we flag an error
  1.2805 +    // (i.e. an object reachable in the new marks-vector not reachable
  1.2806 +    // in the CMS marks-vector) immediately, also indicating the
  1.2807 +    // identify of an object (A) that references the unmarked object (B) --
  1.2808 +    // presumably, a mutation to A failed to be picked up by preclean/remark?
  1.2809 +    verify_after_remark_work_2();
  1.2810 +  } else {
  1.2811 +    warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  1.2812 +            CMSRemarkVerifyVariant);
  1.2813 +  }
  1.2814 +  gclog_or_tty->print(" done] ");
  1.2815 +  return true;
  1.2816 +}
  1.2817 +
  1.2818 +void CMSCollector::verify_after_remark_work_1() {
  1.2819 +  ResourceMark rm;
  1.2820 +  HandleMark  hm;
  1.2821 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.2822 +
  1.2823 +  // Mark from roots one level into CMS
  1.2824 +  MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  1.2825 +  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  1.2826 +
  1.2827 +  gch->gen_process_strong_roots(_cmsGen->level(),
  1.2828 +                                true,   // younger gens are roots
  1.2829 +                                true,   // collecting perm gen
  1.2830 +                                SharedHeap::ScanningOption(roots_scanning_options()),
  1.2831 +                                NULL, &notOlder);
  1.2832 +
  1.2833 +  // Now mark from the roots
  1.2834 +  assert(_revisitStack.isEmpty(), "Should be empty");
  1.2835 +  MarkFromRootsClosure markFromRootsClosure(this, _span,
  1.2836 +    verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  1.2837 +    false /* don't yield */, true /* verifying */);
  1.2838 +  assert(_restart_addr == NULL, "Expected pre-condition");
  1.2839 +  verification_mark_bm()->iterate(&markFromRootsClosure);
  1.2840 +  while (_restart_addr != NULL) {
  1.2841 +    // Deal with stack overflow: by restarting at the indicated
  1.2842 +    // address.
  1.2843 +    HeapWord* ra = _restart_addr;
  1.2844 +    markFromRootsClosure.reset(ra);
  1.2845 +    _restart_addr = NULL;
  1.2846 +    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  1.2847 +  }
  1.2848 +  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  1.2849 +  verify_work_stacks_empty();
  1.2850 +  // Should reset the revisit stack above, since no class tree
  1.2851 +  // surgery is forthcoming.
  1.2852 +  _revisitStack.reset(); // throwing away all contents
  1.2853 +
  1.2854 +  // Marking completed -- now verify that each bit marked in
  1.2855 +  // verification_mark_bm() is also marked in markBitMap(); flag all
  1.2856 +  // errors by printing corresponding objects.
  1.2857 +  VerifyMarkedClosure vcl(markBitMap());
  1.2858 +  verification_mark_bm()->iterate(&vcl);
  1.2859 +  if (vcl.failed()) {
  1.2860 +    gclog_or_tty->print("Verification failed");
  1.2861 +    Universe::heap()->print();
  1.2862 +    fatal(" ... aborting");
  1.2863 +  }
  1.2864 +}
  1.2865 +
  1.2866 +void CMSCollector::verify_after_remark_work_2() {
  1.2867 +  ResourceMark rm;
  1.2868 +  HandleMark  hm;
  1.2869 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.2870 +
  1.2871 +  // Mark from roots one level into CMS
  1.2872 +  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  1.2873 +                                     markBitMap(), true /* nmethods */);
  1.2874 +  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  1.2875 +  gch->gen_process_strong_roots(_cmsGen->level(),
  1.2876 +                                true,   // younger gens are roots
  1.2877 +                                true,   // collecting perm gen
  1.2878 +                                SharedHeap::ScanningOption(roots_scanning_options()),
  1.2879 +                                NULL, &notOlder);
  1.2880 +
  1.2881 +  // Now mark from the roots
  1.2882 +  assert(_revisitStack.isEmpty(), "Should be empty");
  1.2883 +  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  1.2884 +    verification_mark_bm(), markBitMap(), verification_mark_stack());
  1.2885 +  assert(_restart_addr == NULL, "Expected pre-condition");
  1.2886 +  verification_mark_bm()->iterate(&markFromRootsClosure);
  1.2887 +  while (_restart_addr != NULL) {
  1.2888 +    // Deal with stack overflow: by restarting at the indicated
  1.2889 +    // address.
  1.2890 +    HeapWord* ra = _restart_addr;
  1.2891 +    markFromRootsClosure.reset(ra);
  1.2892 +    _restart_addr = NULL;
  1.2893 +    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  1.2894 +  }
  1.2895 +  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  1.2896 +  verify_work_stacks_empty();
  1.2897 +  // Should reset the revisit stack above, since no class tree
  1.2898 +  // surgery is forthcoming.
  1.2899 +  _revisitStack.reset(); // throwing away all contents
  1.2900 +
  1.2901 +  // Marking completed -- now verify that each bit marked in
  1.2902 +  // verification_mark_bm() is also marked in markBitMap(); flag all
  1.2903 +  // errors by printing corresponding objects.
  1.2904 +  VerifyMarkedClosure vcl(markBitMap());
  1.2905 +  verification_mark_bm()->iterate(&vcl);
  1.2906 +  assert(!vcl.failed(), "Else verification above should not have succeeded");
  1.2907 +}
  1.2908 +
  1.2909 +void ConcurrentMarkSweepGeneration::save_marks() {
  1.2910 +  // delegate to CMS space
  1.2911 +  cmsSpace()->save_marks();
  1.2912 +  for (uint i = 0; i < ParallelGCThreads; i++) {
  1.2913 +    _par_gc_thread_states[i]->promo.startTrackingPromotions();
  1.2914 +  }
  1.2915 +}
  1.2916 +
  1.2917 +bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  1.2918 +  return cmsSpace()->no_allocs_since_save_marks();
  1.2919 +}
  1.2920 +
  1.2921 +#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  1.2922 +                                                                \
  1.2923 +void ConcurrentMarkSweepGeneration::                            \
  1.2924 +oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  1.2925 +  cl->set_generation(this);                                     \
  1.2926 +  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  1.2927 +  cl->reset_generation();                                       \
  1.2928 +  save_marks();                                                 \
  1.2929 +}
  1.2930 +
  1.2931 +ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  1.2932 +
  1.2933 +void
  1.2934 +ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  1.2935 +{
  1.2936 +  // Not currently implemented; need to do the following. -- ysr.
  1.2937 +  // dld -- I think that is used for some sort of allocation profiler.  So it
  1.2938 +  // really means the objects allocated by the mutator since the last
  1.2939 +  // GC.  We could potentially implement this cheaply by recording only
  1.2940 +  // the direct allocations in a side data structure.
  1.2941 +  //
  1.2942 +  // I think we probably ought not to be required to support these
  1.2943 +  // iterations at any arbitrary point; I think there ought to be some
  1.2944 +  // call to enable/disable allocation profiling in a generation/space,
  1.2945 +  // and the iterator ought to return the objects allocated in the
  1.2946 +  // gen/space since the enable call, or the last iterator call (which
  1.2947 +  // will probably be at a GC.)  That way, for gens like CM&S that would
  1.2948 +  // require some extra data structure to support this, we only pay the
  1.2949 +  // cost when it's in use...
  1.2950 +  cmsSpace()->object_iterate_since_last_GC(blk);
  1.2951 +}
  1.2952 +
  1.2953 +void
  1.2954 +ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  1.2955 +  cl->set_generation(this);
  1.2956 +  younger_refs_in_space_iterate(_cmsSpace, cl);
  1.2957 +  cl->reset_generation();
  1.2958 +}
  1.2959 +
  1.2960 +void
  1.2961 +ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  1.2962 +  if (freelistLock()->owned_by_self()) {
  1.2963 +    Generation::oop_iterate(mr, cl);
  1.2964 +  } else {
  1.2965 +    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.2966 +    Generation::oop_iterate(mr, cl);
  1.2967 +  }
  1.2968 +}
  1.2969 +
  1.2970 +void
  1.2971 +ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  1.2972 +  if (freelistLock()->owned_by_self()) {
  1.2973 +    Generation::oop_iterate(cl);
  1.2974 +  } else {
  1.2975 +    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.2976 +    Generation::oop_iterate(cl);
  1.2977 +  }
  1.2978 +}
  1.2979 +
  1.2980 +void
  1.2981 +ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  1.2982 +  if (freelistLock()->owned_by_self()) {
  1.2983 +    Generation::object_iterate(cl);
  1.2984 +  } else {
  1.2985 +    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.2986 +    Generation::object_iterate(cl);
  1.2987 +  }
  1.2988 +}
  1.2989 +
  1.2990 +void
  1.2991 +ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  1.2992 +}
  1.2993 +
  1.2994 +void
  1.2995 +ConcurrentMarkSweepGeneration::post_compact() {
  1.2996 +}
  1.2997 +
  1.2998 +void
  1.2999 +ConcurrentMarkSweepGeneration::prepare_for_verify() {
  1.3000 +  // Fix the linear allocation blocks to look like free blocks.
  1.3001 +
  1.3002 +  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  1.3003 +  // are not called when the heap is verified during universe initialization and
  1.3004 +  // at vm shutdown.
  1.3005 +  if (freelistLock()->owned_by_self()) {
  1.3006 +    cmsSpace()->prepare_for_verify();
  1.3007 +  } else {
  1.3008 +    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.3009 +    cmsSpace()->prepare_for_verify();
  1.3010 +  }
  1.3011 +}
  1.3012 +
  1.3013 +void
  1.3014 +ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  1.3015 +  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  1.3016 +  // are not called when the heap is verified during universe initialization and
  1.3017 +  // at vm shutdown.
  1.3018 +  if (freelistLock()->owned_by_self()) {
  1.3019 +    cmsSpace()->verify(false /* ignored */);
  1.3020 +  } else {
  1.3021 +    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.3022 +    cmsSpace()->verify(false /* ignored */);
  1.3023 +  }
  1.3024 +}
  1.3025 +
  1.3026 +void CMSCollector::verify(bool allow_dirty /* ignored */) {
  1.3027 +  _cmsGen->verify(allow_dirty);
  1.3028 +  _permGen->verify(allow_dirty);
  1.3029 +}
  1.3030 +
  1.3031 +#ifndef PRODUCT
  1.3032 +bool CMSCollector::overflow_list_is_empty() const {
  1.3033 +  assert(_num_par_pushes >= 0, "Inconsistency");
  1.3034 +  if (_overflow_list == NULL) {
  1.3035 +    assert(_num_par_pushes == 0, "Inconsistency");
  1.3036 +  }
  1.3037 +  return _overflow_list == NULL;
  1.3038 +}
  1.3039 +
  1.3040 +// The methods verify_work_stacks_empty() and verify_overflow_empty()
  1.3041 +// merely consolidate assertion checks that appear to occur together frequently.
  1.3042 +void CMSCollector::verify_work_stacks_empty() const {
  1.3043 +  assert(_markStack.isEmpty(), "Marking stack should be empty");
  1.3044 +  assert(overflow_list_is_empty(), "Overflow list should be empty");
  1.3045 +}
  1.3046 +
  1.3047 +void CMSCollector::verify_overflow_empty() const {
  1.3048 +  assert(overflow_list_is_empty(), "Overflow list should be empty");
  1.3049 +  assert(no_preserved_marks(), "No preserved marks");
  1.3050 +}
  1.3051 +#endif // PRODUCT
  1.3052 +
  1.3053 +void CMSCollector::setup_cms_unloading_and_verification_state() {
  1.3054 +  const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  1.3055 +                             || VerifyBeforeExit;
  1.3056 +  const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  1.3057 +                             |   SharedHeap::SO_CodeCache;
  1.3058 +
  1.3059 +  if (cms_should_unload_classes()) {   // Should unload classes this cycle
  1.3060 +    remove_root_scanning_option(rso);  // Shrink the root set appropriately
  1.3061 +    set_verifying(should_verify);    // Set verification state for this cycle
  1.3062 +    return;                            // Nothing else needs to be done at this time
  1.3063 +  }
  1.3064 +
  1.3065 +  // Not unloading classes this cycle
  1.3066 +  assert(!cms_should_unload_classes(), "Inconsitency!");
  1.3067 +  if ((!verifying() || cms_unloaded_classes_last_cycle()) && should_verify) {
  1.3068 +    // We were not verifying, or we _were_ unloading classes in the last cycle,
  1.3069 +    // AND some verification options are enabled this cycle; in this case,
  1.3070 +    // we must make sure that the deadness map is allocated if not already so,
  1.3071 +    // and cleared (if already allocated previously --
  1.3072 +    // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  1.3073 +    if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  1.3074 +      if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  1.3075 +        warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  1.3076 +                "permanent generation verification disabled");
  1.3077 +        return;  // Note that we leave verification disabled, so we'll retry this
  1.3078 +                 // allocation next cycle. We _could_ remember this failure
  1.3079 +                 // and skip further attempts and permanently disable verification
  1.3080 +                 // attempts if that is considered more desirable.
  1.3081 +      }
  1.3082 +      assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  1.3083 +              "_perm_gen_ver_bit_map inconsistency?");
  1.3084 +    } else {
  1.3085 +      perm_gen_verify_bit_map()->clear_all();
  1.3086 +    }
  1.3087 +    // Include symbols, strings and code cache elements to prevent their resurrection.
  1.3088 +    add_root_scanning_option(rso);
  1.3089 +    set_verifying(true);
  1.3090 +  } else if (verifying() && !should_verify) {
  1.3091 +    // We were verifying, but some verification flags got disabled.
  1.3092 +    set_verifying(false);
  1.3093 +    // Exclude symbols, strings and code cache elements from root scanning to
  1.3094 +    // reduce IM and RM pauses.
  1.3095 +    remove_root_scanning_option(rso);
  1.3096 +  }
  1.3097 +}
  1.3098 +
  1.3099 +
  1.3100 +#ifndef PRODUCT
  1.3101 +HeapWord* CMSCollector::block_start(const void* p) const {
  1.3102 +  const HeapWord* addr = (HeapWord*)p;
  1.3103 +  if (_span.contains(p)) {
  1.3104 +    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  1.3105 +      return _cmsGen->cmsSpace()->block_start(p);
  1.3106 +    } else {
  1.3107 +      assert(_permGen->cmsSpace()->is_in_reserved(addr),
  1.3108 +             "Inconsistent _span?");
  1.3109 +      return _permGen->cmsSpace()->block_start(p);
  1.3110 +    }
  1.3111 +  }
  1.3112 +  return NULL;
  1.3113 +}
  1.3114 +#endif
  1.3115 +
  1.3116 +HeapWord*
  1.3117 +ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  1.3118 +                                                   bool   tlab,
  1.3119 +                                                   bool   parallel) {
  1.3120 +  assert(!tlab, "Can't deal with TLAB allocation");
  1.3121 +  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  1.3122 +  expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  1.3123 +    CMSExpansionCause::_satisfy_allocation);
  1.3124 +  if (GCExpandToAllocateDelayMillis > 0) {
  1.3125 +    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  1.3126 +  }
  1.3127 +  size_t adj_word_sz = CompactibleFreeListSpace::adjustObjectSize(word_size);
  1.3128 +  if (parallel) {
  1.3129 +    return cmsSpace()->par_allocate(adj_word_sz);
  1.3130 +  } else {
  1.3131 +    return cmsSpace()->allocate(adj_word_sz);
  1.3132 +  }
  1.3133 +}
  1.3134 +
  1.3135 +// YSR: All of this generation expansion/shrinking stuff is an exact copy of
  1.3136 +// OneContigSpaceCardGeneration, which makes me wonder if we should move this
  1.3137 +// to CardGeneration and share it...
  1.3138 +void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  1.3139 +  CMSExpansionCause::Cause cause)
  1.3140 +{
  1.3141 +  assert_locked_or_safepoint(Heap_lock);
  1.3142 +
  1.3143 +  size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
  1.3144 +  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1.3145 +  bool success = false;
  1.3146 +  if (aligned_expand_bytes > aligned_bytes) {
  1.3147 +    success = grow_by(aligned_expand_bytes);
  1.3148 +  }
  1.3149 +  if (!success) {
  1.3150 +    success = grow_by(aligned_bytes);
  1.3151 +  }
  1.3152 +  if (!success) {
  1.3153 +    size_t remaining_bytes = _virtual_space.uncommitted_size();
  1.3154 +    if (remaining_bytes > 0) {
  1.3155 +      success = grow_by(remaining_bytes);
  1.3156 +    }
  1.3157 +  }
  1.3158 +  if (GC_locker::is_active()) {
  1.3159 +    if (PrintGC && Verbose) {
  1.3160 +      gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
  1.3161 +    }
  1.3162 +  }
  1.3163 +  // remember why we expanded; this information is used
  1.3164 +  // by shouldConcurrentCollect() when making decisions on whether to start
  1.3165 +  // a new CMS cycle.
  1.3166 +  if (success) {
  1.3167 +    set_expansion_cause(cause);
  1.3168 +    if (PrintGCDetails && Verbose) {
  1.3169 +      gclog_or_tty->print_cr("Expanded CMS gen for %s",
  1.3170 +        CMSExpansionCause::to_string(cause));
  1.3171 +    }
  1.3172 +  }
  1.3173 +}
  1.3174 +
  1.3175 +HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  1.3176 +  HeapWord* res = NULL;
  1.3177 +  MutexLocker x(ParGCRareEvent_lock);
  1.3178 +  while (true) {
  1.3179 +    // Expansion by some other thread might make alloc OK now:
  1.3180 +    res = ps->lab.alloc(word_sz);
  1.3181 +    if (res != NULL) return res;
  1.3182 +    // If there's not enough expansion space available, give up.
  1.3183 +    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  1.3184 +      return NULL;
  1.3185 +    }
  1.3186 +    // Otherwise, we try expansion.
  1.3187 +    expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  1.3188 +      CMSExpansionCause::_allocate_par_lab);
  1.3189 +    // Now go around the loop and try alloc again;
  1.3190 +    // A competing par_promote might beat us to the expansion space,
  1.3191 +    // so we may go around the loop again if promotion fails agaion.
  1.3192 +    if (GCExpandToAllocateDelayMillis > 0) {
  1.3193 +      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  1.3194 +    }
  1.3195 +  }
  1.3196 +}
  1.3197 +
  1.3198 +
  1.3199 +bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  1.3200 +  PromotionInfo* promo) {
  1.3201 +  MutexLocker x(ParGCRareEvent_lock);
  1.3202 +  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  1.3203 +  while (true) {
  1.3204 +    // Expansion by some other thread might make alloc OK now:
  1.3205 +    if (promo->ensure_spooling_space()) {
  1.3206 +      assert(promo->has_spooling_space(),
  1.3207 +             "Post-condition of successful ensure_spooling_space()");
  1.3208 +      return true;
  1.3209 +    }
  1.3210 +    // If there's not enough expansion space available, give up.
  1.3211 +    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  1.3212 +      return false;
  1.3213 +    }
  1.3214 +    // Otherwise, we try expansion.
  1.3215 +    expand(refill_size_bytes, MinHeapDeltaBytes,
  1.3216 +      CMSExpansionCause::_allocate_par_spooling_space);
  1.3217 +    // Now go around the loop and try alloc again;
  1.3218 +    // A competing allocation might beat us to the expansion space,
  1.3219 +    // so we may go around the loop again if allocation fails again.
  1.3220 +    if (GCExpandToAllocateDelayMillis > 0) {
  1.3221 +      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  1.3222 +    }
  1.3223 +  }
  1.3224 +}
  1.3225 +
  1.3226 +
  1.3227 +
  1.3228 +void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  1.3229 +  assert_locked_or_safepoint(Heap_lock);
  1.3230 +  size_t size = ReservedSpace::page_align_size_down(bytes);
  1.3231 +  if (size > 0) {
  1.3232 +    shrink_by(size);
  1.3233 +  }
  1.3234 +}
  1.3235 +
  1.3236 +bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  1.3237 +  assert_locked_or_safepoint(Heap_lock);
  1.3238 +  bool result = _virtual_space.expand_by(bytes);
  1.3239 +  if (result) {
  1.3240 +    HeapWord* old_end = _cmsSpace->end();
  1.3241 +    size_t new_word_size =
  1.3242 +      heap_word_size(_virtual_space.committed_size());
  1.3243 +    MemRegion mr(_cmsSpace->bottom(), new_word_size);
  1.3244 +    _bts->resize(new_word_size);  // resize the block offset shared array
  1.3245 +    Universe::heap()->barrier_set()->resize_covered_region(mr);
  1.3246 +    // Hmmmm... why doesn't CFLS::set_end verify locking?
  1.3247 +    // This is quite ugly; FIX ME XXX
  1.3248 +    _cmsSpace->assert_locked();
  1.3249 +    _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  1.3250 +
  1.3251 +    // update the space and generation capacity counters
  1.3252 +    if (UsePerfData) {
  1.3253 +      _space_counters->update_capacity();
  1.3254 +      _gen_counters->update_all();
  1.3255 +    }
  1.3256 +
  1.3257 +    if (Verbose && PrintGC) {
  1.3258 +      size_t new_mem_size = _virtual_space.committed_size();
  1.3259 +      size_t old_mem_size = new_mem_size - bytes;
  1.3260 +      gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  1.3261 +                    name(), old_mem_size/K, bytes/K, new_mem_size/K);
  1.3262 +    }
  1.3263 +  }
  1.3264 +  return result;
  1.3265 +}
  1.3266 +
  1.3267 +bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  1.3268 +  assert_locked_or_safepoint(Heap_lock);
  1.3269 +  bool success = true;
  1.3270 +  const size_t remaining_bytes = _virtual_space.uncommitted_size();
  1.3271 +  if (remaining_bytes > 0) {
  1.3272 +    success = grow_by(remaining_bytes);
  1.3273 +    DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  1.3274 +  }
  1.3275 +  return success;
  1.3276 +}
  1.3277 +
  1.3278 +void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  1.3279 +  assert_locked_or_safepoint(Heap_lock);
  1.3280 +  assert_lock_strong(freelistLock());
  1.3281 +  // XXX Fix when compaction is implemented.
  1.3282 +  warning("Shrinking of CMS not yet implemented");
  1.3283 +  return;
  1.3284 +}
  1.3285 +
  1.3286 +
  1.3287 +// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  1.3288 +// phases.
  1.3289 +class CMSPhaseAccounting: public StackObj {
  1.3290 + public:
  1.3291 +  CMSPhaseAccounting(CMSCollector *collector,
  1.3292 +                     const char *phase,
  1.3293 +                     bool print_cr = true);
  1.3294 +  ~CMSPhaseAccounting();
  1.3295 +
  1.3296 + private:
  1.3297 +  CMSCollector *_collector;
  1.3298 +  const char *_phase;
  1.3299 +  elapsedTimer _wallclock;
  1.3300 +  bool _print_cr;
  1.3301 +
  1.3302 + public:
  1.3303 +  // Not MT-safe; so do not pass around these StackObj's
  1.3304 +  // where they may be accessed by other threads.
  1.3305 +  jlong wallclock_millis() {
  1.3306 +    assert(_wallclock.is_active(), "Wall clock should not stop");
  1.3307 +    _wallclock.stop();  // to record time
  1.3308 +    jlong ret = _wallclock.milliseconds();
  1.3309 +    _wallclock.start(); // restart
  1.3310 +    return ret;
  1.3311 +  }
  1.3312 +};
  1.3313 +
  1.3314 +CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  1.3315 +                                       const char *phase,
  1.3316 +                                       bool print_cr) :
  1.3317 +  _collector(collector), _phase(phase), _print_cr(print_cr) {
  1.3318 +
  1.3319 +  if (PrintCMSStatistics != 0) {
  1.3320 +    _collector->resetYields();
  1.3321 +  }
  1.3322 +  if (PrintGCDetails && PrintGCTimeStamps) {
  1.3323 +    gclog_or_tty->date_stamp(PrintGCDateStamps);
  1.3324 +    gclog_or_tty->stamp();
  1.3325 +    gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  1.3326 +      _collector->cmsGen()->short_name(), _phase);
  1.3327 +  }
  1.3328 +  _collector->resetTimer();
  1.3329 +  _wallclock.start();
  1.3330 +  _collector->startTimer();
  1.3331 +}
  1.3332 +
  1.3333 +CMSPhaseAccounting::~CMSPhaseAccounting() {
  1.3334 +  assert(_wallclock.is_active(), "Wall clock should not have stopped");
  1.3335 +  _collector->stopTimer();
  1.3336 +  _wallclock.stop();
  1.3337 +  if (PrintGCDetails) {
  1.3338 +    gclog_or_tty->date_stamp(PrintGCDateStamps);
  1.3339 +    if (PrintGCTimeStamps) {
  1.3340 +      gclog_or_tty->stamp();
  1.3341 +      gclog_or_tty->print(": ");
  1.3342 +    }
  1.3343 +    gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  1.3344 +                 _collector->cmsGen()->short_name(),
  1.3345 +                 _phase, _collector->timerValue(), _wallclock.seconds());
  1.3346 +    if (_print_cr) {
  1.3347 +      gclog_or_tty->print_cr("");
  1.3348 +    }
  1.3349 +    if (PrintCMSStatistics != 0) {
  1.3350 +      gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  1.3351 +                    _collector->yields());
  1.3352 +    }
  1.3353 +  }
  1.3354 +}
  1.3355 +
  1.3356 +// CMS work
  1.3357 +
  1.3358 +// Checkpoint the roots into this generation from outside
  1.3359 +// this generation. [Note this initial checkpoint need only
  1.3360 +// be approximate -- we'll do a catch up phase subsequently.]
  1.3361 +void CMSCollector::checkpointRootsInitial(bool asynch) {
  1.3362 +  assert(_collectorState == InitialMarking, "Wrong collector state");
  1.3363 +  check_correct_thread_executing();
  1.3364 +  ReferenceProcessor* rp = ref_processor();
  1.3365 +  SpecializationStats::clear();
  1.3366 +  assert(_restart_addr == NULL, "Control point invariant");
  1.3367 +  if (asynch) {
  1.3368 +    // acquire locks for subsequent manipulations
  1.3369 +    MutexLockerEx x(bitMapLock(),
  1.3370 +                    Mutex::_no_safepoint_check_flag);
  1.3371 +    checkpointRootsInitialWork(asynch);
  1.3372 +    rp->verify_no_references_recorded();
  1.3373 +    rp->enable_discovery(); // enable ("weak") refs discovery
  1.3374 +    _collectorState = Marking;
  1.3375 +  } else {
  1.3376 +    // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  1.3377 +    // which recognizes if we are a CMS generation, and doesn't try to turn on
  1.3378 +    // discovery; verify that they aren't meddling.
  1.3379 +    assert(!rp->discovery_is_atomic(),
  1.3380 +           "incorrect setting of discovery predicate");
  1.3381 +    assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  1.3382 +           "ref discovery for this generation kind");
  1.3383 +    // already have locks
  1.3384 +    checkpointRootsInitialWork(asynch);
  1.3385 +    rp->enable_discovery(); // now enable ("weak") refs discovery
  1.3386 +    _collectorState = Marking;
  1.3387 +  }
  1.3388 +  SpecializationStats::print();
  1.3389 +}
  1.3390 +
  1.3391 +void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  1.3392 +  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  1.3393 +  assert(_collectorState == InitialMarking, "just checking");
  1.3394 +
  1.3395 +  // If there has not been a GC[n-1] since last GC[n] cycle completed,
  1.3396 +  // precede our marking with a collection of all
  1.3397 +  // younger generations to keep floating garbage to a minimum.
  1.3398 +  // XXX: we won't do this for now -- it's an optimization to be done later.
  1.3399 +
  1.3400 +  // already have locks
  1.3401 +  assert_lock_strong(bitMapLock());
  1.3402 +  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  1.3403 +
  1.3404 +  // Setup the verification and class unloading state for this
  1.3405 +  // CMS collection cycle.
  1.3406 +  setup_cms_unloading_and_verification_state();
  1.3407 +
  1.3408 +  NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  1.3409 +    PrintGCDetails && Verbose, true, gclog_or_tty);)
  1.3410 +  if (UseAdaptiveSizePolicy) {
  1.3411 +    size_policy()->checkpoint_roots_initial_begin();
  1.3412 +  }
  1.3413 +
  1.3414 +  // Reset all the PLAB chunk arrays if necessary.
  1.3415 +  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  1.3416 +    reset_survivor_plab_arrays();
  1.3417 +  }
  1.3418 +
  1.3419 +  ResourceMark rm;
  1.3420 +  HandleMark  hm;
  1.3421 +
  1.3422 +  FalseClosure falseClosure;
  1.3423 +  // In the case of a synchronous collection, we will elide the
  1.3424 +  // remark step, so it's important to catch all the nmethod oops
  1.3425 +  // in this step; hence the last argument to the constrcutor below.
  1.3426 +  MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  1.3427 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.3428 +
  1.3429 +  verify_work_stacks_empty();
  1.3430 +  verify_overflow_empty();
  1.3431 +
  1.3432 +  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  1.3433 +  // Update the saved marks which may affect the root scans.
  1.3434 +  gch->save_marks();
  1.3435 +
  1.3436 +  // weak reference processing has not started yet.
  1.3437 +  ref_processor()->set_enqueuing_is_done(false);
  1.3438 +
  1.3439 +  {
  1.3440 +    COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  1.3441 +    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  1.3442 +    gch->gen_process_strong_roots(_cmsGen->level(),
  1.3443 +                                  true,   // younger gens are roots
  1.3444 +                                  true,   // collecting perm gen
  1.3445 +                                  SharedHeap::ScanningOption(roots_scanning_options()),
  1.3446 +                                  NULL, &notOlder);
  1.3447 +  }
  1.3448 +
  1.3449 +  // Clear mod-union table; it will be dirtied in the prologue of
  1.3450 +  // CMS generation per each younger generation collection.
  1.3451 +
  1.3452 +  assert(_modUnionTable.isAllClear(),
  1.3453 +       "Was cleared in most recent final checkpoint phase"
  1.3454 +       " or no bits are set in the gc_prologue before the start of the next "
  1.3455 +       "subsequent marking phase.");
  1.3456 +
  1.3457 +  // Temporarily disabled, since pre/post-consumption closures don't
  1.3458 +  // care about precleaned cards
  1.3459 +  #if 0
  1.3460 +  {
  1.3461 +    MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  1.3462 +                             (HeapWord*)_virtual_space.high());
  1.3463 +    _ct->ct_bs()->preclean_dirty_cards(mr);
  1.3464 +  }
  1.3465 +  #endif
  1.3466 +
  1.3467 +  // Save the end of the used_region of the constituent generations
  1.3468 +  // to be used to limit the extent of sweep in each generation.
  1.3469 +  save_sweep_limits();
  1.3470 +  if (UseAdaptiveSizePolicy) {
  1.3471 +    size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  1.3472 +  }
  1.3473 +  verify_overflow_empty();
  1.3474 +}
  1.3475 +
  1.3476 +bool CMSCollector::markFromRoots(bool asynch) {
  1.3477 +  // we might be tempted to assert that:
  1.3478 +  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1.3479 +  //        "inconsistent argument?");
  1.3480 +  // However that wouldn't be right, because it's possible that
  1.3481 +  // a safepoint is indeed in progress as a younger generation
  1.3482 +  // stop-the-world GC happens even as we mark in this generation.
  1.3483 +  assert(_collectorState == Marking, "inconsistent state?");
  1.3484 +  check_correct_thread_executing();
  1.3485 +  verify_overflow_empty();
  1.3486 +
  1.3487 +  bool res;
  1.3488 +  if (asynch) {
  1.3489 +
  1.3490 +    // Start the timers for adaptive size policy for the concurrent phases
  1.3491 +    // Do it here so that the foreground MS can use the concurrent
  1.3492 +    // timer since a foreground MS might has the sweep done concurrently
  1.3493 +    // or STW.
  1.3494 +    if (UseAdaptiveSizePolicy) {
  1.3495 +      size_policy()->concurrent_marking_begin();
  1.3496 +    }
  1.3497 +
  1.3498 +    // Weak ref discovery note: We may be discovering weak
  1.3499 +    // refs in this generation concurrent (but interleaved) with
  1.3500 +    // weak ref discovery by a younger generation collector.
  1.3501 +
  1.3502 +    CMSTokenSyncWithLocks ts(true, bitMapLock());
  1.3503 +    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.3504 +    CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  1.3505 +    res = markFromRootsWork(asynch);
  1.3506 +    if (res) {
  1.3507 +      _collectorState = Precleaning;
  1.3508 +    } else { // We failed and a foreground collection wants to take over
  1.3509 +      assert(_foregroundGCIsActive, "internal state inconsistency");
  1.3510 +      assert(_restart_addr == NULL,  "foreground will restart from scratch");
  1.3511 +      if (PrintGCDetails) {
  1.3512 +        gclog_or_tty->print_cr("bailing out to foreground collection");
  1.3513 +      }
  1.3514 +    }
  1.3515 +    if (UseAdaptiveSizePolicy) {
  1.3516 +      size_policy()->concurrent_marking_end();
  1.3517 +    }
  1.3518 +  } else {
  1.3519 +    assert(SafepointSynchronize::is_at_safepoint(),
  1.3520 +           "inconsistent with asynch == false");
  1.3521 +    if (UseAdaptiveSizePolicy) {
  1.3522 +      size_policy()->ms_collection_marking_begin();
  1.3523 +    }
  1.3524 +    // already have locks
  1.3525 +    res = markFromRootsWork(asynch);
  1.3526 +    _collectorState = FinalMarking;
  1.3527 +    if (UseAdaptiveSizePolicy) {
  1.3528 +      GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.3529 +      size_policy()->ms_collection_marking_end(gch->gc_cause());
  1.3530 +    }
  1.3531 +  }
  1.3532 +  verify_overflow_empty();
  1.3533 +  return res;
  1.3534 +}
  1.3535 +
  1.3536 +bool CMSCollector::markFromRootsWork(bool asynch) {
  1.3537 +  // iterate over marked bits in bit map, doing a full scan and mark
  1.3538 +  // from these roots using the following algorithm:
  1.3539 +  // . if oop is to the right of the current scan pointer,
  1.3540 +  //   mark corresponding bit (we'll process it later)
  1.3541 +  // . else (oop is to left of current scan pointer)
  1.3542 +  //   push oop on marking stack
  1.3543 +  // . drain the marking stack
  1.3544 +
  1.3545 +  // Note that when we do a marking step we need to hold the
  1.3546 +  // bit map lock -- recall that direct allocation (by mutators)
  1.3547 +  // and promotion (by younger generation collectors) is also
  1.3548 +  // marking the bit map. [the so-called allocate live policy.]
  1.3549 +  // Because the implementation of bit map marking is not
  1.3550 +  // robust wrt simultaneous marking of bits in the same word,
  1.3551 +  // we need to make sure that there is no such interference
  1.3552 +  // between concurrent such updates.
  1.3553 +
  1.3554 +  // already have locks
  1.3555 +  assert_lock_strong(bitMapLock());
  1.3556 +
  1.3557 +  // Clear the revisit stack, just in case there are any
  1.3558 +  // obsolete contents from a short-circuited previous CMS cycle.
  1.3559 +  _revisitStack.reset();
  1.3560 +  verify_work_stacks_empty();
  1.3561 +  verify_overflow_empty();
  1.3562 +  assert(_revisitStack.isEmpty(), "tabula rasa");
  1.3563 +
  1.3564 +  bool result = false;
  1.3565 +  if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  1.3566 +    result = do_marking_mt(asynch);
  1.3567 +  } else {
  1.3568 +    result = do_marking_st(asynch);
  1.3569 +  }
  1.3570 +  return result;
  1.3571 +}
  1.3572 +
  1.3573 +// Forward decl
  1.3574 +class CMSConcMarkingTask;
  1.3575 +
  1.3576 +class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  1.3577 +  CMSCollector*       _collector;
  1.3578 +  CMSConcMarkingTask* _task;
  1.3579 +  bool _yield;
  1.3580 + protected:
  1.3581 +  virtual void yield();
  1.3582 + public:
  1.3583 +  // "n_threads" is the number of threads to be terminated.
  1.3584 +  // "queue_set" is a set of work queues of other threads.
  1.3585 +  // "collector" is the CMS collector associated with this task terminator.
  1.3586 +  // "yield" indicates whether we need the gang as a whole to yield.
  1.3587 +  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  1.3588 +                           CMSCollector* collector, bool yield) :
  1.3589 +    ParallelTaskTerminator(n_threads, queue_set),
  1.3590 +    _collector(collector),
  1.3591 +    _yield(yield) { }
  1.3592 +
  1.3593 +  void set_task(CMSConcMarkingTask* task) {
  1.3594 +    _task = task;
  1.3595 +  }
  1.3596 +};
  1.3597 +
  1.3598 +// MT Concurrent Marking Task
  1.3599 +class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  1.3600 +  CMSCollector* _collector;
  1.3601 +  YieldingFlexibleWorkGang* _workers;        // the whole gang
  1.3602 +  int           _n_workers;                  // requested/desired # workers
  1.3603 +  bool          _asynch;
  1.3604 +  bool          _result;
  1.3605 +  CompactibleFreeListSpace*  _cms_space;
  1.3606 +  CompactibleFreeListSpace* _perm_space;
  1.3607 +  HeapWord*     _global_finger;
  1.3608 +
  1.3609 +  //  Exposed here for yielding support
  1.3610 +  Mutex* const _bit_map_lock;
  1.3611 +
  1.3612 +  // The per thread work queues, available here for stealing
  1.3613 +  OopTaskQueueSet*  _task_queues;
  1.3614 +  CMSConcMarkingTerminator _term;
  1.3615 +
  1.3616 + public:
  1.3617 +  CMSConcMarkingTask(CMSCollector* collector,
  1.3618 +                 CompactibleFreeListSpace* cms_space,
  1.3619 +                 CompactibleFreeListSpace* perm_space,
  1.3620 +                 bool asynch, int n_workers,
  1.3621 +                 YieldingFlexibleWorkGang* workers,
  1.3622 +                 OopTaskQueueSet* task_queues):
  1.3623 +    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  1.3624 +    _collector(collector),
  1.3625 +    _cms_space(cms_space),
  1.3626 +    _perm_space(perm_space),
  1.3627 +    _asynch(asynch), _n_workers(n_workers), _result(true),
  1.3628 +    _workers(workers), _task_queues(task_queues),
  1.3629 +    _term(n_workers, task_queues, _collector, asynch),
  1.3630 +    _bit_map_lock(collector->bitMapLock())
  1.3631 +  {
  1.3632 +    assert(n_workers <= workers->total_workers(),
  1.3633 +           "Else termination won't work correctly today"); // XXX FIX ME!
  1.3634 +    _requested_size = n_workers;
  1.3635 +    _term.set_task(this);
  1.3636 +    assert(_cms_space->bottom() < _perm_space->bottom(),
  1.3637 +           "Finger incorrectly initialized below");
  1.3638 +    _global_finger = _cms_space->bottom();
  1.3639 +  }
  1.3640 +
  1.3641 +
  1.3642 +  OopTaskQueueSet* task_queues()  { return _task_queues; }
  1.3643 +
  1.3644 +  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  1.3645 +
  1.3646 +  HeapWord** global_finger_addr() { return &_global_finger; }
  1.3647 +
  1.3648 +  CMSConcMarkingTerminator* terminator() { return &_term; }
  1.3649 +
  1.3650 +  void work(int i);
  1.3651 +
  1.3652 +  virtual void coordinator_yield();  // stuff done by coordinator
  1.3653 +  bool result() { return _result; }
  1.3654 +
  1.3655 +  void reset(HeapWord* ra) {
  1.3656 +    _term.reset_for_reuse();
  1.3657 +  }
  1.3658 +
  1.3659 +  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  1.3660 +                                           OopTaskQueue* work_q);
  1.3661 +
  1.3662 + private:
  1.3663 +  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  1.3664 +  void do_work_steal(int i);
  1.3665 +  void bump_global_finger(HeapWord* f);
  1.3666 +};
  1.3667 +
  1.3668 +void CMSConcMarkingTerminator::yield() {
  1.3669 +  if (ConcurrentMarkSweepThread::should_yield() &&
  1.3670 +      !_collector->foregroundGCIsActive() &&
  1.3671 +      _yield) {
  1.3672 +    _task->yield();
  1.3673 +  } else {
  1.3674 +    ParallelTaskTerminator::yield();
  1.3675 +  }
  1.3676 +}
  1.3677 +
  1.3678 +////////////////////////////////////////////////////////////////
  1.3679 +// Concurrent Marking Algorithm Sketch
  1.3680 +////////////////////////////////////////////////////////////////
  1.3681 +// Until all tasks exhausted (both spaces):
  1.3682 +// -- claim next available chunk
  1.3683 +// -- bump global finger via CAS
  1.3684 +// -- find first object that starts in this chunk
  1.3685 +//    and start scanning bitmap from that position
  1.3686 +// -- scan marked objects for oops
  1.3687 +// -- CAS-mark target, and if successful:
  1.3688 +//    . if target oop is above global finger (volatile read)
  1.3689 +//      nothing to do
  1.3690 +//    . if target oop is in chunk and above local finger
  1.3691 +//        then nothing to do
  1.3692 +//    . else push on work-queue
  1.3693 +// -- Deal with possible overflow issues:
  1.3694 +//    . local work-queue overflow causes stuff to be pushed on
  1.3695 +//      global (common) overflow queue
  1.3696 +//    . always first empty local work queue
  1.3697 +//    . then get a batch of oops from global work queue if any
  1.3698 +//    . then do work stealing
  1.3699 +// -- When all tasks claimed (both spaces)
  1.3700 +//    and local work queue empty,
  1.3701 +//    then in a loop do:
  1.3702 +//    . check global overflow stack; steal a batch of oops and trace
  1.3703 +//    . try to steal from other threads oif GOS is empty
  1.3704 +//    . if neither is available, offer termination
  1.3705 +// -- Terminate and return result
  1.3706 +//
  1.3707 +void CMSConcMarkingTask::work(int i) {
  1.3708 +  elapsedTimer _timer;
  1.3709 +  ResourceMark rm;
  1.3710 +  HandleMark hm;
  1.3711 +
  1.3712 +  DEBUG_ONLY(_collector->verify_overflow_empty();)
  1.3713 +
  1.3714 +  // Before we begin work, our work queue should be empty
  1.3715 +  assert(work_queue(i)->size() == 0, "Expected to be empty");
  1.3716 +  // Scan the bitmap covering _cms_space, tracing through grey objects.
  1.3717 +  _timer.start();
  1.3718 +  do_scan_and_mark(i, _cms_space);
  1.3719 +  _timer.stop();
  1.3720 +  if (PrintCMSStatistics != 0) {
  1.3721 +    gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  1.3722 +      i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  1.3723 +  }
  1.3724 +
  1.3725 +  // ... do the same for the _perm_space
  1.3726 +  _timer.reset();
  1.3727 +  _timer.start();
  1.3728 +  do_scan_and_mark(i, _perm_space);
  1.3729 +  _timer.stop();
  1.3730 +  if (PrintCMSStatistics != 0) {
  1.3731 +    gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  1.3732 +      i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  1.3733 +  }
  1.3734 +
  1.3735 +  // ... do work stealing
  1.3736 +  _timer.reset();
  1.3737 +  _timer.start();
  1.3738 +  do_work_steal(i);
  1.3739 +  _timer.stop();
  1.3740 +  if (PrintCMSStatistics != 0) {
  1.3741 +    gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  1.3742 +      i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  1.3743 +  }
  1.3744 +  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  1.3745 +  assert(work_queue(i)->size() == 0, "Should have been emptied");
  1.3746 +  // Note that under the current task protocol, the
  1.3747 +  // following assertion is true even of the spaces
  1.3748 +  // expanded since the completion of the concurrent
  1.3749 +  // marking. XXX This will likely change under a strict
  1.3750 +  // ABORT semantics.
  1.3751 +  assert(_global_finger >  _cms_space->end() &&
  1.3752 +         _global_finger >= _perm_space->end(),
  1.3753 +         "All tasks have been completed");
  1.3754 +  DEBUG_ONLY(_collector->verify_overflow_empty();)
  1.3755 +}
  1.3756 +
  1.3757 +void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  1.3758 +  HeapWord* read = _global_finger;
  1.3759 +  HeapWord* cur  = read;
  1.3760 +  while (f > read) {
  1.3761 +    cur = read;
  1.3762 +    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  1.3763 +    if (cur == read) {
  1.3764 +      // our cas succeeded
  1.3765 +      assert(_global_finger >= f, "protocol consistency");
  1.3766 +      break;
  1.3767 +    }
  1.3768 +  }
  1.3769 +}
  1.3770 +
  1.3771 +// This is really inefficient, and should be redone by
  1.3772 +// using (not yet available) block-read and -write interfaces to the
  1.3773 +// stack and the work_queue. XXX FIX ME !!!
  1.3774 +bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  1.3775 +                                                      OopTaskQueue* work_q) {
  1.3776 +  // Fast lock-free check
  1.3777 +  if (ovflw_stk->length() == 0) {
  1.3778 +    return false;
  1.3779 +  }
  1.3780 +  assert(work_q->size() == 0, "Shouldn't steal");
  1.3781 +  MutexLockerEx ml(ovflw_stk->par_lock(),
  1.3782 +                   Mutex::_no_safepoint_check_flag);
  1.3783 +  // Grab up to 1/4 the size of the work queue
  1.3784 +  size_t num = MIN2((size_t)work_q->max_elems()/4,
  1.3785 +                    (size_t)ParGCDesiredObjsFromOverflowList);
  1.3786 +  num = MIN2(num, ovflw_stk->length());
  1.3787 +  for (int i = (int) num; i > 0; i--) {
  1.3788 +    oop cur = ovflw_stk->pop();
  1.3789 +    assert(cur != NULL, "Counted wrong?");
  1.3790 +    work_q->push(cur);
  1.3791 +  }
  1.3792 +  return num > 0;
  1.3793 +}
  1.3794 +
  1.3795 +void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  1.3796 +  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  1.3797 +  int n_tasks = pst->n_tasks();
  1.3798 +  // We allow that there may be no tasks to do here because
  1.3799 +  // we are restarting after a stack overflow.
  1.3800 +  assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
  1.3801 +  int nth_task = 0;
  1.3802 +
  1.3803 +  HeapWord* start = sp->bottom();
  1.3804 +  size_t chunk_size = sp->marking_task_size();
  1.3805 +  while (!pst->is_task_claimed(/* reference */ nth_task)) {
  1.3806 +    // Having claimed the nth task in this space,
  1.3807 +    // compute the chunk that it corresponds to:
  1.3808 +    MemRegion span = MemRegion(start + nth_task*chunk_size,
  1.3809 +                               start + (nth_task+1)*chunk_size);
  1.3810 +    // Try and bump the global finger via a CAS;
  1.3811 +    // note that we need to do the global finger bump
  1.3812 +    // _before_ taking the intersection below, because
  1.3813 +    // the task corresponding to that region will be
  1.3814 +    // deemed done even if the used_region() expands
  1.3815 +    // because of allocation -- as it almost certainly will
  1.3816 +    // during start-up while the threads yield in the
  1.3817 +    // closure below.
  1.3818 +    HeapWord* finger = span.end();
  1.3819 +    bump_global_finger(finger);   // atomically
  1.3820 +    // There are null tasks here corresponding to chunks
  1.3821 +    // beyond the "top" address of the space.
  1.3822 +    span = span.intersection(sp->used_region());
  1.3823 +    if (!span.is_empty()) {  // Non-null task
  1.3824 +      // We want to skip the first object because
  1.3825 +      // the protocol is to scan any object in its entirety
  1.3826 +      // that _starts_ in this span; a fortiori, any
  1.3827 +      // object starting in an earlier span is scanned
  1.3828 +      // as part of an earlier claimed task.
  1.3829 +      // Below we use the "careful" version of block_start
  1.3830 +      // so we do not try to navigate uninitialized objects.
  1.3831 +      HeapWord* prev_obj = sp->block_start_careful(span.start());
  1.3832 +      // Below we use a variant of block_size that uses the
  1.3833 +      // Printezis bits to avoid waiting for allocated
  1.3834 +      // objects to become initialized/parsable.
  1.3835 +      while (prev_obj < span.start()) {
  1.3836 +        size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  1.3837 +        if (sz > 0) {
  1.3838 +          prev_obj += sz;
  1.3839 +        } else {
  1.3840 +          // In this case we may end up doing a bit of redundant
  1.3841 +          // scanning, but that appears unavoidable, short of
  1.3842 +          // locking the free list locks; see bug 6324141.
  1.3843 +          break;
  1.3844 +        }
  1.3845 +      }
  1.3846 +      if (prev_obj < span.end()) {
  1.3847 +        MemRegion my_span = MemRegion(prev_obj, span.end());
  1.3848 +        // Do the marking work within a non-empty span --
  1.3849 +        // the last argument to the constructor indicates whether the
  1.3850 +        // iteration should be incremental with periodic yields.
  1.3851 +        Par_MarkFromRootsClosure cl(this, _collector, my_span,
  1.3852 +                                    &_collector->_markBitMap,
  1.3853 +                                    work_queue(i),
  1.3854 +                                    &_collector->_markStack,
  1.3855 +                                    &_collector->_revisitStack,
  1.3856 +                                    _asynch);
  1.3857 +        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  1.3858 +      } // else nothing to do for this task
  1.3859 +    }   // else nothing to do for this task
  1.3860 +  }
  1.3861 +  // We'd be tempted to assert here that since there are no
  1.3862 +  // more tasks left to claim in this space, the global_finger
  1.3863 +  // must exceed space->top() and a fortiori space->end(). However,
  1.3864 +  // that would not quite be correct because the bumping of
  1.3865 +  // global_finger occurs strictly after the claiming of a task,
  1.3866 +  // so by the time we reach here the global finger may not yet
  1.3867 +  // have been bumped up by the thread that claimed the last
  1.3868 +  // task.
  1.3869 +  pst->all_tasks_completed();
  1.3870 +}
  1.3871 +
  1.3872 +class Par_ConcMarkingClosure: public OopClosure {
  1.3873 +  CMSCollector* _collector;
  1.3874 +  MemRegion     _span;
  1.3875 +  CMSBitMap*    _bit_map;
  1.3876 +  CMSMarkStack* _overflow_stack;
  1.3877 +  CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  1.3878 +  OopTaskQueue* _work_queue;
  1.3879 +
  1.3880 + public:
  1.3881 +  Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  1.3882 +                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  1.3883 +    _collector(collector),
  1.3884 +    _span(_collector->_span),
  1.3885 +    _work_queue(work_queue),
  1.3886 +    _bit_map(bit_map),
  1.3887 +    _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  1.3888 +
  1.3889 +  void do_oop(oop* p);
  1.3890 +  void trim_queue(size_t max);
  1.3891 +  void handle_stack_overflow(HeapWord* lost);
  1.3892 +};
  1.3893 +
  1.3894 +// Grey object rescan during work stealing phase --
  1.3895 +// the salient assumption here is that stolen oops must
  1.3896 +// always be initialized, so we do not need to check for
  1.3897 +// uninitialized objects before scanning here.
  1.3898 +void Par_ConcMarkingClosure::do_oop(oop* p) {
  1.3899 +  oop    this_oop = *p;
  1.3900 +  assert(this_oop->is_oop_or_null(),
  1.3901 +         "expected an oop or NULL");
  1.3902 +  HeapWord* addr = (HeapWord*)this_oop;
  1.3903 +  // Check if oop points into the CMS generation
  1.3904 +  // and is not marked
  1.3905 +  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  1.3906 +    // a white object ...
  1.3907 +    // If we manage to "claim" the object, by being the
  1.3908 +    // first thread to mark it, then we push it on our
  1.3909 +    // marking stack
  1.3910 +    if (_bit_map->par_mark(addr)) {     // ... now grey
  1.3911 +      // push on work queue (grey set)
  1.3912 +      bool simulate_overflow = false;
  1.3913 +      NOT_PRODUCT(
  1.3914 +        if (CMSMarkStackOverflowALot &&
  1.3915 +            _collector->simulate_overflow()) {
  1.3916 +          // simulate a stack overflow
  1.3917 +          simulate_overflow = true;
  1.3918 +        }
  1.3919 +      )
  1.3920 +      if (simulate_overflow ||
  1.3921 +          !(_work_queue->push(this_oop) || _overflow_stack->par_push(this_oop))) {
  1.3922 +        // stack overflow
  1.3923 +        if (PrintCMSStatistics != 0) {
  1.3924 +          gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  1.3925 +                                 SIZE_FORMAT, _overflow_stack->capacity());
  1.3926 +        }
  1.3927 +        // We cannot assert that the overflow stack is full because
  1.3928 +        // it may have been emptied since.
  1.3929 +        assert(simulate_overflow ||
  1.3930 +               _work_queue->size() == _work_queue->max_elems(),
  1.3931 +              "Else push should have succeeded");
  1.3932 +        handle_stack_overflow(addr);
  1.3933 +      }
  1.3934 +    } // Else, some other thread got there first
  1.3935 +  }
  1.3936 +}
  1.3937 +
  1.3938 +void Par_ConcMarkingClosure::trim_queue(size_t max) {
  1.3939 +  while (_work_queue->size() > max) {
  1.3940 +    oop new_oop;
  1.3941 +    if (_work_queue->pop_local(new_oop)) {
  1.3942 +      assert(new_oop->is_oop(), "Should be an oop");
  1.3943 +      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  1.3944 +      assert(_span.contains((HeapWord*)new_oop), "Not in span");
  1.3945 +      assert(new_oop->is_parsable(), "Should be parsable");
  1.3946 +      new_oop->oop_iterate(this);  // do_oop() above
  1.3947 +    }
  1.3948 +  }
  1.3949 +}
  1.3950 +
  1.3951 +// Upon stack overflow, we discard (part of) the stack,
  1.3952 +// remembering the least address amongst those discarded
  1.3953 +// in CMSCollector's _restart_address.
  1.3954 +void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  1.3955 +  // We need to do this under a mutex to prevent other
  1.3956 +  // workers from interfering with the expansion below.
  1.3957 +  MutexLockerEx ml(_overflow_stack->par_lock(),
  1.3958 +                   Mutex::_no_safepoint_check_flag);
  1.3959 +  // Remember the least grey address discarded
  1.3960 +  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  1.3961 +  _collector->lower_restart_addr(ra);
  1.3962 +  _overflow_stack->reset();  // discard stack contents
  1.3963 +  _overflow_stack->expand(); // expand the stack if possible
  1.3964 +}
  1.3965 +
  1.3966 +
  1.3967 +void CMSConcMarkingTask::do_work_steal(int i) {
  1.3968 +  OopTaskQueue* work_q = work_queue(i);
  1.3969 +  oop obj_to_scan;
  1.3970 +  CMSBitMap* bm = &(_collector->_markBitMap);
  1.3971 +  CMSMarkStack* ovflw = &(_collector->_markStack);
  1.3972 +  int* seed = _collector->hash_seed(i);
  1.3973 +  Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  1.3974 +  while (true) {
  1.3975 +    cl.trim_queue(0);
  1.3976 +    assert(work_q->size() == 0, "Should have been emptied above");
  1.3977 +    if (get_work_from_overflow_stack(ovflw, work_q)) {
  1.3978 +      // Can't assert below because the work obtained from the
  1.3979 +      // overflow stack may already have been stolen from us.
  1.3980 +      // assert(work_q->size() > 0, "Work from overflow stack");
  1.3981 +      continue;
  1.3982 +    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  1.3983 +      assert(obj_to_scan->is_oop(), "Should be an oop");
  1.3984 +      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  1.3985 +      obj_to_scan->oop_iterate(&cl);
  1.3986 +    } else if (terminator()->offer_termination()) {
  1.3987 +      assert(work_q->size() == 0, "Impossible!");
  1.3988 +      break;
  1.3989 +    }
  1.3990 +  }
  1.3991 +}
  1.3992 +
  1.3993 +// This is run by the CMS (coordinator) thread.
  1.3994 +void CMSConcMarkingTask::coordinator_yield() {
  1.3995 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.3996 +         "CMS thread should hold CMS token");
  1.3997 +
  1.3998 +  // First give up the locks, then yield, then re-lock
  1.3999 +  // We should probably use a constructor/destructor idiom to
  1.4000 +  // do this unlock/lock or modify the MutexUnlocker class to
  1.4001 +  // serve our purpose. XXX
  1.4002 +  assert_lock_strong(_bit_map_lock);
  1.4003 +  _bit_map_lock->unlock();
  1.4004 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.4005 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.4006 +  _collector->stopTimer();
  1.4007 +  if (PrintCMSStatistics != 0) {
  1.4008 +    _collector->incrementYields();
  1.4009 +  }
  1.4010 +  _collector->icms_wait();
  1.4011 +
  1.4012 +  // It is possible for whichever thread initiated the yield request
  1.4013 +  // not to get a chance to wake up and take the bitmap lock between
  1.4014 +  // this thread releasing it and reacquiring it. So, while the
  1.4015 +  // should_yield() flag is on, let's sleep for a bit to give the
  1.4016 +  // other thread a chance to wake up. The limit imposed on the number
  1.4017 +  // of iterations is defensive, to avoid any unforseen circumstances
  1.4018 +  // putting us into an infinite loop. Since it's always been this
  1.4019 +  // (coordinator_yield()) method that was observed to cause the
  1.4020 +  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  1.4021 +  // which is by default non-zero. For the other seven methods that
  1.4022 +  // also perform the yield operation, as are using a different
  1.4023 +  // parameter (CMSYieldSleepCount) which is by default zero. This way we
  1.4024 +  // can enable the sleeping for those methods too, if necessary.
  1.4025 +  // See 6442774.
  1.4026 +  //
  1.4027 +  // We really need to reconsider the synchronization between the GC
  1.4028 +  // thread and the yield-requesting threads in the future and we
  1.4029 +  // should really use wait/notify, which is the recommended
  1.4030 +  // way of doing this type of interaction. Additionally, we should
  1.4031 +  // consolidate the eight methods that do the yield operation and they
  1.4032 +  // are almost identical into one for better maintenability and
  1.4033 +  // readability. See 6445193.
  1.4034 +  //
  1.4035 +  // Tony 2006.06.29
  1.4036 +  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  1.4037 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.4038 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.4039 +    os::sleep(Thread::current(), 1, false);
  1.4040 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.4041 +  }
  1.4042 +
  1.4043 +  ConcurrentMarkSweepThread::synchronize(true);
  1.4044 +  _bit_map_lock->lock_without_safepoint_check();
  1.4045 +  _collector->startTimer();
  1.4046 +}
  1.4047 +
  1.4048 +bool CMSCollector::do_marking_mt(bool asynch) {
  1.4049 +  assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  1.4050 +  // In the future this would be determined ergonomically, based
  1.4051 +  // on #cpu's, # active mutator threads (and load), and mutation rate.
  1.4052 +  int num_workers = ParallelCMSThreads;
  1.4053 +
  1.4054 +  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  1.4055 +  CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  1.4056 +
  1.4057 +  CMSConcMarkingTask tsk(this, cms_space, perm_space,
  1.4058 +                         asynch, num_workers /* number requested XXX */,
  1.4059 +                         conc_workers(), task_queues());
  1.4060 +
  1.4061 +  // Since the actual number of workers we get may be different
  1.4062 +  // from the number we requested above, do we need to do anything different
  1.4063 +  // below? In particular, may be we need to subclass the SequantialSubTasksDone
  1.4064 +  // class?? XXX
  1.4065 +  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  1.4066 +  perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  1.4067 +
  1.4068 +  // Refs discovery is already non-atomic.
  1.4069 +  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  1.4070 +  // Mutate the Refs discovery so it is MT during the
  1.4071 +  // multi-threaded marking phase.
  1.4072 +  ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  1.4073 +
  1.4074 +  conc_workers()->start_task(&tsk);
  1.4075 +  while (tsk.yielded()) {
  1.4076 +    tsk.coordinator_yield();
  1.4077 +    conc_workers()->continue_task(&tsk);
  1.4078 +  }
  1.4079 +  // If the task was aborted, _restart_addr will be non-NULL
  1.4080 +  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  1.4081 +  while (_restart_addr != NULL) {
  1.4082 +    // XXX For now we do not make use of ABORTED state and have not
  1.4083 +    // yet implemented the right abort semantics (even in the original
  1.4084 +    // single-threaded CMS case). That needs some more investigation
  1.4085 +    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  1.4086 +    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  1.4087 +    // If _restart_addr is non-NULL, a marking stack overflow
  1.4088 +    // occured; we need to do a fresh marking iteration from the
  1.4089 +    // indicated restart address.
  1.4090 +    if (_foregroundGCIsActive && asynch) {
  1.4091 +      // We may be running into repeated stack overflows, having
  1.4092 +      // reached the limit of the stack size, while making very
  1.4093 +      // slow forward progress. It may be best to bail out and
  1.4094 +      // let the foreground collector do its job.
  1.4095 +      // Clear _restart_addr, so that foreground GC
  1.4096 +      // works from scratch. This avoids the headache of
  1.4097 +      // a "rescan" which would otherwise be needed because
  1.4098 +      // of the dirty mod union table & card table.
  1.4099 +      _restart_addr = NULL;
  1.4100 +      return false;
  1.4101 +    }
  1.4102 +    // Adjust the task to restart from _restart_addr
  1.4103 +    tsk.reset(_restart_addr);
  1.4104 +    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  1.4105 +                  _restart_addr);
  1.4106 +    perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  1.4107 +                  _restart_addr);
  1.4108 +    _restart_addr = NULL;
  1.4109 +    // Get the workers going again
  1.4110 +    conc_workers()->start_task(&tsk);
  1.4111 +    while (tsk.yielded()) {
  1.4112 +      tsk.coordinator_yield();
  1.4113 +      conc_workers()->continue_task(&tsk);
  1.4114 +    }
  1.4115 +  }
  1.4116 +  assert(tsk.completed(), "Inconsistency");
  1.4117 +  assert(tsk.result() == true, "Inconsistency");
  1.4118 +  return true;
  1.4119 +}
  1.4120 +
  1.4121 +bool CMSCollector::do_marking_st(bool asynch) {
  1.4122 +  ResourceMark rm;
  1.4123 +  HandleMark   hm;
  1.4124 +
  1.4125 +  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  1.4126 +    &_markStack, &_revisitStack, CMSYield && asynch);
  1.4127 +  // the last argument to iterate indicates whether the iteration
  1.4128 +  // should be incremental with periodic yields.
  1.4129 +  _markBitMap.iterate(&markFromRootsClosure);
  1.4130 +  // If _restart_addr is non-NULL, a marking stack overflow
  1.4131 +  // occured; we need to do a fresh iteration from the
  1.4132 +  // indicated restart address.
  1.4133 +  while (_restart_addr != NULL) {
  1.4134 +    if (_foregroundGCIsActive && asynch) {
  1.4135 +      // We may be running into repeated stack overflows, having
  1.4136 +      // reached the limit of the stack size, while making very
  1.4137 +      // slow forward progress. It may be best to bail out and
  1.4138 +      // let the foreground collector do its job.
  1.4139 +      // Clear _restart_addr, so that foreground GC
  1.4140 +      // works from scratch. This avoids the headache of
  1.4141 +      // a "rescan" which would otherwise be needed because
  1.4142 +      // of the dirty mod union table & card table.
  1.4143 +      _restart_addr = NULL;
  1.4144 +      return false;  // indicating failure to complete marking
  1.4145 +    }
  1.4146 +    // Deal with stack overflow:
  1.4147 +    // we restart marking from _restart_addr
  1.4148 +    HeapWord* ra = _restart_addr;
  1.4149 +    markFromRootsClosure.reset(ra);
  1.4150 +    _restart_addr = NULL;
  1.4151 +    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  1.4152 +  }
  1.4153 +  return true;
  1.4154 +}
  1.4155 +
  1.4156 +void CMSCollector::preclean() {
  1.4157 +  check_correct_thread_executing();
  1.4158 +  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  1.4159 +  verify_work_stacks_empty();
  1.4160 +  verify_overflow_empty();
  1.4161 +  _abort_preclean = false;
  1.4162 +  if (CMSPrecleaningEnabled) {
  1.4163 +    _eden_chunk_index = 0;
  1.4164 +    size_t used = get_eden_used();
  1.4165 +    size_t capacity = get_eden_capacity();
  1.4166 +    // Don't start sampling unless we will get sufficiently
  1.4167 +    // many samples.
  1.4168 +    if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  1.4169 +                * CMSScheduleRemarkEdenPenetration)) {
  1.4170 +      _start_sampling = true;
  1.4171 +    } else {
  1.4172 +      _start_sampling = false;
  1.4173 +    }
  1.4174 +    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.4175 +    CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  1.4176 +    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  1.4177 +  }
  1.4178 +  CMSTokenSync x(true); // is cms thread
  1.4179 +  if (CMSPrecleaningEnabled) {
  1.4180 +    sample_eden();
  1.4181 +    _collectorState = AbortablePreclean;
  1.4182 +  } else {
  1.4183 +    _collectorState = FinalMarking;
  1.4184 +  }
  1.4185 +  verify_work_stacks_empty();
  1.4186 +  verify_overflow_empty();
  1.4187 +}
  1.4188 +
  1.4189 +// Try and schedule the remark such that young gen
  1.4190 +// occupancy is CMSScheduleRemarkEdenPenetration %.
  1.4191 +void CMSCollector::abortable_preclean() {
  1.4192 +  check_correct_thread_executing();
  1.4193 +  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  1.4194 +  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  1.4195 +
  1.4196 +  // If Eden's current occupancy is below this threshold,
  1.4197 +  // immediately schedule the remark; else preclean
  1.4198 +  // past the next scavenge in an effort to
  1.4199 +  // schedule the pause as described avove. By choosing
  1.4200 +  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  1.4201 +  // we will never do an actual abortable preclean cycle.
  1.4202 +  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  1.4203 +    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.4204 +    CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  1.4205 +    // We need more smarts in the abortable preclean
  1.4206 +    // loop below to deal with cases where allocation
  1.4207 +    // in young gen is very very slow, and our precleaning
  1.4208 +    // is running a losing race against a horde of
  1.4209 +    // mutators intent on flooding us with CMS updates
  1.4210 +    // (dirty cards).
  1.4211 +    // One, admittedly dumb, strategy is to give up
  1.4212 +    // after a certain number of abortable precleaning loops
  1.4213 +    // or after a certain maximum time. We want to make
  1.4214 +    // this smarter in the next iteration.
  1.4215 +    // XXX FIX ME!!! YSR
  1.4216 +    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  1.4217 +    while (!(should_abort_preclean() ||
  1.4218 +             ConcurrentMarkSweepThread::should_terminate())) {
  1.4219 +      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  1.4220 +      cumworkdone += workdone;
  1.4221 +      loops++;
  1.4222 +      // Voluntarily terminate abortable preclean phase if we have
  1.4223 +      // been at it for too long.
  1.4224 +      if ((CMSMaxAbortablePrecleanLoops != 0) &&
  1.4225 +          loops >= CMSMaxAbortablePrecleanLoops) {
  1.4226 +        if (PrintGCDetails) {
  1.4227 +          gclog_or_tty->print(" CMS: abort preclean due to loops ");
  1.4228 +        }
  1.4229 +        break;
  1.4230 +      }
  1.4231 +      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  1.4232 +        if (PrintGCDetails) {
  1.4233 +          gclog_or_tty->print(" CMS: abort preclean due to time ");
  1.4234 +        }
  1.4235 +        break;
  1.4236 +      }
  1.4237 +      // If we are doing little work each iteration, we should
  1.4238 +      // take a short break.
  1.4239 +      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  1.4240 +        // Sleep for some time, waiting for work to accumulate
  1.4241 +        stopTimer();
  1.4242 +        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  1.4243 +        startTimer();
  1.4244 +        waited++;
  1.4245 +      }
  1.4246 +    }
  1.4247 +    if (PrintCMSStatistics > 0) {
  1.4248 +      gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  1.4249 +                          loops, waited, cumworkdone);
  1.4250 +    }
  1.4251 +  }
  1.4252 +  CMSTokenSync x(true); // is cms thread
  1.4253 +  if (_collectorState != Idling) {
  1.4254 +    assert(_collectorState == AbortablePreclean,
  1.4255 +           "Spontaneous state transition?");
  1.4256 +    _collectorState = FinalMarking;
  1.4257 +  } // Else, a foreground collection completed this CMS cycle.
  1.4258 +  return;
  1.4259 +}
  1.4260 +
  1.4261 +// Respond to an Eden sampling opportunity
  1.4262 +void CMSCollector::sample_eden() {
  1.4263 +  // Make sure a young gc cannot sneak in between our
  1.4264 +  // reading and recording of a sample.
  1.4265 +  assert(Thread::current()->is_ConcurrentGC_thread(),
  1.4266 +         "Only the cms thread may collect Eden samples");
  1.4267 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.4268 +         "Should collect samples while holding CMS token");
  1.4269 +  if (!_start_sampling) {
  1.4270 +    return;
  1.4271 +  }
  1.4272 +  if (_eden_chunk_array) {
  1.4273 +    if (_eden_chunk_index < _eden_chunk_capacity) {
  1.4274 +      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  1.4275 +      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  1.4276 +             "Unexpected state of Eden");
  1.4277 +      // We'd like to check that what we just sampled is an oop-start address;
  1.4278 +      // however, we cannot do that here since the object may not yet have been
  1.4279 +      // initialized. So we'll instead do the check when we _use_ this sample
  1.4280 +      // later.
  1.4281 +      if (_eden_chunk_index == 0 ||
  1.4282 +          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  1.4283 +                         _eden_chunk_array[_eden_chunk_index-1])
  1.4284 +           >= CMSSamplingGrain)) {
  1.4285 +        _eden_chunk_index++;  // commit sample
  1.4286 +      }
  1.4287 +    }
  1.4288 +  }
  1.4289 +  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  1.4290 +    size_t used = get_eden_used();
  1.4291 +    size_t capacity = get_eden_capacity();
  1.4292 +    assert(used <= capacity, "Unexpected state of Eden");
  1.4293 +    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  1.4294 +      _abort_preclean = true;
  1.4295 +    }
  1.4296 +  }
  1.4297 +}
  1.4298 +
  1.4299 +
  1.4300 +size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  1.4301 +  assert(_collectorState == Precleaning ||
  1.4302 +         _collectorState == AbortablePreclean, "incorrect state");
  1.4303 +  ResourceMark rm;
  1.4304 +  HandleMark   hm;
  1.4305 +  // Do one pass of scrubbing the discovered reference lists
  1.4306 +  // to remove any reference objects with strongly-reachable
  1.4307 +  // referents.
  1.4308 +  if (clean_refs) {
  1.4309 +    ReferenceProcessor* rp = ref_processor();
  1.4310 +    CMSPrecleanRefsYieldClosure yield_cl(this);
  1.4311 +    assert(rp->span().equals(_span), "Spans should be equal");
  1.4312 +    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  1.4313 +                                   &_markStack);
  1.4314 +    CMSDrainMarkingStackClosure complete_trace(this,
  1.4315 +                                  _span, &_markBitMap, &_markStack,
  1.4316 +                                  &keep_alive);
  1.4317 +
  1.4318 +    // We don't want this step to interfere with a young
  1.4319 +    // collection because we don't want to take CPU
  1.4320 +    // or memory bandwidth away from the young GC threads
  1.4321 +    // (which may be as many as there are CPUs).
  1.4322 +    // Note that we don't need to protect ourselves from
  1.4323 +    // interference with mutators because they can't
  1.4324 +    // manipulate the discovered reference lists nor affect
  1.4325 +    // the computed reachability of the referents, the
  1.4326 +    // only properties manipulated by the precleaning
  1.4327 +    // of these reference lists.
  1.4328 +    stopTimer();
  1.4329 +    CMSTokenSyncWithLocks x(true /* is cms thread */,
  1.4330 +                            bitMapLock());
  1.4331 +    startTimer();
  1.4332 +    sample_eden();
  1.4333 +    // The following will yield to allow foreground
  1.4334 +    // collection to proceed promptly. XXX YSR:
  1.4335 +    // The code in this method may need further
  1.4336 +    // tweaking for better performance and some restructuring
  1.4337 +    // for cleaner interfaces.
  1.4338 +    rp->preclean_discovered_references(
  1.4339 +          rp->is_alive_non_header(), &keep_alive, &complete_trace,
  1.4340 +          &yield_cl);
  1.4341 +  }
  1.4342 +
  1.4343 +  if (clean_survivor) {  // preclean the active survivor space(s)
  1.4344 +    assert(_young_gen->kind() == Generation::DefNew ||
  1.4345 +           _young_gen->kind() == Generation::ParNew ||
  1.4346 +           _young_gen->kind() == Generation::ASParNew,
  1.4347 +         "incorrect type for cast");
  1.4348 +    DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  1.4349 +    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  1.4350 +                             &_markBitMap, &_modUnionTable,
  1.4351 +                             &_markStack, &_revisitStack,
  1.4352 +                             true /* precleaning phase */);
  1.4353 +    stopTimer();
  1.4354 +    CMSTokenSyncWithLocks ts(true /* is cms thread */,
  1.4355 +                             bitMapLock());
  1.4356 +    startTimer();
  1.4357 +    unsigned int before_count =
  1.4358 +      GenCollectedHeap::heap()->total_collections();
  1.4359 +    SurvivorSpacePrecleanClosure
  1.4360 +      sss_cl(this, _span, &_markBitMap, &_markStack,
  1.4361 +             &pam_cl, before_count, CMSYield);
  1.4362 +    dng->from()->object_iterate_careful(&sss_cl);
  1.4363 +    dng->to()->object_iterate_careful(&sss_cl);
  1.4364 +  }
  1.4365 +  MarkRefsIntoAndScanClosure
  1.4366 +    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  1.4367 +             &_markStack, &_revisitStack, this, CMSYield,
  1.4368 +             true /* precleaning phase */);
  1.4369 +  // CAUTION: The following closure has persistent state that may need to
  1.4370 +  // be reset upon a decrease in the sequence of addresses it
  1.4371 +  // processes.
  1.4372 +  ScanMarkedObjectsAgainCarefullyClosure
  1.4373 +    smoac_cl(this, _span,
  1.4374 +      &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  1.4375 +
  1.4376 +  // Preclean dirty cards in ModUnionTable and CardTable using
  1.4377 +  // appropriate convergence criterion;
  1.4378 +  // repeat CMSPrecleanIter times unless we find that
  1.4379 +  // we are losing.
  1.4380 +  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  1.4381 +  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  1.4382 +         "Bad convergence multiplier");
  1.4383 +  assert(CMSPrecleanThreshold >= 100,
  1.4384 +         "Unreasonably low CMSPrecleanThreshold");
  1.4385 +
  1.4386 +  size_t numIter, cumNumCards, lastNumCards, curNumCards;
  1.4387 +  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  1.4388 +       numIter < CMSPrecleanIter;
  1.4389 +       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  1.4390 +    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  1.4391 +    if (CMSPermGenPrecleaningEnabled) {
  1.4392 +      curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  1.4393 +    }
  1.4394 +    if (Verbose && PrintGCDetails) {
  1.4395 +      gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  1.4396 +    }
  1.4397 +    // Either there are very few dirty cards, so re-mark
  1.4398 +    // pause will be small anyway, or our pre-cleaning isn't
  1.4399 +    // that much faster than the rate at which cards are being
  1.4400 +    // dirtied, so we might as well stop and re-mark since
  1.4401 +    // precleaning won't improve our re-mark time by much.
  1.4402 +    if (curNumCards <= CMSPrecleanThreshold ||
  1.4403 +        (numIter > 0 &&
  1.4404 +         (curNumCards * CMSPrecleanDenominator >
  1.4405 +         lastNumCards * CMSPrecleanNumerator))) {
  1.4406 +      numIter++;
  1.4407 +      cumNumCards += curNumCards;
  1.4408 +      break;
  1.4409 +    }
  1.4410 +  }
  1.4411 +  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  1.4412 +  if (CMSPermGenPrecleaningEnabled) {
  1.4413 +    curNumCards += preclean_card_table(_permGen, &smoac_cl);
  1.4414 +  }
  1.4415 +  cumNumCards += curNumCards;
  1.4416 +  if (PrintGCDetails && PrintCMSStatistics != 0) {
  1.4417 +    gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  1.4418 +                  curNumCards, cumNumCards, numIter);
  1.4419 +  }
  1.4420 +  return cumNumCards;   // as a measure of useful work done
  1.4421 +}
  1.4422 +
  1.4423 +// PRECLEANING NOTES:
  1.4424 +// Precleaning involves:
  1.4425 +// . reading the bits of the modUnionTable and clearing the set bits.
  1.4426 +// . For the cards corresponding to the set bits, we scan the
  1.4427 +//   objects on those cards. This means we need the free_list_lock
  1.4428 +//   so that we can safely iterate over the CMS space when scanning
  1.4429 +//   for oops.
  1.4430 +// . When we scan the objects, we'll be both reading and setting
  1.4431 +//   marks in the marking bit map, so we'll need the marking bit map.
  1.4432 +// . For protecting _collector_state transitions, we take the CGC_lock.
  1.4433 +//   Note that any races in the reading of of card table entries by the
  1.4434 +//   CMS thread on the one hand and the clearing of those entries by the
  1.4435 +//   VM thread or the setting of those entries by the mutator threads on the
  1.4436 +//   other are quite benign. However, for efficiency it makes sense to keep
  1.4437 +//   the VM thread from racing with the CMS thread while the latter is
  1.4438 +//   dirty card info to the modUnionTable. We therefore also use the
  1.4439 +//   CGC_lock to protect the reading of the card table and the mod union
  1.4440 +//   table by the CM thread.
  1.4441 +// . We run concurrently with mutator updates, so scanning
  1.4442 +//   needs to be done carefully  -- we should not try to scan
  1.4443 +//   potentially uninitialized objects.
  1.4444 +//
  1.4445 +// Locking strategy: While holding the CGC_lock, we scan over and
  1.4446 +// reset a maximal dirty range of the mod union / card tables, then lock
  1.4447 +// the free_list_lock and bitmap lock to do a full marking, then
  1.4448 +// release these locks; and repeat the cycle. This allows for a
  1.4449 +// certain amount of fairness in the sharing of these locks between
  1.4450 +// the CMS collector on the one hand, and the VM thread and the
  1.4451 +// mutators on the other.
  1.4452 +
  1.4453 +// NOTE: preclean_mod_union_table() and preclean_card_table()
  1.4454 +// further below are largely identical; if you need to modify
  1.4455 +// one of these methods, please check the other method too.
  1.4456 +
  1.4457 +size_t CMSCollector::preclean_mod_union_table(
  1.4458 +  ConcurrentMarkSweepGeneration* gen,
  1.4459 +  ScanMarkedObjectsAgainCarefullyClosure* cl) {
  1.4460 +  verify_work_stacks_empty();
  1.4461 +  verify_overflow_empty();
  1.4462 +
  1.4463 +  // strategy: starting with the first card, accumulate contiguous
  1.4464 +  // ranges of dirty cards; clear these cards, then scan the region
  1.4465 +  // covered by these cards.
  1.4466 +
  1.4467 +  // Since all of the MUT is committed ahead, we can just use
  1.4468 +  // that, in case the generations expand while we are precleaning.
  1.4469 +  // It might also be fine to just use the committed part of the
  1.4470 +  // generation, but we might potentially miss cards when the
  1.4471 +  // generation is rapidly expanding while we are in the midst
  1.4472 +  // of precleaning.
  1.4473 +  HeapWord* startAddr = gen->reserved().start();
  1.4474 +  HeapWord* endAddr   = gen->reserved().end();
  1.4475 +
  1.4476 +  cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  1.4477 +
  1.4478 +  size_t numDirtyCards, cumNumDirtyCards;
  1.4479 +  HeapWord *nextAddr, *lastAddr;
  1.4480 +  for (cumNumDirtyCards = numDirtyCards = 0,
  1.4481 +       nextAddr = lastAddr = startAddr;
  1.4482 +       nextAddr < endAddr;
  1.4483 +       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  1.4484 +
  1.4485 +    ResourceMark rm;
  1.4486 +    HandleMark   hm;
  1.4487 +
  1.4488 +    MemRegion dirtyRegion;
  1.4489 +    {
  1.4490 +      stopTimer();
  1.4491 +      CMSTokenSync ts(true);
  1.4492 +      startTimer();
  1.4493 +      sample_eden();
  1.4494 +      // Get dirty region starting at nextOffset (inclusive),
  1.4495 +      // simultaneously clearing it.
  1.4496 +      dirtyRegion =
  1.4497 +        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  1.4498 +      assert(dirtyRegion.start() >= nextAddr,
  1.4499 +             "returned region inconsistent?");
  1.4500 +    }
  1.4501 +    // Remember where the next search should begin.
  1.4502 +    // The returned region (if non-empty) is a right open interval,
  1.4503 +    // so lastOffset is obtained from the right end of that
  1.4504 +    // interval.
  1.4505 +    lastAddr = dirtyRegion.end();
  1.4506 +    // Should do something more transparent and less hacky XXX
  1.4507 +    numDirtyCards =
  1.4508 +      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  1.4509 +
  1.4510 +    // We'll scan the cards in the dirty region (with periodic
  1.4511 +    // yields for foreground GC as needed).
  1.4512 +    if (!dirtyRegion.is_empty()) {
  1.4513 +      assert(numDirtyCards > 0, "consistency check");
  1.4514 +      HeapWord* stop_point = NULL;
  1.4515 +      {
  1.4516 +        stopTimer();
  1.4517 +        CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  1.4518 +                                 bitMapLock());
  1.4519 +        startTimer();
  1.4520 +        verify_work_stacks_empty();
  1.4521 +        verify_overflow_empty();
  1.4522 +        sample_eden();
  1.4523 +        stop_point =
  1.4524 +          gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  1.4525 +      }
  1.4526 +      if (stop_point != NULL) {
  1.4527 +        // The careful iteration stopped early either because it found an
  1.4528 +        // uninitialized object, or because we were in the midst of an
  1.4529 +        // "abortable preclean", which should now be aborted. Redirty
  1.4530 +        // the bits corresponding to the partially-scanned or unscanned
  1.4531 +        // cards. We'll either restart at the next block boundary or
  1.4532 +        // abort the preclean.
  1.4533 +        assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  1.4534 +               (_collectorState == AbortablePreclean && should_abort_preclean()),
  1.4535 +               "Unparsable objects should only be in perm gen.");
  1.4536 +
  1.4537 +        stopTimer();
  1.4538 +        CMSTokenSyncWithLocks ts(true, bitMapLock());
  1.4539 +        startTimer();
  1.4540 +        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  1.4541 +        if (should_abort_preclean()) {
  1.4542 +          break; // out of preclean loop
  1.4543 +        } else {
  1.4544 +          // Compute the next address at which preclean should pick up;
  1.4545 +          // might need bitMapLock in order to read P-bits.
  1.4546 +          lastAddr = next_card_start_after_block(stop_point);
  1.4547 +        }
  1.4548 +      }
  1.4549 +    } else {
  1.4550 +      assert(lastAddr == endAddr, "consistency check");
  1.4551 +      assert(numDirtyCards == 0, "consistency check");
  1.4552 +      break;
  1.4553 +    }
  1.4554 +  }
  1.4555 +  verify_work_stacks_empty();
  1.4556 +  verify_overflow_empty();
  1.4557 +  return cumNumDirtyCards;
  1.4558 +}
  1.4559 +
  1.4560 +// NOTE: preclean_mod_union_table() above and preclean_card_table()
  1.4561 +// below are largely identical; if you need to modify
  1.4562 +// one of these methods, please check the other method too.
  1.4563 +
  1.4564 +size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  1.4565 +  ScanMarkedObjectsAgainCarefullyClosure* cl) {
  1.4566 +  // strategy: it's similar to precleamModUnionTable above, in that
  1.4567 +  // we accumulate contiguous ranges of dirty cards, mark these cards
  1.4568 +  // precleaned, then scan the region covered by these cards.
  1.4569 +  HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  1.4570 +  HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  1.4571 +
  1.4572 +  cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  1.4573 +
  1.4574 +  size_t numDirtyCards, cumNumDirtyCards;
  1.4575 +  HeapWord *lastAddr, *nextAddr;
  1.4576 +
  1.4577 +  for (cumNumDirtyCards = numDirtyCards = 0,
  1.4578 +       nextAddr = lastAddr = startAddr;
  1.4579 +       nextAddr < endAddr;
  1.4580 +       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  1.4581 +
  1.4582 +    ResourceMark rm;
  1.4583 +    HandleMark   hm;
  1.4584 +
  1.4585 +    MemRegion dirtyRegion;
  1.4586 +    {
  1.4587 +      // See comments in "Precleaning notes" above on why we
  1.4588 +      // do this locking. XXX Could the locking overheads be
  1.4589 +      // too high when dirty cards are sparse? [I don't think so.]
  1.4590 +      stopTimer();
  1.4591 +      CMSTokenSync x(true); // is cms thread
  1.4592 +      startTimer();
  1.4593 +      sample_eden();
  1.4594 +      // Get and clear dirty region from card table
  1.4595 +      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_preclean(
  1.4596 +                                    MemRegion(nextAddr, endAddr));
  1.4597 +      assert(dirtyRegion.start() >= nextAddr,
  1.4598 +             "returned region inconsistent?");
  1.4599 +    }
  1.4600 +    lastAddr = dirtyRegion.end();
  1.4601 +    numDirtyCards =
  1.4602 +      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  1.4603 +
  1.4604 +    if (!dirtyRegion.is_empty()) {
  1.4605 +      stopTimer();
  1.4606 +      CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  1.4607 +      startTimer();
  1.4608 +      sample_eden();
  1.4609 +      verify_work_stacks_empty();
  1.4610 +      verify_overflow_empty();
  1.4611 +      HeapWord* stop_point =
  1.4612 +        gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  1.4613 +      if (stop_point != NULL) {
  1.4614 +        // The careful iteration stopped early because it found an
  1.4615 +        // uninitialized object.  Redirty the bits corresponding to the
  1.4616 +        // partially-scanned or unscanned cards, and start again at the
  1.4617 +        // next block boundary.
  1.4618 +        assert(CMSPermGenPrecleaningEnabled ||
  1.4619 +               (_collectorState == AbortablePreclean && should_abort_preclean()),
  1.4620 +               "Unparsable objects should only be in perm gen.");
  1.4621 +        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  1.4622 +        if (should_abort_preclean()) {
  1.4623 +          break; // out of preclean loop
  1.4624 +        } else {
  1.4625 +          // Compute the next address at which preclean should pick up.
  1.4626 +          lastAddr = next_card_start_after_block(stop_point);
  1.4627 +        }
  1.4628 +      }
  1.4629 +    } else {
  1.4630 +      break;
  1.4631 +    }
  1.4632 +  }
  1.4633 +  verify_work_stacks_empty();
  1.4634 +  verify_overflow_empty();
  1.4635 +  return cumNumDirtyCards;
  1.4636 +}
  1.4637 +
  1.4638 +void CMSCollector::checkpointRootsFinal(bool asynch,
  1.4639 +  bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  1.4640 +  assert(_collectorState == FinalMarking, "incorrect state transition?");
  1.4641 +  check_correct_thread_executing();
  1.4642 +  // world is stopped at this checkpoint
  1.4643 +  assert(SafepointSynchronize::is_at_safepoint(),
  1.4644 +         "world should be stopped");
  1.4645 +  verify_work_stacks_empty();
  1.4646 +  verify_overflow_empty();
  1.4647 +
  1.4648 +  SpecializationStats::clear();
  1.4649 +  if (PrintGCDetails) {
  1.4650 +    gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  1.4651 +                        _young_gen->used() / K,
  1.4652 +                        _young_gen->capacity() / K);
  1.4653 +  }
  1.4654 +  if (asynch) {
  1.4655 +    if (CMSScavengeBeforeRemark) {
  1.4656 +      GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.4657 +      // Temporarily set flag to false, GCH->do_collection will
  1.4658 +      // expect it to be false and set to true
  1.4659 +      FlagSetting fl(gch->_is_gc_active, false);
  1.4660 +      NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  1.4661 +        PrintGCDetails && Verbose, true, gclog_or_tty);)
  1.4662 +      int level = _cmsGen->level() - 1;
  1.4663 +      if (level >= 0) {
  1.4664 +        gch->do_collection(true,        // full (i.e. force, see below)
  1.4665 +                           false,       // !clear_all_soft_refs
  1.4666 +                           0,           // size
  1.4667 +                           false,       // is_tlab
  1.4668 +                           level        // max_level
  1.4669 +                          );
  1.4670 +      }
  1.4671 +    }
  1.4672 +    FreelistLocker x(this);
  1.4673 +    MutexLockerEx y(bitMapLock(),
  1.4674 +                    Mutex::_no_safepoint_check_flag);
  1.4675 +    assert(!init_mark_was_synchronous, "but that's impossible!");
  1.4676 +    checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  1.4677 +  } else {
  1.4678 +    // already have all the locks
  1.4679 +    checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  1.4680 +                             init_mark_was_synchronous);
  1.4681 +  }
  1.4682 +  verify_work_stacks_empty();
  1.4683 +  verify_overflow_empty();
  1.4684 +  SpecializationStats::print();
  1.4685 +}
  1.4686 +
  1.4687 +void CMSCollector::checkpointRootsFinalWork(bool asynch,
  1.4688 +  bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  1.4689 +
  1.4690 +  NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  1.4691 +
  1.4692 +  assert(haveFreelistLocks(), "must have free list locks");
  1.4693 +  assert_lock_strong(bitMapLock());
  1.4694 +
  1.4695 +  if (UseAdaptiveSizePolicy) {
  1.4696 +    size_policy()->checkpoint_roots_final_begin();
  1.4697 +  }
  1.4698 +
  1.4699 +  ResourceMark rm;
  1.4700 +  HandleMark   hm;
  1.4701 +
  1.4702 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.4703 +
  1.4704 +  if (cms_should_unload_classes()) {
  1.4705 +    CodeCache::gc_prologue();
  1.4706 +  }
  1.4707 +  assert(haveFreelistLocks(), "must have free list locks");
  1.4708 +  assert_lock_strong(bitMapLock());
  1.4709 +
  1.4710 +  if (!init_mark_was_synchronous) {
  1.4711 +    // We might assume that we need not fill TLAB's when
  1.4712 +    // CMSScavengeBeforeRemark is set, because we may have just done
  1.4713 +    // a scavenge which would have filled all TLAB's -- and besides
  1.4714 +    // Eden would be empty. This however may not always be the case --
  1.4715 +    // for instance although we asked for a scavenge, it may not have
  1.4716 +    // happened because of a JNI critical section. We probably need
  1.4717 +    // a policy for deciding whether we can in that case wait until
  1.4718 +    // the critical section releases and then do the remark following
  1.4719 +    // the scavenge, and skip it here. In the absence of that policy,
  1.4720 +    // or of an indication of whether the scavenge did indeed occur,
  1.4721 +    // we cannot rely on TLAB's having been filled and must do
  1.4722 +    // so here just in case a scavenge did not happen.
  1.4723 +    gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  1.4724 +    // Update the saved marks which may affect the root scans.
  1.4725 +    gch->save_marks();
  1.4726 +
  1.4727 +    {
  1.4728 +      COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  1.4729 +
  1.4730 +      // Note on the role of the mod union table:
  1.4731 +      // Since the marker in "markFromRoots" marks concurrently with
  1.4732 +      // mutators, it is possible for some reachable objects not to have been
  1.4733 +      // scanned. For instance, an only reference to an object A was
  1.4734 +      // placed in object B after the marker scanned B. Unless B is rescanned,
  1.4735 +      // A would be collected. Such updates to references in marked objects
  1.4736 +      // are detected via the mod union table which is the set of all cards
  1.4737 +      // dirtied since the first checkpoint in this GC cycle and prior to
  1.4738 +      // the most recent young generation GC, minus those cleaned up by the
  1.4739 +      // concurrent precleaning.
  1.4740 +      if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  1.4741 +        TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  1.4742 +        do_remark_parallel();
  1.4743 +      } else {
  1.4744 +        TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  1.4745 +                    gclog_or_tty);
  1.4746 +        do_remark_non_parallel();
  1.4747 +      }
  1.4748 +    }
  1.4749 +  } else {
  1.4750 +    assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  1.4751 +    // The initial mark was stop-world, so there's no rescanning to
  1.4752 +    // do; go straight on to the next step below.
  1.4753 +  }
  1.4754 +  verify_work_stacks_empty();
  1.4755 +  verify_overflow_empty();
  1.4756 +
  1.4757 +  {
  1.4758 +    NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  1.4759 +    refProcessingWork(asynch, clear_all_soft_refs);
  1.4760 +  }
  1.4761 +  verify_work_stacks_empty();
  1.4762 +  verify_overflow_empty();
  1.4763 +
  1.4764 +  if (cms_should_unload_classes()) {
  1.4765 +    CodeCache::gc_epilogue();
  1.4766 +  }
  1.4767 +
  1.4768 +  // If we encountered any (marking stack / work queue) overflow
  1.4769 +  // events during the current CMS cycle, take appropriate
  1.4770 +  // remedial measures, where possible, so as to try and avoid
  1.4771 +  // recurrence of that condition.
  1.4772 +  assert(_markStack.isEmpty(), "No grey objects");
  1.4773 +  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  1.4774 +                     _ser_kac_ovflw;
  1.4775 +  if (ser_ovflw > 0) {
  1.4776 +    if (PrintCMSStatistics != 0) {
  1.4777 +      gclog_or_tty->print_cr("Marking stack overflow (benign) "
  1.4778 +        "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  1.4779 +        _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  1.4780 +        _ser_kac_ovflw);
  1.4781 +    }
  1.4782 +    _markStack.expand();
  1.4783 +    _ser_pmc_remark_ovflw = 0;
  1.4784 +    _ser_pmc_preclean_ovflw = 0;
  1.4785 +    _ser_kac_ovflw = 0;
  1.4786 +  }
  1.4787 +  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  1.4788 +    if (PrintCMSStatistics != 0) {
  1.4789 +      gclog_or_tty->print_cr("Work queue overflow (benign) "
  1.4790 +        "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  1.4791 +        _par_pmc_remark_ovflw, _par_kac_ovflw);
  1.4792 +    }
  1.4793 +    _par_pmc_remark_ovflw = 0;
  1.4794 +    _par_kac_ovflw = 0;
  1.4795 +  }
  1.4796 +  if (PrintCMSStatistics != 0) {
  1.4797 +     if (_markStack._hit_limit > 0) {
  1.4798 +       gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  1.4799 +                              _markStack._hit_limit);
  1.4800 +     }
  1.4801 +     if (_markStack._failed_double > 0) {
  1.4802 +       gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  1.4803 +                              " current capacity "SIZE_FORMAT,
  1.4804 +                              _markStack._failed_double,
  1.4805 +                              _markStack.capacity());
  1.4806 +     }
  1.4807 +  }
  1.4808 +  _markStack._hit_limit = 0;
  1.4809 +  _markStack._failed_double = 0;
  1.4810 +
  1.4811 +  if ((VerifyAfterGC || VerifyDuringGC) &&
  1.4812 +      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.4813 +    verify_after_remark();
  1.4814 +  }
  1.4815 +
  1.4816 +  // Change under the freelistLocks.
  1.4817 +  _collectorState = Sweeping;
  1.4818 +  // Call isAllClear() under bitMapLock
  1.4819 +  assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  1.4820 +    " final marking");
  1.4821 +  if (UseAdaptiveSizePolicy) {
  1.4822 +    size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  1.4823 +  }
  1.4824 +}
  1.4825 +
  1.4826 +// Parallel remark task
  1.4827 +class CMSParRemarkTask: public AbstractGangTask {
  1.4828 +  CMSCollector* _collector;
  1.4829 +  WorkGang*     _workers;
  1.4830 +  int           _n_workers;
  1.4831 +  CompactibleFreeListSpace* _cms_space;
  1.4832 +  CompactibleFreeListSpace* _perm_space;
  1.4833 +
  1.4834 +  // The per-thread work queues, available here for stealing.
  1.4835 +  OopTaskQueueSet*       _task_queues;
  1.4836 +  ParallelTaskTerminator _term;
  1.4837 +
  1.4838 + public:
  1.4839 +  CMSParRemarkTask(CMSCollector* collector,
  1.4840 +                   CompactibleFreeListSpace* cms_space,
  1.4841 +                   CompactibleFreeListSpace* perm_space,
  1.4842 +                   int n_workers, WorkGang* workers,
  1.4843 +                   OopTaskQueueSet* task_queues):
  1.4844 +    AbstractGangTask("Rescan roots and grey objects in parallel"),
  1.4845 +    _collector(collector),
  1.4846 +    _cms_space(cms_space), _perm_space(perm_space),
  1.4847 +    _n_workers(n_workers),
  1.4848 +    _workers(workers),
  1.4849 +    _task_queues(task_queues),
  1.4850 +    _term(workers->total_workers(), task_queues) { }
  1.4851 +
  1.4852 +  OopTaskQueueSet* task_queues() { return _task_queues; }
  1.4853 +
  1.4854 +  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  1.4855 +
  1.4856 +  ParallelTaskTerminator* terminator() { return &_term; }
  1.4857 +
  1.4858 +  void work(int i);
  1.4859 +
  1.4860 + private:
  1.4861 +  // Work method in support of parallel rescan ... of young gen spaces
  1.4862 +  void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  1.4863 +                             ContiguousSpace* space,
  1.4864 +                             HeapWord** chunk_array, size_t chunk_top);
  1.4865 +
  1.4866 +  // ... of  dirty cards in old space
  1.4867 +  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  1.4868 +                                  Par_MarkRefsIntoAndScanClosure* cl);
  1.4869 +
  1.4870 +  // ... work stealing for the above
  1.4871 +  void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  1.4872 +};
  1.4873 +
  1.4874 +void CMSParRemarkTask::work(int i) {
  1.4875 +  elapsedTimer _timer;
  1.4876 +  ResourceMark rm;
  1.4877 +  HandleMark   hm;
  1.4878 +
  1.4879 +  // ---------- rescan from roots --------------
  1.4880 +  _timer.start();
  1.4881 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.4882 +  Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  1.4883 +    _collector->_span, _collector->ref_processor(),
  1.4884 +    &(_collector->_markBitMap),
  1.4885 +    work_queue(i), &(_collector->_revisitStack));
  1.4886 +
  1.4887 +  // Rescan young gen roots first since these are likely
  1.4888 +  // coarsely partitioned and may, on that account, constitute
  1.4889 +  // the critical path; thus, it's best to start off that
  1.4890 +  // work first.
  1.4891 +  // ---------- young gen roots --------------
  1.4892 +  {
  1.4893 +    DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  1.4894 +    EdenSpace* eden_space = dng->eden();
  1.4895 +    ContiguousSpace* from_space = dng->from();
  1.4896 +    ContiguousSpace* to_space   = dng->to();
  1.4897 +
  1.4898 +    HeapWord** eca = _collector->_eden_chunk_array;
  1.4899 +    size_t     ect = _collector->_eden_chunk_index;
  1.4900 +    HeapWord** sca = _collector->_survivor_chunk_array;
  1.4901 +    size_t     sct = _collector->_survivor_chunk_index;
  1.4902 +
  1.4903 +    assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  1.4904 +    assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  1.4905 +
  1.4906 +    do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  1.4907 +    do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  1.4908 +    do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  1.4909 +
  1.4910 +    _timer.stop();
  1.4911 +    if (PrintCMSStatistics != 0) {
  1.4912 +      gclog_or_tty->print_cr(
  1.4913 +        "Finished young gen rescan work in %dth thread: %3.3f sec",
  1.4914 +        i, _timer.seconds());
  1.4915 +    }
  1.4916 +  }
  1.4917 +
  1.4918 +  // ---------- remaining roots --------------
  1.4919 +  _timer.reset();
  1.4920 +  _timer.start();
  1.4921 +  gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  1.4922 +                                false,     // yg was scanned above
  1.4923 +                                true,      // collecting perm gen
  1.4924 +                                SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  1.4925 +                                NULL, &par_mrias_cl);
  1.4926 +  _timer.stop();
  1.4927 +  if (PrintCMSStatistics != 0) {
  1.4928 +    gclog_or_tty->print_cr(
  1.4929 +      "Finished remaining root rescan work in %dth thread: %3.3f sec",
  1.4930 +      i, _timer.seconds());
  1.4931 +  }
  1.4932 +
  1.4933 +  // ---------- rescan dirty cards ------------
  1.4934 +  _timer.reset();
  1.4935 +  _timer.start();
  1.4936 +
  1.4937 +  // Do the rescan tasks for each of the two spaces
  1.4938 +  // (cms_space and perm_space) in turn.
  1.4939 +  do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  1.4940 +  do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  1.4941 +  _timer.stop();
  1.4942 +  if (PrintCMSStatistics != 0) {
  1.4943 +    gclog_or_tty->print_cr(
  1.4944 +      "Finished dirty card rescan work in %dth thread: %3.3f sec",
  1.4945 +      i, _timer.seconds());
  1.4946 +  }
  1.4947 +
  1.4948 +  // ---------- steal work from other threads ...
  1.4949 +  // ---------- ... and drain overflow list.
  1.4950 +  _timer.reset();
  1.4951 +  _timer.start();
  1.4952 +  do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  1.4953 +  _timer.stop();
  1.4954 +  if (PrintCMSStatistics != 0) {
  1.4955 +    gclog_or_tty->print_cr(
  1.4956 +      "Finished work stealing in %dth thread: %3.3f sec",
  1.4957 +      i, _timer.seconds());
  1.4958 +  }
  1.4959 +}
  1.4960 +
  1.4961 +void
  1.4962 +CMSParRemarkTask::do_young_space_rescan(int i,
  1.4963 +  Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  1.4964 +  HeapWord** chunk_array, size_t chunk_top) {
  1.4965 +  // Until all tasks completed:
  1.4966 +  // . claim an unclaimed task
  1.4967 +  // . compute region boundaries corresponding to task claimed
  1.4968 +  //   using chunk_array
  1.4969 +  // . par_oop_iterate(cl) over that region
  1.4970 +
  1.4971 +  ResourceMark rm;
  1.4972 +  HandleMark   hm;
  1.4973 +
  1.4974 +  SequentialSubTasksDone* pst = space->par_seq_tasks();
  1.4975 +  assert(pst->valid(), "Uninitialized use?");
  1.4976 +
  1.4977 +  int nth_task = 0;
  1.4978 +  int n_tasks  = pst->n_tasks();
  1.4979 +
  1.4980 +  HeapWord *start, *end;
  1.4981 +  while (!pst->is_task_claimed(/* reference */ nth_task)) {
  1.4982 +    // We claimed task # nth_task; compute its boundaries.
  1.4983 +    if (chunk_top == 0) {  // no samples were taken
  1.4984 +      assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  1.4985 +      start = space->bottom();
  1.4986 +      end   = space->top();
  1.4987 +    } else if (nth_task == 0) {
  1.4988 +      start = space->bottom();
  1.4989 +      end   = chunk_array[nth_task];
  1.4990 +    } else if (nth_task < (jint)chunk_top) {
  1.4991 +      assert(nth_task >= 1, "Control point invariant");
  1.4992 +      start = chunk_array[nth_task - 1];
  1.4993 +      end   = chunk_array[nth_task];
  1.4994 +    } else {
  1.4995 +      assert(nth_task == (jint)chunk_top, "Control point invariant");
  1.4996 +      start = chunk_array[chunk_top - 1];
  1.4997 +      end   = space->top();
  1.4998 +    }
  1.4999 +    MemRegion mr(start, end);
  1.5000 +    // Verify that mr is in space
  1.5001 +    assert(mr.is_empty() || space->used_region().contains(mr),
  1.5002 +           "Should be in space");
  1.5003 +    // Verify that "start" is an object boundary
  1.5004 +    assert(mr.is_empty() || oop(mr.start())->is_oop(),
  1.5005 +           "Should be an oop");
  1.5006 +    space->par_oop_iterate(mr, cl);
  1.5007 +  }
  1.5008 +  pst->all_tasks_completed();
  1.5009 +}
  1.5010 +
  1.5011 +void
  1.5012 +CMSParRemarkTask::do_dirty_card_rescan_tasks(
  1.5013 +  CompactibleFreeListSpace* sp, int i,
  1.5014 +  Par_MarkRefsIntoAndScanClosure* cl) {
  1.5015 +  // Until all tasks completed:
  1.5016 +  // . claim an unclaimed task
  1.5017 +  // . compute region boundaries corresponding to task claimed
  1.5018 +  // . transfer dirty bits ct->mut for that region
  1.5019 +  // . apply rescanclosure to dirty mut bits for that region
  1.5020 +
  1.5021 +  ResourceMark rm;
  1.5022 +  HandleMark   hm;
  1.5023 +
  1.5024 +  OopTaskQueue* work_q = work_queue(i);
  1.5025 +  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  1.5026 +  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  1.5027 +  // CAUTION: This closure has state that persists across calls to
  1.5028 +  // the work method dirty_range_iterate_clear() in that it has
  1.5029 +  // imbedded in it a (subtype of) UpwardsObjectClosure. The
  1.5030 +  // use of that state in the imbedded UpwardsObjectClosure instance
  1.5031 +  // assumes that the cards are always iterated (even if in parallel
  1.5032 +  // by several threads) in monotonically increasing order per each
  1.5033 +  // thread. This is true of the implementation below which picks
  1.5034 +  // card ranges (chunks) in monotonically increasing order globally
  1.5035 +  // and, a-fortiori, in monotonically increasing order per thread
  1.5036 +  // (the latter order being a subsequence of the former).
  1.5037 +  // If the work code below is ever reorganized into a more chaotic
  1.5038 +  // work-partitioning form than the current "sequential tasks"
  1.5039 +  // paradigm, the use of that persistent state will have to be
  1.5040 +  // revisited and modified appropriately. See also related
  1.5041 +  // bug 4756801 work on which should examine this code to make
  1.5042 +  // sure that the changes there do not run counter to the
  1.5043 +  // assumptions made here and necessary for correctness and
  1.5044 +  // efficiency. Note also that this code might yield inefficient
  1.5045 +  // behaviour in the case of very large objects that span one or
  1.5046 +  // more work chunks. Such objects would potentially be scanned
  1.5047 +  // several times redundantly. Work on 4756801 should try and
  1.5048 +  // address that performance anomaly if at all possible. XXX
  1.5049 +  MemRegion  full_span  = _collector->_span;
  1.5050 +  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  1.5051 +  CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  1.5052 +  MarkFromDirtyCardsClosure
  1.5053 +    greyRescanClosure(_collector, full_span, // entire span of interest
  1.5054 +                      sp, bm, work_q, rs, cl);
  1.5055 +
  1.5056 +  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  1.5057 +  assert(pst->valid(), "Uninitialized use?");
  1.5058 +  int nth_task = 0;
  1.5059 +  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  1.5060 +  MemRegion span = sp->used_region();
  1.5061 +  HeapWord* start_addr = span.start();
  1.5062 +  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  1.5063 +                                           alignment);
  1.5064 +  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  1.5065 +  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  1.5066 +         start_addr, "Check alignment");
  1.5067 +  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  1.5068 +         chunk_size, "Check alignment");
  1.5069 +
  1.5070 +  while (!pst->is_task_claimed(/* reference */ nth_task)) {
  1.5071 +    // Having claimed the nth_task, compute corresponding mem-region,
  1.5072 +    // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  1.5073 +    // The alignment restriction ensures that we do not need any
  1.5074 +    // synchronization with other gang-workers while setting or
  1.5075 +    // clearing bits in thus chunk of the MUT.
  1.5076 +    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  1.5077 +                                    start_addr + (nth_task+1)*chunk_size);
  1.5078 +    // The last chunk's end might be way beyond end of the
  1.5079 +    // used region. In that case pull back appropriately.
  1.5080 +    if (this_span.end() > end_addr) {
  1.5081 +      this_span.set_end(end_addr);
  1.5082 +      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  1.5083 +    }
  1.5084 +    // Iterate over the dirty cards covering this chunk, marking them
  1.5085 +    // precleaned, and setting the corresponding bits in the mod union
  1.5086 +    // table. Since we have been careful to partition at Card and MUT-word
  1.5087 +    // boundaries no synchronization is needed between parallel threads.
  1.5088 +    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  1.5089 +                                                 &modUnionClosure);
  1.5090 +
  1.5091 +    // Having transferred these marks into the modUnionTable,
  1.5092 +    // rescan the marked objects on the dirty cards in the modUnionTable.
  1.5093 +    // Even if this is at a synchronous collection, the initial marking
  1.5094 +    // may have been done during an asynchronous collection so there
  1.5095 +    // may be dirty bits in the mod-union table.
  1.5096 +    _collector->_modUnionTable.dirty_range_iterate_clear(
  1.5097 +                  this_span, &greyRescanClosure);
  1.5098 +    _collector->_modUnionTable.verifyNoOneBitsInRange(
  1.5099 +                                 this_span.start(),
  1.5100 +                                 this_span.end());
  1.5101 +  }
  1.5102 +  pst->all_tasks_completed();  // declare that i am done
  1.5103 +}
  1.5104 +
  1.5105 +// . see if we can share work_queues with ParNew? XXX
  1.5106 +void
  1.5107 +CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  1.5108 +                                int* seed) {
  1.5109 +  OopTaskQueue* work_q = work_queue(i);
  1.5110 +  NOT_PRODUCT(int num_steals = 0;)
  1.5111 +  oop obj_to_scan;
  1.5112 +  CMSBitMap* bm = &(_collector->_markBitMap);
  1.5113 +  size_t num_from_overflow_list =
  1.5114 +           MIN2((size_t)work_q->max_elems()/4,
  1.5115 +                (size_t)ParGCDesiredObjsFromOverflowList);
  1.5116 +
  1.5117 +  while (true) {
  1.5118 +    // Completely finish any left over work from (an) earlier round(s)
  1.5119 +    cl->trim_queue(0);
  1.5120 +    // Now check if there's any work in the overflow list
  1.5121 +    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  1.5122 +                                                work_q)) {
  1.5123 +      // found something in global overflow list;
  1.5124 +      // not yet ready to go stealing work from others.
  1.5125 +      // We'd like to assert(work_q->size() != 0, ...)
  1.5126 +      // because we just took work from the overflow list,
  1.5127 +      // but of course we can't since all of that could have
  1.5128 +      // been already stolen from us.
  1.5129 +      // "He giveth and He taketh away."
  1.5130 +      continue;
  1.5131 +    }
  1.5132 +    // Verify that we have no work before we resort to stealing
  1.5133 +    assert(work_q->size() == 0, "Have work, shouldn't steal");
  1.5134 +    // Try to steal from other queues that have work
  1.5135 +    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  1.5136 +      NOT_PRODUCT(num_steals++;)
  1.5137 +      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  1.5138 +      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  1.5139 +      // Do scanning work
  1.5140 +      obj_to_scan->oop_iterate(cl);
  1.5141 +      // Loop around, finish this work, and try to steal some more
  1.5142 +    } else if (terminator()->offer_termination()) {
  1.5143 +        break;  // nirvana from the infinite cycle
  1.5144 +    }
  1.5145 +  }
  1.5146 +  NOT_PRODUCT(
  1.5147 +    if (PrintCMSStatistics != 0) {
  1.5148 +      gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  1.5149 +    }
  1.5150 +  )
  1.5151 +  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  1.5152 +         "Else our work is not yet done");
  1.5153 +}
  1.5154 +
  1.5155 +// Return a thread-local PLAB recording array, as appropriate.
  1.5156 +void* CMSCollector::get_data_recorder(int thr_num) {
  1.5157 +  if (_survivor_plab_array != NULL &&
  1.5158 +      (CMSPLABRecordAlways ||
  1.5159 +       (_collectorState > Marking && _collectorState < FinalMarking))) {
  1.5160 +    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  1.5161 +    ChunkArray* ca = &_survivor_plab_array[thr_num];
  1.5162 +    ca->reset();   // clear it so that fresh data is recorded
  1.5163 +    return (void*) ca;
  1.5164 +  } else {
  1.5165 +    return NULL;
  1.5166 +  }
  1.5167 +}
  1.5168 +
  1.5169 +// Reset all the thread-local PLAB recording arrays
  1.5170 +void CMSCollector::reset_survivor_plab_arrays() {
  1.5171 +  for (uint i = 0; i < ParallelGCThreads; i++) {
  1.5172 +    _survivor_plab_array[i].reset();
  1.5173 +  }
  1.5174 +}
  1.5175 +
  1.5176 +// Merge the per-thread plab arrays into the global survivor chunk
  1.5177 +// array which will provide the partitioning of the survivor space
  1.5178 +// for CMS rescan.
  1.5179 +void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  1.5180 +  assert(_survivor_plab_array  != NULL, "Error");
  1.5181 +  assert(_survivor_chunk_array != NULL, "Error");
  1.5182 +  assert(_collectorState == FinalMarking, "Error");
  1.5183 +  for (uint j = 0; j < ParallelGCThreads; j++) {
  1.5184 +    _cursor[j] = 0;
  1.5185 +  }
  1.5186 +  HeapWord* top = surv->top();
  1.5187 +  size_t i;
  1.5188 +  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  1.5189 +    HeapWord* min_val = top;          // Higher than any PLAB address
  1.5190 +    uint      min_tid = 0;            // position of min_val this round
  1.5191 +    for (uint j = 0; j < ParallelGCThreads; j++) {
  1.5192 +      ChunkArray* cur_sca = &_survivor_plab_array[j];
  1.5193 +      if (_cursor[j] == cur_sca->end()) {
  1.5194 +        continue;
  1.5195 +      }
  1.5196 +      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  1.5197 +      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  1.5198 +      assert(surv->used_region().contains(cur_val), "Out of bounds value");
  1.5199 +      if (cur_val < min_val) {
  1.5200 +        min_tid = j;
  1.5201 +        min_val = cur_val;
  1.5202 +      } else {
  1.5203 +        assert(cur_val < top, "All recorded addresses should be less");
  1.5204 +      }
  1.5205 +    }
  1.5206 +    // At this point min_val and min_tid are respectively
  1.5207 +    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  1.5208 +    // and the thread (j) that witnesses that address.
  1.5209 +    // We record this address in the _survivor_chunk_array[i]
  1.5210 +    // and increment _cursor[min_tid] prior to the next round i.
  1.5211 +    if (min_val == top) {
  1.5212 +      break;
  1.5213 +    }
  1.5214 +    _survivor_chunk_array[i] = min_val;
  1.5215 +    _cursor[min_tid]++;
  1.5216 +  }
  1.5217 +  // We are all done; record the size of the _survivor_chunk_array
  1.5218 +  _survivor_chunk_index = i; // exclusive: [0, i)
  1.5219 +  if (PrintCMSStatistics > 0) {
  1.5220 +    gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  1.5221 +  }
  1.5222 +  // Verify that we used up all the recorded entries
  1.5223 +  #ifdef ASSERT
  1.5224 +    size_t total = 0;
  1.5225 +    for (uint j = 0; j < ParallelGCThreads; j++) {
  1.5226 +      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  1.5227 +      total += _cursor[j];
  1.5228 +    }
  1.5229 +    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  1.5230 +    // Check that the merged array is in sorted order
  1.5231 +    if (total > 0) {
  1.5232 +      for (size_t i = 0; i < total - 1; i++) {
  1.5233 +        if (PrintCMSStatistics > 0) {
  1.5234 +          gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  1.5235 +                              i, _survivor_chunk_array[i]);
  1.5236 +        }
  1.5237 +        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  1.5238 +               "Not sorted");
  1.5239 +      }
  1.5240 +    }
  1.5241 +  #endif // ASSERT
  1.5242 +}
  1.5243 +
  1.5244 +// Set up the space's par_seq_tasks structure for work claiming
  1.5245 +// for parallel rescan of young gen.
  1.5246 +// See ParRescanTask where this is currently used.
  1.5247 +void
  1.5248 +CMSCollector::
  1.5249 +initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  1.5250 +  assert(n_threads > 0, "Unexpected n_threads argument");
  1.5251 +  DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  1.5252 +
  1.5253 +  // Eden space
  1.5254 +  {
  1.5255 +    SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  1.5256 +    assert(!pst->valid(), "Clobbering existing data?");
  1.5257 +    // Each valid entry in [0, _eden_chunk_index) represents a task.
  1.5258 +    size_t n_tasks = _eden_chunk_index + 1;
  1.5259 +    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  1.5260 +    pst->set_par_threads(n_threads);
  1.5261 +    pst->set_n_tasks((int)n_tasks);
  1.5262 +  }
  1.5263 +
  1.5264 +  // Merge the survivor plab arrays into _survivor_chunk_array
  1.5265 +  if (_survivor_plab_array != NULL) {
  1.5266 +    merge_survivor_plab_arrays(dng->from());
  1.5267 +  } else {
  1.5268 +    assert(_survivor_chunk_index == 0, "Error");
  1.5269 +  }
  1.5270 +
  1.5271 +  // To space
  1.5272 +  {
  1.5273 +    SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  1.5274 +    assert(!pst->valid(), "Clobbering existing data?");
  1.5275 +    pst->set_par_threads(n_threads);
  1.5276 +    pst->set_n_tasks(1);
  1.5277 +    assert(pst->valid(), "Error");
  1.5278 +  }
  1.5279 +
  1.5280 +  // From space
  1.5281 +  {
  1.5282 +    SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  1.5283 +    assert(!pst->valid(), "Clobbering existing data?");
  1.5284 +    size_t n_tasks = _survivor_chunk_index + 1;
  1.5285 +    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  1.5286 +    pst->set_par_threads(n_threads);
  1.5287 +    pst->set_n_tasks((int)n_tasks);
  1.5288 +    assert(pst->valid(), "Error");
  1.5289 +  }
  1.5290 +}
  1.5291 +
  1.5292 +// Parallel version of remark
  1.5293 +void CMSCollector::do_remark_parallel() {
  1.5294 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5295 +  WorkGang* workers = gch->workers();
  1.5296 +  assert(workers != NULL, "Need parallel worker threads.");
  1.5297 +  int n_workers = workers->total_workers();
  1.5298 +  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  1.5299 +  CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  1.5300 +
  1.5301 +  CMSParRemarkTask tsk(this,
  1.5302 +    cms_space, perm_space,
  1.5303 +    n_workers, workers, task_queues());
  1.5304 +
  1.5305 +  // Set up for parallel process_strong_roots work.
  1.5306 +  gch->set_par_threads(n_workers);
  1.5307 +  gch->change_strong_roots_parity();
  1.5308 +  // We won't be iterating over the cards in the card table updating
  1.5309 +  // the younger_gen cards, so we shouldn't call the following else
  1.5310 +  // the verification code as well as subsequent younger_refs_iterate
  1.5311 +  // code would get confused. XXX
  1.5312 +  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  1.5313 +
  1.5314 +  // The young gen rescan work will not be done as part of
  1.5315 +  // process_strong_roots (which currently doesn't knw how to
  1.5316 +  // parallelize such a scan), but rather will be broken up into
  1.5317 +  // a set of parallel tasks (via the sampling that the [abortable]
  1.5318 +  // preclean phase did of EdenSpace, plus the [two] tasks of
  1.5319 +  // scanning the [two] survivor spaces. Further fine-grain
  1.5320 +  // parallelization of the scanning of the survivor spaces
  1.5321 +  // themselves, and of precleaning of the younger gen itself
  1.5322 +  // is deferred to the future.
  1.5323 +  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  1.5324 +
  1.5325 +  // The dirty card rescan work is broken up into a "sequence"
  1.5326 +  // of parallel tasks (per constituent space) that are dynamically
  1.5327 +  // claimed by the parallel threads.
  1.5328 +  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  1.5329 +  perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  1.5330 +
  1.5331 +  // It turns out that even when we're using 1 thread, doing the work in a
  1.5332 +  // separate thread causes wide variance in run times.  We can't help this
  1.5333 +  // in the multi-threaded case, but we special-case n=1 here to get
  1.5334 +  // repeatable measurements of the 1-thread overhead of the parallel code.
  1.5335 +  if (n_workers > 1) {
  1.5336 +    // Make refs discovery MT-safe
  1.5337 +    ReferenceProcessorMTMutator mt(ref_processor(), true);
  1.5338 +    workers->run_task(&tsk);
  1.5339 +  } else {
  1.5340 +    tsk.work(0);
  1.5341 +  }
  1.5342 +  gch->set_par_threads(0);  // 0 ==> non-parallel.
  1.5343 +  // restore, single-threaded for now, any preserved marks
  1.5344 +  // as a result of work_q overflow
  1.5345 +  restore_preserved_marks_if_any();
  1.5346 +}
  1.5347 +
  1.5348 +// Non-parallel version of remark
  1.5349 +void CMSCollector::do_remark_non_parallel() {
  1.5350 +  ResourceMark rm;
  1.5351 +  HandleMark   hm;
  1.5352 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5353 +  MarkRefsIntoAndScanClosure
  1.5354 +    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  1.5355 +             &_markStack, &_revisitStack, this,
  1.5356 +             false /* should_yield */, false /* not precleaning */);
  1.5357 +  MarkFromDirtyCardsClosure
  1.5358 +    markFromDirtyCardsClosure(this, _span,
  1.5359 +                              NULL,  // space is set further below
  1.5360 +                              &_markBitMap, &_markStack, &_revisitStack,
  1.5361 +                              &mrias_cl);
  1.5362 +  {
  1.5363 +    TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  1.5364 +    // Iterate over the dirty cards, marking them precleaned, and
  1.5365 +    // setting the corresponding bits in the mod union table.
  1.5366 +    {
  1.5367 +      ModUnionClosure modUnionClosure(&_modUnionTable);
  1.5368 +      _ct->ct_bs()->dirty_card_iterate(
  1.5369 +                      _cmsGen->used_region(),
  1.5370 +                      &modUnionClosure);
  1.5371 +      _ct->ct_bs()->dirty_card_iterate(
  1.5372 +                      _permGen->used_region(),
  1.5373 +                      &modUnionClosure);
  1.5374 +    }
  1.5375 +    // Having transferred these marks into the modUnionTable, we just need
  1.5376 +    // to rescan the marked objects on the dirty cards in the modUnionTable.
  1.5377 +    // The initial marking may have been done during an asynchronous
  1.5378 +    // collection so there may be dirty bits in the mod-union table.
  1.5379 +    const int alignment =
  1.5380 +      CardTableModRefBS::card_size * BitsPerWord;
  1.5381 +    {
  1.5382 +      // ... First handle dirty cards in CMS gen
  1.5383 +      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  1.5384 +      MemRegion ur = _cmsGen->used_region();
  1.5385 +      HeapWord* lb = ur.start();
  1.5386 +      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  1.5387 +      MemRegion cms_span(lb, ub);
  1.5388 +      _modUnionTable.dirty_range_iterate_clear(cms_span,
  1.5389 +                                               &markFromDirtyCardsClosure);
  1.5390 +      verify_work_stacks_empty();
  1.5391 +      if (PrintCMSStatistics != 0) {
  1.5392 +        gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  1.5393 +          markFromDirtyCardsClosure.num_dirty_cards());
  1.5394 +      }
  1.5395 +    }
  1.5396 +    {
  1.5397 +      // .. and then repeat for dirty cards in perm gen
  1.5398 +      markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  1.5399 +      MemRegion ur = _permGen->used_region();
  1.5400 +      HeapWord* lb = ur.start();
  1.5401 +      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  1.5402 +      MemRegion perm_span(lb, ub);
  1.5403 +      _modUnionTable.dirty_range_iterate_clear(perm_span,
  1.5404 +                                               &markFromDirtyCardsClosure);
  1.5405 +      verify_work_stacks_empty();
  1.5406 +      if (PrintCMSStatistics != 0) {
  1.5407 +        gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  1.5408 +          markFromDirtyCardsClosure.num_dirty_cards());
  1.5409 +      }
  1.5410 +    }
  1.5411 +  }
  1.5412 +  if (VerifyDuringGC &&
  1.5413 +      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  1.5414 +    HandleMark hm;  // Discard invalid handles created during verification
  1.5415 +    Universe::verify(true);
  1.5416 +  }
  1.5417 +  {
  1.5418 +    TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  1.5419 +
  1.5420 +    verify_work_stacks_empty();
  1.5421 +
  1.5422 +    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  1.5423 +    gch->gen_process_strong_roots(_cmsGen->level(),
  1.5424 +                                  true,  // younger gens as roots
  1.5425 +                                  true,  // collecting perm gen
  1.5426 +                                  SharedHeap::ScanningOption(roots_scanning_options()),
  1.5427 +                                  NULL, &mrias_cl);
  1.5428 +  }
  1.5429 +  verify_work_stacks_empty();
  1.5430 +  // Restore evacuated mark words, if any, used for overflow list links
  1.5431 +  if (!CMSOverflowEarlyRestoration) {
  1.5432 +    restore_preserved_marks_if_any();
  1.5433 +  }
  1.5434 +  verify_overflow_empty();
  1.5435 +}
  1.5436 +
  1.5437 +////////////////////////////////////////////////////////
  1.5438 +// Parallel Reference Processing Task Proxy Class
  1.5439 +////////////////////////////////////////////////////////
  1.5440 +class CMSRefProcTaskProxy: public AbstractGangTask {
  1.5441 +  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  1.5442 +  CMSCollector*          _collector;
  1.5443 +  CMSBitMap*             _mark_bit_map;
  1.5444 +  MemRegion              _span;
  1.5445 +  OopTaskQueueSet*       _task_queues;
  1.5446 +  ParallelTaskTerminator _term;
  1.5447 +  ProcessTask&           _task;
  1.5448 +
  1.5449 +public:
  1.5450 +  CMSRefProcTaskProxy(ProcessTask&     task,
  1.5451 +                      CMSCollector*    collector,
  1.5452 +                      const MemRegion& span,
  1.5453 +                      CMSBitMap*       mark_bit_map,
  1.5454 +                      int              total_workers,
  1.5455 +                      OopTaskQueueSet* task_queues):
  1.5456 +    AbstractGangTask("Process referents by policy in parallel"),
  1.5457 +    _task(task),
  1.5458 +    _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  1.5459 +    _task_queues(task_queues),
  1.5460 +    _term(total_workers, task_queues)
  1.5461 +    { }
  1.5462 +
  1.5463 +  OopTaskQueueSet* task_queues() { return _task_queues; }
  1.5464 +
  1.5465 +  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  1.5466 +
  1.5467 +  ParallelTaskTerminator* terminator() { return &_term; }
  1.5468 +
  1.5469 +  void do_work_steal(int i,
  1.5470 +                     CMSParDrainMarkingStackClosure* drain,
  1.5471 +                     CMSParKeepAliveClosure* keep_alive,
  1.5472 +                     int* seed);
  1.5473 +
  1.5474 +  virtual void work(int i);
  1.5475 +};
  1.5476 +
  1.5477 +void CMSRefProcTaskProxy::work(int i) {
  1.5478 +  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  1.5479 +                                        _mark_bit_map, work_queue(i));
  1.5480 +  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  1.5481 +                                                 _mark_bit_map, work_queue(i));
  1.5482 +  CMSIsAliveClosure is_alive_closure(_mark_bit_map);
  1.5483 +  _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  1.5484 +  if (_task.marks_oops_alive()) {
  1.5485 +    do_work_steal(i, &par_drain_stack, &par_keep_alive,
  1.5486 +                  _collector->hash_seed(i));
  1.5487 +  }
  1.5488 +  assert(work_queue(i)->size() == 0, "work_queue should be empty");
  1.5489 +  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  1.5490 +}
  1.5491 +
  1.5492 +class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  1.5493 +  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  1.5494 +  EnqueueTask& _task;
  1.5495 +
  1.5496 +public:
  1.5497 +  CMSRefEnqueueTaskProxy(EnqueueTask& task)
  1.5498 +    : AbstractGangTask("Enqueue reference objects in parallel"),
  1.5499 +      _task(task)
  1.5500 +  { }
  1.5501 +
  1.5502 +  virtual void work(int i)
  1.5503 +  {
  1.5504 +    _task.work(i);
  1.5505 +  }
  1.5506 +};
  1.5507 +
  1.5508 +CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  1.5509 +  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  1.5510 +   _collector(collector),
  1.5511 +   _span(span),
  1.5512 +   _bit_map(bit_map),
  1.5513 +   _work_queue(work_queue),
  1.5514 +   _mark_and_push(collector, span, bit_map, work_queue),
  1.5515 +   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  1.5516 +                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  1.5517 +{ }
  1.5518 +
  1.5519 +// . see if we can share work_queues with ParNew? XXX
  1.5520 +void CMSRefProcTaskProxy::do_work_steal(int i,
  1.5521 +  CMSParDrainMarkingStackClosure* drain,
  1.5522 +  CMSParKeepAliveClosure* keep_alive,
  1.5523 +  int* seed) {
  1.5524 +  OopTaskQueue* work_q = work_queue(i);
  1.5525 +  NOT_PRODUCT(int num_steals = 0;)
  1.5526 +  oop obj_to_scan;
  1.5527 +  size_t num_from_overflow_list =
  1.5528 +           MIN2((size_t)work_q->max_elems()/4,
  1.5529 +                (size_t)ParGCDesiredObjsFromOverflowList);
  1.5530 +
  1.5531 +  while (true) {
  1.5532 +    // Completely finish any left over work from (an) earlier round(s)
  1.5533 +    drain->trim_queue(0);
  1.5534 +    // Now check if there's any work in the overflow list
  1.5535 +    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  1.5536 +                                                work_q)) {
  1.5537 +      // Found something in global overflow list;
  1.5538 +      // not yet ready to go stealing work from others.
  1.5539 +      // We'd like to assert(work_q->size() != 0, ...)
  1.5540 +      // because we just took work from the overflow list,
  1.5541 +      // but of course we can't, since all of that might have
  1.5542 +      // been already stolen from us.
  1.5543 +      continue;
  1.5544 +    }
  1.5545 +    // Verify that we have no work before we resort to stealing
  1.5546 +    assert(work_q->size() == 0, "Have work, shouldn't steal");
  1.5547 +    // Try to steal from other queues that have work
  1.5548 +    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  1.5549 +      NOT_PRODUCT(num_steals++;)
  1.5550 +      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  1.5551 +      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  1.5552 +      // Do scanning work
  1.5553 +      obj_to_scan->oop_iterate(keep_alive);
  1.5554 +      // Loop around, finish this work, and try to steal some more
  1.5555 +    } else if (terminator()->offer_termination()) {
  1.5556 +      break;  // nirvana from the infinite cycle
  1.5557 +    }
  1.5558 +  }
  1.5559 +  NOT_PRODUCT(
  1.5560 +    if (PrintCMSStatistics != 0) {
  1.5561 +      gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  1.5562 +    }
  1.5563 +  )
  1.5564 +}
  1.5565 +
  1.5566 +void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  1.5567 +{
  1.5568 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5569 +  WorkGang* workers = gch->workers();
  1.5570 +  assert(workers != NULL, "Need parallel worker threads.");
  1.5571 +  int n_workers = workers->total_workers();
  1.5572 +  CMSRefProcTaskProxy rp_task(task, &_collector,
  1.5573 +                              _collector.ref_processor()->span(),
  1.5574 +                              _collector.markBitMap(),
  1.5575 +                              n_workers, _collector.task_queues());
  1.5576 +  workers->run_task(&rp_task);
  1.5577 +}
  1.5578 +
  1.5579 +void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  1.5580 +{
  1.5581 +
  1.5582 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5583 +  WorkGang* workers = gch->workers();
  1.5584 +  assert(workers != NULL, "Need parallel worker threads.");
  1.5585 +  CMSRefEnqueueTaskProxy enq_task(task);
  1.5586 +  workers->run_task(&enq_task);
  1.5587 +}
  1.5588 +
  1.5589 +void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  1.5590 +
  1.5591 +  ResourceMark rm;
  1.5592 +  HandleMark   hm;
  1.5593 +  ReferencePolicy* soft_ref_policy;
  1.5594 +
  1.5595 +  assert(!ref_processor()->enqueuing_is_done(), "Enqueuing should not be complete");
  1.5596 +  // Process weak references.
  1.5597 +  if (clear_all_soft_refs) {
  1.5598 +    soft_ref_policy = new AlwaysClearPolicy();
  1.5599 +  } else {
  1.5600 +#ifdef COMPILER2
  1.5601 +    soft_ref_policy = new LRUMaxHeapPolicy();
  1.5602 +#else
  1.5603 +    soft_ref_policy = new LRUCurrentHeapPolicy();
  1.5604 +#endif // COMPILER2
  1.5605 +  }
  1.5606 +  verify_work_stacks_empty();
  1.5607 +
  1.5608 +  ReferenceProcessor* rp = ref_processor();
  1.5609 +  assert(rp->span().equals(_span), "Spans should be equal");
  1.5610 +  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  1.5611 +                                          &_markStack);
  1.5612 +  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  1.5613 +                                _span, &_markBitMap, &_markStack,
  1.5614 +                                &cmsKeepAliveClosure);
  1.5615 +  {
  1.5616 +    TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  1.5617 +    if (rp->processing_is_mt()) {
  1.5618 +      CMSRefProcTaskExecutor task_executor(*this);
  1.5619 +      rp->process_discovered_references(soft_ref_policy,
  1.5620 +                                        &_is_alive_closure,
  1.5621 +                                        &cmsKeepAliveClosure,
  1.5622 +                                        &cmsDrainMarkingStackClosure,
  1.5623 +                                        &task_executor);
  1.5624 +    } else {
  1.5625 +      rp->process_discovered_references(soft_ref_policy,
  1.5626 +                                        &_is_alive_closure,
  1.5627 +                                        &cmsKeepAliveClosure,
  1.5628 +                                        &cmsDrainMarkingStackClosure,
  1.5629 +                                        NULL);
  1.5630 +    }
  1.5631 +    verify_work_stacks_empty();
  1.5632 +  }
  1.5633 +
  1.5634 +  if (cms_should_unload_classes()) {
  1.5635 +    {
  1.5636 +      TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  1.5637 +
  1.5638 +      // Follow SystemDictionary roots and unload classes
  1.5639 +      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  1.5640 +
  1.5641 +      // Follow CodeCache roots and unload any methods marked for unloading
  1.5642 +      CodeCache::do_unloading(&_is_alive_closure,
  1.5643 +                              &cmsKeepAliveClosure,
  1.5644 +                              purged_class);
  1.5645 +
  1.5646 +      cmsDrainMarkingStackClosure.do_void();
  1.5647 +      verify_work_stacks_empty();
  1.5648 +
  1.5649 +      // Update subklass/sibling/implementor links in KlassKlass descendants
  1.5650 +      assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  1.5651 +      oop k;
  1.5652 +      while ((k = _revisitStack.pop()) != NULL) {
  1.5653 +        ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  1.5654 +                       &_is_alive_closure,
  1.5655 +                       &cmsKeepAliveClosure);
  1.5656 +      }
  1.5657 +      assert(!ClassUnloading ||
  1.5658 +             (_markStack.isEmpty() && overflow_list_is_empty()),
  1.5659 +             "Should not have found new reachable objects");
  1.5660 +      assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  1.5661 +      cmsDrainMarkingStackClosure.do_void();
  1.5662 +      verify_work_stacks_empty();
  1.5663 +    }
  1.5664 +
  1.5665 +    {
  1.5666 +      TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  1.5667 +      // Now clean up stale oops in SymbolTable and StringTable
  1.5668 +      SymbolTable::unlink(&_is_alive_closure);
  1.5669 +      StringTable::unlink(&_is_alive_closure);
  1.5670 +    }
  1.5671 +  }
  1.5672 +
  1.5673 +  verify_work_stacks_empty();
  1.5674 +  // Restore any preserved marks as a result of mark stack or
  1.5675 +  // work queue overflow
  1.5676 +  restore_preserved_marks_if_any();  // done single-threaded for now
  1.5677 +
  1.5678 +  rp->set_enqueuing_is_done(true);
  1.5679 +  if (rp->processing_is_mt()) {
  1.5680 +    CMSRefProcTaskExecutor task_executor(*this);
  1.5681 +    rp->enqueue_discovered_references(&task_executor);
  1.5682 +  } else {
  1.5683 +    rp->enqueue_discovered_references(NULL);
  1.5684 +  }
  1.5685 +  rp->verify_no_references_recorded();
  1.5686 +  assert(!rp->discovery_enabled(), "should have been disabled");
  1.5687 +
  1.5688 +  // JVMTI object tagging is based on JNI weak refs. If any of these
  1.5689 +  // refs were cleared then JVMTI needs to update its maps and
  1.5690 +  // maybe post ObjectFrees to agents.
  1.5691 +  JvmtiExport::cms_ref_processing_epilogue();
  1.5692 +}
  1.5693 +
  1.5694 +#ifndef PRODUCT
  1.5695 +void CMSCollector::check_correct_thread_executing() {
  1.5696 +  Thread* t = Thread::current();
  1.5697 +  // Only the VM thread or the CMS thread should be here.
  1.5698 +  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  1.5699 +         "Unexpected thread type");
  1.5700 +  // If this is the vm thread, the foreground process
  1.5701 +  // should not be waiting.  Note that _foregroundGCIsActive is
  1.5702 +  // true while the foreground collector is waiting.
  1.5703 +  if (_foregroundGCShouldWait) {
  1.5704 +    // We cannot be the VM thread
  1.5705 +    assert(t->is_ConcurrentGC_thread(),
  1.5706 +           "Should be CMS thread");
  1.5707 +  } else {
  1.5708 +    // We can be the CMS thread only if we are in a stop-world
  1.5709 +    // phase of CMS collection.
  1.5710 +    if (t->is_ConcurrentGC_thread()) {
  1.5711 +      assert(_collectorState == InitialMarking ||
  1.5712 +             _collectorState == FinalMarking,
  1.5713 +             "Should be a stop-world phase");
  1.5714 +      // The CMS thread should be holding the CMS_token.
  1.5715 +      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.5716 +             "Potential interference with concurrently "
  1.5717 +             "executing VM thread");
  1.5718 +    }
  1.5719 +  }
  1.5720 +}
  1.5721 +#endif
  1.5722 +
  1.5723 +void CMSCollector::sweep(bool asynch) {
  1.5724 +  assert(_collectorState == Sweeping, "just checking");
  1.5725 +  check_correct_thread_executing();
  1.5726 +  verify_work_stacks_empty();
  1.5727 +  verify_overflow_empty();
  1.5728 +  incrementSweepCount();
  1.5729 +  _sweep_timer.stop();
  1.5730 +  _sweep_estimate.sample(_sweep_timer.seconds());
  1.5731 +  size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  1.5732 +
  1.5733 +  // PermGen verification support: If perm gen sweeping is disabled in
  1.5734 +  // this cycle, we preserve the perm gen object "deadness" information
  1.5735 +  // in the perm_gen_verify_bit_map. In order to do that we traverse
  1.5736 +  // all blocks in perm gen and mark all dead objects.
  1.5737 +  if (verifying() && !cms_should_unload_classes()) {
  1.5738 +    CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  1.5739 +                             bitMapLock());
  1.5740 +    assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  1.5741 +           "Should have already been allocated");
  1.5742 +    MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  1.5743 +                               markBitMap(), perm_gen_verify_bit_map());
  1.5744 +    _permGen->cmsSpace()->blk_iterate(&mdo);
  1.5745 +  }
  1.5746 +
  1.5747 +  if (asynch) {
  1.5748 +    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.5749 +    CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  1.5750 +    // First sweep the old gen then the perm gen
  1.5751 +    {
  1.5752 +      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  1.5753 +                               bitMapLock());
  1.5754 +      sweepWork(_cmsGen, asynch);
  1.5755 +    }
  1.5756 +
  1.5757 +    // Now repeat for perm gen
  1.5758 +    if (cms_should_unload_classes()) {
  1.5759 +      CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  1.5760 +                             bitMapLock());
  1.5761 +      sweepWork(_permGen, asynch);
  1.5762 +    }
  1.5763 +
  1.5764 +    // Update Universe::_heap_*_at_gc figures.
  1.5765 +    // We need all the free list locks to make the abstract state
  1.5766 +    // transition from Sweeping to Resetting. See detailed note
  1.5767 +    // further below.
  1.5768 +    {
  1.5769 +      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  1.5770 +                               _permGen->freelistLock());
  1.5771 +      // Update heap occupancy information which is used as
  1.5772 +      // input to soft ref clearing policy at the next gc.
  1.5773 +      Universe::update_heap_info_at_gc();
  1.5774 +      _collectorState = Resizing;
  1.5775 +    }
  1.5776 +  } else {
  1.5777 +    // already have needed locks
  1.5778 +    sweepWork(_cmsGen,  asynch);
  1.5779 +
  1.5780 +    if (cms_should_unload_classes()) {
  1.5781 +      sweepWork(_permGen, asynch);
  1.5782 +    }
  1.5783 +    // Update heap occupancy information which is used as
  1.5784 +    // input to soft ref clearing policy at the next gc.
  1.5785 +    Universe::update_heap_info_at_gc();
  1.5786 +    _collectorState = Resizing;
  1.5787 +  }
  1.5788 +  verify_work_stacks_empty();
  1.5789 +  verify_overflow_empty();
  1.5790 +
  1.5791 +  _sweep_timer.reset();
  1.5792 +  _sweep_timer.start();
  1.5793 +
  1.5794 +  update_time_of_last_gc(os::javaTimeMillis());
  1.5795 +
  1.5796 +  // NOTE on abstract state transitions:
  1.5797 +  // Mutators allocate-live and/or mark the mod-union table dirty
  1.5798 +  // based on the state of the collection.  The former is done in
  1.5799 +  // the interval [Marking, Sweeping] and the latter in the interval
  1.5800 +  // [Marking, Sweeping).  Thus the transitions into the Marking state
  1.5801 +  // and out of the Sweeping state must be synchronously visible
  1.5802 +  // globally to the mutators.
  1.5803 +  // The transition into the Marking state happens with the world
  1.5804 +  // stopped so the mutators will globally see it.  Sweeping is
  1.5805 +  // done asynchronously by the background collector so the transition
  1.5806 +  // from the Sweeping state to the Resizing state must be done
  1.5807 +  // under the freelistLock (as is the check for whether to
  1.5808 +  // allocate-live and whether to dirty the mod-union table).
  1.5809 +  assert(_collectorState == Resizing, "Change of collector state to"
  1.5810 +    " Resizing must be done under the freelistLocks (plural)");
  1.5811 +
  1.5812 +  // Now that sweeping has been completed, if the GCH's
  1.5813 +  // incremental_collection_will_fail flag is set, clear it,
  1.5814 +  // thus inviting a younger gen collection to promote into
  1.5815 +  // this generation. If such a promotion may still fail,
  1.5816 +  // the flag will be set again when a young collection is
  1.5817 +  // attempted.
  1.5818 +  // I think the incremental_collection_will_fail flag's use
  1.5819 +  // is specific to a 2 generation collection policy, so i'll
  1.5820 +  // assert that that's the configuration we are operating within.
  1.5821 +  // The use of the flag can and should be generalized appropriately
  1.5822 +  // in the future to deal with a general n-generation system.
  1.5823 +
  1.5824 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5825 +  assert(gch->collector_policy()->is_two_generation_policy(),
  1.5826 +         "Resetting of incremental_collection_will_fail flag"
  1.5827 +         " may be incorrect otherwise");
  1.5828 +  gch->clear_incremental_collection_will_fail();
  1.5829 +  gch->update_full_collections_completed(_collection_count_start);
  1.5830 +}
  1.5831 +
  1.5832 +// FIX ME!!! Looks like this belongs in CFLSpace, with
  1.5833 +// CMSGen merely delegating to it.
  1.5834 +void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  1.5835 +  double nearLargestPercent = 0.999;
  1.5836 +  HeapWord*  minAddr        = _cmsSpace->bottom();
  1.5837 +  HeapWord*  largestAddr    =
  1.5838 +    (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  1.5839 +  if (largestAddr == 0) {
  1.5840 +    // The dictionary appears to be empty.  In this case
  1.5841 +    // try to coalesce at the end of the heap.
  1.5842 +    largestAddr = _cmsSpace->end();
  1.5843 +  }
  1.5844 +  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  1.5845 +  size_t nearLargestOffset =
  1.5846 +    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  1.5847 +  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  1.5848 +}
  1.5849 +
  1.5850 +bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  1.5851 +  return addr >= _cmsSpace->nearLargestChunk();
  1.5852 +}
  1.5853 +
  1.5854 +FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  1.5855 +  return _cmsSpace->find_chunk_at_end();
  1.5856 +}
  1.5857 +
  1.5858 +void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  1.5859 +                                                    bool full) {
  1.5860 +  // The next lower level has been collected.  Gather any statistics
  1.5861 +  // that are of interest at this point.
  1.5862 +  if (!full && (current_level + 1) == level()) {
  1.5863 +    // Gather statistics on the young generation collection.
  1.5864 +    collector()->stats().record_gc0_end(used());
  1.5865 +  }
  1.5866 +}
  1.5867 +
  1.5868 +CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  1.5869 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5870 +  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  1.5871 +    "Wrong type of heap");
  1.5872 +  CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  1.5873 +    gch->gen_policy()->size_policy();
  1.5874 +  assert(sp->is_gc_cms_adaptive_size_policy(),
  1.5875 +    "Wrong type of size policy");
  1.5876 +  return sp;
  1.5877 +}
  1.5878 +
  1.5879 +void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  1.5880 +  if (PrintGCDetails && Verbose) {
  1.5881 +    gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  1.5882 +  }
  1.5883 +  _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  1.5884 +  _debug_collection_type =
  1.5885 +    (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  1.5886 +  if (PrintGCDetails && Verbose) {
  1.5887 +    gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  1.5888 +  }
  1.5889 +}
  1.5890 +
  1.5891 +void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  1.5892 +  bool asynch) {
  1.5893 +  // We iterate over the space(s) underlying this generation,
  1.5894 +  // checking the mark bit map to see if the bits corresponding
  1.5895 +  // to specific blocks are marked or not. Blocks that are
  1.5896 +  // marked are live and are not swept up. All remaining blocks
  1.5897 +  // are swept up, with coalescing on-the-fly as we sweep up
  1.5898 +  // contiguous free and/or garbage blocks:
  1.5899 +  // We need to ensure that the sweeper synchronizes with allocators
  1.5900 +  // and stop-the-world collectors. In particular, the following
  1.5901 +  // locks are used:
  1.5902 +  // . CMS token: if this is held, a stop the world collection cannot occur
  1.5903 +  // . freelistLock: if this is held no allocation can occur from this
  1.5904 +  //                 generation by another thread
  1.5905 +  // . bitMapLock: if this is held, no other thread can access or update
  1.5906 +  //
  1.5907 +
  1.5908 +  // Note that we need to hold the freelistLock if we use
  1.5909 +  // block iterate below; else the iterator might go awry if
  1.5910 +  // a mutator (or promotion) causes block contents to change
  1.5911 +  // (for instance if the allocator divvies up a block).
  1.5912 +  // If we hold the free list lock, for all practical purposes
  1.5913 +  // young generation GC's can't occur (they'll usually need to
  1.5914 +  // promote), so we might as well prevent all young generation
  1.5915 +  // GC's while we do a sweeping step. For the same reason, we might
  1.5916 +  // as well take the bit map lock for the entire duration
  1.5917 +
  1.5918 +  // check that we hold the requisite locks
  1.5919 +  assert(have_cms_token(), "Should hold cms token");
  1.5920 +  assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  1.5921 +         || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  1.5922 +        "Should possess CMS token to sweep");
  1.5923 +  assert_lock_strong(gen->freelistLock());
  1.5924 +  assert_lock_strong(bitMapLock());
  1.5925 +
  1.5926 +  assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  1.5927 +  gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1.5928 +                                      _sweep_estimate.padded_average());
  1.5929 +  gen->setNearLargestChunk();
  1.5930 +
  1.5931 +  {
  1.5932 +    SweepClosure sweepClosure(this, gen, &_markBitMap,
  1.5933 +                            CMSYield && asynch);
  1.5934 +    gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  1.5935 +    // We need to free-up/coalesce garbage/blocks from a
  1.5936 +    // co-terminal free run. This is done in the SweepClosure
  1.5937 +    // destructor; so, do not remove this scope, else the
  1.5938 +    // end-of-sweep-census below will be off by a little bit.
  1.5939 +  }
  1.5940 +  gen->cmsSpace()->sweep_completed();
  1.5941 +  gen->cmsSpace()->endSweepFLCensus(sweepCount());
  1.5942 +}
  1.5943 +
  1.5944 +// Reset CMS data structures (for now just the marking bit map)
  1.5945 +// preparatory for the next cycle.
  1.5946 +void CMSCollector::reset(bool asynch) {
  1.5947 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.5948 +  CMSAdaptiveSizePolicy* sp = size_policy();
  1.5949 +  AdaptiveSizePolicyOutput(sp, gch->total_collections());
  1.5950 +  if (asynch) {
  1.5951 +    CMSTokenSyncWithLocks ts(true, bitMapLock());
  1.5952 +
  1.5953 +    // If the state is not "Resetting", the foreground  thread
  1.5954 +    // has done a collection and the resetting.
  1.5955 +    if (_collectorState != Resetting) {
  1.5956 +      assert(_collectorState == Idling, "The state should only change"
  1.5957 +        " because the foreground collector has finished the collection");
  1.5958 +      return;
  1.5959 +    }
  1.5960 +
  1.5961 +    // Clear the mark bitmap (no grey objects to start with)
  1.5962 +    // for the next cycle.
  1.5963 +    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.5964 +    CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  1.5965 +
  1.5966 +    HeapWord* curAddr = _markBitMap.startWord();
  1.5967 +    while (curAddr < _markBitMap.endWord()) {
  1.5968 +      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  1.5969 +      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  1.5970 +      _markBitMap.clear_large_range(chunk);
  1.5971 +      if (ConcurrentMarkSweepThread::should_yield() &&
  1.5972 +          !foregroundGCIsActive() &&
  1.5973 +          CMSYield) {
  1.5974 +        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.5975 +               "CMS thread should hold CMS token");
  1.5976 +        assert_lock_strong(bitMapLock());
  1.5977 +        bitMapLock()->unlock();
  1.5978 +        ConcurrentMarkSweepThread::desynchronize(true);
  1.5979 +        ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.5980 +        stopTimer();
  1.5981 +        if (PrintCMSStatistics != 0) {
  1.5982 +          incrementYields();
  1.5983 +        }
  1.5984 +        icms_wait();
  1.5985 +
  1.5986 +        // See the comment in coordinator_yield()
  1.5987 +        for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.5988 +                        ConcurrentMarkSweepThread::should_yield() &&
  1.5989 +                        !CMSCollector::foregroundGCIsActive(); ++i) {
  1.5990 +          os::sleep(Thread::current(), 1, false);
  1.5991 +          ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.5992 +        }
  1.5993 +
  1.5994 +        ConcurrentMarkSweepThread::synchronize(true);
  1.5995 +        bitMapLock()->lock_without_safepoint_check();
  1.5996 +        startTimer();
  1.5997 +      }
  1.5998 +      curAddr = chunk.end();
  1.5999 +    }
  1.6000 +    _collectorState = Idling;
  1.6001 +  } else {
  1.6002 +    // already have the lock
  1.6003 +    assert(_collectorState == Resetting, "just checking");
  1.6004 +    assert_lock_strong(bitMapLock());
  1.6005 +    _markBitMap.clear_all();
  1.6006 +    _collectorState = Idling;
  1.6007 +  }
  1.6008 +
  1.6009 +  // Stop incremental mode after a cycle completes, so that any future cycles
  1.6010 +  // are triggered by allocation.
  1.6011 +  stop_icms();
  1.6012 +
  1.6013 +  NOT_PRODUCT(
  1.6014 +    if (RotateCMSCollectionTypes) {
  1.6015 +      _cmsGen->rotate_debug_collection_type();
  1.6016 +    }
  1.6017 +  )
  1.6018 +}
  1.6019 +
  1.6020 +void CMSCollector::do_CMS_operation(CMS_op_type op) {
  1.6021 +  gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1.6022 +  TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1.6023 +  TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  1.6024 +  TraceCollectorStats tcs(counters());
  1.6025 +
  1.6026 +  switch (op) {
  1.6027 +    case CMS_op_checkpointRootsInitial: {
  1.6028 +      checkpointRootsInitial(true);       // asynch
  1.6029 +      if (PrintGC) {
  1.6030 +        _cmsGen->printOccupancy("initial-mark");
  1.6031 +      }
  1.6032 +      break;
  1.6033 +    }
  1.6034 +    case CMS_op_checkpointRootsFinal: {
  1.6035 +      checkpointRootsFinal(true,    // asynch
  1.6036 +                           false,   // !clear_all_soft_refs
  1.6037 +                           false);  // !init_mark_was_synchronous
  1.6038 +      if (PrintGC) {
  1.6039 +        _cmsGen->printOccupancy("remark");
  1.6040 +      }
  1.6041 +      break;
  1.6042 +    }
  1.6043 +    default:
  1.6044 +      fatal("No such CMS_op");
  1.6045 +  }
  1.6046 +}
  1.6047 +
  1.6048 +#ifndef PRODUCT
  1.6049 +size_t const CMSCollector::skip_header_HeapWords() {
  1.6050 +  return FreeChunk::header_size();
  1.6051 +}
  1.6052 +
  1.6053 +// Try and collect here conditions that should hold when
  1.6054 +// CMS thread is exiting. The idea is that the foreground GC
  1.6055 +// thread should not be blocked if it wants to terminate
  1.6056 +// the CMS thread and yet continue to run the VM for a while
  1.6057 +// after that.
  1.6058 +void CMSCollector::verify_ok_to_terminate() const {
  1.6059 +  assert(Thread::current()->is_ConcurrentGC_thread(),
  1.6060 +         "should be called by CMS thread");
  1.6061 +  assert(!_foregroundGCShouldWait, "should be false");
  1.6062 +  // We could check here that all the various low-level locks
  1.6063 +  // are not held by the CMS thread, but that is overkill; see
  1.6064 +  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  1.6065 +  // is checked.
  1.6066 +}
  1.6067 +#endif
  1.6068 +
  1.6069 +size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  1.6070 +  assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  1.6071 +         "missing Printezis mark?");
  1.6072 +  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  1.6073 +  size_t size = pointer_delta(nextOneAddr + 1, addr);
  1.6074 +  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  1.6075 +         "alignment problem");
  1.6076 +  assert(size >= 3, "Necessary for Printezis marks to work");
  1.6077 +  return size;
  1.6078 +}
  1.6079 +
  1.6080 +// A variant of the above (block_size_using_printezis_bits()) except
  1.6081 +// that we return 0 if the P-bits are not yet set.
  1.6082 +size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  1.6083 +  if (_markBitMap.isMarked(addr)) {
  1.6084 +    assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  1.6085 +    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  1.6086 +    size_t size = pointer_delta(nextOneAddr + 1, addr);
  1.6087 +    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  1.6088 +           "alignment problem");
  1.6089 +    assert(size >= 3, "Necessary for Printezis marks to work");
  1.6090 +    return size;
  1.6091 +  } else {
  1.6092 +    assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  1.6093 +    return 0;
  1.6094 +  }
  1.6095 +}
  1.6096 +
  1.6097 +HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  1.6098 +  size_t sz = 0;
  1.6099 +  oop p = (oop)addr;
  1.6100 +  if (p->klass() != NULL && p->is_parsable()) {
  1.6101 +    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  1.6102 +  } else {
  1.6103 +    sz = block_size_using_printezis_bits(addr);
  1.6104 +  }
  1.6105 +  assert(sz > 0, "size must be nonzero");
  1.6106 +  HeapWord* next_block = addr + sz;
  1.6107 +  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  1.6108 +                                             CardTableModRefBS::card_size);
  1.6109 +  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  1.6110 +         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  1.6111 +         "must be different cards");
  1.6112 +  return next_card;
  1.6113 +}
  1.6114 +
  1.6115 +
  1.6116 +// CMS Bit Map Wrapper /////////////////////////////////////////
  1.6117 +
  1.6118 +// Construct a CMS bit map infrastructure, but don't create the
  1.6119 +// bit vector itself. That is done by a separate call CMSBitMap::allocate()
  1.6120 +// further below.
  1.6121 +CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  1.6122 +  _bm(NULL,0),
  1.6123 +  _shifter(shifter),
  1.6124 +  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  1.6125 +{
  1.6126 +  _bmStartWord = 0;
  1.6127 +  _bmWordSize  = 0;
  1.6128 +}
  1.6129 +
  1.6130 +bool CMSBitMap::allocate(MemRegion mr) {
  1.6131 +  _bmStartWord = mr.start();
  1.6132 +  _bmWordSize  = mr.word_size();
  1.6133 +  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  1.6134 +                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  1.6135 +  if (!brs.is_reserved()) {
  1.6136 +    warning("CMS bit map allocation failure");
  1.6137 +    return false;
  1.6138 +  }
  1.6139 +  // For now we'll just commit all of the bit map up fromt.
  1.6140 +  // Later on we'll try to be more parsimonious with swap.
  1.6141 +  if (!_virtual_space.initialize(brs, brs.size())) {
  1.6142 +    warning("CMS bit map backing store failure");
  1.6143 +    return false;
  1.6144 +  }
  1.6145 +  assert(_virtual_space.committed_size() == brs.size(),
  1.6146 +         "didn't reserve backing store for all of CMS bit map?");
  1.6147 +  _bm.set_map((uintptr_t*)_virtual_space.low());
  1.6148 +  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  1.6149 +         _bmWordSize, "inconsistency in bit map sizing");
  1.6150 +  _bm.set_size(_bmWordSize >> _shifter);
  1.6151 +
  1.6152 +  // bm.clear(); // can we rely on getting zero'd memory? verify below
  1.6153 +  assert(isAllClear(),
  1.6154 +         "Expected zero'd memory from ReservedSpace constructor");
  1.6155 +  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  1.6156 +         "consistency check");
  1.6157 +  return true;
  1.6158 +}
  1.6159 +
  1.6160 +void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  1.6161 +  HeapWord *next_addr, *end_addr, *last_addr;
  1.6162 +  assert_locked();
  1.6163 +  assert(covers(mr), "out-of-range error");
  1.6164 +  // XXX assert that start and end are appropriately aligned
  1.6165 +  for (next_addr = mr.start(), end_addr = mr.end();
  1.6166 +       next_addr < end_addr; next_addr = last_addr) {
  1.6167 +    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  1.6168 +    last_addr = dirty_region.end();
  1.6169 +    if (!dirty_region.is_empty()) {
  1.6170 +      cl->do_MemRegion(dirty_region);
  1.6171 +    } else {
  1.6172 +      assert(last_addr == end_addr, "program logic");
  1.6173 +      return;
  1.6174 +    }
  1.6175 +  }
  1.6176 +}
  1.6177 +
  1.6178 +#ifndef PRODUCT
  1.6179 +void CMSBitMap::assert_locked() const {
  1.6180 +  CMSLockVerifier::assert_locked(lock());
  1.6181 +}
  1.6182 +
  1.6183 +bool CMSBitMap::covers(MemRegion mr) const {
  1.6184 +  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  1.6185 +  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  1.6186 +         "size inconsistency");
  1.6187 +  return (mr.start() >= _bmStartWord) &&
  1.6188 +         (mr.end()   <= endWord());
  1.6189 +}
  1.6190 +
  1.6191 +bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  1.6192 +    return (start >= _bmStartWord && (start + size) <= endWord());
  1.6193 +}
  1.6194 +
  1.6195 +void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  1.6196 +  // verify that there are no 1 bits in the interval [left, right)
  1.6197 +  FalseBitMapClosure falseBitMapClosure;
  1.6198 +  iterate(&falseBitMapClosure, left, right);
  1.6199 +}
  1.6200 +
  1.6201 +void CMSBitMap::region_invariant(MemRegion mr)
  1.6202 +{
  1.6203 +  assert_locked();
  1.6204 +  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  1.6205 +  assert(!mr.is_empty(), "unexpected empty region");
  1.6206 +  assert(covers(mr), "mr should be covered by bit map");
  1.6207 +  // convert address range into offset range
  1.6208 +  size_t start_ofs = heapWordToOffset(mr.start());
  1.6209 +  // Make sure that end() is appropriately aligned
  1.6210 +  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  1.6211 +                        (1 << (_shifter+LogHeapWordSize))),
  1.6212 +         "Misaligned mr.end()");
  1.6213 +  size_t end_ofs   = heapWordToOffset(mr.end());
  1.6214 +  assert(end_ofs > start_ofs, "Should mark at least one bit");
  1.6215 +}
  1.6216 +
  1.6217 +#endif
  1.6218 +
  1.6219 +bool CMSMarkStack::allocate(size_t size) {
  1.6220 +  // allocate a stack of the requisite depth
  1.6221 +  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  1.6222 +                   size * sizeof(oop)));
  1.6223 +  if (!rs.is_reserved()) {
  1.6224 +    warning("CMSMarkStack allocation failure");
  1.6225 +    return false;
  1.6226 +  }
  1.6227 +  if (!_virtual_space.initialize(rs, rs.size())) {
  1.6228 +    warning("CMSMarkStack backing store failure");
  1.6229 +    return false;
  1.6230 +  }
  1.6231 +  assert(_virtual_space.committed_size() == rs.size(),
  1.6232 +         "didn't reserve backing store for all of CMS stack?");
  1.6233 +  _base = (oop*)(_virtual_space.low());
  1.6234 +  _index = 0;
  1.6235 +  _capacity = size;
  1.6236 +  NOT_PRODUCT(_max_depth = 0);
  1.6237 +  return true;
  1.6238 +}
  1.6239 +
  1.6240 +// XXX FIX ME !!! In the MT case we come in here holding a
  1.6241 +// leaf lock. For printing we need to take a further lock
  1.6242 +// which has lower rank. We need to recallibrate the two
  1.6243 +// lock-ranks involved in order to be able to rpint the
  1.6244 +// messages below. (Or defer the printing to the caller.
  1.6245 +// For now we take the expedient path of just disabling the
  1.6246 +// messages for the problematic case.)
  1.6247 +void CMSMarkStack::expand() {
  1.6248 +  assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  1.6249 +  if (_capacity == CMSMarkStackSizeMax) {
  1.6250 +    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  1.6251 +      // We print a warning message only once per CMS cycle.
  1.6252 +      gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  1.6253 +    }
  1.6254 +    return;
  1.6255 +  }
  1.6256 +  // Double capacity if possible
  1.6257 +  size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  1.6258 +  // Do not give up existing stack until we have managed to
  1.6259 +  // get the double capacity that we desired.
  1.6260 +  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  1.6261 +                   new_capacity * sizeof(oop)));
  1.6262 +  if (rs.is_reserved()) {
  1.6263 +    // Release the backing store associated with old stack
  1.6264 +    _virtual_space.release();
  1.6265 +    // Reinitialize virtual space for new stack
  1.6266 +    if (!_virtual_space.initialize(rs, rs.size())) {
  1.6267 +      fatal("Not enough swap for expanded marking stack");
  1.6268 +    }
  1.6269 +    _base = (oop*)(_virtual_space.low());
  1.6270 +    _index = 0;
  1.6271 +    _capacity = new_capacity;
  1.6272 +  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  1.6273 +    // Failed to double capacity, continue;
  1.6274 +    // we print a detail message only once per CMS cycle.
  1.6275 +    gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  1.6276 +            SIZE_FORMAT"K",
  1.6277 +            _capacity / K, new_capacity / K);
  1.6278 +  }
  1.6279 +}
  1.6280 +
  1.6281 +
  1.6282 +// Closures
  1.6283 +// XXX: there seems to be a lot of code  duplication here;
  1.6284 +// should refactor and consolidate common code.
  1.6285 +
  1.6286 +// This closure is used to mark refs into the CMS generation in
  1.6287 +// the CMS bit map. Called at the first checkpoint. This closure
  1.6288 +// assumes that we do not need to re-mark dirty cards; if the CMS
  1.6289 +// generation on which this is used is not an oldest (modulo perm gen)
  1.6290 +// generation then this will lose younger_gen cards!
  1.6291 +
  1.6292 +MarkRefsIntoClosure::MarkRefsIntoClosure(
  1.6293 +  MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  1.6294 +    _span(span),
  1.6295 +    _bitMap(bitMap),
  1.6296 +    _should_do_nmethods(should_do_nmethods)
  1.6297 +{
  1.6298 +    assert(_ref_processor == NULL, "deliberately left NULL");
  1.6299 +    assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  1.6300 +}
  1.6301 +
  1.6302 +void MarkRefsIntoClosure::do_oop(oop* p) {
  1.6303 +  // if p points into _span, then mark corresponding bit in _markBitMap
  1.6304 +  oop thisOop = *p;
  1.6305 +  if (thisOop != NULL) {
  1.6306 +    assert(thisOop->is_oop(), "expected an oop");
  1.6307 +    HeapWord* addr = (HeapWord*)thisOop;
  1.6308 +    if (_span.contains(addr)) {
  1.6309 +      // this should be made more efficient
  1.6310 +      _bitMap->mark(addr);
  1.6311 +    }
  1.6312 +  }
  1.6313 +}
  1.6314 +
  1.6315 +// A variant of the above, used for CMS marking verification.
  1.6316 +MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  1.6317 +  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  1.6318 +  bool should_do_nmethods):
  1.6319 +    _span(span),
  1.6320 +    _verification_bm(verification_bm),
  1.6321 +    _cms_bm(cms_bm),
  1.6322 +    _should_do_nmethods(should_do_nmethods) {
  1.6323 +    assert(_ref_processor == NULL, "deliberately left NULL");
  1.6324 +    assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  1.6325 +}
  1.6326 +
  1.6327 +void MarkRefsIntoVerifyClosure::do_oop(oop* p) {
  1.6328 +  // if p points into _span, then mark corresponding bit in _markBitMap
  1.6329 +  oop this_oop = *p;
  1.6330 +  if (this_oop != NULL) {
  1.6331 +    assert(this_oop->is_oop(), "expected an oop");
  1.6332 +    HeapWord* addr = (HeapWord*)this_oop;
  1.6333 +    if (_span.contains(addr)) {
  1.6334 +      _verification_bm->mark(addr);
  1.6335 +      if (!_cms_bm->isMarked(addr)) {
  1.6336 +        oop(addr)->print();
  1.6337 +        gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  1.6338 +        fatal("... aborting");
  1.6339 +      }
  1.6340 +    }
  1.6341 +  }
  1.6342 +}
  1.6343 +
  1.6344 +//////////////////////////////////////////////////
  1.6345 +// MarkRefsIntoAndScanClosure
  1.6346 +//////////////////////////////////////////////////
  1.6347 +
  1.6348 +MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  1.6349 +                                                       ReferenceProcessor* rp,
  1.6350 +                                                       CMSBitMap* bit_map,
  1.6351 +                                                       CMSBitMap* mod_union_table,
  1.6352 +                                                       CMSMarkStack*  mark_stack,
  1.6353 +                                                       CMSMarkStack*  revisit_stack,
  1.6354 +                                                       CMSCollector* collector,
  1.6355 +                                                       bool should_yield,
  1.6356 +                                                       bool concurrent_precleaning):
  1.6357 +  _collector(collector),
  1.6358 +  _span(span),
  1.6359 +  _bit_map(bit_map),
  1.6360 +  _mark_stack(mark_stack),
  1.6361 +  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  1.6362 +                      mark_stack, revisit_stack, concurrent_precleaning),
  1.6363 +  _yield(should_yield),
  1.6364 +  _concurrent_precleaning(concurrent_precleaning),
  1.6365 +  _freelistLock(NULL)
  1.6366 +{
  1.6367 +  _ref_processor = rp;
  1.6368 +  assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  1.6369 +}
  1.6370 +
  1.6371 +// This closure is used to mark refs into the CMS generation at the
  1.6372 +// second (final) checkpoint, and to scan and transitively follow
  1.6373 +// the unmarked oops. It is also used during the concurrent precleaning
  1.6374 +// phase while scanning objects on dirty cards in the CMS generation.
  1.6375 +// The marks are made in the marking bit map and the marking stack is
  1.6376 +// used for keeping the (newly) grey objects during the scan.
  1.6377 +// The parallel version (Par_...) appears further below.
  1.6378 +void MarkRefsIntoAndScanClosure::do_oop(oop* p) {
  1.6379 +  oop this_oop = *p;
  1.6380 +  if (this_oop != NULL) {
  1.6381 +    assert(this_oop->is_oop(), "expected an oop");
  1.6382 +    HeapWord* addr = (HeapWord*)this_oop;
  1.6383 +    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  1.6384 +    assert(_collector->overflow_list_is_empty(), "should be empty");
  1.6385 +    if (_span.contains(addr) &&
  1.6386 +        !_bit_map->isMarked(addr)) {
  1.6387 +      // mark bit map (object is now grey)
  1.6388 +      _bit_map->mark(addr);
  1.6389 +      // push on marking stack (stack should be empty), and drain the
  1.6390 +      // stack by applying this closure to the oops in the oops popped
  1.6391 +      // from the stack (i.e. blacken the grey objects)
  1.6392 +      bool res = _mark_stack->push(this_oop);
  1.6393 +      assert(res, "Should have space to push on empty stack");
  1.6394 +      do {
  1.6395 +        oop new_oop = _mark_stack->pop();
  1.6396 +        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  1.6397 +        assert(new_oop->is_parsable(), "Found unparsable oop");
  1.6398 +        assert(_bit_map->isMarked((HeapWord*)new_oop),
  1.6399 +               "only grey objects on this stack");
  1.6400 +        // iterate over the oops in this oop, marking and pushing
  1.6401 +        // the ones in CMS heap (i.e. in _span).
  1.6402 +        new_oop->oop_iterate(&_pushAndMarkClosure);
  1.6403 +        // check if it's time to yield
  1.6404 +        do_yield_check();
  1.6405 +      } while (!_mark_stack->isEmpty() ||
  1.6406 +               (!_concurrent_precleaning && take_from_overflow_list()));
  1.6407 +        // if marking stack is empty, and we are not doing this
  1.6408 +        // during precleaning, then check the overflow list
  1.6409 +    }
  1.6410 +    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  1.6411 +    assert(_collector->overflow_list_is_empty(),
  1.6412 +           "overflow list was drained above");
  1.6413 +    // We could restore evacuated mark words, if any, used for
  1.6414 +    // overflow list links here because the overflow list is
  1.6415 +    // provably empty here. That would reduce the maximum
  1.6416 +    // size requirements for preserved_{oop,mark}_stack.
  1.6417 +    // But we'll just postpone it until we are all done
  1.6418 +    // so we can just stream through.
  1.6419 +    if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  1.6420 +      _collector->restore_preserved_marks_if_any();
  1.6421 +      assert(_collector->no_preserved_marks(), "No preserved marks");
  1.6422 +    }
  1.6423 +    assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  1.6424 +           "All preserved marks should have been restored above");
  1.6425 +  }
  1.6426 +}
  1.6427 +
  1.6428 +void MarkRefsIntoAndScanClosure::do_yield_work() {
  1.6429 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.6430 +         "CMS thread should hold CMS token");
  1.6431 +  assert_lock_strong(_freelistLock);
  1.6432 +  assert_lock_strong(_bit_map->lock());
  1.6433 +  // relinquish the free_list_lock and bitMaplock()
  1.6434 +  _bit_map->lock()->unlock();
  1.6435 +  _freelistLock->unlock();
  1.6436 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.6437 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6438 +  _collector->stopTimer();
  1.6439 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.6440 +  if (PrintCMSStatistics != 0) {
  1.6441 +    _collector->incrementYields();
  1.6442 +  }
  1.6443 +  _collector->icms_wait();
  1.6444 +
  1.6445 +  // See the comment in coordinator_yield()
  1.6446 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.6447 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.6448 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.6449 +    os::sleep(Thread::current(), 1, false);
  1.6450 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6451 +  }
  1.6452 +
  1.6453 +  ConcurrentMarkSweepThread::synchronize(true);
  1.6454 +  _freelistLock->lock_without_safepoint_check();
  1.6455 +  _bit_map->lock()->lock_without_safepoint_check();
  1.6456 +  _collector->startTimer();
  1.6457 +}
  1.6458 +
  1.6459 +///////////////////////////////////////////////////////////
  1.6460 +// Par_MarkRefsIntoAndScanClosure: a parallel version of
  1.6461 +//                                 MarkRefsIntoAndScanClosure
  1.6462 +///////////////////////////////////////////////////////////
  1.6463 +Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  1.6464 +  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  1.6465 +  CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  1.6466 +  _span(span),
  1.6467 +  _bit_map(bit_map),
  1.6468 +  _work_queue(work_queue),
  1.6469 +  _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  1.6470 +                       (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  1.6471 +  _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  1.6472 +                          revisit_stack)
  1.6473 +{
  1.6474 +  _ref_processor = rp;
  1.6475 +  assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  1.6476 +}
  1.6477 +
  1.6478 +// This closure is used to mark refs into the CMS generation at the
  1.6479 +// second (final) checkpoint, and to scan and transitively follow
  1.6480 +// the unmarked oops. The marks are made in the marking bit map and
  1.6481 +// the work_queue is used for keeping the (newly) grey objects during
  1.6482 +// the scan phase whence they are also available for stealing by parallel
  1.6483 +// threads. Since the marking bit map is shared, updates are
  1.6484 +// synchronized (via CAS).
  1.6485 +void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) {
  1.6486 +  oop this_oop = *p;
  1.6487 +  if (this_oop != NULL) {
  1.6488 +    // Ignore mark word because this could be an already marked oop
  1.6489 +    // that may be chained at the end of the overflow list.
  1.6490 +    assert(this_oop->is_oop(true /* ignore mark word */), "expected an oop");
  1.6491 +    HeapWord* addr = (HeapWord*)this_oop;
  1.6492 +    if (_span.contains(addr) &&
  1.6493 +        !_bit_map->isMarked(addr)) {
  1.6494 +      // mark bit map (object will become grey):
  1.6495 +      // It is possible for several threads to be
  1.6496 +      // trying to "claim" this object concurrently;
  1.6497 +      // the unique thread that succeeds in marking the
  1.6498 +      // object first will do the subsequent push on
  1.6499 +      // to the work queue (or overflow list).
  1.6500 +      if (_bit_map->par_mark(addr)) {
  1.6501 +        // push on work_queue (which may not be empty), and trim the
  1.6502 +        // queue to an appropriate length by applying this closure to
  1.6503 +        // the oops in the oops popped from the stack (i.e. blacken the
  1.6504 +        // grey objects)
  1.6505 +        bool res = _work_queue->push(this_oop);
  1.6506 +        assert(res, "Low water mark should be less than capacity?");
  1.6507 +        trim_queue(_low_water_mark);
  1.6508 +      } // Else, another thread claimed the object
  1.6509 +    }
  1.6510 +  }
  1.6511 +}
  1.6512 +
  1.6513 +// This closure is used to rescan the marked objects on the dirty cards
  1.6514 +// in the mod union table and the card table proper.
  1.6515 +size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  1.6516 +  oop p, MemRegion mr) {
  1.6517 +
  1.6518 +  size_t size = 0;
  1.6519 +  HeapWord* addr = (HeapWord*)p;
  1.6520 +  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  1.6521 +  assert(_span.contains(addr), "we are scanning the CMS generation");
  1.6522 +  // check if it's time to yield
  1.6523 +  if (do_yield_check()) {
  1.6524 +    // We yielded for some foreground stop-world work,
  1.6525 +    // and we have been asked to abort this ongoing preclean cycle.
  1.6526 +    return 0;
  1.6527 +  }
  1.6528 +  if (_bitMap->isMarked(addr)) {
  1.6529 +    // it's marked; is it potentially uninitialized?
  1.6530 +    if (p->klass() != NULL) {
  1.6531 +      if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  1.6532 +        // Signal precleaning to redirty the card since
  1.6533 +        // the klass pointer is already installed.
  1.6534 +        assert(size == 0, "Initial value");
  1.6535 +      } else {
  1.6536 +        assert(p->is_parsable(), "must be parsable.");
  1.6537 +        // an initialized object; ignore mark word in verification below
  1.6538 +        // since we are running concurrent with mutators
  1.6539 +        assert(p->is_oop(true), "should be an oop");
  1.6540 +        if (p->is_objArray()) {
  1.6541 +          // objArrays are precisely marked; restrict scanning
  1.6542 +          // to dirty cards only.
  1.6543 +          size = p->oop_iterate(_scanningClosure, mr);
  1.6544 +          assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  1.6545 +                 "adjustObjectSize should be the identity for array sizes, "
  1.6546 +                 "which are necessarily larger than minimum object size of "
  1.6547 +                 "two heap words");
  1.6548 +        } else {
  1.6549 +          // A non-array may have been imprecisely marked; we need
  1.6550 +          // to scan object in its entirety.
  1.6551 +          size = CompactibleFreeListSpace::adjustObjectSize(
  1.6552 +                   p->oop_iterate(_scanningClosure));
  1.6553 +        }
  1.6554 +        #ifdef DEBUG
  1.6555 +          size_t direct_size =
  1.6556 +            CompactibleFreeListSpace::adjustObjectSize(p->size());
  1.6557 +          assert(size == direct_size, "Inconsistency in size");
  1.6558 +          assert(size >= 3, "Necessary for Printezis marks to work");
  1.6559 +          if (!_bitMap->isMarked(addr+1)) {
  1.6560 +            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  1.6561 +          } else {
  1.6562 +            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  1.6563 +            assert(_bitMap->isMarked(addr+size-1),
  1.6564 +                   "inconsistent Printezis mark");
  1.6565 +          }
  1.6566 +        #endif // DEBUG
  1.6567 +      }
  1.6568 +    } else {
  1.6569 +      // an unitialized object
  1.6570 +      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  1.6571 +      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  1.6572 +      size = pointer_delta(nextOneAddr + 1, addr);
  1.6573 +      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  1.6574 +             "alignment problem");
  1.6575 +      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  1.6576 +      // will dirty the card when the klass pointer is installed in the
  1.6577 +      // object (signalling the completion of initialization).
  1.6578 +    }
  1.6579 +  } else {
  1.6580 +    // Either a not yet marked object or an uninitialized object
  1.6581 +    if (p->klass() == NULL || !p->is_parsable()) {
  1.6582 +      // An uninitialized object, skip to the next card, since
  1.6583 +      // we may not be able to read its P-bits yet.
  1.6584 +      assert(size == 0, "Initial value");
  1.6585 +    } else {
  1.6586 +      // An object not (yet) reached by marking: we merely need to
  1.6587 +      // compute its size so as to go look at the next block.
  1.6588 +      assert(p->is_oop(true), "should be an oop");
  1.6589 +      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  1.6590 +    }
  1.6591 +  }
  1.6592 +  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  1.6593 +  return size;
  1.6594 +}
  1.6595 +
  1.6596 +void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  1.6597 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.6598 +         "CMS thread should hold CMS token");
  1.6599 +  assert_lock_strong(_freelistLock);
  1.6600 +  assert_lock_strong(_bitMap->lock());
  1.6601 +  // relinquish the free_list_lock and bitMaplock()
  1.6602 +  _bitMap->lock()->unlock();
  1.6603 +  _freelistLock->unlock();
  1.6604 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.6605 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6606 +  _collector->stopTimer();
  1.6607 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.6608 +  if (PrintCMSStatistics != 0) {
  1.6609 +    _collector->incrementYields();
  1.6610 +  }
  1.6611 +  _collector->icms_wait();
  1.6612 +
  1.6613 +  // See the comment in coordinator_yield()
  1.6614 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.6615 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.6616 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.6617 +    os::sleep(Thread::current(), 1, false);
  1.6618 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6619 +  }
  1.6620 +
  1.6621 +  ConcurrentMarkSweepThread::synchronize(true);
  1.6622 +  _freelistLock->lock_without_safepoint_check();
  1.6623 +  _bitMap->lock()->lock_without_safepoint_check();
  1.6624 +  _collector->startTimer();
  1.6625 +}
  1.6626 +
  1.6627 +
  1.6628 +//////////////////////////////////////////////////////////////////
  1.6629 +// SurvivorSpacePrecleanClosure
  1.6630 +//////////////////////////////////////////////////////////////////
  1.6631 +// This (single-threaded) closure is used to preclean the oops in
  1.6632 +// the survivor spaces.
  1.6633 +size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  1.6634 +
  1.6635 +  HeapWord* addr = (HeapWord*)p;
  1.6636 +  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  1.6637 +  assert(!_span.contains(addr), "we are scanning the survivor spaces");
  1.6638 +  assert(p->klass() != NULL, "object should be initializd");
  1.6639 +  assert(p->is_parsable(), "must be parsable.");
  1.6640 +  // an initialized object; ignore mark word in verification below
  1.6641 +  // since we are running concurrent with mutators
  1.6642 +  assert(p->is_oop(true), "should be an oop");
  1.6643 +  // Note that we do not yield while we iterate over
  1.6644 +  // the interior oops of p, pushing the relevant ones
  1.6645 +  // on our marking stack.
  1.6646 +  size_t size = p->oop_iterate(_scanning_closure);
  1.6647 +  do_yield_check();
  1.6648 +  // Observe that below, we do not abandon the preclean
  1.6649 +  // phase as soon as we should; rather we empty the
  1.6650 +  // marking stack before returning. This is to satisfy
  1.6651 +  // some existing assertions. In general, it may be a
  1.6652 +  // good idea to abort immediately and complete the marking
  1.6653 +  // from the grey objects at a later time.
  1.6654 +  while (!_mark_stack->isEmpty()) {
  1.6655 +    oop new_oop = _mark_stack->pop();
  1.6656 +    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  1.6657 +    assert(new_oop->is_parsable(), "Found unparsable oop");
  1.6658 +    assert(_bit_map->isMarked((HeapWord*)new_oop),
  1.6659 +           "only grey objects on this stack");
  1.6660 +    // iterate over the oops in this oop, marking and pushing
  1.6661 +    // the ones in CMS heap (i.e. in _span).
  1.6662 +    new_oop->oop_iterate(_scanning_closure);
  1.6663 +    // check if it's time to yield
  1.6664 +    do_yield_check();
  1.6665 +  }
  1.6666 +  unsigned int after_count =
  1.6667 +    GenCollectedHeap::heap()->total_collections();
  1.6668 +  bool abort = (_before_count != after_count) ||
  1.6669 +               _collector->should_abort_preclean();
  1.6670 +  return abort ? 0 : size;
  1.6671 +}
  1.6672 +
  1.6673 +void SurvivorSpacePrecleanClosure::do_yield_work() {
  1.6674 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.6675 +         "CMS thread should hold CMS token");
  1.6676 +  assert_lock_strong(_bit_map->lock());
  1.6677 +  // Relinquish the bit map lock
  1.6678 +  _bit_map->lock()->unlock();
  1.6679 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.6680 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6681 +  _collector->stopTimer();
  1.6682 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.6683 +  if (PrintCMSStatistics != 0) {
  1.6684 +    _collector->incrementYields();
  1.6685 +  }
  1.6686 +  _collector->icms_wait();
  1.6687 +
  1.6688 +  // See the comment in coordinator_yield()
  1.6689 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.6690 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.6691 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.6692 +    os::sleep(Thread::current(), 1, false);
  1.6693 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6694 +  }
  1.6695 +
  1.6696 +  ConcurrentMarkSweepThread::synchronize(true);
  1.6697 +  _bit_map->lock()->lock_without_safepoint_check();
  1.6698 +  _collector->startTimer();
  1.6699 +}
  1.6700 +
  1.6701 +// This closure is used to rescan the marked objects on the dirty cards
  1.6702 +// in the mod union table and the card table proper. In the parallel
  1.6703 +// case, although the bitMap is shared, we do a single read so the
  1.6704 +// isMarked() query is "safe".
  1.6705 +bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  1.6706 +  // Ignore mark word because we are running concurrent with mutators
  1.6707 +  assert(p->is_oop_or_null(true), "expected an oop or null");
  1.6708 +  HeapWord* addr = (HeapWord*)p;
  1.6709 +  assert(_span.contains(addr), "we are scanning the CMS generation");
  1.6710 +  bool is_obj_array = false;
  1.6711 +  #ifdef DEBUG
  1.6712 +    if (!_parallel) {
  1.6713 +      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  1.6714 +      assert(_collector->overflow_list_is_empty(),
  1.6715 +             "overflow list should be empty");
  1.6716 +
  1.6717 +    }
  1.6718 +  #endif // DEBUG
  1.6719 +  if (_bit_map->isMarked(addr)) {
  1.6720 +    // Obj arrays are precisely marked, non-arrays are not;
  1.6721 +    // so we scan objArrays precisely and non-arrays in their
  1.6722 +    // entirety.
  1.6723 +    if (p->is_objArray()) {
  1.6724 +      is_obj_array = true;
  1.6725 +      if (_parallel) {
  1.6726 +        p->oop_iterate(_par_scan_closure, mr);
  1.6727 +      } else {
  1.6728 +        p->oop_iterate(_scan_closure, mr);
  1.6729 +      }
  1.6730 +    } else {
  1.6731 +      if (_parallel) {
  1.6732 +        p->oop_iterate(_par_scan_closure);
  1.6733 +      } else {
  1.6734 +        p->oop_iterate(_scan_closure);
  1.6735 +      }
  1.6736 +    }
  1.6737 +  }
  1.6738 +  #ifdef DEBUG
  1.6739 +    if (!_parallel) {
  1.6740 +      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  1.6741 +      assert(_collector->overflow_list_is_empty(),
  1.6742 +             "overflow list should be empty");
  1.6743 +
  1.6744 +    }
  1.6745 +  #endif // DEBUG
  1.6746 +  return is_obj_array;
  1.6747 +}
  1.6748 +
  1.6749 +MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  1.6750 +                        MemRegion span,
  1.6751 +                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
  1.6752 +                        CMSMarkStack*  revisitStack,
  1.6753 +                        bool should_yield, bool verifying):
  1.6754 +  _collector(collector),
  1.6755 +  _span(span),
  1.6756 +  _bitMap(bitMap),
  1.6757 +  _mut(&collector->_modUnionTable),
  1.6758 +  _markStack(markStack),
  1.6759 +  _revisitStack(revisitStack),
  1.6760 +  _yield(should_yield),
  1.6761 +  _skipBits(0)
  1.6762 +{
  1.6763 +  assert(_markStack->isEmpty(), "stack should be empty");
  1.6764 +  _finger = _bitMap->startWord();
  1.6765 +  _threshold = _finger;
  1.6766 +  assert(_collector->_restart_addr == NULL, "Sanity check");
  1.6767 +  assert(_span.contains(_finger), "Out of bounds _finger?");
  1.6768 +  DEBUG_ONLY(_verifying = verifying;)
  1.6769 +}
  1.6770 +
  1.6771 +void MarkFromRootsClosure::reset(HeapWord* addr) {
  1.6772 +  assert(_markStack->isEmpty(), "would cause duplicates on stack");
  1.6773 +  assert(_span.contains(addr), "Out of bounds _finger?");
  1.6774 +  _finger = addr;
  1.6775 +  _threshold = (HeapWord*)round_to(
  1.6776 +                 (intptr_t)_finger, CardTableModRefBS::card_size);
  1.6777 +}
  1.6778 +
  1.6779 +// Should revisit to see if this should be restructured for
  1.6780 +// greater efficiency.
  1.6781 +void MarkFromRootsClosure::do_bit(size_t offset) {
  1.6782 +  if (_skipBits > 0) {
  1.6783 +    _skipBits--;
  1.6784 +    return;
  1.6785 +  }
  1.6786 +  // convert offset into a HeapWord*
  1.6787 +  HeapWord* addr = _bitMap->startWord() + offset;
  1.6788 +  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  1.6789 +         "address out of range");
  1.6790 +  assert(_bitMap->isMarked(addr), "tautology");
  1.6791 +  if (_bitMap->isMarked(addr+1)) {
  1.6792 +    // this is an allocated but not yet initialized object
  1.6793 +    assert(_skipBits == 0, "tautology");
  1.6794 +    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  1.6795 +    oop p = oop(addr);
  1.6796 +    if (p->klass() == NULL || !p->is_parsable()) {
  1.6797 +      DEBUG_ONLY(if (!_verifying) {)
  1.6798 +        // We re-dirty the cards on which this object lies and increase
  1.6799 +        // the _threshold so that we'll come back to scan this object
  1.6800 +        // during the preclean or remark phase. (CMSCleanOnEnter)
  1.6801 +        if (CMSCleanOnEnter) {
  1.6802 +          size_t sz = _collector->block_size_using_printezis_bits(addr);
  1.6803 +          HeapWord* start_card_addr = (HeapWord*)round_down(
  1.6804 +                                         (intptr_t)addr, CardTableModRefBS::card_size);
  1.6805 +          HeapWord* end_card_addr   = (HeapWord*)round_to(
  1.6806 +                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  1.6807 +          MemRegion redirty_range = MemRegion(start_card_addr, end_card_addr);
  1.6808 +          assert(!redirty_range.is_empty(), "Arithmetical tautology");
  1.6809 +          // Bump _threshold to end_card_addr; note that
  1.6810 +          // _threshold cannot possibly exceed end_card_addr, anyhow.
  1.6811 +          // This prevents future clearing of the card as the scan proceeds
  1.6812 +          // to the right.
  1.6813 +          assert(_threshold <= end_card_addr,
  1.6814 +                 "Because we are just scanning into this object");
  1.6815 +          if (_threshold < end_card_addr) {
  1.6816 +            _threshold = end_card_addr;
  1.6817 +          }
  1.6818 +          if (p->klass() != NULL) {
  1.6819 +            // Redirty the range of cards...
  1.6820 +            _mut->mark_range(redirty_range);
  1.6821 +          } // ...else the setting of klass will dirty the card anyway.
  1.6822 +        }
  1.6823 +      DEBUG_ONLY(})
  1.6824 +      return;
  1.6825 +    }
  1.6826 +  }
  1.6827 +  scanOopsInOop(addr);
  1.6828 +}
  1.6829 +
  1.6830 +// We take a break if we've been at this for a while,
  1.6831 +// so as to avoid monopolizing the locks involved.
  1.6832 +void MarkFromRootsClosure::do_yield_work() {
  1.6833 +  // First give up the locks, then yield, then re-lock
  1.6834 +  // We should probably use a constructor/destructor idiom to
  1.6835 +  // do this unlock/lock or modify the MutexUnlocker class to
  1.6836 +  // serve our purpose. XXX
  1.6837 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.6838 +         "CMS thread should hold CMS token");
  1.6839 +  assert_lock_strong(_bitMap->lock());
  1.6840 +  _bitMap->lock()->unlock();
  1.6841 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.6842 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6843 +  _collector->stopTimer();
  1.6844 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.6845 +  if (PrintCMSStatistics != 0) {
  1.6846 +    _collector->incrementYields();
  1.6847 +  }
  1.6848 +  _collector->icms_wait();
  1.6849 +
  1.6850 +  // See the comment in coordinator_yield()
  1.6851 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.6852 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.6853 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.6854 +    os::sleep(Thread::current(), 1, false);
  1.6855 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.6856 +  }
  1.6857 +
  1.6858 +  ConcurrentMarkSweepThread::synchronize(true);
  1.6859 +  _bitMap->lock()->lock_without_safepoint_check();
  1.6860 +  _collector->startTimer();
  1.6861 +}
  1.6862 +
  1.6863 +void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  1.6864 +  assert(_bitMap->isMarked(ptr), "expected bit to be set");
  1.6865 +  assert(_markStack->isEmpty(),
  1.6866 +         "should drain stack to limit stack usage");
  1.6867 +  // convert ptr to an oop preparatory to scanning
  1.6868 +  oop this_oop = oop(ptr);
  1.6869 +  // Ignore mark word in verification below, since we
  1.6870 +  // may be running concurrent with mutators.
  1.6871 +  assert(this_oop->is_oop(true), "should be an oop");
  1.6872 +  assert(_finger <= ptr, "_finger runneth ahead");
  1.6873 +  // advance the finger to right end of this object
  1.6874 +  _finger = ptr + this_oop->size();
  1.6875 +  assert(_finger > ptr, "we just incremented it above");
  1.6876 +  // On large heaps, it may take us some time to get through
  1.6877 +  // the marking phase (especially if running iCMS). During
  1.6878 +  // this time it's possible that a lot of mutations have
  1.6879 +  // accumulated in the card table and the mod union table --
  1.6880 +  // these mutation records are redundant until we have
  1.6881 +  // actually traced into the corresponding card.
  1.6882 +  // Here, we check whether advancing the finger would make
  1.6883 +  // us cross into a new card, and if so clear corresponding
  1.6884 +  // cards in the MUT (preclean them in the card-table in the
  1.6885 +  // future).
  1.6886 +
  1.6887 +  DEBUG_ONLY(if (!_verifying) {)
  1.6888 +    // The clean-on-enter optimization is disabled by default,
  1.6889 +    // until we fix 6178663.
  1.6890 +    if (CMSCleanOnEnter && (_finger > _threshold)) {
  1.6891 +      // [_threshold, _finger) represents the interval
  1.6892 +      // of cards to be cleared  in MUT (or precleaned in card table).
  1.6893 +      // The set of cards to be cleared is all those that overlap
  1.6894 +      // with the interval [_threshold, _finger); note that
  1.6895 +      // _threshold is always kept card-aligned but _finger isn't
  1.6896 +      // always card-aligned.
  1.6897 +      HeapWord* old_threshold = _threshold;
  1.6898 +      assert(old_threshold == (HeapWord*)round_to(
  1.6899 +              (intptr_t)old_threshold, CardTableModRefBS::card_size),
  1.6900 +             "_threshold should always be card-aligned");
  1.6901 +      _threshold = (HeapWord*)round_to(
  1.6902 +                     (intptr_t)_finger, CardTableModRefBS::card_size);
  1.6903 +      MemRegion mr(old_threshold, _threshold);
  1.6904 +      assert(!mr.is_empty(), "Control point invariant");
  1.6905 +      assert(_span.contains(mr), "Should clear within span");
  1.6906 +      // XXX When _finger crosses from old gen into perm gen
  1.6907 +      // we may be doing unnecessary cleaning; do better in the
  1.6908 +      // future by detecting that condition and clearing fewer
  1.6909 +      // MUT/CT entries.
  1.6910 +      _mut->clear_range(mr);
  1.6911 +    }
  1.6912 +  DEBUG_ONLY(})
  1.6913 +
  1.6914 +  // Note: the finger doesn't advance while we drain
  1.6915 +  // the stack below.
  1.6916 +  PushOrMarkClosure pushOrMarkClosure(_collector,
  1.6917 +                                      _span, _bitMap, _markStack,
  1.6918 +                                      _revisitStack,
  1.6919 +                                      _finger, this);
  1.6920 +  bool res = _markStack->push(this_oop);
  1.6921 +  assert(res, "Empty non-zero size stack should have space for single push");
  1.6922 +  while (!_markStack->isEmpty()) {
  1.6923 +    oop new_oop = _markStack->pop();
  1.6924 +    // Skip verifying header mark word below because we are
  1.6925 +    // running concurrent with mutators.
  1.6926 +    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  1.6927 +    // now scan this oop's oops
  1.6928 +    new_oop->oop_iterate(&pushOrMarkClosure);
  1.6929 +    do_yield_check();
  1.6930 +  }
  1.6931 +  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  1.6932 +}
  1.6933 +
  1.6934 +Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  1.6935 +                       CMSCollector* collector, MemRegion span,
  1.6936 +                       CMSBitMap* bit_map,
  1.6937 +                       OopTaskQueue* work_queue,
  1.6938 +                       CMSMarkStack*  overflow_stack,
  1.6939 +                       CMSMarkStack*  revisit_stack,
  1.6940 +                       bool should_yield):
  1.6941 +  _collector(collector),
  1.6942 +  _whole_span(collector->_span),
  1.6943 +  _span(span),
  1.6944 +  _bit_map(bit_map),
  1.6945 +  _mut(&collector->_modUnionTable),
  1.6946 +  _work_queue(work_queue),
  1.6947 +  _overflow_stack(overflow_stack),
  1.6948 +  _revisit_stack(revisit_stack),
  1.6949 +  _yield(should_yield),
  1.6950 +  _skip_bits(0),
  1.6951 +  _task(task)
  1.6952 +{
  1.6953 +  assert(_work_queue->size() == 0, "work_queue should be empty");
  1.6954 +  _finger = span.start();
  1.6955 +  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  1.6956 +  assert(_span.contains(_finger), "Out of bounds _finger?");
  1.6957 +}
  1.6958 +
  1.6959 +// Should revisit to see if this should be restructured for
  1.6960 +// greater efficiency.
  1.6961 +void Par_MarkFromRootsClosure::do_bit(size_t offset) {
  1.6962 +  if (_skip_bits > 0) {
  1.6963 +    _skip_bits--;
  1.6964 +    return;
  1.6965 +  }
  1.6966 +  // convert offset into a HeapWord*
  1.6967 +  HeapWord* addr = _bit_map->startWord() + offset;
  1.6968 +  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  1.6969 +         "address out of range");
  1.6970 +  assert(_bit_map->isMarked(addr), "tautology");
  1.6971 +  if (_bit_map->isMarked(addr+1)) {
  1.6972 +    // this is an allocated object that might not yet be initialized
  1.6973 +    assert(_skip_bits == 0, "tautology");
  1.6974 +    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  1.6975 +    oop p = oop(addr);
  1.6976 +    if (p->klass() == NULL || !p->is_parsable()) {
  1.6977 +      // in the case of Clean-on-Enter optimization, redirty card
  1.6978 +      // and avoid clearing card by increasing  the threshold.
  1.6979 +      return;
  1.6980 +    }
  1.6981 +  }
  1.6982 +  scan_oops_in_oop(addr);
  1.6983 +}
  1.6984 +
  1.6985 +void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  1.6986 +  assert(_bit_map->isMarked(ptr), "expected bit to be set");
  1.6987 +  // Should we assert that our work queue is empty or
  1.6988 +  // below some drain limit?
  1.6989 +  assert(_work_queue->size() == 0,
  1.6990 +         "should drain stack to limit stack usage");
  1.6991 +  // convert ptr to an oop preparatory to scanning
  1.6992 +  oop this_oop = oop(ptr);
  1.6993 +  // Ignore mark word in verification below, since we
  1.6994 +  // may be running concurrent with mutators.
  1.6995 +  assert(this_oop->is_oop(true), "should be an oop");
  1.6996 +  assert(_finger <= ptr, "_finger runneth ahead");
  1.6997 +  // advance the finger to right end of this object
  1.6998 +  _finger = ptr + this_oop->size();
  1.6999 +  assert(_finger > ptr, "we just incremented it above");
  1.7000 +  // On large heaps, it may take us some time to get through
  1.7001 +  // the marking phase (especially if running iCMS). During
  1.7002 +  // this time it's possible that a lot of mutations have
  1.7003 +  // accumulated in the card table and the mod union table --
  1.7004 +  // these mutation records are redundant until we have
  1.7005 +  // actually traced into the corresponding card.
  1.7006 +  // Here, we check whether advancing the finger would make
  1.7007 +  // us cross into a new card, and if so clear corresponding
  1.7008 +  // cards in the MUT (preclean them in the card-table in the
  1.7009 +  // future).
  1.7010 +
  1.7011 +  // The clean-on-enter optimization is disabled by default,
  1.7012 +  // until we fix 6178663.
  1.7013 +  if (CMSCleanOnEnter && (_finger > _threshold)) {
  1.7014 +    // [_threshold, _finger) represents the interval
  1.7015 +    // of cards to be cleared  in MUT (or precleaned in card table).
  1.7016 +    // The set of cards to be cleared is all those that overlap
  1.7017 +    // with the interval [_threshold, _finger); note that
  1.7018 +    // _threshold is always kept card-aligned but _finger isn't
  1.7019 +    // always card-aligned.
  1.7020 +    HeapWord* old_threshold = _threshold;
  1.7021 +    assert(old_threshold == (HeapWord*)round_to(
  1.7022 +            (intptr_t)old_threshold, CardTableModRefBS::card_size),
  1.7023 +           "_threshold should always be card-aligned");
  1.7024 +    _threshold = (HeapWord*)round_to(
  1.7025 +                   (intptr_t)_finger, CardTableModRefBS::card_size);
  1.7026 +    MemRegion mr(old_threshold, _threshold);
  1.7027 +    assert(!mr.is_empty(), "Control point invariant");
  1.7028 +    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  1.7029 +    // XXX When _finger crosses from old gen into perm gen
  1.7030 +    // we may be doing unnecessary cleaning; do better in the
  1.7031 +    // future by detecting that condition and clearing fewer
  1.7032 +    // MUT/CT entries.
  1.7033 +    _mut->clear_range(mr);
  1.7034 +  }
  1.7035 +
  1.7036 +  // Note: the local finger doesn't advance while we drain
  1.7037 +  // the stack below, but the global finger sure can and will.
  1.7038 +  HeapWord** gfa = _task->global_finger_addr();
  1.7039 +  Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  1.7040 +                                      _span, _bit_map,
  1.7041 +                                      _work_queue,
  1.7042 +                                      _overflow_stack,
  1.7043 +                                      _revisit_stack,
  1.7044 +                                      _finger,
  1.7045 +                                      gfa, this);
  1.7046 +  bool res = _work_queue->push(this_oop);   // overflow could occur here
  1.7047 +  assert(res, "Will hold once we use workqueues");
  1.7048 +  while (true) {
  1.7049 +    oop new_oop;
  1.7050 +    if (!_work_queue->pop_local(new_oop)) {
  1.7051 +      // We emptied our work_queue; check if there's stuff that can
  1.7052 +      // be gotten from the overflow stack.
  1.7053 +      if (CMSConcMarkingTask::get_work_from_overflow_stack(
  1.7054 +            _overflow_stack, _work_queue)) {
  1.7055 +        do_yield_check();
  1.7056 +        continue;
  1.7057 +      } else {  // done
  1.7058 +        break;
  1.7059 +      }
  1.7060 +    }
  1.7061 +    // Skip verifying header mark word below because we are
  1.7062 +    // running concurrent with mutators.
  1.7063 +    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  1.7064 +    // now scan this oop's oops
  1.7065 +    new_oop->oop_iterate(&pushOrMarkClosure);
  1.7066 +    do_yield_check();
  1.7067 +  }
  1.7068 +  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  1.7069 +}
  1.7070 +
  1.7071 +// Yield in response to a request from VM Thread or
  1.7072 +// from mutators.
  1.7073 +void Par_MarkFromRootsClosure::do_yield_work() {
  1.7074 +  assert(_task != NULL, "sanity");
  1.7075 +  _task->yield();
  1.7076 +}
  1.7077 +
  1.7078 +// A variant of the above used for verifying CMS marking work.
  1.7079 +MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  1.7080 +                        MemRegion span,
  1.7081 +                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  1.7082 +                        CMSMarkStack*  mark_stack):
  1.7083 +  _collector(collector),
  1.7084 +  _span(span),
  1.7085 +  _verification_bm(verification_bm),
  1.7086 +  _cms_bm(cms_bm),
  1.7087 +  _mark_stack(mark_stack),
  1.7088 +  _pam_verify_closure(collector, span, verification_bm, cms_bm,
  1.7089 +                      mark_stack)
  1.7090 +{
  1.7091 +  assert(_mark_stack->isEmpty(), "stack should be empty");
  1.7092 +  _finger = _verification_bm->startWord();
  1.7093 +  assert(_collector->_restart_addr == NULL, "Sanity check");
  1.7094 +  assert(_span.contains(_finger), "Out of bounds _finger?");
  1.7095 +}
  1.7096 +
  1.7097 +void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  1.7098 +  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  1.7099 +  assert(_span.contains(addr), "Out of bounds _finger?");
  1.7100 +  _finger = addr;
  1.7101 +}
  1.7102 +
  1.7103 +// Should revisit to see if this should be restructured for
  1.7104 +// greater efficiency.
  1.7105 +void MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  1.7106 +  // convert offset into a HeapWord*
  1.7107 +  HeapWord* addr = _verification_bm->startWord() + offset;
  1.7108 +  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  1.7109 +         "address out of range");
  1.7110 +  assert(_verification_bm->isMarked(addr), "tautology");
  1.7111 +  assert(_cms_bm->isMarked(addr), "tautology");
  1.7112 +
  1.7113 +  assert(_mark_stack->isEmpty(),
  1.7114 +         "should drain stack to limit stack usage");
  1.7115 +  // convert addr to an oop preparatory to scanning
  1.7116 +  oop this_oop = oop(addr);
  1.7117 +  assert(this_oop->is_oop(), "should be an oop");
  1.7118 +  assert(_finger <= addr, "_finger runneth ahead");
  1.7119 +  // advance the finger to right end of this object
  1.7120 +  _finger = addr + this_oop->size();
  1.7121 +  assert(_finger > addr, "we just incremented it above");
  1.7122 +  // Note: the finger doesn't advance while we drain
  1.7123 +  // the stack below.
  1.7124 +  bool res = _mark_stack->push(this_oop);
  1.7125 +  assert(res, "Empty non-zero size stack should have space for single push");
  1.7126 +  while (!_mark_stack->isEmpty()) {
  1.7127 +    oop new_oop = _mark_stack->pop();
  1.7128 +    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  1.7129 +    // now scan this oop's oops
  1.7130 +    new_oop->oop_iterate(&_pam_verify_closure);
  1.7131 +  }
  1.7132 +  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  1.7133 +}
  1.7134 +
  1.7135 +PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  1.7136 +  CMSCollector* collector, MemRegion span,
  1.7137 +  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  1.7138 +  CMSMarkStack*  mark_stack):
  1.7139 +  OopClosure(collector->ref_processor()),
  1.7140 +  _collector(collector),
  1.7141 +  _span(span),
  1.7142 +  _verification_bm(verification_bm),
  1.7143 +  _cms_bm(cms_bm),
  1.7144 +  _mark_stack(mark_stack)
  1.7145 +{ }
  1.7146 +
  1.7147 +
  1.7148 +// Upon stack overflow, we discard (part of) the stack,
  1.7149 +// remembering the least address amongst those discarded
  1.7150 +// in CMSCollector's _restart_address.
  1.7151 +void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  1.7152 +  // Remember the least grey address discarded
  1.7153 +  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  1.7154 +  _collector->lower_restart_addr(ra);
  1.7155 +  _mark_stack->reset();  // discard stack contents
  1.7156 +  _mark_stack->expand(); // expand the stack if possible
  1.7157 +}
  1.7158 +
  1.7159 +void PushAndMarkVerifyClosure::do_oop(oop* p) {
  1.7160 +  oop    this_oop = *p;
  1.7161 +  assert(this_oop->is_oop_or_null(), "expected an oop or NULL");
  1.7162 +  HeapWord* addr = (HeapWord*)this_oop;
  1.7163 +  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  1.7164 +    // Oop lies in _span and isn't yet grey or black
  1.7165 +    _verification_bm->mark(addr);            // now grey
  1.7166 +    if (!_cms_bm->isMarked(addr)) {
  1.7167 +      oop(addr)->print();
  1.7168 +      gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  1.7169 +      fatal("... aborting");
  1.7170 +    }
  1.7171 +
  1.7172 +    if (!_mark_stack->push(this_oop)) { // stack overflow
  1.7173 +      if (PrintCMSStatistics != 0) {
  1.7174 +        gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  1.7175 +                               SIZE_FORMAT, _mark_stack->capacity());
  1.7176 +      }
  1.7177 +      assert(_mark_stack->isFull(), "Else push should have succeeded");
  1.7178 +      handle_stack_overflow(addr);
  1.7179 +    }
  1.7180 +    // anything including and to the right of _finger
  1.7181 +    // will be scanned as we iterate over the remainder of the
  1.7182 +    // bit map
  1.7183 +  }
  1.7184 +}
  1.7185 +
  1.7186 +PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  1.7187 +                     MemRegion span,
  1.7188 +                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
  1.7189 +                     CMSMarkStack*  revisitStack,
  1.7190 +                     HeapWord* finger, MarkFromRootsClosure* parent) :
  1.7191 +  OopClosure(collector->ref_processor()),
  1.7192 +  _collector(collector),
  1.7193 +  _span(span),
  1.7194 +  _bitMap(bitMap),
  1.7195 +  _markStack(markStack),
  1.7196 +  _revisitStack(revisitStack),
  1.7197 +  _finger(finger),
  1.7198 +  _parent(parent),
  1.7199 +  _should_remember_klasses(collector->cms_should_unload_classes())
  1.7200 +{ }
  1.7201 +
  1.7202 +Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  1.7203 +                     MemRegion span,
  1.7204 +                     CMSBitMap* bit_map,
  1.7205 +                     OopTaskQueue* work_queue,
  1.7206 +                     CMSMarkStack*  overflow_stack,
  1.7207 +                     CMSMarkStack*  revisit_stack,
  1.7208 +                     HeapWord* finger,
  1.7209 +                     HeapWord** global_finger_addr,
  1.7210 +                     Par_MarkFromRootsClosure* parent) :
  1.7211 +  OopClosure(collector->ref_processor()),
  1.7212 +  _collector(collector),
  1.7213 +  _whole_span(collector->_span),
  1.7214 +  _span(span),
  1.7215 +  _bit_map(bit_map),
  1.7216 +  _work_queue(work_queue),
  1.7217 +  _overflow_stack(overflow_stack),
  1.7218 +  _revisit_stack(revisit_stack),
  1.7219 +  _finger(finger),
  1.7220 +  _global_finger_addr(global_finger_addr),
  1.7221 +  _parent(parent),
  1.7222 +  _should_remember_klasses(collector->cms_should_unload_classes())
  1.7223 +{ }
  1.7224 +
  1.7225 +
  1.7226 +void CMSCollector::lower_restart_addr(HeapWord* low) {
  1.7227 +  assert(_span.contains(low), "Out of bounds addr");
  1.7228 +  if (_restart_addr == NULL) {
  1.7229 +    _restart_addr = low;
  1.7230 +  } else {
  1.7231 +    _restart_addr = MIN2(_restart_addr, low);
  1.7232 +  }
  1.7233 +}
  1.7234 +
  1.7235 +// Upon stack overflow, we discard (part of) the stack,
  1.7236 +// remembering the least address amongst those discarded
  1.7237 +// in CMSCollector's _restart_address.
  1.7238 +void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  1.7239 +  // Remember the least grey address discarded
  1.7240 +  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  1.7241 +  _collector->lower_restart_addr(ra);
  1.7242 +  _markStack->reset();  // discard stack contents
  1.7243 +  _markStack->expand(); // expand the stack if possible
  1.7244 +}
  1.7245 +
  1.7246 +// Upon stack overflow, we discard (part of) the stack,
  1.7247 +// remembering the least address amongst those discarded
  1.7248 +// in CMSCollector's _restart_address.
  1.7249 +void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  1.7250 +  // We need to do this under a mutex to prevent other
  1.7251 +  // workers from interfering with the expansion below.
  1.7252 +  MutexLockerEx ml(_overflow_stack->par_lock(),
  1.7253 +                   Mutex::_no_safepoint_check_flag);
  1.7254 +  // Remember the least grey address discarded
  1.7255 +  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  1.7256 +  _collector->lower_restart_addr(ra);
  1.7257 +  _overflow_stack->reset();  // discard stack contents
  1.7258 +  _overflow_stack->expand(); // expand the stack if possible
  1.7259 +}
  1.7260 +
  1.7261 +
  1.7262 +void PushOrMarkClosure::do_oop(oop* p) {
  1.7263 +  oop    thisOop = *p;
  1.7264 +  // Ignore mark word because we are running concurrent with mutators.
  1.7265 +  assert(thisOop->is_oop_or_null(true), "expected an oop or NULL");
  1.7266 +  HeapWord* addr = (HeapWord*)thisOop;
  1.7267 +  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  1.7268 +    // Oop lies in _span and isn't yet grey or black
  1.7269 +    _bitMap->mark(addr);            // now grey
  1.7270 +    if (addr < _finger) {
  1.7271 +      // the bit map iteration has already either passed, or
  1.7272 +      // sampled, this bit in the bit map; we'll need to
  1.7273 +      // use the marking stack to scan this oop's oops.
  1.7274 +      bool simulate_overflow = false;
  1.7275 +      NOT_PRODUCT(
  1.7276 +        if (CMSMarkStackOverflowALot &&
  1.7277 +            _collector->simulate_overflow()) {
  1.7278 +          // simulate a stack overflow
  1.7279 +          simulate_overflow = true;
  1.7280 +        }
  1.7281 +      )
  1.7282 +      if (simulate_overflow || !_markStack->push(thisOop)) { // stack overflow
  1.7283 +        if (PrintCMSStatistics != 0) {
  1.7284 +          gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  1.7285 +                                 SIZE_FORMAT, _markStack->capacity());
  1.7286 +        }
  1.7287 +        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  1.7288 +        handle_stack_overflow(addr);
  1.7289 +      }
  1.7290 +    }
  1.7291 +    // anything including and to the right of _finger
  1.7292 +    // will be scanned as we iterate over the remainder of the
  1.7293 +    // bit map
  1.7294 +    do_yield_check();
  1.7295 +  }
  1.7296 +}
  1.7297 +
  1.7298 +void Par_PushOrMarkClosure::do_oop(oop* p) {
  1.7299 +  oop    this_oop = *p;
  1.7300 +  // Ignore mark word because we are running concurrent with mutators.
  1.7301 +  assert(this_oop->is_oop_or_null(true), "expected an oop or NULL");
  1.7302 +  HeapWord* addr = (HeapWord*)this_oop;
  1.7303 +  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  1.7304 +    // Oop lies in _span and isn't yet grey or black
  1.7305 +    // We read the global_finger (volatile read) strictly after marking oop
  1.7306 +    bool res = _bit_map->par_mark(addr);    // now grey
  1.7307 +    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  1.7308 +    // Should we push this marked oop on our stack?
  1.7309 +    // -- if someone else marked it, nothing to do
  1.7310 +    // -- if target oop is above global finger nothing to do
  1.7311 +    // -- if target oop is in chunk and above local finger
  1.7312 +    //      then nothing to do
  1.7313 +    // -- else push on work queue
  1.7314 +    if (   !res       // someone else marked it, they will deal with it
  1.7315 +        || (addr >= *gfa)  // will be scanned in a later task
  1.7316 +        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  1.7317 +      return;
  1.7318 +    }
  1.7319 +    // the bit map iteration has already either passed, or
  1.7320 +    // sampled, this bit in the bit map; we'll need to
  1.7321 +    // use the marking stack to scan this oop's oops.
  1.7322 +    bool simulate_overflow = false;
  1.7323 +    NOT_PRODUCT(
  1.7324 +      if (CMSMarkStackOverflowALot &&
  1.7325 +          _collector->simulate_overflow()) {
  1.7326 +        // simulate a stack overflow
  1.7327 +        simulate_overflow = true;
  1.7328 +      }
  1.7329 +    )
  1.7330 +    if (simulate_overflow ||
  1.7331 +        !(_work_queue->push(this_oop) || _overflow_stack->par_push(this_oop))) {
  1.7332 +      // stack overflow
  1.7333 +      if (PrintCMSStatistics != 0) {
  1.7334 +        gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  1.7335 +                               SIZE_FORMAT, _overflow_stack->capacity());
  1.7336 +      }
  1.7337 +      // We cannot assert that the overflow stack is full because
  1.7338 +      // it may have been emptied since.
  1.7339 +      assert(simulate_overflow ||
  1.7340 +             _work_queue->size() == _work_queue->max_elems(),
  1.7341 +            "Else push should have succeeded");
  1.7342 +      handle_stack_overflow(addr);
  1.7343 +    }
  1.7344 +    do_yield_check();
  1.7345 +  }
  1.7346 +}
  1.7347 +
  1.7348 +
  1.7349 +PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  1.7350 +                                       MemRegion span,
  1.7351 +                                       ReferenceProcessor* rp,
  1.7352 +                                       CMSBitMap* bit_map,
  1.7353 +                                       CMSBitMap* mod_union_table,
  1.7354 +                                       CMSMarkStack*  mark_stack,
  1.7355 +                                       CMSMarkStack*  revisit_stack,
  1.7356 +                                       bool           concurrent_precleaning):
  1.7357 +  OopClosure(rp),
  1.7358 +  _collector(collector),
  1.7359 +  _span(span),
  1.7360 +  _bit_map(bit_map),
  1.7361 +  _mod_union_table(mod_union_table),
  1.7362 +  _mark_stack(mark_stack),
  1.7363 +  _revisit_stack(revisit_stack),
  1.7364 +  _concurrent_precleaning(concurrent_precleaning),
  1.7365 +  _should_remember_klasses(collector->cms_should_unload_classes())
  1.7366 +{
  1.7367 +  assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  1.7368 +}
  1.7369 +
  1.7370 +// Grey object rescan during pre-cleaning and second checkpoint phases --
  1.7371 +// the non-parallel version (the parallel version appears further below.)
  1.7372 +void PushAndMarkClosure::do_oop(oop* p) {
  1.7373 +  oop    this_oop = *p;
  1.7374 +  // Ignore mark word verification. If during concurrent precleaning
  1.7375 +  // the object monitor may be locked. If during the checkpoint
  1.7376 +  // phases, the object may already have been reached by a  different
  1.7377 +  // path and may be at the end of the global overflow list (so
  1.7378 +  // the mark word may be NULL).
  1.7379 +  assert(this_oop->is_oop_or_null(true/* ignore mark word */),
  1.7380 +         "expected an oop or NULL");
  1.7381 +  HeapWord* addr = (HeapWord*)this_oop;
  1.7382 +  // Check if oop points into the CMS generation
  1.7383 +  // and is not marked
  1.7384 +  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  1.7385 +    // a white object ...
  1.7386 +    _bit_map->mark(addr);         // ... now grey
  1.7387 +    // push on the marking stack (grey set)
  1.7388 +    bool simulate_overflow = false;
  1.7389 +    NOT_PRODUCT(
  1.7390 +      if (CMSMarkStackOverflowALot &&
  1.7391 +          _collector->simulate_overflow()) {
  1.7392 +        // simulate a stack overflow
  1.7393 +        simulate_overflow = true;
  1.7394 +      }
  1.7395 +    )
  1.7396 +    if (simulate_overflow || !_mark_stack->push(this_oop)) {
  1.7397 +      if (_concurrent_precleaning) {
  1.7398 +         // During precleaning we can just dirty the appropriate card
  1.7399 +         // in the mod union table, thus ensuring that the object remains
  1.7400 +         // in the grey set  and continue. Note that no one can be intefering
  1.7401 +         // with us in this action of dirtying the mod union table, so
  1.7402 +         // no locking is required.
  1.7403 +         _mod_union_table->mark(addr);
  1.7404 +         _collector->_ser_pmc_preclean_ovflw++;
  1.7405 +      } else {
  1.7406 +         // During the remark phase, we need to remember this oop
  1.7407 +         // in the overflow list.
  1.7408 +         _collector->push_on_overflow_list(this_oop);
  1.7409 +         _collector->_ser_pmc_remark_ovflw++;
  1.7410 +      }
  1.7411 +    }
  1.7412 +  }
  1.7413 +}
  1.7414 +
  1.7415 +Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  1.7416 +                                               MemRegion span,
  1.7417 +                                               ReferenceProcessor* rp,
  1.7418 +                                               CMSBitMap* bit_map,
  1.7419 +                                               OopTaskQueue* work_queue,
  1.7420 +                                               CMSMarkStack* revisit_stack):
  1.7421 +  OopClosure(rp),
  1.7422 +  _collector(collector),
  1.7423 +  _span(span),
  1.7424 +  _bit_map(bit_map),
  1.7425 +  _work_queue(work_queue),
  1.7426 +  _revisit_stack(revisit_stack),
  1.7427 +  _should_remember_klasses(collector->cms_should_unload_classes())
  1.7428 +{
  1.7429 +  assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  1.7430 +}
  1.7431 +
  1.7432 +// Grey object rescan during second checkpoint phase --
  1.7433 +// the parallel version.
  1.7434 +void Par_PushAndMarkClosure::do_oop(oop* p) {
  1.7435 +  oop    this_oop = *p;
  1.7436 +  // In the assert below, we ignore the mark word because
  1.7437 +  // this oop may point to an already visited object that is
  1.7438 +  // on the overflow stack (in which case the mark word has
  1.7439 +  // been hijacked for chaining into the overflow stack --
  1.7440 +  // if this is the last object in the overflow stack then
  1.7441 +  // its mark word will be NULL). Because this object may
  1.7442 +  // have been subsequently popped off the global overflow
  1.7443 +  // stack, and the mark word possibly restored to the prototypical
  1.7444 +  // value, by the time we get to examined this failing assert in
  1.7445 +  // the debugger, is_oop_or_null(false) may subsequently start
  1.7446 +  // to hold.
  1.7447 +  assert(this_oop->is_oop_or_null(true),
  1.7448 +         "expected an oop or NULL");
  1.7449 +  HeapWord* addr = (HeapWord*)this_oop;
  1.7450 +  // Check if oop points into the CMS generation
  1.7451 +  // and is not marked
  1.7452 +  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  1.7453 +    // a white object ...
  1.7454 +    // If we manage to "claim" the object, by being the
  1.7455 +    // first thread to mark it, then we push it on our
  1.7456 +    // marking stack
  1.7457 +    if (_bit_map->par_mark(addr)) {     // ... now grey
  1.7458 +      // push on work queue (grey set)
  1.7459 +      bool simulate_overflow = false;
  1.7460 +      NOT_PRODUCT(
  1.7461 +        if (CMSMarkStackOverflowALot &&
  1.7462 +            _collector->par_simulate_overflow()) {
  1.7463 +          // simulate a stack overflow
  1.7464 +          simulate_overflow = true;
  1.7465 +        }
  1.7466 +      )
  1.7467 +      if (simulate_overflow || !_work_queue->push(this_oop)) {
  1.7468 +        _collector->par_push_on_overflow_list(this_oop);
  1.7469 +        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  1.7470 +      }
  1.7471 +    } // Else, some other thread got there first
  1.7472 +  }
  1.7473 +}
  1.7474 +
  1.7475 +void PushAndMarkClosure::remember_klass(Klass* k) {
  1.7476 +  if (!_revisit_stack->push(oop(k))) {
  1.7477 +    fatal("Revisit stack overflowed in PushAndMarkClosure");
  1.7478 +  }
  1.7479 +}
  1.7480 +
  1.7481 +void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  1.7482 +  if (!_revisit_stack->par_push(oop(k))) {
  1.7483 +    fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  1.7484 +  }
  1.7485 +}
  1.7486 +
  1.7487 +void CMSPrecleanRefsYieldClosure::do_yield_work() {
  1.7488 +  Mutex* bml = _collector->bitMapLock();
  1.7489 +  assert_lock_strong(bml);
  1.7490 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.7491 +         "CMS thread should hold CMS token");
  1.7492 +
  1.7493 +  bml->unlock();
  1.7494 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.7495 +
  1.7496 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.7497 +
  1.7498 +  _collector->stopTimer();
  1.7499 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.7500 +  if (PrintCMSStatistics != 0) {
  1.7501 +    _collector->incrementYields();
  1.7502 +  }
  1.7503 +  _collector->icms_wait();
  1.7504 +
  1.7505 +  // See the comment in coordinator_yield()
  1.7506 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.7507 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.7508 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.7509 +    os::sleep(Thread::current(), 1, false);
  1.7510 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.7511 +  }
  1.7512 +
  1.7513 +  ConcurrentMarkSweepThread::synchronize(true);
  1.7514 +  bml->lock();
  1.7515 +
  1.7516 +  _collector->startTimer();
  1.7517 +}
  1.7518 +
  1.7519 +bool CMSPrecleanRefsYieldClosure::should_return() {
  1.7520 +  if (ConcurrentMarkSweepThread::should_yield()) {
  1.7521 +    do_yield_work();
  1.7522 +  }
  1.7523 +  return _collector->foregroundGCIsActive();
  1.7524 +}
  1.7525 +
  1.7526 +void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  1.7527 +  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  1.7528 +         "mr should be aligned to start at a card boundary");
  1.7529 +  // We'd like to assert:
  1.7530 +  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  1.7531 +  //        "mr should be a range of cards");
  1.7532 +  // However, that would be too strong in one case -- the last
  1.7533 +  // partition ends at _unallocated_block which, in general, can be
  1.7534 +  // an arbitrary boundary, not necessarily card aligned.
  1.7535 +  if (PrintCMSStatistics != 0) {
  1.7536 +    _num_dirty_cards +=
  1.7537 +         mr.word_size()/CardTableModRefBS::card_size_in_words;
  1.7538 +  }
  1.7539 +  _space->object_iterate_mem(mr, &_scan_cl);
  1.7540 +}
  1.7541 +
  1.7542 +SweepClosure::SweepClosure(CMSCollector* collector,
  1.7543 +                           ConcurrentMarkSweepGeneration* g,
  1.7544 +                           CMSBitMap* bitMap, bool should_yield) :
  1.7545 +  _collector(collector),
  1.7546 +  _g(g),
  1.7547 +  _sp(g->cmsSpace()),
  1.7548 +  _limit(_sp->sweep_limit()),
  1.7549 +  _freelistLock(_sp->freelistLock()),
  1.7550 +  _bitMap(bitMap),
  1.7551 +  _yield(should_yield),
  1.7552 +  _inFreeRange(false),           // No free range at beginning of sweep
  1.7553 +  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  1.7554 +  _lastFreeRangeCoalesced(false),
  1.7555 +  _freeFinger(g->used_region().start())
  1.7556 +{
  1.7557 +  NOT_PRODUCT(
  1.7558 +    _numObjectsFreed = 0;
  1.7559 +    _numWordsFreed   = 0;
  1.7560 +    _numObjectsLive = 0;
  1.7561 +    _numWordsLive = 0;
  1.7562 +    _numObjectsAlreadyFree = 0;
  1.7563 +    _numWordsAlreadyFree = 0;
  1.7564 +    _last_fc = NULL;
  1.7565 +
  1.7566 +    _sp->initializeIndexedFreeListArrayReturnedBytes();
  1.7567 +    _sp->dictionary()->initializeDictReturnedBytes();
  1.7568 +  )
  1.7569 +  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  1.7570 +         "sweep _limit out of bounds");
  1.7571 +  if (CMSTraceSweeper) {
  1.7572 +    gclog_or_tty->print("\n====================\nStarting new sweep\n");
  1.7573 +  }
  1.7574 +}
  1.7575 +
  1.7576 +// We need this destructor to reclaim any space at the end
  1.7577 +// of the space, which do_blk below may not have added back to
  1.7578 +// the free lists. [basically dealing with the "fringe effect"]
  1.7579 +SweepClosure::~SweepClosure() {
  1.7580 +  assert_lock_strong(_freelistLock);
  1.7581 +  // this should be treated as the end of a free run if any
  1.7582 +  // The current free range should be returned to the free lists
  1.7583 +  // as one coalesced chunk.
  1.7584 +  if (inFreeRange()) {
  1.7585 +    flushCurFreeChunk(freeFinger(),
  1.7586 +      pointer_delta(_limit, freeFinger()));
  1.7587 +    assert(freeFinger() < _limit, "the finger pointeth off base");
  1.7588 +    if (CMSTraceSweeper) {
  1.7589 +      gclog_or_tty->print("destructor:");
  1.7590 +      gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  1.7591 +                 "[coalesced:"SIZE_FORMAT"]\n",
  1.7592 +                 freeFinger(), pointer_delta(_limit, freeFinger()),
  1.7593 +                 lastFreeRangeCoalesced());
  1.7594 +    }
  1.7595 +  }
  1.7596 +  NOT_PRODUCT(
  1.7597 +    if (Verbose && PrintGC) {
  1.7598 +      gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  1.7599 +                          SIZE_FORMAT " bytes",
  1.7600 +                 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  1.7601 +      gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  1.7602 +                             SIZE_FORMAT" bytes  "
  1.7603 +        "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  1.7604 +        _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  1.7605 +        _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  1.7606 +      size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  1.7607 +        sizeof(HeapWord);
  1.7608 +      gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  1.7609 +
  1.7610 +      if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  1.7611 +        size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  1.7612 +        size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  1.7613 +        size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  1.7614 +        gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  1.7615 +        gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  1.7616 +          indexListReturnedBytes);
  1.7617 +        gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  1.7618 +          dictReturnedBytes);
  1.7619 +      }
  1.7620 +    }
  1.7621 +  )
  1.7622 +  // Now, in debug mode, just null out the sweep_limit
  1.7623 +  NOT_PRODUCT(_sp->clear_sweep_limit();)
  1.7624 +  if (CMSTraceSweeper) {
  1.7625 +    gclog_or_tty->print("end of sweep\n================\n");
  1.7626 +  }
  1.7627 +}
  1.7628 +
  1.7629 +void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  1.7630 +    bool freeRangeInFreeLists) {
  1.7631 +  if (CMSTraceSweeper) {
  1.7632 +    gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  1.7633 +               freeFinger, _sp->block_size(freeFinger),
  1.7634 +               freeRangeInFreeLists);
  1.7635 +  }
  1.7636 +  assert(!inFreeRange(), "Trampling existing free range");
  1.7637 +  set_inFreeRange(true);
  1.7638 +  set_lastFreeRangeCoalesced(false);
  1.7639 +
  1.7640 +  set_freeFinger(freeFinger);
  1.7641 +  set_freeRangeInFreeLists(freeRangeInFreeLists);
  1.7642 +  if (CMSTestInFreeList) {
  1.7643 +    if (freeRangeInFreeLists) {
  1.7644 +      FreeChunk* fc = (FreeChunk*) freeFinger;
  1.7645 +      assert(fc->isFree(), "A chunk on the free list should be free.");
  1.7646 +      assert(fc->size() > 0, "Free range should have a size");
  1.7647 +      assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  1.7648 +    }
  1.7649 +  }
  1.7650 +}
  1.7651 +
  1.7652 +// Note that the sweeper runs concurrently with mutators. Thus,
  1.7653 +// it is possible for direct allocation in this generation to happen
  1.7654 +// in the middle of the sweep. Note that the sweeper also coalesces
  1.7655 +// contiguous free blocks. Thus, unless the sweeper and the allocator
  1.7656 +// synchronize appropriately freshly allocated blocks may get swept up.
  1.7657 +// This is accomplished by the sweeper locking the free lists while
  1.7658 +// it is sweeping. Thus blocks that are determined to be free are
  1.7659 +// indeed free. There is however one additional complication:
  1.7660 +// blocks that have been allocated since the final checkpoint and
  1.7661 +// mark, will not have been marked and so would be treated as
  1.7662 +// unreachable and swept up. To prevent this, the allocator marks
  1.7663 +// the bit map when allocating during the sweep phase. This leads,
  1.7664 +// however, to a further complication -- objects may have been allocated
  1.7665 +// but not yet initialized -- in the sense that the header isn't yet
  1.7666 +// installed. The sweeper can not then determine the size of the block
  1.7667 +// in order to skip over it. To deal with this case, we use a technique
  1.7668 +// (due to Printezis) to encode such uninitialized block sizes in the
  1.7669 +// bit map. Since the bit map uses a bit per every HeapWord, but the
  1.7670 +// CMS generation has a minimum object size of 3 HeapWords, it follows
  1.7671 +// that "normal marks" won't be adjacent in the bit map (there will
  1.7672 +// always be at least two 0 bits between successive 1 bits). We make use
  1.7673 +// of these "unused" bits to represent uninitialized blocks -- the bit
  1.7674 +// corresponding to the start of the uninitialized object and the next
  1.7675 +// bit are both set. Finally, a 1 bit marks the end of the object that
  1.7676 +// started with the two consecutive 1 bits to indicate its potentially
  1.7677 +// uninitialized state.
  1.7678 +
  1.7679 +size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  1.7680 +  FreeChunk* fc = (FreeChunk*)addr;
  1.7681 +  size_t res;
  1.7682 +
  1.7683 +  // check if we are done sweepinrg
  1.7684 +  if (addr == _limit) { // we have swept up to the limit, do nothing more
  1.7685 +    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  1.7686 +           "sweep _limit out of bounds");
  1.7687 +    // help the closure application finish
  1.7688 +    return pointer_delta(_sp->end(), _limit);
  1.7689 +  }
  1.7690 +  assert(addr <= _limit, "sweep invariant");
  1.7691 +
  1.7692 +  // check if we should yield
  1.7693 +  do_yield_check(addr);
  1.7694 +  if (fc->isFree()) {
  1.7695 +    // Chunk that is already free
  1.7696 +    res = fc->size();
  1.7697 +    doAlreadyFreeChunk(fc);
  1.7698 +    debug_only(_sp->verifyFreeLists());
  1.7699 +    assert(res == fc->size(), "Don't expect the size to change");
  1.7700 +    NOT_PRODUCT(
  1.7701 +      _numObjectsAlreadyFree++;
  1.7702 +      _numWordsAlreadyFree += res;
  1.7703 +    )
  1.7704 +    NOT_PRODUCT(_last_fc = fc;)
  1.7705 +  } else if (!_bitMap->isMarked(addr)) {
  1.7706 +    // Chunk is fresh garbage
  1.7707 +    res = doGarbageChunk(fc);
  1.7708 +    debug_only(_sp->verifyFreeLists());
  1.7709 +    NOT_PRODUCT(
  1.7710 +      _numObjectsFreed++;
  1.7711 +      _numWordsFreed += res;
  1.7712 +    )
  1.7713 +  } else {
  1.7714 +    // Chunk that is alive.
  1.7715 +    res = doLiveChunk(fc);
  1.7716 +    debug_only(_sp->verifyFreeLists());
  1.7717 +    NOT_PRODUCT(
  1.7718 +        _numObjectsLive++;
  1.7719 +        _numWordsLive += res;
  1.7720 +    )
  1.7721 +  }
  1.7722 +  return res;
  1.7723 +}
  1.7724 +
  1.7725 +// For the smart allocation, record following
  1.7726 +//  split deaths - a free chunk is removed from its free list because
  1.7727 +//      it is being split into two or more chunks.
  1.7728 +//  split birth - a free chunk is being added to its free list because
  1.7729 +//      a larger free chunk has been split and resulted in this free chunk.
  1.7730 +//  coal death - a free chunk is being removed from its free list because
  1.7731 +//      it is being coalesced into a large free chunk.
  1.7732 +//  coal birth - a free chunk is being added to its free list because
  1.7733 +//      it was created when two or more free chunks where coalesced into
  1.7734 +//      this free chunk.
  1.7735 +//
  1.7736 +// These statistics are used to determine the desired number of free
  1.7737 +// chunks of a given size.  The desired number is chosen to be relative
  1.7738 +// to the end of a CMS sweep.  The desired number at the end of a sweep
  1.7739 +// is the
  1.7740 +//      count-at-end-of-previous-sweep (an amount that was enough)
  1.7741 +//              - count-at-beginning-of-current-sweep  (the excess)
  1.7742 +//              + split-births  (gains in this size during interval)
  1.7743 +//              - split-deaths  (demands on this size during interval)
  1.7744 +// where the interval is from the end of one sweep to the end of the
  1.7745 +// next.
  1.7746 +//
  1.7747 +// When sweeping the sweeper maintains an accumulated chunk which is
  1.7748 +// the chunk that is made up of chunks that have been coalesced.  That
  1.7749 +// will be termed the left-hand chunk.  A new chunk of garbage that
  1.7750 +// is being considered for coalescing will be referred to as the
  1.7751 +// right-hand chunk.
  1.7752 +//
  1.7753 +// When making a decision on whether to coalesce a right-hand chunk with
  1.7754 +// the current left-hand chunk, the current count vs. the desired count
  1.7755 +// of the left-hand chunk is considered.  Also if the right-hand chunk
  1.7756 +// is near the large chunk at the end of the heap (see
  1.7757 +// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  1.7758 +// left-hand chunk is coalesced.
  1.7759 +//
  1.7760 +// When making a decision about whether to split a chunk, the desired count
  1.7761 +// vs. the current count of the candidate to be split is also considered.
  1.7762 +// If the candidate is underpopulated (currently fewer chunks than desired)
  1.7763 +// a chunk of an overpopulated (currently more chunks than desired) size may
  1.7764 +// be chosen.  The "hint" associated with a free list, if non-null, points
  1.7765 +// to a free list which may be overpopulated.
  1.7766 +//
  1.7767 +
  1.7768 +void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  1.7769 +  size_t size = fc->size();
  1.7770 +  // Chunks that cannot be coalesced are not in the
  1.7771 +  // free lists.
  1.7772 +  if (CMSTestInFreeList && !fc->cantCoalesce()) {
  1.7773 +    assert(_sp->verifyChunkInFreeLists(fc),
  1.7774 +      "free chunk should be in free lists");
  1.7775 +  }
  1.7776 +  // a chunk that is already free, should not have been
  1.7777 +  // marked in the bit map
  1.7778 +  HeapWord* addr = (HeapWord*) fc;
  1.7779 +  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  1.7780 +  // Verify that the bit map has no bits marked between
  1.7781 +  // addr and purported end of this block.
  1.7782 +  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  1.7783 +
  1.7784 +  // Some chunks cannot be coalesced in under any circumstances.
  1.7785 +  // See the definition of cantCoalesce().
  1.7786 +  if (!fc->cantCoalesce()) {
  1.7787 +    // This chunk can potentially be coalesced.
  1.7788 +    if (_sp->adaptive_freelists()) {
  1.7789 +      // All the work is done in
  1.7790 +      doPostIsFreeOrGarbageChunk(fc, size);
  1.7791 +    } else {  // Not adaptive free lists
  1.7792 +      // this is a free chunk that can potentially be coalesced by the sweeper;
  1.7793 +      if (!inFreeRange()) {
  1.7794 +        // if the next chunk is a free block that can't be coalesced
  1.7795 +        // it doesn't make sense to remove this chunk from the free lists
  1.7796 +        FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  1.7797 +        assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  1.7798 +        if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  1.7799 +            nextChunk->isFree()    &&            // which is free...
  1.7800 +            nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  1.7801 +          // nothing to do
  1.7802 +        } else {
  1.7803 +          // Potentially the start of a new free range:
  1.7804 +          // Don't eagerly remove it from the free lists.
  1.7805 +          // No need to remove it if it will just be put
  1.7806 +          // back again.  (Also from a pragmatic point of view
  1.7807 +          // if it is a free block in a region that is beyond
  1.7808 +          // any allocated blocks, an assertion will fail)
  1.7809 +          // Remember the start of a free run.
  1.7810 +          initialize_free_range(addr, true);
  1.7811 +          // end - can coalesce with next chunk
  1.7812 +        }
  1.7813 +      } else {
  1.7814 +        // the midst of a free range, we are coalescing
  1.7815 +        debug_only(record_free_block_coalesced(fc);)
  1.7816 +        if (CMSTraceSweeper) {
  1.7817 +          gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  1.7818 +        }
  1.7819 +        // remove it from the free lists
  1.7820 +        _sp->removeFreeChunkFromFreeLists(fc);
  1.7821 +        set_lastFreeRangeCoalesced(true);
  1.7822 +        // If the chunk is being coalesced and the current free range is
  1.7823 +        // in the free lists, remove the current free range so that it
  1.7824 +        // will be returned to the free lists in its entirety - all
  1.7825 +        // the coalesced pieces included.
  1.7826 +        if (freeRangeInFreeLists()) {
  1.7827 +          FreeChunk* ffc = (FreeChunk*) freeFinger();
  1.7828 +          assert(ffc->size() == pointer_delta(addr, freeFinger()),
  1.7829 +            "Size of free range is inconsistent with chunk size.");
  1.7830 +          if (CMSTestInFreeList) {
  1.7831 +            assert(_sp->verifyChunkInFreeLists(ffc),
  1.7832 +              "free range is not in free lists");
  1.7833 +          }
  1.7834 +          _sp->removeFreeChunkFromFreeLists(ffc);
  1.7835 +          set_freeRangeInFreeLists(false);
  1.7836 +        }
  1.7837 +      }
  1.7838 +    }
  1.7839 +  } else {
  1.7840 +    // Code path common to both original and adaptive free lists.
  1.7841 +
  1.7842 +    // cant coalesce with previous block; this should be treated
  1.7843 +    // as the end of a free run if any
  1.7844 +    if (inFreeRange()) {
  1.7845 +      // we kicked some butt; time to pick up the garbage
  1.7846 +      assert(freeFinger() < addr, "the finger pointeth off base");
  1.7847 +      flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  1.7848 +    }
  1.7849 +    // else, nothing to do, just continue
  1.7850 +  }
  1.7851 +}
  1.7852 +
  1.7853 +size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  1.7854 +  // This is a chunk of garbage.  It is not in any free list.
  1.7855 +  // Add it to a free list or let it possibly be coalesced into
  1.7856 +  // a larger chunk.
  1.7857 +  HeapWord* addr = (HeapWord*) fc;
  1.7858 +  size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  1.7859 +
  1.7860 +  if (_sp->adaptive_freelists()) {
  1.7861 +    // Verify that the bit map has no bits marked between
  1.7862 +    // addr and purported end of just dead object.
  1.7863 +    _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  1.7864 +
  1.7865 +    doPostIsFreeOrGarbageChunk(fc, size);
  1.7866 +  } else {
  1.7867 +    if (!inFreeRange()) {
  1.7868 +      // start of a new free range
  1.7869 +      assert(size > 0, "A free range should have a size");
  1.7870 +      initialize_free_range(addr, false);
  1.7871 +
  1.7872 +    } else {
  1.7873 +      // this will be swept up when we hit the end of the
  1.7874 +      // free range
  1.7875 +      if (CMSTraceSweeper) {
  1.7876 +        gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  1.7877 +      }
  1.7878 +      // If the chunk is being coalesced and the current free range is
  1.7879 +      // in the free lists, remove the current free range so that it
  1.7880 +      // will be returned to the free lists in its entirety - all
  1.7881 +      // the coalesced pieces included.
  1.7882 +      if (freeRangeInFreeLists()) {
  1.7883 +        FreeChunk* ffc = (FreeChunk*)freeFinger();
  1.7884 +        assert(ffc->size() == pointer_delta(addr, freeFinger()),
  1.7885 +          "Size of free range is inconsistent with chunk size.");
  1.7886 +        if (CMSTestInFreeList) {
  1.7887 +          assert(_sp->verifyChunkInFreeLists(ffc),
  1.7888 +            "free range is not in free lists");
  1.7889 +        }
  1.7890 +        _sp->removeFreeChunkFromFreeLists(ffc);
  1.7891 +        set_freeRangeInFreeLists(false);
  1.7892 +      }
  1.7893 +      set_lastFreeRangeCoalesced(true);
  1.7894 +    }
  1.7895 +    // this will be swept up when we hit the end of the free range
  1.7896 +
  1.7897 +    // Verify that the bit map has no bits marked between
  1.7898 +    // addr and purported end of just dead object.
  1.7899 +    _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  1.7900 +  }
  1.7901 +  return size;
  1.7902 +}
  1.7903 +
  1.7904 +size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  1.7905 +  HeapWord* addr = (HeapWord*) fc;
  1.7906 +  // The sweeper has just found a live object. Return any accumulated
  1.7907 +  // left hand chunk to the free lists.
  1.7908 +  if (inFreeRange()) {
  1.7909 +    if (_sp->adaptive_freelists()) {
  1.7910 +      flushCurFreeChunk(freeFinger(),
  1.7911 +                        pointer_delta(addr, freeFinger()));
  1.7912 +    } else { // not adaptive freelists
  1.7913 +      set_inFreeRange(false);
  1.7914 +      // Add the free range back to the free list if it is not already
  1.7915 +      // there.
  1.7916 +      if (!freeRangeInFreeLists()) {
  1.7917 +        assert(freeFinger() < addr, "the finger pointeth off base");
  1.7918 +        if (CMSTraceSweeper) {
  1.7919 +          gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  1.7920 +            "[coalesced:%d]\n",
  1.7921 +            freeFinger(), pointer_delta(addr, freeFinger()),
  1.7922 +            lastFreeRangeCoalesced());
  1.7923 +        }
  1.7924 +        _sp->addChunkAndRepairOffsetTable(freeFinger(),
  1.7925 +          pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  1.7926 +      }
  1.7927 +    }
  1.7928 +  }
  1.7929 +
  1.7930 +  // Common code path for original and adaptive free lists.
  1.7931 +
  1.7932 +  // this object is live: we'd normally expect this to be
  1.7933 +  // an oop, and like to assert the following:
  1.7934 +  // assert(oop(addr)->is_oop(), "live block should be an oop");
  1.7935 +  // However, as we commented above, this may be an object whose
  1.7936 +  // header hasn't yet been initialized.
  1.7937 +  size_t size;
  1.7938 +  assert(_bitMap->isMarked(addr), "Tautology for this control point");
  1.7939 +  if (_bitMap->isMarked(addr + 1)) {
  1.7940 +    // Determine the size from the bit map, rather than trying to
  1.7941 +    // compute it from the object header.
  1.7942 +    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  1.7943 +    size = pointer_delta(nextOneAddr + 1, addr);
  1.7944 +    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  1.7945 +           "alignment problem");
  1.7946 +
  1.7947 +    #ifdef DEBUG
  1.7948 +      if (oop(addr)->klass() != NULL &&
  1.7949 +          (   !_collector->cms_should_unload_classes()
  1.7950 +           || oop(addr)->is_parsable())) {
  1.7951 +        // Ignore mark word because we are running concurrent with mutators
  1.7952 +        assert(oop(addr)->is_oop(true), "live block should be an oop");
  1.7953 +        assert(size ==
  1.7954 +               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  1.7955 +               "P-mark and computed size do not agree");
  1.7956 +      }
  1.7957 +    #endif
  1.7958 +
  1.7959 +  } else {
  1.7960 +    // This should be an initialized object that's alive.
  1.7961 +    assert(oop(addr)->klass() != NULL &&
  1.7962 +           (!_collector->cms_should_unload_classes()
  1.7963 +            || oop(addr)->is_parsable()),
  1.7964 +           "Should be an initialized object");
  1.7965 +    // Ignore mark word because we are running concurrent with mutators
  1.7966 +    assert(oop(addr)->is_oop(true), "live block should be an oop");
  1.7967 +    // Verify that the bit map has no bits marked between
  1.7968 +    // addr and purported end of this block.
  1.7969 +    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  1.7970 +    assert(size >= 3, "Necessary for Printezis marks to work");
  1.7971 +    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  1.7972 +    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  1.7973 +  }
  1.7974 +  return size;
  1.7975 +}
  1.7976 +
  1.7977 +void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  1.7978 +                                            size_t chunkSize) {
  1.7979 +  // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  1.7980 +  // scheme.
  1.7981 +  bool fcInFreeLists = fc->isFree();
  1.7982 +  assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  1.7983 +  assert((HeapWord*)fc <= _limit, "sweep invariant");
  1.7984 +  if (CMSTestInFreeList && fcInFreeLists) {
  1.7985 +    assert(_sp->verifyChunkInFreeLists(fc),
  1.7986 +      "free chunk is not in free lists");
  1.7987 +  }
  1.7988 +
  1.7989 +
  1.7990 +  if (CMSTraceSweeper) {
  1.7991 +    gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  1.7992 +  }
  1.7993 +
  1.7994 +  HeapWord* addr = (HeapWord*) fc;
  1.7995 +
  1.7996 +  bool coalesce;
  1.7997 +  size_t left  = pointer_delta(addr, freeFinger());
  1.7998 +  size_t right = chunkSize;
  1.7999 +  switch (FLSCoalescePolicy) {
  1.8000 +    // numeric value forms a coalition aggressiveness metric
  1.8001 +    case 0:  { // never coalesce
  1.8002 +      coalesce = false;
  1.8003 +      break;
  1.8004 +    }
  1.8005 +    case 1: { // coalesce if left & right chunks on overpopulated lists
  1.8006 +      coalesce = _sp->coalOverPopulated(left) &&
  1.8007 +                 _sp->coalOverPopulated(right);
  1.8008 +      break;
  1.8009 +    }
  1.8010 +    case 2: { // coalesce if left chunk on overpopulated list (default)
  1.8011 +      coalesce = _sp->coalOverPopulated(left);
  1.8012 +      break;
  1.8013 +    }
  1.8014 +    case 3: { // coalesce if left OR right chunk on overpopulated list
  1.8015 +      coalesce = _sp->coalOverPopulated(left) ||
  1.8016 +                 _sp->coalOverPopulated(right);
  1.8017 +      break;
  1.8018 +    }
  1.8019 +    case 4: { // always coalesce
  1.8020 +      coalesce = true;
  1.8021 +      break;
  1.8022 +    }
  1.8023 +    default:
  1.8024 +     ShouldNotReachHere();
  1.8025 +  }
  1.8026 +
  1.8027 +  // Should the current free range be coalesced?
  1.8028 +  // If the chunk is in a free range and either we decided to coalesce above
  1.8029 +  // or the chunk is near the large block at the end of the heap
  1.8030 +  // (isNearLargestChunk() returns true), then coalesce this chunk.
  1.8031 +  bool doCoalesce = inFreeRange() &&
  1.8032 +    (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  1.8033 +  if (doCoalesce) {
  1.8034 +    // Coalesce the current free range on the left with the new
  1.8035 +    // chunk on the right.  If either is on a free list,
  1.8036 +    // it must be removed from the list and stashed in the closure.
  1.8037 +    if (freeRangeInFreeLists()) {
  1.8038 +      FreeChunk* ffc = (FreeChunk*)freeFinger();
  1.8039 +      assert(ffc->size() == pointer_delta(addr, freeFinger()),
  1.8040 +        "Size of free range is inconsistent with chunk size.");
  1.8041 +      if (CMSTestInFreeList) {
  1.8042 +        assert(_sp->verifyChunkInFreeLists(ffc),
  1.8043 +          "Chunk is not in free lists");
  1.8044 +      }
  1.8045 +      _sp->coalDeath(ffc->size());
  1.8046 +      _sp->removeFreeChunkFromFreeLists(ffc);
  1.8047 +      set_freeRangeInFreeLists(false);
  1.8048 +    }
  1.8049 +    if (fcInFreeLists) {
  1.8050 +      _sp->coalDeath(chunkSize);
  1.8051 +      assert(fc->size() == chunkSize,
  1.8052 +        "The chunk has the wrong size or is not in the free lists");
  1.8053 +      _sp->removeFreeChunkFromFreeLists(fc);
  1.8054 +    }
  1.8055 +    set_lastFreeRangeCoalesced(true);
  1.8056 +  } else {  // not in a free range and/or should not coalesce
  1.8057 +    // Return the current free range and start a new one.
  1.8058 +    if (inFreeRange()) {
  1.8059 +      // In a free range but cannot coalesce with the right hand chunk.
  1.8060 +      // Put the current free range into the free lists.
  1.8061 +      flushCurFreeChunk(freeFinger(),
  1.8062 +        pointer_delta(addr, freeFinger()));
  1.8063 +    }
  1.8064 +    // Set up for new free range.  Pass along whether the right hand
  1.8065 +    // chunk is in the free lists.
  1.8066 +    initialize_free_range((HeapWord*)fc, fcInFreeLists);
  1.8067 +  }
  1.8068 +}
  1.8069 +void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  1.8070 +  assert(inFreeRange(), "Should only be called if currently in a free range.");
  1.8071 +  assert(size > 0,
  1.8072 +    "A zero sized chunk cannot be added to the free lists.");
  1.8073 +  if (!freeRangeInFreeLists()) {
  1.8074 +    if(CMSTestInFreeList) {
  1.8075 +      FreeChunk* fc = (FreeChunk*) chunk;
  1.8076 +      fc->setSize(size);
  1.8077 +      assert(!_sp->verifyChunkInFreeLists(fc),
  1.8078 +        "chunk should not be in free lists yet");
  1.8079 +    }
  1.8080 +    if (CMSTraceSweeper) {
  1.8081 +      gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  1.8082 +                    chunk, size);
  1.8083 +    }
  1.8084 +    // A new free range is going to be starting.  The current
  1.8085 +    // free range has not been added to the free lists yet or
  1.8086 +    // was removed so add it back.
  1.8087 +    // If the current free range was coalesced, then the death
  1.8088 +    // of the free range was recorded.  Record a birth now.
  1.8089 +    if (lastFreeRangeCoalesced()) {
  1.8090 +      _sp->coalBirth(size);
  1.8091 +    }
  1.8092 +    _sp->addChunkAndRepairOffsetTable(chunk, size,
  1.8093 +            lastFreeRangeCoalesced());
  1.8094 +  }
  1.8095 +  set_inFreeRange(false);
  1.8096 +  set_freeRangeInFreeLists(false);
  1.8097 +}
  1.8098 +
  1.8099 +// We take a break if we've been at this for a while,
  1.8100 +// so as to avoid monopolizing the locks involved.
  1.8101 +void SweepClosure::do_yield_work(HeapWord* addr) {
  1.8102 +  // Return current free chunk being used for coalescing (if any)
  1.8103 +  // to the appropriate freelist.  After yielding, the next
  1.8104 +  // free block encountered will start a coalescing range of
  1.8105 +  // free blocks.  If the next free block is adjacent to the
  1.8106 +  // chunk just flushed, they will need to wait for the next
  1.8107 +  // sweep to be coalesced.
  1.8108 +  if (inFreeRange()) {
  1.8109 +    flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  1.8110 +  }
  1.8111 +
  1.8112 +  // First give up the locks, then yield, then re-lock.
  1.8113 +  // We should probably use a constructor/destructor idiom to
  1.8114 +  // do this unlock/lock or modify the MutexUnlocker class to
  1.8115 +  // serve our purpose. XXX
  1.8116 +  assert_lock_strong(_bitMap->lock());
  1.8117 +  assert_lock_strong(_freelistLock);
  1.8118 +  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  1.8119 +         "CMS thread should hold CMS token");
  1.8120 +  _bitMap->lock()->unlock();
  1.8121 +  _freelistLock->unlock();
  1.8122 +  ConcurrentMarkSweepThread::desynchronize(true);
  1.8123 +  ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.8124 +  _collector->stopTimer();
  1.8125 +  GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  1.8126 +  if (PrintCMSStatistics != 0) {
  1.8127 +    _collector->incrementYields();
  1.8128 +  }
  1.8129 +  _collector->icms_wait();
  1.8130 +
  1.8131 +  // See the comment in coordinator_yield()
  1.8132 +  for (unsigned i = 0; i < CMSYieldSleepCount &&
  1.8133 +                       ConcurrentMarkSweepThread::should_yield() &&
  1.8134 +                       !CMSCollector::foregroundGCIsActive(); ++i) {
  1.8135 +    os::sleep(Thread::current(), 1, false);
  1.8136 +    ConcurrentMarkSweepThread::acknowledge_yield_request();
  1.8137 +  }
  1.8138 +
  1.8139 +  ConcurrentMarkSweepThread::synchronize(true);
  1.8140 +  _freelistLock->lock();
  1.8141 +  _bitMap->lock()->lock_without_safepoint_check();
  1.8142 +  _collector->startTimer();
  1.8143 +}
  1.8144 +
  1.8145 +#ifndef PRODUCT
  1.8146 +// This is actually very useful in a product build if it can
  1.8147 +// be called from the debugger.  Compile it into the product
  1.8148 +// as needed.
  1.8149 +bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  1.8150 +  return debug_cms_space->verifyChunkInFreeLists(fc);
  1.8151 +}
  1.8152 +
  1.8153 +void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  1.8154 +  if (CMSTraceSweeper) {
  1.8155 +    gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  1.8156 +  }
  1.8157 +}
  1.8158 +#endif
  1.8159 +
  1.8160 +// CMSIsAliveClosure
  1.8161 +bool CMSIsAliveClosure::do_object_b(oop obj) {
  1.8162 +  HeapWord* addr = (HeapWord*)obj;
  1.8163 +  return addr != NULL &&
  1.8164 +         (!_span.contains(addr) || _bit_map->isMarked(addr));
  1.8165 +}
  1.8166 +
  1.8167 +// CMSKeepAliveClosure: the serial version
  1.8168 +void CMSKeepAliveClosure::do_oop(oop* p) {
  1.8169 +  oop this_oop = *p;
  1.8170 +  HeapWord* addr = (HeapWord*)this_oop;
  1.8171 +  if (_span.contains(addr) &&
  1.8172 +      !_bit_map->isMarked(addr)) {
  1.8173 +    _bit_map->mark(addr);
  1.8174 +    bool simulate_overflow = false;
  1.8175 +    NOT_PRODUCT(
  1.8176 +      if (CMSMarkStackOverflowALot &&
  1.8177 +          _collector->simulate_overflow()) {
  1.8178 +        // simulate a stack overflow
  1.8179 +        simulate_overflow = true;
  1.8180 +      }
  1.8181 +    )
  1.8182 +    if (simulate_overflow || !_mark_stack->push(this_oop)) {
  1.8183 +      _collector->push_on_overflow_list(this_oop);
  1.8184 +      _collector->_ser_kac_ovflw++;
  1.8185 +    }
  1.8186 +  }
  1.8187 +}
  1.8188 +
  1.8189 +// CMSParKeepAliveClosure: a parallel version of the above.
  1.8190 +// The work queues are private to each closure (thread),
  1.8191 +// but (may be) available for stealing by other threads.
  1.8192 +void CMSParKeepAliveClosure::do_oop(oop* p) {
  1.8193 +  oop this_oop = *p;
  1.8194 +  HeapWord* addr = (HeapWord*)this_oop;
  1.8195 +  if (_span.contains(addr) &&
  1.8196 +      !_bit_map->isMarked(addr)) {
  1.8197 +    // In general, during recursive tracing, several threads
  1.8198 +    // may be concurrently getting here; the first one to
  1.8199 +    // "tag" it, claims it.
  1.8200 +    if (_bit_map->par_mark(addr)) {
  1.8201 +      bool res = _work_queue->push(this_oop);
  1.8202 +      assert(res, "Low water mark should be much less than capacity");
  1.8203 +      // Do a recursive trim in the hope that this will keep
  1.8204 +      // stack usage lower, but leave some oops for potential stealers
  1.8205 +      trim_queue(_low_water_mark);
  1.8206 +    } // Else, another thread got there first
  1.8207 +  }
  1.8208 +}
  1.8209 +
  1.8210 +void CMSParKeepAliveClosure::trim_queue(uint max) {
  1.8211 +  while (_work_queue->size() > max) {
  1.8212 +    oop new_oop;
  1.8213 +    if (_work_queue->pop_local(new_oop)) {
  1.8214 +      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  1.8215 +      assert(_bit_map->isMarked((HeapWord*)new_oop),
  1.8216 +             "no white objects on this stack!");
  1.8217 +      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  1.8218 +      // iterate over the oops in this oop, marking and pushing
  1.8219 +      // the ones in CMS heap (i.e. in _span).
  1.8220 +      new_oop->oop_iterate(&_mark_and_push);
  1.8221 +    }
  1.8222 +  }
  1.8223 +}
  1.8224 +
  1.8225 +void CMSInnerParMarkAndPushClosure::do_oop(oop* p) {
  1.8226 +  oop this_oop = *p;
  1.8227 +  HeapWord* addr = (HeapWord*)this_oop;
  1.8228 +  if (_span.contains(addr) &&
  1.8229 +      !_bit_map->isMarked(addr)) {
  1.8230 +    if (_bit_map->par_mark(addr)) {
  1.8231 +      bool simulate_overflow = false;
  1.8232 +      NOT_PRODUCT(
  1.8233 +        if (CMSMarkStackOverflowALot &&
  1.8234 +            _collector->par_simulate_overflow()) {
  1.8235 +          // simulate a stack overflow
  1.8236 +          simulate_overflow = true;
  1.8237 +        }
  1.8238 +      )
  1.8239 +      if (simulate_overflow || !_work_queue->push(this_oop)) {
  1.8240 +        _collector->par_push_on_overflow_list(this_oop);
  1.8241 +        _collector->_par_kac_ovflw++;
  1.8242 +      }
  1.8243 +    } // Else another thread got there already
  1.8244 +  }
  1.8245 +}
  1.8246 +
  1.8247 +//////////////////////////////////////////////////////////////////
  1.8248 +//  CMSExpansionCause                /////////////////////////////
  1.8249 +//////////////////////////////////////////////////////////////////
  1.8250 +const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  1.8251 +  switch (cause) {
  1.8252 +    case _no_expansion:
  1.8253 +      return "No expansion";
  1.8254 +    case _satisfy_free_ratio:
  1.8255 +      return "Free ratio";
  1.8256 +    case _satisfy_promotion:
  1.8257 +      return "Satisfy promotion";
  1.8258 +    case _satisfy_allocation:
  1.8259 +      return "allocation";
  1.8260 +    case _allocate_par_lab:
  1.8261 +      return "Par LAB";
  1.8262 +    case _allocate_par_spooling_space:
  1.8263 +      return "Par Spooling Space";
  1.8264 +    case _adaptive_size_policy:
  1.8265 +      return "Ergonomics";
  1.8266 +    default:
  1.8267 +      return "unknown";
  1.8268 +  }
  1.8269 +}
  1.8270 +
  1.8271 +void CMSDrainMarkingStackClosure::do_void() {
  1.8272 +  // the max number to take from overflow list at a time
  1.8273 +  const size_t num = _mark_stack->capacity()/4;
  1.8274 +  while (!_mark_stack->isEmpty() ||
  1.8275 +         // if stack is empty, check the overflow list
  1.8276 +         _collector->take_from_overflow_list(num, _mark_stack)) {
  1.8277 +    oop this_oop = _mark_stack->pop();
  1.8278 +    HeapWord* addr = (HeapWord*)this_oop;
  1.8279 +    assert(_span.contains(addr), "Should be within span");
  1.8280 +    assert(_bit_map->isMarked(addr), "Should be marked");
  1.8281 +    assert(this_oop->is_oop(), "Should be an oop");
  1.8282 +    this_oop->oop_iterate(_keep_alive);
  1.8283 +  }
  1.8284 +}
  1.8285 +
  1.8286 +void CMSParDrainMarkingStackClosure::do_void() {
  1.8287 +  // drain queue
  1.8288 +  trim_queue(0);
  1.8289 +}
  1.8290 +
  1.8291 +// Trim our work_queue so its length is below max at return
  1.8292 +void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  1.8293 +  while (_work_queue->size() > max) {
  1.8294 +    oop new_oop;
  1.8295 +    if (_work_queue->pop_local(new_oop)) {
  1.8296 +      assert(new_oop->is_oop(), "Expected an oop");
  1.8297 +      assert(_bit_map->isMarked((HeapWord*)new_oop),
  1.8298 +             "no white objects on this stack!");
  1.8299 +      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  1.8300 +      // iterate over the oops in this oop, marking and pushing
  1.8301 +      // the ones in CMS heap (i.e. in _span).
  1.8302 +      new_oop->oop_iterate(&_mark_and_push);
  1.8303 +    }
  1.8304 +  }
  1.8305 +}
  1.8306 +
  1.8307 +////////////////////////////////////////////////////////////////////
  1.8308 +// Support for Marking Stack Overflow list handling and related code
  1.8309 +////////////////////////////////////////////////////////////////////
  1.8310 +// Much of the following code is similar in shape and spirit to the
  1.8311 +// code used in ParNewGC. We should try and share that code
  1.8312 +// as much as possible in the future.
  1.8313 +
  1.8314 +#ifndef PRODUCT
  1.8315 +// Debugging support for CMSStackOverflowALot
  1.8316 +
  1.8317 +// It's OK to call this multi-threaded;  the worst thing
  1.8318 +// that can happen is that we'll get a bunch of closely
  1.8319 +// spaced simulated oveflows, but that's OK, in fact
  1.8320 +// probably good as it would exercise the overflow code
  1.8321 +// under contention.
  1.8322 +bool CMSCollector::simulate_overflow() {
  1.8323 +  if (_overflow_counter-- <= 0) { // just being defensive
  1.8324 +    _overflow_counter = CMSMarkStackOverflowInterval;
  1.8325 +    return true;
  1.8326 +  } else {
  1.8327 +    return false;
  1.8328 +  }
  1.8329 +}
  1.8330 +
  1.8331 +bool CMSCollector::par_simulate_overflow() {
  1.8332 +  return simulate_overflow();
  1.8333 +}
  1.8334 +#endif
  1.8335 +
  1.8336 +// Single-threaded
  1.8337 +bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  1.8338 +  assert(stack->isEmpty(), "Expected precondition");
  1.8339 +  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  1.8340 +  size_t i = num;
  1.8341 +  oop  cur = _overflow_list;
  1.8342 +  const markOop proto = markOopDesc::prototype();
  1.8343 +  NOT_PRODUCT(size_t n = 0;)
  1.8344 +  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  1.8345 +    next = oop(cur->mark());
  1.8346 +    cur->set_mark(proto);   // until proven otherwise
  1.8347 +    assert(cur->is_oop(), "Should be an oop");
  1.8348 +    bool res = stack->push(cur);
  1.8349 +    assert(res, "Bit off more than can chew?");
  1.8350 +    NOT_PRODUCT(n++;)
  1.8351 +  }
  1.8352 +  _overflow_list = cur;
  1.8353 +#ifndef PRODUCT
  1.8354 +  assert(_num_par_pushes >= n, "Too many pops?");
  1.8355 +  _num_par_pushes -=n;
  1.8356 +#endif
  1.8357 +  return !stack->isEmpty();
  1.8358 +}
  1.8359 +
  1.8360 +// Multi-threaded; use CAS to break off a prefix
  1.8361 +bool CMSCollector::par_take_from_overflow_list(size_t num,
  1.8362 +                                               OopTaskQueue* work_q) {
  1.8363 +  assert(work_q->size() == 0, "That's the current policy");
  1.8364 +  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  1.8365 +  if (_overflow_list == NULL) {
  1.8366 +    return false;
  1.8367 +  }
  1.8368 +  // Grab the entire list; we'll put back a suffix
  1.8369 +  oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  1.8370 +  if (prefix == NULL) {  // someone grabbed it before we did ...
  1.8371 +    // ... we could spin for a short while, but for now we don't
  1.8372 +    return false;
  1.8373 +  }
  1.8374 +  size_t i = num;
  1.8375 +  oop cur = prefix;
  1.8376 +  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  1.8377 +  if (cur->mark() != NULL) {
  1.8378 +    oop suffix_head = cur->mark(); // suffix will be put back on global list
  1.8379 +    cur->set_mark(NULL);           // break off suffix
  1.8380 +    // Find tail of suffix so we can prepend suffix to global list
  1.8381 +    for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  1.8382 +    oop suffix_tail = cur;
  1.8383 +    assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  1.8384 +           "Tautology");
  1.8385 +    oop observed_overflow_list = _overflow_list;
  1.8386 +    do {
  1.8387 +      cur = observed_overflow_list;
  1.8388 +      suffix_tail->set_mark(markOop(cur));
  1.8389 +      observed_overflow_list =
  1.8390 +        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  1.8391 +    } while (cur != observed_overflow_list);
  1.8392 +  }
  1.8393 +
  1.8394 +  // Push the prefix elements on work_q
  1.8395 +  assert(prefix != NULL, "control point invariant");
  1.8396 +  const markOop proto = markOopDesc::prototype();
  1.8397 +  oop next;
  1.8398 +  NOT_PRODUCT(size_t n = 0;)
  1.8399 +  for (cur = prefix; cur != NULL; cur = next) {
  1.8400 +    next = oop(cur->mark());
  1.8401 +    cur->set_mark(proto);   // until proven otherwise
  1.8402 +    assert(cur->is_oop(), "Should be an oop");
  1.8403 +    bool res = work_q->push(cur);
  1.8404 +    assert(res, "Bit off more than we can chew?");
  1.8405 +    NOT_PRODUCT(n++;)
  1.8406 +  }
  1.8407 +#ifndef PRODUCT
  1.8408 +  assert(_num_par_pushes >= n, "Too many pops?");
  1.8409 +  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  1.8410 +#endif
  1.8411 +  return true;
  1.8412 +}
  1.8413 +
  1.8414 +// Single-threaded
  1.8415 +void CMSCollector::push_on_overflow_list(oop p) {
  1.8416 +  NOT_PRODUCT(_num_par_pushes++;)
  1.8417 +  assert(p->is_oop(), "Not an oop");
  1.8418 +  preserve_mark_if_necessary(p);
  1.8419 +  p->set_mark((markOop)_overflow_list);
  1.8420 +  _overflow_list = p;
  1.8421 +}
  1.8422 +
  1.8423 +// Multi-threaded; use CAS to prepend to overflow list
  1.8424 +void CMSCollector::par_push_on_overflow_list(oop p) {
  1.8425 +  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  1.8426 +  assert(p->is_oop(), "Not an oop");
  1.8427 +  par_preserve_mark_if_necessary(p);
  1.8428 +  oop observed_overflow_list = _overflow_list;
  1.8429 +  oop cur_overflow_list;
  1.8430 +  do {
  1.8431 +    cur_overflow_list = observed_overflow_list;
  1.8432 +    p->set_mark(markOop(cur_overflow_list));
  1.8433 +    observed_overflow_list =
  1.8434 +      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  1.8435 +  } while (cur_overflow_list != observed_overflow_list);
  1.8436 +}
  1.8437 +
  1.8438 +// Single threaded
  1.8439 +// General Note on GrowableArray: pushes may silently fail
  1.8440 +// because we are (temporarily) out of C-heap for expanding
  1.8441 +// the stack. The problem is quite ubiquitous and affects
  1.8442 +// a lot of code in the JVM. The prudent thing for GrowableArray
  1.8443 +// to do (for now) is to exit with an error. However, that may
  1.8444 +// be too draconian in some cases because the caller may be
  1.8445 +// able to recover without much harm. For suych cases, we
  1.8446 +// should probably introduce a "soft_push" method which returns
  1.8447 +// an indication of success or failure with the assumption that
  1.8448 +// the caller may be able to recover from a failure; code in
  1.8449 +// the VM can then be changed, incrementally, to deal with such
  1.8450 +// failures where possible, thus, incrementally hardening the VM
  1.8451 +// in such low resource situations.
  1.8452 +void CMSCollector::preserve_mark_work(oop p, markOop m) {
  1.8453 +  int PreserveMarkStackSize = 128;
  1.8454 +
  1.8455 +  if (_preserved_oop_stack == NULL) {
  1.8456 +    assert(_preserved_mark_stack == NULL,
  1.8457 +           "bijection with preserved_oop_stack");
  1.8458 +    // Allocate the stacks
  1.8459 +    _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  1.8460 +      GrowableArray<oop>(PreserveMarkStackSize, true);
  1.8461 +    _preserved_mark_stack = new (ResourceObj::C_HEAP)
  1.8462 +      GrowableArray<markOop>(PreserveMarkStackSize, true);
  1.8463 +    if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  1.8464 +      vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  1.8465 +                            "Preserved Mark/Oop Stack for CMS (C-heap)");
  1.8466 +    }
  1.8467 +  }
  1.8468 +  _preserved_oop_stack->push(p);
  1.8469 +  _preserved_mark_stack->push(m);
  1.8470 +  assert(m == p->mark(), "Mark word changed");
  1.8471 +  assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  1.8472 +         "bijection");
  1.8473 +}
  1.8474 +
  1.8475 +// Single threaded
  1.8476 +void CMSCollector::preserve_mark_if_necessary(oop p) {
  1.8477 +  markOop m = p->mark();
  1.8478 +  if (m->must_be_preserved(p)) {
  1.8479 +    preserve_mark_work(p, m);
  1.8480 +  }
  1.8481 +}
  1.8482 +
  1.8483 +void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  1.8484 +  markOop m = p->mark();
  1.8485 +  if (m->must_be_preserved(p)) {
  1.8486 +    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1.8487 +    // Even though we read the mark word without holding
  1.8488 +    // the lock, we are assured that it will not change
  1.8489 +    // because we "own" this oop, so no other thread can
  1.8490 +    // be trying to push it on the overflow list; see
  1.8491 +    // the assertion in preserve_mark_work() that checks
  1.8492 +    // that m == p->mark().
  1.8493 +    preserve_mark_work(p, m);
  1.8494 +  }
  1.8495 +}
  1.8496 +
  1.8497 +// We should be able to do this multi-threaded,
  1.8498 +// a chunk of stack being a task (this is
  1.8499 +// correct because each oop only ever appears
  1.8500 +// once in the overflow list. However, it's
  1.8501 +// not very easy to completely overlap this with
  1.8502 +// other operations, so will generally not be done
  1.8503 +// until all work's been completed. Because we
  1.8504 +// expect the preserved oop stack (set) to be small,
  1.8505 +// it's probably fine to do this single-threaded.
  1.8506 +// We can explore cleverer concurrent/overlapped/parallel
  1.8507 +// processing of preserved marks if we feel the
  1.8508 +// need for this in the future. Stack overflow should
  1.8509 +// be so rare in practice and, when it happens, its
  1.8510 +// effect on performance so great that this will
  1.8511 +// likely just be in the noise anyway.
  1.8512 +void CMSCollector::restore_preserved_marks_if_any() {
  1.8513 +  if (_preserved_oop_stack == NULL) {
  1.8514 +    assert(_preserved_mark_stack == NULL,
  1.8515 +           "bijection with preserved_oop_stack");
  1.8516 +    return;
  1.8517 +  }
  1.8518 +
  1.8519 +  assert(SafepointSynchronize::is_at_safepoint(),
  1.8520 +         "world should be stopped");
  1.8521 +  assert(Thread::current()->is_ConcurrentGC_thread() ||
  1.8522 +         Thread::current()->is_VM_thread(),
  1.8523 +         "should be single-threaded");
  1.8524 +
  1.8525 +  int length = _preserved_oop_stack->length();
  1.8526 +  assert(_preserved_mark_stack->length() == length, "bijection");
  1.8527 +  for (int i = 0; i < length; i++) {
  1.8528 +    oop p = _preserved_oop_stack->at(i);
  1.8529 +    assert(p->is_oop(), "Should be an oop");
  1.8530 +    assert(_span.contains(p), "oop should be in _span");
  1.8531 +    assert(p->mark() == markOopDesc::prototype(),
  1.8532 +           "Set when taken from overflow list");
  1.8533 +    markOop m = _preserved_mark_stack->at(i);
  1.8534 +    p->set_mark(m);
  1.8535 +  }
  1.8536 +  _preserved_mark_stack->clear();
  1.8537 +  _preserved_oop_stack->clear();
  1.8538 +  assert(_preserved_mark_stack->is_empty() &&
  1.8539 +         _preserved_oop_stack->is_empty(),
  1.8540 +         "stacks were cleared above");
  1.8541 +}
  1.8542 +
  1.8543 +#ifndef PRODUCT
  1.8544 +bool CMSCollector::no_preserved_marks() const {
  1.8545 +  return (   (   _preserved_mark_stack == NULL
  1.8546 +              && _preserved_oop_stack == NULL)
  1.8547 +          || (   _preserved_mark_stack->is_empty()
  1.8548 +              && _preserved_oop_stack->is_empty()));
  1.8549 +}
  1.8550 +#endif
  1.8551 +
  1.8552 +CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  1.8553 +{
  1.8554 +  GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  1.8555 +  CMSAdaptiveSizePolicy* size_policy =
  1.8556 +    (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  1.8557 +  assert(size_policy->is_gc_cms_adaptive_size_policy(),
  1.8558 +    "Wrong type for size policy");
  1.8559 +  return size_policy;
  1.8560 +}
  1.8561 +
  1.8562 +void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  1.8563 +                                           size_t desired_promo_size) {
  1.8564 +  if (cur_promo_size < desired_promo_size) {
  1.8565 +    size_t expand_bytes = desired_promo_size - cur_promo_size;
  1.8566 +    if (PrintAdaptiveSizePolicy && Verbose) {
  1.8567 +      gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  1.8568 +        "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  1.8569 +        expand_bytes);
  1.8570 +    }
  1.8571 +    expand(expand_bytes,
  1.8572 +           MinHeapDeltaBytes,
  1.8573 +           CMSExpansionCause::_adaptive_size_policy);
  1.8574 +  } else if (desired_promo_size < cur_promo_size) {
  1.8575 +    size_t shrink_bytes = cur_promo_size - desired_promo_size;
  1.8576 +    if (PrintAdaptiveSizePolicy && Verbose) {
  1.8577 +      gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  1.8578 +        "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  1.8579 +        shrink_bytes);
  1.8580 +    }
  1.8581 +    shrink(shrink_bytes);
  1.8582 +  }
  1.8583 +}
  1.8584 +
  1.8585 +CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  1.8586 +  GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.8587 +  CMSGCAdaptivePolicyCounters* counters =
  1.8588 +    (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  1.8589 +  assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  1.8590 +    "Wrong kind of counters");
  1.8591 +  return counters;
  1.8592 +}
  1.8593 +
  1.8594 +
  1.8595 +void ASConcurrentMarkSweepGeneration::update_counters() {
  1.8596 +  if (UsePerfData) {
  1.8597 +    _space_counters->update_all();
  1.8598 +    _gen_counters->update_all();
  1.8599 +    CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  1.8600 +    GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.8601 +    CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  1.8602 +    assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  1.8603 +      "Wrong gc statistics type");
  1.8604 +    counters->update_counters(gc_stats_l);
  1.8605 +  }
  1.8606 +}
  1.8607 +
  1.8608 +void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  1.8609 +  if (UsePerfData) {
  1.8610 +    _space_counters->update_used(used);
  1.8611 +    _space_counters->update_capacity();
  1.8612 +    _gen_counters->update_all();
  1.8613 +
  1.8614 +    CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  1.8615 +    GenCollectedHeap* gch = GenCollectedHeap::heap();
  1.8616 +    CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  1.8617 +    assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  1.8618 +      "Wrong gc statistics type");
  1.8619 +    counters->update_counters(gc_stats_l);
  1.8620 +  }
  1.8621 +}
  1.8622 +
  1.8623 +// The desired expansion delta is computed so that:
  1.8624 +// . desired free percentage or greater is used
  1.8625 +void ASConcurrentMarkSweepGeneration::compute_new_size() {
  1.8626 +  assert_locked_or_safepoint(Heap_lock);
  1.8627 +
  1.8628 +  GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  1.8629 +
  1.8630 +  // If incremental collection failed, we just want to expand
  1.8631 +  // to the limit.
  1.8632 +  if (incremental_collection_failed()) {
  1.8633 +    clear_incremental_collection_failed();
  1.8634 +    grow_to_reserved();
  1.8635 +    return;
  1.8636 +  }
  1.8637 +
  1.8638 +  assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  1.8639 +
  1.8640 +  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  1.8641 +    "Wrong type of heap");
  1.8642 +  int prev_level = level() - 1;
  1.8643 +  assert(prev_level >= 0, "The cms generation is the lowest generation");
  1.8644 +  Generation* prev_gen = gch->get_gen(prev_level);
  1.8645 +  assert(prev_gen->kind() == Generation::ASParNew,
  1.8646 +    "Wrong type of young generation");
  1.8647 +  ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  1.8648 +  size_t cur_eden = younger_gen->eden()->capacity();
  1.8649 +  CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  1.8650 +  size_t cur_promo = free();
  1.8651 +  size_policy->compute_tenured_generation_free_space(cur_promo,
  1.8652 +                                                       max_available(),
  1.8653 +                                                       cur_eden);
  1.8654 +  resize(cur_promo, size_policy->promo_size());
  1.8655 +
  1.8656 +  // Record the new size of the space in the cms generation
  1.8657 +  // that is available for promotions.  This is temporary.
  1.8658 +  // It should be the desired promo size.
  1.8659 +  size_policy->avg_cms_promo()->sample(free());
  1.8660 +  size_policy->avg_old_live()->sample(used());
  1.8661 +
  1.8662 +  if (UsePerfData) {
  1.8663 +    CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  1.8664 +    counters->update_cms_capacity_counter(capacity());
  1.8665 +  }
  1.8666 +}
  1.8667 +
  1.8668 +void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  1.8669 +  assert_locked_or_safepoint(Heap_lock);
  1.8670 +  assert_lock_strong(freelistLock());
  1.8671 +  HeapWord* old_end = _cmsSpace->end();
  1.8672 +  HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  1.8673 +  assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  1.8674 +  FreeChunk* chunk_at_end = find_chunk_at_end();
  1.8675 +  if (chunk_at_end == NULL) {
  1.8676 +    // No room to shrink
  1.8677 +    if (PrintGCDetails && Verbose) {
  1.8678 +      gclog_or_tty->print_cr("No room to shrink: old_end  "
  1.8679 +        PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  1.8680 +        " chunk_at_end  " PTR_FORMAT,
  1.8681 +        old_end, unallocated_start, chunk_at_end);
  1.8682 +    }
  1.8683 +    return;
  1.8684 +  } else {
  1.8685 +
  1.8686 +    // Find the chunk at the end of the space and determine
  1.8687 +    // how much it can be shrunk.
  1.8688 +    size_t shrinkable_size_in_bytes = chunk_at_end->size();
  1.8689 +    size_t aligned_shrinkable_size_in_bytes =
  1.8690 +      align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  1.8691 +    assert(unallocated_start <= chunk_at_end->end(),
  1.8692 +      "Inconsistent chunk at end of space");
  1.8693 +    size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  1.8694 +    size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  1.8695 +
  1.8696 +    // Shrink the underlying space
  1.8697 +    _virtual_space.shrink_by(bytes);
  1.8698 +    if (PrintGCDetails && Verbose) {
  1.8699 +      gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  1.8700 +        " desired_bytes " SIZE_FORMAT
  1.8701 +        " shrinkable_size_in_bytes " SIZE_FORMAT
  1.8702 +        " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  1.8703 +        "  bytes  " SIZE_FORMAT,
  1.8704 +        desired_bytes, shrinkable_size_in_bytes,
  1.8705 +        aligned_shrinkable_size_in_bytes, bytes);
  1.8706 +      gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  1.8707 +        "  unallocated_start  " SIZE_FORMAT,
  1.8708 +        old_end, unallocated_start);
  1.8709 +    }
  1.8710 +
  1.8711 +    // If the space did shrink (shrinking is not guaranteed),
  1.8712 +    // shrink the chunk at the end by the appropriate amount.
  1.8713 +    if (((HeapWord*)_virtual_space.high()) < old_end) {
  1.8714 +      size_t new_word_size =
  1.8715 +        heap_word_size(_virtual_space.committed_size());
  1.8716 +
  1.8717 +      // Have to remove the chunk from the dictionary because it is changing
  1.8718 +      // size and might be someplace elsewhere in the dictionary.
  1.8719 +
  1.8720 +      // Get the chunk at end, shrink it, and put it
  1.8721 +      // back.
  1.8722 +      _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  1.8723 +      size_t word_size_change = word_size_before - new_word_size;
  1.8724 +      size_t chunk_at_end_old_size = chunk_at_end->size();
  1.8725 +      assert(chunk_at_end_old_size >= word_size_change,
  1.8726 +        "Shrink is too large");
  1.8727 +      chunk_at_end->setSize(chunk_at_end_old_size -
  1.8728 +                          word_size_change);
  1.8729 +      _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  1.8730 +        word_size_change);
  1.8731 +
  1.8732 +      _cmsSpace->returnChunkToDictionary(chunk_at_end);
  1.8733 +
  1.8734 +      MemRegion mr(_cmsSpace->bottom(), new_word_size);
  1.8735 +      _bts->resize(new_word_size);  // resize the block offset shared array
  1.8736 +      Universe::heap()->barrier_set()->resize_covered_region(mr);
  1.8737 +      _cmsSpace->assert_locked();
  1.8738 +      _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  1.8739 +
  1.8740 +      NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  1.8741 +
  1.8742 +      // update the space and generation capacity counters
  1.8743 +      if (UsePerfData) {
  1.8744 +        _space_counters->update_capacity();
  1.8745 +        _gen_counters->update_all();
  1.8746 +      }
  1.8747 +
  1.8748 +      if (Verbose && PrintGCDetails) {
  1.8749 +        size_t new_mem_size = _virtual_space.committed_size();
  1.8750 +        size_t old_mem_size = new_mem_size + bytes;
  1.8751 +        gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  1.8752 +                      name(), old_mem_size/K, bytes/K, new_mem_size/K);
  1.8753 +      }
  1.8754 +    }
  1.8755 +
  1.8756 +    assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  1.8757 +      "Inconsistency at end of space");
  1.8758 +    assert(chunk_at_end->end() == _cmsSpace->end(),
  1.8759 +      "Shrinking is inconsistent");
  1.8760 +    return;
  1.8761 +  }
  1.8762 +}
  1.8763 +
  1.8764 +// Transfer some number of overflown objects to usual marking
  1.8765 +// stack. Return true if some objects were transferred.
  1.8766 +bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  1.8767 +  size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  1.8768 +                    (size_t)ParGCDesiredObjsFromOverflowList);
  1.8769 +
  1.8770 +  bool res = _collector->take_from_overflow_list(num, _mark_stack);
  1.8771 +  assert(_collector->overflow_list_is_empty() || res,
  1.8772 +         "If list is not empty, we should have taken something");
  1.8773 +  assert(!res || !_mark_stack->isEmpty(),
  1.8774 +         "If we took something, it should now be on our stack");
  1.8775 +  return res;
  1.8776 +}
  1.8777 +
  1.8778 +size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  1.8779 +  size_t res = _sp->block_size_no_stall(addr, _collector);
  1.8780 +  assert(res != 0, "Should always be able to compute a size");
  1.8781 +  if (_sp->block_is_obj(addr)) {
  1.8782 +    if (_live_bit_map->isMarked(addr)) {
  1.8783 +      // It can't have been dead in a previous cycle
  1.8784 +      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  1.8785 +    } else {
  1.8786 +      _dead_bit_map->mark(addr);      // mark the dead object
  1.8787 +    }
  1.8788 +  }
  1.8789 +  return res;
  1.8790 +}

mercurial